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Abstract. Identity-based encryption (IBE) schemes are usually used in multiple-

PKG environments — on the one hand, each administrative domain (e.g., a
relatively small and close organization) maintains its own private key generator
(PKG); on the other hand, encryption across domains becomes a prevalent re-
quirement. In this paper, we present a new IBE scheme using bilinear pairings.
Compared with the famous IBE scheme of Boneh and Franklin, we show that
ours is more practical in the multiple-PKG environment. We prove that our
scheme meets chosen ciphertext security in the random oracle model, assuming
the intractability of the standard Bilinear Diffie-Hellman (BDH) problem. As an
application of our IBE scheme, we also propose an escrowed ElGamal scheme
which possesses certain good properties in practice.

Keywords: identity-based encryption (IBE), multiple-PKG environments; pub-
lic key encryption (PKE), escrowed ElGamal, bilinear pairings

Revision Notes:

1. A global setup algorithm (G-Setup) is explicitly introduced to formalize IBE schemes
used in multiple-PKG environments.

2. Thanks to a novel technique for simulating the H1 oracle (due to Lal and Sharma,
on page 6 of [15], which is adapted in our proof for Lemma 2), the IND-ID-CCA
security of the full M-IBE scheme is now reduced to the standard BDH problem.
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1 Introduction

The concept of identity(ID)-based cryptography (IBC) was first introduced by Shamir
in 1984 [17]. The basic idea behind an ID-based cryptosystem is that end users can
choose arbitrary strings, for example their email addresses or other online identifiers,
as their public keys. The corresponding private keys are created by binding the identity
with a master private key of a trusted authority (called private key generation, or PKG
for short). This eliminates much of the overhead associated with key management.

In 2001, Boneh and Franklin [3] gave the first fully functional solution for ID-based
encryption (IBE) using the bilinear pairing over elliptic curves. Based on pairings, Sakai
and Kasahara presented another IBE (SK-IBE for short) scheme in 2003 [18]. How-
ever, its applicabilities to some circumstances (e.g., hierarchical IBE [14] and threshold
decryption [2]) are not comparable to the Boneh–Franklin scheme (BF-IBE for short).
Therefore, the BF-IBE scheme has received much more attention in recent years.

IBE in Multiple-PKG Environments. Although IBE eliminates much of the over-
head associated with key management in conventional public-key infrastructure (PKI)
[17], to deploy an IBE scheme in practice, it is unrealistic to setup a single global pri-
vate key generator (PKG) mainly because of the inherent key escrow problem, i.e., the
PKG knows all its users’ private keys. Another difficulty in applying an IBE scheme is
that when distributing private keys, secure channels between the PKG and its users are
required. Therefore, in order to apply IBE schemes and at the same time to mitigate
the aforementioned two problems, each administrator domain (e.g., a relatively small
and close organization like a university) will set up its own domain PKG, which is
only responsible for generating and distributing private keys for the users within the
domain/organization. On the other hand, with the development of the Internet and
e-business, there are many requirements that users in a domain would like to securely
communicate with users in other domains. We name this real-world application setting
of IBE schemes as multiple-PKG environment.

For an IBE scheme to be applicable in the multiple-PKG environment, all that is
needed is the availability of a global setup procedure G-Setup run by a globally trusted
third-party, which generates and publishs the standard global parameters params that
consists of pairing-friendly curves, the admissible bilinear pairings, a common group
generator point P , and the other common cryptographic tools such as hash functions
and encoding algorithms. We note that this is quite a reasonable requirement. In fact,
elliptic curves, suitable group generator points and other cryptographic tools have been
standardized for non-IBE applications, for example in the NIST FIPS standards [16].
Once these global parameters params have been agreed upon, each domain PKG only
needs to generate its own master private key and compute the corresponding master
public key using the global parameters params. For example, the Ministry of Education
can serve as the trusted third-party for all the universities in the nation, while each
university will setup its own domain PKG to generate and distribute private keys for
its teachers and students.

In this paper, we present a new IBE scheme using bilinear pairings. We show that
ours is more practical in the multiple-PKG environment. The new IBE scheme (here-
after referred to as M-IBE) enjoys the same Setup and Decrypt algorithms with the
BF-IBE scheme, while differs from the latter in that it has different Key-Extraction

and Encrypt algorithms. The M-IBE scheme is provably secure in the random oracle
model, assuming the hardness of the standard Bilinear Diffie-Hellman (BDH) problem
[3]. Parallel to [3], we also derive an escrowed ElGamal [9] encryption scheme from
the M-IBE scheme. Moreover, we show how the derived ElGamal encryption enables a
dual-decryptor public key encryption (PKE) scheme.
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Paper Organization. The rest of this paper is organized as follows. In the next
section, we give the necessary definitions for bilinear pairings, the related complexity
assumptions and IBE schemes in multiple-PKG environment, together with the related
security definitions for IBE schemes. In Section 3, we describes our new IBE scheme
— the M-IBE scheme and compares it with the BF-IBE scheme [3, 4] in multiple-PKG
environment. In Section 4, we prove that the chosen ciphertext security of the new
M-IBE scheme is reducible to the standard BDH assumption. Next, we propose a new
escrowed ElGamal encryption scheme in Section 5 and finally Section 6 contains a brief
conclusion.

2 Preliminaries

2.1 Pairings and MBDH Assumption

In this section, we describe in a more general format the basic definition and properties
of the pairing: more details can be found in [3].

Let G1 be a cyclic additive group generated by an element P , whose order is a
prime p, and G2 be a cyclic multiplicative group of the same prime order p. We assume
that the discrete logarithm problem (DLP) in both G1 and G2 are hard.

Definition 1 (Pairing). An admissible pairing e is a bilinear map e : G1×G1 → G2,
which satisfies the following three properties:

1. Bilinear: If P, Q ∈ G1 and a, b ∈ Z∗
p, then e(aP, bQ) = e(P, Q)ab;

2. Non-degenerate: e(P, P ) 6= 1;
3. Computable: If P, Q ∈ G1, one can compute e(P, Q) ∈ G2 in polynomial time.

Typically, the map e will be derived from either the Weil or Tate pairing on an
elliptic curve over a finite field. We refer to [5, 3, 4, 13] for a more comprehensive
description of how these groups, pairings and other parameters should be selected in
practice for efficiency and security.

Definition 2 (Bilinear Diffie-Hellman (BDH) Parameter Generator). As in
[3], we say that a randomized algorithm IG is a BDH parameter generator if IG takes
a security parameter k > 0, runs in time polynomial in k, and outputs the description
of two groups G1 and G2 of the same prime order q and the description of an admissible
pairing e : G1 × G1 → G2.

Definition 3 (Bilinear Diffie-Hellman (BDH) Problem ). Let G1, G2, P and e
be as above. The BDH problem in 〈G1, G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with
uniformly random choices of a, b, c ∈ Z∗

q , compute e(P, P )abc ∈ G2.

The security of our new pairing-based IBE scheme is based on the difficulty of the
above BDH problem. However, it will simplify the presentation of our proofs to use
the following equivalent formulation of the BDH problem, known as modified BDH

problem [19]. The modified BDH problem is identical to the BDH problem, except that

the output is e(P, P )a−1bc (instead of e(P, P )abc) 1.

Definition 4 (MBDH Problem [19]). Let G1, G2, P and e be as above. The MBDH

problem in 〈G1, G2, e〉 is as follows: Given 〈P, aP, bP, cP 〉 with uniformly random

choices of a, b, c ∈ Z∗
q , compute e(P, P )a−1bc ∈ G2.

1 Note that in an earlier version of the paper, the weaker so-called mBDH problems is that,
given 〈P, aP, a−1P, bP, cP 〉, to compute e(P,P )abc.
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A real-valued function f(l) is negligible if for any integer k, |f(l)| < l−k for suffi-
ciently large l. The following MBDH assumption states that, roughly, this problem is
computational infeasible.

Definition 5 (Modified Bilinear Diffie-Hellman (MBDH) Assumption). As in
[3], if IG is a BDH parameter generator, the advantage AdvIG(B) that an algorithm B
has in solving the MBDH problem is defined to be the probability that the algorithm B
outputs e(P, P )a−1bc ∈ G2 when the inputs to the algorithm are G1, G2, e, P, aP, bP, cP
where 〈G1, G2, e〉 is IG′s output for large enough security parameter k, P is a random
generator of G1, and a, b, c ∈ Z∗

q. The MBDH assumption is that AdvIG(B) is negligible
for all efficient algorithms B.

Here the probability is measured over the random choices of a, b, c ∈ Z∗
q and the random

bits of B.
The BDH assumption can be defined similarly. In [8], Canetti and Hohenberger

proved that the decisional variants of the two assumptions are equivalent. Using the
same reduction technique, we show that the MBDH and BDH assumptions are equiva-
lent.

Lemma 1. If the MBDH problem is solvable in in 〈G1, G2, e〉 with probability ǫ, then
the BDH problem is also solvable in 〈G1, G2, e〉 with probability with the same probabil-
ity; and vice versa.

Proof. (BDH Assumption ⇒ MBDH Assumption.) On BDH input 〈P, aP, bP, cP 〉, query
the MBDH problem solver on input 〈bP, P, cP, aP 〉 = 〈Q, xQ, yQ, zQ〉 and output its

response. Observe that the MBDH solver will output e(Q, Q)x−1yz, by substitution, we

have e(Q, Q)x−1yz = e(bP, bP )b(c/b)(a/b) = e(P, P )abc for the BDH solver.
(MBDH Assumption ⇒ BDH Assumption.) Omitted. ⊓⊔

2.2 Definitions for IBE in Multiple-PKG Environments

Our definition for IBE schemes in multiple-PKG environments is sightly different from
that of Boneh and Franklin [3, 4] in that there is an extra distilled global setup algorithm
G-Setup, which is responsible for generating the global agreed parameters params.

Definition 6 (IBE in Multiple-PKG Environments). An IBE scheme in the
multiple-PKG environment handling identities of length (where is a polynomially-bounded
function) is specified by five polynomial time algorithms:

G-Setup: is a probabilistic algorithm run by a globally trusted third-party that takes
as input a security parameter to output the global public parameters params.

Setup: is a probabilistic algorithm run by a domain PKG that outputs a master pub-
lic/private key pair (PPub, msk) for the domain (PPub is its master public key and
msk is its master private key).

Key-Extraction: is a key generation algorithm run by the domain PKG on input of
a master private key msk and a user’s identity ID to return the user’s private key
dID.

Encrypt: is a probabilistic algorithm which takes as input a plaintext M , the global
public parameters params, a recipient’s identity ID and the designated domain
PKG’s master public key PPub to output a ciphertext C.

Decrypt: is a deterministic decryption algorithm which takes as input a ciphertext
C and the private key dID to return a plaintext M or a distinguished symbol ⊥ if
C is not a valid ciphertext.
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The security of an IBE scheme in multiple-PKG environment is defined by the
following game between a challenger C and an adversary A which is almost identical
to that formalized in [3].

Setup. C takes a security parameter k and runs the G-Setup and Setup algorithms.
It gives A the global public parameters params and the domain master public key
PPub, while keeps msk to itself.

Find Stage. A issues queries as one of follows:
– Extraction query on IDi. C runs the Key-Extraction algorithm to generate dIDi

and passes it to A.
– Decryption query on (IDi, Ci). C decrypts the ciphertext by finding dIDi

first
(through running Key-Extraction algorithm if necessary), and then running the
Decrypt algorithm. It responds with the resulting plaintext Mi.

Challenge. Once A decides that Phase 1 is over, it outputs two equal length plain-
texts M0, M1, and an identity ID∗ (called the challenge identity) on which it
wishes to be challenged. The only constraint is that A must not have queried
the extraction query on ID∗ in Phase 1. C picks a random bit t ∈ {0, 1} and sets
C∗ = Encrypt(ID∗, Mt). It sends C∗ as the challenge to A .

Guess Stage. A issues more queries as in Phase 1 but with two restrictions: (1)
Extraction queries cannot be issued on ID∗; (2) Decryption queries cannot be
issued on (ID∗, C∗).

Output. Finally, A outputs a guess t′ ∈ {0, 1} and wins the game if t′ = t.

We refer to this type of adversary as an IND-ID-CCA adversary [3, 4]. If A cannot
ask decryption queries, we call it an IND-ID-CPA adversary. The advantage of an
adversary A against an IBE scheme is the function of security parameter k defined as:

AdvA(k) = |Pr[t′ = t] − 1/2|.

Definition 7 (IBE Security). An identity-based encryption (IBE) scheme is IND-
ID-CCA secure (resp. IND-ID-CPA) if for any IND-ID-CCA (resp. IND-ID-CPA)
adversary, AdvA(k) is negligible.

3 Proposed IBE Scheme

Now we describe our M-IBE scheme — a practical IBE scheme in the multiple-PKG
environment. Following the same exploration as in [4], we first give a basic version of
our scheme which is only chosen plaintext attack (CPA) secure. We then extend the
basic scheme to get security against adaptive chosen ciphertext attack (CCA) in the
random oracle model [6], using the second Fujisaki-Okamoto transformation [10].

3.1 Basic Scheme with CPA Security

The basic M-IBE scheme works as follows.

G-Setup. Given a security parameter k, the globally trusted third-party does the fol-
lowing:

1. Outputs two groups G1 and G2 of prime order p, a bilinear pairing e : G1×G1 → G2,
a generator points P of G1.

2. Picks a cryptographic hash functions H1 : {0, 1}∗ → G∗
1, a cryptographic hash

function H2 : G2 → {0, 1}n for some n.
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The message space is M = {0, 1}n. The ciphertext space is C = G∗
1 × {0, 1}n. The

global public parameters params are 〈p, G1, G2, e, P, n, H1, H2〉.

Setup. Each domain PKG does the following:

1. Chooses a random s ∈ Zp.
2. Calculates PPub = sP ∈ G1

The domain master public key is PPub, and the master private key msk is s.

Key-Extraction. To generate a private key for identity ID ∈ {0, 1}∗, the domain PKG
first computes QID = H1(ID) ∈ G∗

1, and then sets the private key dID to be dID =
s−1QID where s is the master private key 2.

Encrypt. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, using the
recipient’s identity ID to compute QID = H1(ID) ∈ G∗

1, sets the ciphertext to be

C = 〈rPPub, m ⊕ H2(g
r
ID)〉, where gID = e(P, QID) ∈ G

∗
2.

Decrypt. This algorithm is identical to that of BF-IBE. To decrypt a ciphertext C =
〈U, V 〉 ∈ C, using the private key dID of the identity ID computes

m = V ⊕ H2(e(U, dID)).

Consistence: The recipient can correctly decrypt C to get m since

e(U, dID)

= e(rsP, s−1QID)

= e(P, QID)r.

3.2 Full Scheme with CCA Security

In this subsection we extend the above basic scheme to a full IBE scheme with adap-
tive chosen ciphertext security using the general transformation due to Fujisaki and
Okamoto [10].

We borrow the description of the transformation from [11]. This conversion starts
from an IND-CPA encryption scheme and builds an IND-CCA scheme in the random
oracle model. If we denote by Epk(M, r) the encryption of M using the random bits r
under the public key pk, with set of messages M = {0, 1}n, set of coins R and set of
ciphertexts C, the new transformation is the scheme

Ehy
pk (M) = Epk(M ||r, H(M ||r)),

where M ||r ∈ {0, 1}n−k0 ×{0, 1}k0 and H : {0, 1}∗ → R is a hash function. To decrypt
a ciphertext C, one first obtains M ′||r′ using the original decryption algorithm, and
next checks if Epk(M ′||r′, H(M ′||r′)) = C. If this is so, outputs M ; otherwise outputs
reject symbol.

Now we describe the full M-IBE scheme thereby obtained.

G-Setup. Given a security parameter k, the global trusted third-party does the follow-
ing:

1. Outputs two groups G1 and G2 of prime order p, a bilinear pairing e : G1×G1 → G2,
a generator points P of G1.

2 Note that in BF-IBE [3, 4], the private key of a user is computed as dID = sQID instead.
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2. Picks three cryptographic hash functions H1 : {0, 1}∗ → G∗
1, H2 : G2 → {0, 1}n for

some n and H3 : {0, 1}∗ → Z∗
p.

The message space is M = {0, 1}n−k0. The ciphertext space is C = G∗
1 × {0, 1}n.

The global public parameters params are 〈p, G1, G2, e, P, n, k0, H1, H2, H3〉.

Setup. This algorithm is identical to that of the basic M-IBE scheme.

Key-Extraction. This algorithm is also identical to that of the basic M-IBE scheme.

Encrypt. To encrypt message m ∈ M, the sender picks randomly a σ ∈ {0, 1}k0, using
the recipient’s identity ID to compute QID = H1(ID) ∈ G∗

1, sets r = H3(m, σ) ∈ Z∗
p

and finally sets the ciphertext to be

C = 〈rPPub, (m||σ) ⊕ H2(g
r
ID)〉, where gID = e(P, QID) ∈ G

∗
2.

Decrypt. This algorithm is identical to that of Galindo’s BF-IBE variant [11]. To
decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key dID of the identity ID do

1. Compute V ⊕ H2(e(U, dID)) = m||σ.
2. Parse m||σ and compute r = H3(m, σ). Check that U = rPPub. If not, reject the

ciphertext.
3. Output m.

Consistence: The consistence of this scheme directly follows that of the basic scheme.

3.3 Comparison of IBE Schemes in Multiple-PKG Environments

Now we compare our new M-IBE scheme with the BF-IBE scheme [3] to show that
ours is more practical in multiple-PKG environments.

As we pointed out in Section 1, in the real-world application setting of IBE schemes
(i.e. the multiple-PKG environment), it is quite normal for a user to encrypt messages
to users from different administrative domains. For example, for a student Alice of
university A, she may need to encrypt messages to Bob from university B, Carol
from university C, or Emmy whose university is unknown to Alice by now (note that,
however, Alice already knows Emmy’s identity information).

Now we compare our new IBE scheme with the BF-IBE scheme [3] in such a
multiple-PKG environment. Firstly, the Setup algorithms run by each domain PKG
in the two schemes are the same, resulting in master public keys of the same length.
Secondly, the Decrypt algorithms in the two IBE schemes are also the same, requiring
identical computational overhead. In the following, we discuss what significance our
different Encrypt and Key-Extraction algorithms could bring in practice, particularly in
the multiple-PKG environment.

In BF-IBE [3], the session secret, i.e. the term gr
ID is computed as gr

ID = e(PPub, QID)r ,
in which PPub is the master public key of the intended recipient’s PKG. Therefore, in a
multiple-PKG environment, before computing the term gr

ID (which requires a relatively
expensive pairing evaluation that is the main operations of the overall encryption), the
BF-IBE scheme requires the encryptor to first get to know the following two things:

– which domain/organization the recipient is from, and
– the master public key associated with the domain PKG of the recipient.

Compared with the BF-IBE scheme, the biggest difference of our M-IBE scheme
is that the computation of the term gr

ID = e(P, QID)r in its Encrypt algorithm is
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independent of any PKG’s master public key PPub. Consequently, in the M-IBE scheme,
the encryptor can compute the pairing before getting the master public key of the
recipient’s PKG. Interestingly, the encryptor can even pre-compute gID before she
knows which domain/organization the recipient is from.

Therefore, our scheme enables a type of efficient “on the move” IBE scheme in the
multiple-PKG environment, which requires very small on-online work for the sender
(i.e. encryptor). We note that this feature is particularly useful in (ID-based) broadcast-
ing (or multiple-recipient) encryption scenario [7], namely with most of the expensive
computation pre-computed, the overall performance will be upgraded to a large extent.

Table 1. Comparison between M-IBE and BF-IBE

↓Schemes / Items→ Private key gID Assumption

BF-IBE [3] sQID e(PPub, QID) BDH

M-IBE s−1QID e(P, QID) BDH

Table 1 summarizes the above comparison between our M-IBE scheme and the BF-
IBE scheme. The two IBE schemes have the same performance features (e.g., the same
overall computational overhead, master public key length and the ciphertext length)
and security strength (as we will prove in the following section that the IND-ID-CCA
security of our M-IBE scheme can also be reduced to the BDH assumption). However,
our M-IBE scheme has a distinct advantage over the BF-IBE scheme in that it can
have the dominating operation in the Encrypt algorithm (i.e. the pairing evaluation)
pre-computed (i.e., computed off-line, or in other words, computed before querying the
master public key of the designated domain). In a word, our M-IBE is more practical
than the BF-IBE scheme in the multiple-PKG environment.

4 Security Proof for M-IBE

Now we evaluate the security of our M-IBE scheme. We prove that, same as the original
BF-IBE scheme [3, 4] and the improved BF-IBE scheme [11], the security of the M-
IBE scheme can also be reduced to the hardness of the BDH problem. The reduction
is similar to the proof of BF-IBE [4]. However, we will take into account the reduction
error found by Galindo [11].

We prove the security of our IBE scheme along the similar lines to that in [4, 11].
The proof is completed in three steps that can be sketched as follow. 1) First we
prove that if there exists an IND-ID-CCA adversary, who is able to break the IBE
by launching the adaptive chosen ciphertext attacks as defined in the security model,
then there exists an IND-CCA adversary to break the BasicPubhy scheme defined
in Lemma 2 with the adaptive chosen ciphertext attacks. 2) Second, if such IND-
CCA adversary exists, then we show (in Lemma 3) that there must be an IND-CPA
adversary that breaks the corresponding BasicPub scheme. 3) Finally, in Lemma 4
we prove that if the BasicPub scheme is not secure against an IND-CPA adversary,
then the corresponding MBDH assumption is flawed.

We first define the related non-ID-based public key encryption scheme BasicPub.
It is described by three algorithms: keygen, encrypt, decrypt.

keygen: Given a security parameter k, the user does the following:

1. Chooses a random s ∈ Zp, calculates P0 = sP ∈ G1.
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2. Picks a random Q0 ∈ G∗
2.

3. Picks a cryptographic hash functions H2 : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗
1 ×{0, 1}n. The

public key is 〈p, G1, G2, e, P, P0, n, Q0, H2〉 and the private key is d0 = s−1Q0 ∈ G∗
1.

encrypt: To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp and sets
the ciphertext to be

C = 〈rP0, m ⊕ H2(g
r
ID)〉, where gID = e(P, Q0) ∈ G

∗
2.

decrypt: To decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key d0 computes

m = V ⊕ H2(e(U, d0)).

The correctness of the above public key encryption scheme can be easily verified. We
refer to the full scheme of applying the Fujisaki-Okamoto transformation to BasicPub
as BasicPubhy.

Lemma 2. Let A be an IND-ID-CCA adversary with advantage ǫ against the full IBE
scheme making at most qE private key extraction queries, qD decryption queries and
q1 hash queries. Then there is an IND-CCA adversary B that has advantage at least
ǫ
q1

(1− qE

q1

) ≈ ǫ
q1

against BasicPub
hy. Its running time is tB ≤ tA + cG1

(qD + qE + q1),
where cG1

denotes the time of computing a random multiplication in G1.

Proof. Using similar reduction to Result 5 from [11] as well as a new technique for
simulating the H1 random oracle due to Lal and Sharma [15], the proof is given as
follows.

We show how to construct an IND-CCA adversary B against BasicPubhy by using
an IND-ID-CCA adversary A against the full M-IBE scheme. Let ǫ denotes the advan-
tage of A. Algorithm B receives a public key 〈p, G1, G2, e, P, P0, Q0, n, k0, H1, H2, H3〉
from its challenger. Then B simulates the challenger for A as follows.

Setup. B gives A the parameters 〈p, G1, G2, e, P, n, k0, H1, H2, H3〉 as the global pub-
lic parameters params and sets the master public key PPub to be P0, where H1 is
an oracle controlled by B as indicated in the following:

H1-queries. To respond to the queries, algorithm B maintains a list H list
1 of tuples

〈IDi, Qi, bi〉. Before initializing the list, B picks a random j ∈ {1, ..., q1}. When A
queries H1 at IDi, B proceeds as follows:

– If i 6= j, it picks at random a bi ∈ Z∗
p, sets Qi = biP0, adds 〈IDi, Qi, bi〉 to the

list and returns Qi to A .
– Otherwise (i.e., i = j), it sets Qj = Q0, adds 〈IDi, Qi,♠〉 to the list and gives

Qj to A . Here ♠ denotes a special symbol. As noted in [11], Q0 is unknown to
A and is uniformly distributed in G1, hence the outputs of H1 are uniformly
distributed in G1 and independent of A’s current view.

Find Stage. A issues queries as one of the following:

– Extraction queries. When A asks for the private key for IDi, B runs the algo-
rithm for responding H1 − queries and gets H1(IDi) = Qi, where 〈IDi, Qi, bi〉
is the corresponding entry in H list

l .

- If i = j, then B aborts the game and the attack against BasicPubhy failed.
(Event E1)
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- Otherwise, B sets di = biP and gives di to A .

– Decryption queries. B answers to a decryption query 〈IDi, Ci〉 as follows. It
runs H1-queries algorithm and let 〈IDi, Qi, bi〉 be the corresponding entry in
H list

l .
- If i 6= j, then B retrieves the private key di and decrypts Ci using the

Decrypt algorithm. B gives the decrypted message back to A .
- Otherwise, B asks its challenger to decrypt Cj and relays the answer to

A. (Note that if i = j, then Qi = Q0, and the decryption of 〈IDj , Cj〉 is

identical to the decryption of Cj by BasicPubhy.)

Challenge. Once A decides that Phase 1 (i.e. the Find Stage) is over, it outputs two
equal length plaintexts M0, M1, and an challenge identity ID∗ on which it wishes
to be challenged. Algorithm B proceeds as follows.

– If i 6= j, then B aborts the game and the attack against BasicPubhy failed.
(Event E2)

– Otherwise, B sends M0, M1 to its own challenger and gets back a ciphertext
C∗ — the encryption of Mt for a random bit t ∈ {0, 1} under BasicPubhy. B
relays C to A , which is also an encryption of Mt under ID∗ for the full M-IBE
scheme.

Guess Stage. A issues more queries and B proceeds as in Phase 1. Recall that by the
rules of the game, A has two restrictions: (1) Extraction queries cannot be issued
on ID∗; (2) Decryption queries cannot be issued on (ID∗, C∗).

Output. Finally, A outputs a guess t′ ∈ {0, 1} for t. B relays t′ as the guess to its
challenger.

In the above simulation, H1 behaves as a random oracle, and the extraction as well
as decryption queries are valid, hence if B does not abort during the simulation (i.e.,
both Event E1 and E2 do not happen), then A’s view is identical to its view in a
real attack. Therefore, we have |Pr[t′ = t]− 1/2| ≥ ǫ, where this probability is over the
random bits of A, B and the challenger for the IND-ID-CCA game.

Now we evaluate the probability that the simulation does not abort. We have

Pr[B does not abort] = Pr[¬E1 ∧ ¬E2] = Pr[¬E2|¬E1]Pr[¬E1].

As in [11], we can upper bound for Pr[E1] ≤ qE/q1, which is the probability that A
makes an extraction query at IDj in the Find Stage, since the maximum number of
such queries is qE . On the other hand, a lower bound for Pr[¬E2|¬E1], that is the
probability that A chooses IDj as the challenge identity, is 1/q1. Therefore,

Pr[B does not abort] ≥
1

q1
(1 − qE/q1).

This means that B’s advantage is as least ǫ
q1

(1 − qE/q1). ⊓⊔

Lemma 3. Let A be an IND-CCA adversary against BasicPub
hy whose advantage

is ǫ, making at most qD decryption queries and q2 hash queries. Then there is an IND-
CPA adversary B that has advantage at least (ǫ − q22

−(k0−1))(1 − 1/p)qD ≈ ǫ against
BasicPub

hy. Its running time is tB ≤ tA+q2(TBasicPub+logp), where TBasicPub
is the running time of Encrypt algorithm in BasicPub.

Proof. This result is obtained applying the Fujisaki-Okamoto transformation, and the
proof can be found in [10]. ⊓⊔
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Lemma 4. Let A be an IND-CPA adversary with advantage ǫ against BasicPub mak-
ing at most q2 queries to H2. Then there is an algorithm B that has advantage at least
2ǫ/q2 in solving the BDH problem. Its running time is tB = O(tA).

Proof. See Appendix A. ⊓⊔

We are now ready to state the security of our full IBE scheme.

Theorem 1. The proposed full M-IBE scheme is (t, qH , qD, ǫ)-secure if the BDH prob-
lem on (G1, G2, e) is

(t + cG1
(2qD + qH) + qHO(log3p + logp), ǫ/q2

H)) − secure.

Proof. This follows directly from Lemma 2, 3 and 4. ⊓⊔

5 Applications of Our IBE Scheme

Now we investigate the applicabilities of our newly proposed M-IBE scheme in some
other real-world scenarios. We note that, using similar ideas to the ones presented in
[14, 2], our M-IBE scheme can also be extended to work in hierarchical as well as
threshold decryption contexts. We leave the details to the interested reader.

5.1 Escrowed ElGamal Encryption

Parallel to [3], we introduce a new ElGamal encryption system in which a single escrow
key enables the decryption of ciphertexts encrypted under any public key.

Our escrowed ElGamal encryption scheme works as follows:

Setup. Given a security parameter k, the escrow authority (EA) does the following:

1. Chooses a random s ∈ Zp, calculates two points Q1 = sP and Q2 = s−1P ∈ G1
3.

2. Chooses a cryptographic hash functions H : G2 → {0, 1}n for some n.

The message space is M = {0, 1}n. The ciphertext space is C = G∗
1 ×{0, 1}n. The

public params are 〈p, G1, G2, e, n, P, Q1, Q2, H〉 and the escrow key is s.

Key Generation. Same as in [3], a user generates a public/private key pair for herself
by picking a random x ∈ Zq and computing PPub = xP ∈ G1. Her private key is
x, her public key is PPub.

Encrypt. To encrypt message m ∈ M, the sender picks randomly a r ∈ Zp, sets the
ciphertext to be

C = 〈rQ2, m ⊕ H2(g
r)〉, where g = e(P, PPub) ∈ G

∗
2.

Decrypt. To decrypt a ciphertext C = 〈U, V 〉 ∈ C, using the private key x of the
identity ID computes

m = V ⊕ H2(e(U, xQ1)).

Escrow Decrypt. To decrypt a ciphertext C = 〈U, V 〉, using the escrow key s of the
EA computes

m = V ⊕ H2(e(U, PPub)
s).

3 Note that in [4], the public key of the EA is one point Q = sP ∈ G1 instead.
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Consistence: The two recipients can correctly decrypt C to get m since

e(U, xQ1)

= e(rQ2, xQ1)

= e(rs−1P, xsP )

= e(rP, xP )

= e(P, PPub)
r

= gr

and

e(U, PPub)
s

= e(rs−1P, PPub)
s

= e(rP, PPub)

= e(P, PPub)
r

= gr.

Compared with the scheme in [3], our escrowed ElGamal requires the EA to publish
one more point as its public key. An advantage of our scheme is that the encryptor can
choose a designated EA (from multiple EAs) after she finished most of the operations
of encrypting a message. This provides the encryptor with more flexibility in practice.

A Variant. If we look the escrow authority (EA) in the above escrowed ElGamal
scheme as an ordinary principal (who has her own private and public key pair), it can
be then used as a dual-decryptor PKE scheme, i.e., a single ciphertext can be decrypted
independently by two different principals. However, unlike in conventional setting, we
require that at least one of the recipients to publish two points (e.g. Y1, Y2) as her
public key, in the form of Y1 = αP and Y2 = α−1P (assuming α is the private key of
the recipient).

A good property of this scheme is that the encryptor can encrypt the message
before she picks up the second recipient. In other words, after the encryption has been
down, the encryptor can change her mind on who the second recipient will be. More
interestingly, the encryptor can efficiently add more such “second recipient”, each time
she adds one, only one scalar multiplication of computation is needed, without any
expensive pairing evaluation. However, we note that the size of the ciphertext will
grow linearly.

5.2 Efficient Multi-Recipient IBE

We now look at the multi-recipient IBE setting, whereby a sender wants to send an en-
crypted message to n recipients. In 2004, Baek et al. [7] proposed the first construction
based on the BF-IBE scheme, which reduces the number of pairing evaluations to 1.
We remark that their scheme only works well within an administrative domain, namely
with all the n recipients getting their private keys from the same one domain PKG.
However, in the multiple-PKG context, the sender still has to compute q pairings if the
n designated recipients are from q different domains.

As mentioned in Section 3, our M-IBE scheme is even more attractive when used in
the multi-recipient context. In [20], using a similar idea to Baek et al.’s [7] and based
on the new M-IBE scheme, we propose an efficient multi-recipient IBE scheme which
works efficiently across domains. Notably, the new multi-recipient IBE scheme requires
only 1 pairing evaluation for the sender, no matter how many domains the n recipients
are from.
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6 Conclusions

In this paper, we gave a new IBE scheme that is provably secure in the random oracle
model. The security is based on a the standard Bilinear Diffie-Hellman assumption.
We showed that the new scheme is more practical than the famous IBE scheme due to
Boneh and Franklin in multiple-PKG environment. As applications, we also proposed
a related escrowed ElGamal encryption scheme which has its distinct advantages over
that in [3, 4]. Compared with the Boneh–Franklin scheme, our IBE scheme is even
more practical in the multiple-recipient setting.

Future work includes exploring the merits of our new IBE scheme in constructing
Certificate-Based Encryption (CBE) [12] and Certificateless Public Key Encryption
(CL-PKE) schemes [1].
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A Proof of Lemma 4

The proof idea is largely based on that of Lemma 4.3 in [4]. Let A be an IND-CPA
adversary against BasicPub who makes at most q2 queries to random oracle H2 and
who has advantage ǫ. We show how to construct an algorithm B which interacts with
A to solve the MBDH problem.

Suppose B has an input 〈G1, G2, e〉 and 〈P, aP, bP, cP 〉 (where a, b, c ∈ Z∗
q are un-

known to B). Let D = e(P, P )a−1bc ∈ G2 denote the solution to the MBDH problem
on these inputs.

Setup: Algorithm B creates the public key of BasicPub 〈p, G1, G2, e, P, PPub, n,
QID, H2〉 by setting PPub = aP and QID = bP . Here H2 is a random oracle
controlled by B as described bellow. A is given the public key. Observe that the
unknown private key associated to the public key is dID = a−1QID = a−1bP .

H2-queries: To simulate H2-queries by A, B maintains a list (H2-list) of pairs 〈Xj , Hj〉.
To respond to an H2 query X , B checks first if X = Xj for some Xj already on
the list. If it is, then B responds with Hj . Otherwise, B chooses H2 uniformly at
random from {0, 1}m and places 〈X, H〉 on the H2 list.

Challenge: A outputs two messages M0, M1 on which it wishes to be challenged. B
picks randomly a bit t ∈ {0, 1}, a string S ∈ {0, 1}m and defines C to be the
ciphertext of Mt, where C = 〈U, V 〉, with U = cP and V = Mt ⊕ S. It then gives
C to A as the challenge.

Notice that, by definition, the decryption of C is V ⊕H(e(cP, a−1bP ))=V ⊕H(D).
(Recall that a−1bP is unknown and D is the solution to the above MBDH problem.)

Guess: A outputs its guess t′ ∈ {0, 1}.

Output: At this point, B picks a random tuple 〈Xj , Hj〉 from the H2-list and outputs
Xj as the solution to the given instance of MBDH problem.

It is easy to see that A’s view in B’s simulation is the same as in a real attack, in
other words, the simulation is perfect. So A’s advantage in this simulation will be ǫ.
We let H be the event that D is queried to H2 oracle during B’s simulation.

Notice that H2(D) is independent of A’s view, so if A never queries D to the H2

oracle in the above simulation, then the decryption of C is also independent of its view.
Therefore, in the simulation we have Pr[t = t′|¬H] = 1/2. By the definition of A, we
know that in the real attack (and also in the simulation) | Pr[t = t′] − 1/2 | ≥ ǫ. We
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have the following bounds on Pr[t = t′]:

Pr[t = t′] = Pr[t = t′|¬H]Pr[¬H] + Pr[t = t′|H]Pr[H]

≤ Pr[t = t′|¬H]Pr[¬H] + Pr[H]

=
1

2
Pr[¬H] + Pr[H]

=
1

2
+

1

2
Pr[H],

Pr[t = t′] ≥ Pr[t = t′|¬H]Pr[¬H]

=
1

2
Pr[¬H]

=
1

2
(1 − Pr[H])

=
1

2
−

1

2
Pr[H]).

Hence we have | Pr[t = t′]−1/2 | ≤ 1
2Pr[H]. By | Pr[t = t′]−1/2 | ≥ ǫ we know that

Pr[H] ≥ 2ǫ. Furthermore, by the definition of the event H, we know that D appears
in some tuple on the H2-list with probability at least 2ǫ. It follows that B outputs
the correct answer to the MBDH problem instance with probability at least 2ǫ/q2 as
required. Recall that in Lemma 1 we proved that the MBDH problem is as hard as the
BDH problem, this ends the proof of Lemma 4. ⊓⊔


