
Practical Password Recovery on

an MD5 Challenge and Response⋆

Yu Sasaki1, Go Yamamoto2, and Kazumaro Aoki2

1 The University of Electro-Communications,
Chofugaoka 1-5-1, Chofu-shi, Tokyo, 182-8585, Japan

2 NTT, 1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan

Abstract. This paper shows an attack against APOP protocol which
is a challenge-and-response protocol. We utilize the Wang’s attack to
make collisions in MD5, and apply it to APOP protocol. We confirmed
that the first 3 octets of secret key can be recovered by several hundred
queries under the man-in-the-middle environment.

1 Introduction

After the Wang’s breakthrough [14] to find collision in hash functions, the secu-
rity of hash functions has much attention. Since how to derive the Wang’s attack
seems unclear, many studies are conducting to clarify this topic, for example [2].
On the other hand, people started to consider the influences of tractable colli-
sion against real applications of hash function. We know that tractable collision
is undesirable property for a hash function, but we are not sure how to influ-
ence the property to applications of hash function such as digital signature,
message authentication, and challenge-and-response protocols. For example, [5]
shows how to alter a PostScript document to be signed, and [1] shows the secu-
rity of NMAC and HMAC can be proven without collision-resistance property.
However, no result is known for challenge-and-response protocols.

This paper shows an attack against APOP protocol which is based on MD5
[11] message authentication. Our attack utilizes the collision tractable property
in MD5, and successfully recovers the first three octets of password under man-
in-the-middle environment. Moreover, the paper is an answer of the problem
written in [6]:

Because of the message extension attack on the prefix approach, the
“suffix” approach, MD5(m ·k), would seem to be preferred. But another
problem arises: the key may be vulnerable to cryptanalysis, depending
on the properties of the compression function.

The following sections organize as follows. Section 2 introduces the notation
and the previous results. Section 3 abstracts the properties of collisions to be

⋆ We notified Information-technology Promotion Agency, Japan of the result fol-
lowed by the Japanese ordinance, December 8, 2006. The notification number is
IPA#10155887.

used. Section 4 describes an attack for challenge-and-response protocols whose
challenge is generated as MD5(m‖k), where m is variable length. Section 5 dis-
cusses how to apply the attack to APOP. Section 6 concludes this paper.

2 Preliminaries

2.1 Notations and Definitions

Bit Strings. For a bit string b = b1b2b3 · · · bl, let |b| be the length l, and let [b]ij
be the substring bibi+1 · · · bj−1bj.

Description of MD5. MD5 [11] is a hash function with Merkle-Damg̊ard
structure, which takes an arbitrary length message M as input, and outputs
128-bit length hash value H(M). First of all, an input message M is padded and
divided into 512-bit length block messages (M0, M1, . . . , Mn−1). These block
messages will go through compression function (CF) of MD5 with a 128-bit ini-
tial value. The initial chaining variable (H0) are set as follows: a0 = 0x67452301,
b0 = 0xefcdab89, c0 = 0x98badcfe, d0 = 0x10325476. The procedure of MD5
algorithm is as follows:

H1 = CF (M0, H0), H2 = CF (M1, H1), . . . , Hn = CF (Mn−1, Hn−1)

Hn will be the hash value of M .
Compression function of MD5 takes Mn−1 and Hn−1 as input, and outputs

Hn. First, Mn−1 is divided into 32-bit messages (m0, m1, . . . , m15). Hash value
Hn−1 is divided into 32-bit chaining variables (a0, b0, c0, d0). The compression
function consists of 64 steps. In step i, chaining variables ai−1, bi−1, ci−1, di−1

are updated as follows.
ai = di−1 bi = bi−1 + (ai−1 + f(bi−1, ci−1, di−1) + mk + ti) ≪ si

ci = bi−1 di = ci−1

f is a Boolean function defined in each round. mk is one of (m0, . . . , m15), and
index k is defined in each steps. ti is a constant value defined in each step. ≪ si

denotes left rotation by si bits, and si is defined in each step. Finally, Hn is
computed as (a0 + a64, b0 + b64, c0 + c64, d0 + d64).

2.2 Wang’s Results and Its Extension

How to generate MD5 collision in Wang et al.’s method? Wang et al.’s
attack is a differential attack. It generates a collision with complexity of 238 MD5
computation3. Let m and m′ be a pair of messages that yields a collision. Dif-
ference ∆ is defined to be value of calculation for m′ 32-bit wordwise subtracted
by value of calculation for m. For example, ∆m = m′−m. The attack procedure
is as follows.

3 In original paper, complexity was estimated as 237 MD5 computation. However, [9]
pointed out the mistakes of their estimation, and reevaluated the correct complexity.

2

1. Find “Message Difference (∆M)” that yields a collision with high probability.
2. Determine the propagation of ∆M . Propagation of difference is called “Dif-

ferential Path (DP)”.
3. To realize the DP, generate “Sufficient Conditions (SC)” on the value of

chaining variables of calculation for mi.
4. Determine procedures of “Message Modification (MM)” that satisfy SCs.
5. Search a message that satisfies all SCs by randomly generating messages and

applying MM. Let the searched message be M∗.
6. Calculate M ′

∗ = M∗ + ∆M . Finally, M∗ and M ′
∗ become a collision pair.

This attack generates a collision with two blocks messages. Let M (1) and M (2)

is a message for the first and the second block respectively. ∆M of their attack
is as follows.

∆M (1) = (∆m
(1)
0 , . . . , ∆m

(1)
15) = (0, 0, 0, 0,231, 0, 0, 0, 0, 0, 0, 215,0, 0, 231, 0)

∆M (2) = (∆m
(2)
0 , . . . , ∆m

(2)
15) = (0, 0, 0, 0,231, 0, 0, 0, 0, 0, 0,−215,0, 0, 231, 0)

The proposed APOP attack uses the collision attack on MD5 proposed by Wang

et al. The property that m
(2)
15 does not have any difference is important for the

APOP attack.

The best improved attack known. While no paper has been published on
improvement of ∆M and DP, some papers proposed the improvement on SC
and MM. Liang and Lai pointed out that Wang et al.’s SCs are insufficient, and
showed the truly sufficient conditions [9]. Regarding MM, in November 2005,
Sasaki et al. proposed the message modification for starting collision search from
the intermediate step [12, 13]. In March 2006, Klima independently proposed
message modification named “Tunnel” [7]. The concepts of these two techniques
are the same, but Klima applied his technique more widely than Sasaki et al.
Klima’s attack is the fastest attack, which finds a collision within a minute by
standard notebook PC.

Properties to be used in our attack. APOP attack needs to generate colli-
sions of MD5 many times. In the proposed attack, collision generation technique
is based on Wang et al.’s collision attack. We use the same ∆M , DP and SC as
Wang et al.’s. Regarding MM, we slightly change the technique because of the
limitation of the APOP. Sasaki et al.’s and Klima’s message modification are
also available to quickly generate collisions.

2.3 Related Work

In Asiacrypt 2006, a related-key key recovery attack on NMAC/HMAC MD5
was proposed by Contini and Yin [3]. In NMAC/HMAC MD5, message authen-
tication tag is generated by calculating MD5sk2(MD5sk1(m)), where MD5ski(m)
denotes MD5 calculation for m by using i-th secret key as its initial value. The
only difference of NMAC and HMAC is the existence of Key Deriving Function.

3

They proposed the method to recover sk1 of NMAC/HMAC MD5. The re-
lated part to this paper is that their attack recovers sk1 without knowing sk2 by
using the known property of MD5: If MD5(a) and MD5(b) (a 6= b) are collision,
MD5(a||c) and MD5(b||c) will also collide for any c. This property is applied to
NMAC/HMAC.

[MD5sk1(m) = MD5sk1(m
′)]⇒ [N/HMACsk1,sk2(m) = N/HMACsk1,sk2(m

′)]

Therefore, they can know the occurrence of collision in the first part by looking
authentication tags.

Another point is that both of their attack and our attack use the message
modification (MM). However, since IV of NMAC/HMAC is secret information,
MMs by Contini and Yin are different from MMs by Wang et al.’s. On the other
hand, MM used in our attack is based on MM by Wang et al.’s.

Very recently, Leurent independently proposes an attack against APOP pro-
tocol [8]. The result includes almost part of this paper, but the motivation is
quite different.

3 Properties of Collisions

For a function h : {0, 1}∗ → {0, 1}k, if distinct messages m, m′ ∈ {0, 1}∗ satisfy
h(m) = h(m′) then the pair of the messages (m, m′) is called a collision pair.
In this section we prepare some notions that characterize additional property of
collision pairs.

3.1 Extendable Collision Pairs

Many dedicated hash functions like SHA-1 is designed on the Merkle-Damg̊ard
construction. In such cases, one can expect that some collisions for the function
possesses the property defined below.

Definition 1 (Extendable Collision Pairs). Let h : {0, 1}∗ → {0, 1}k be a

function and let a pair of distinct messages (m, m′) is a collision pair, that is,

h(m) = h(m′) holds. We say (m, m′) is an extendable collision pair, if h(m||x) =
h(m′||x) holds for any x ∈ {0, 1}∗.

This property relates to length extension attack, that is, given h(m) and the
length of m but not m itself, one can compute h(m||x) for a given x.

Proposition 1. Let (m, m′) be a collision pair such that |m| = |m′|. If for

message m message length extension attack is applicable for any x ∈ {0, 1}∗,
then (m, m′) is an extendable collision pair.

Proof. Suppose one can apply message length extension attack on m. It implies
that h(m||x) can be computed on input h(m), |m|, and x. Since (m, m′) is a
collision pair, hence h(m) = h(m′), which implies h(m||x) = h(m′||x). ⊓⊔

4

3.2 Tail Collision Pairs

Cryptographic hash functions are usually designed to be collision-resistant. How-
ever, some works recently revealed that it is not so hard as considered before to
find collisions for SHA-1, MD5, and so on. In this section extending the notion
of collision pairs we consider tail collision pairs, that is harder to find. In Section
5 we will point out that at least for MD5 Wang’s work finds even tail collision
pairs, not only collision pairs.

Definition 2 (x-Tail Collision Pairs). Let h : {0, 1}∗ → {0, 1}k be a function.

An x-tail collision pair is a pair of distinct messages (m, m′) such that h(m||x) =
h(m′||x).

If x is set to the NULL string, NULL-tail collision pair is nothing but the
conventional collision pair.

Definition 3 (Depth and Proper x-Tail Collision Pairs). Let (m, m′) be

an x-tail collision pair. We define the depth of the pair by the minimum positive

integer d such that (m, m′) is a [x]1d-tail collision pair. If the depth of an x-tail

collision pair (m, m′) equals to |x|, then we call (m, m′) a proper x-tail collision

pair.

Definition 4. An extendable x-tail collision pair (m, m′) is an x-tail collision

pair such that (m||x, m′||x) is an extendable collision pair.

An extendable x-tail collision pair is also an extendable x||y-tail collision pair
for an arbitrary y ∈ {0, 1}∗.

We usually suppose that for distinct messages x and x′, a proper x-tail colli-
sion pair (m, m′) is very unlikely to be a proper x′-tail collision pair at the same
time. We call this hypothesis Tail Collision Soundness.

4 The Attack

Let O be an oracle which outputs h(x||s) on input x, where s is the secret stored
inside O. Let Tn be an oracle which on input x with |x| < n outputs (m, m′)
such that (m, m′) is an extendable proper x-tail collision pair of h. Then, our
attack extracts the first n bits of s with accesses to O and Tn.

Theorem 1. Suppose h is a function with Tail Collision Soundness. Let O and

Ti are oracles as described above. Let s be the secret string stored in O. Then,

there is an algorithm that outputs the first n bits of s, within 2n times O calls

and a single Ti call for each i = 1, 2, . . . , n.

This attack affects to the real life. In Section 5 it is shown that one can
implement T32 for MD5, which impacts on the security of APOP [10].

5

Proof. Consider the algorithm described below.✓ ✏
Input: n ∈ N,
Output: the first n bits of s.

1. Set G←NULL.
2. Send G||0 to T|G|+1 and receive (m, m′).
3. Send m to O and receive a.
4. Send m′ to O and receive a′.
5. If a = a′, then set G←G||0. Otherwise set G←G||1.
6. If |G| reaches n, then output G and exit. Otherwise goto Step 2.

✒ ✑
It suffices to show that Step 5 gives the correct guess for [s]1|G|+1 assuming

that G is the correct guess for [s]1|G| in Step 2.

In Step 5, a = a′ holds if G||0 is the correct guess for [s]1|G|+1, because T|G|+1

returns an extendable G||0-tail collision pair, that is, (m||[s]1|G|+1, m
′||[s]1|G|+1)

is an extendable collision pair, hence h(m||s) = h(m′||s).
Suppose G||0 is not the correct guess and a = a′ holds. In particular (m, m′)

is an s-tail collision pair. Let d be the depth of s-tail collision pair (m, m′).
Then, (m, m′) is a proper [s]1d-tail collision pair. Suppose d > |G|. (m, m′) is
also a proper G||0-tail collision pair, while [s]1d 6= G||0 since G||0 is not the
correct guess for s. This contradicts our assumption of Tail Collision Soundness.
If d ≤ |G|, then [s]1d = [G||0]1d since G is the correct guess for [s]1|G|. Hence

the depth of proper G||0-tail collision pair (m, m′) is less than |(G||0)|. This
contradicts to the definition. ⊓⊔

In real life, when one deals with APOP, mail user agents can take parts as
the oracle O described above, while O does not necessarily accept an input with
an arbitrary length. If the input for O is restricted to octet strings, the guess at
Step 2 should be repeated for 255 times in the worst case.

5 In Real Life

5.1 Brief Description of APOP

APOP is an optional feature of POP defined in [10]. In the conventional POP,
users are authenticated by plaintext passwords. APOP authenticates users by
an MD5 challenge-response.

In an APOP session, the challenge is given in the first message from the
APOP server, formatted like <26099.1163472291@hostname.fqdn> correspond-
ing to the ‘msg-id’ defined in [4]. The response from the user agent is supposed
to be MD5(challenge||password).

The attack described in Section 4 can be applied to APOP, where the user
agent participates as the oracle O, if one can implement the oracle T whose
outputs are accepted by the user agent.

6

5.2 Behavior of Popular Mail User Agents

We experimented on actual conditions for accepting challenge strings with popu-
lar mail user agents. We choose Thunderbird-1.5, Mew-5.1, Al-Mail-1.13a, Becky!-
2.27, EdMax-2.85.5F as the targets. They are widely used in Japan and supports
APOP.

First of all challenge strings must begin with ’<’ and must end with ’>’,
since challenge strings are extracted in such a way from the first message of the
server, which can contain some comments or greeting messages besides with the
challenge string.

The detail of the experiments are as described below.✓ ✏
Set octet string s = (’<’, 0x02, 0x03, . . . , 0xff, 0x01, 0x02, 0x03, . . . , 0xff,
0x01, 0x02, 0x03, . . . , 0xfe, ’>’).

Experiment 1:

1. Submit s to each mail user agent as the challenge from the server.
2. Check whether the mail user agent returns the correct response.

Experiment 2:

1. Replace all of 0x0a(LF), ’<’, and ’>’ in s with ’X’ except for the first
character and the last character.

2. Submit s to each mail user agent as the challenge from the server.
3. Check whether the mail user agent returns the correct response.

Experiment 3:

1. Replace all of 0x0a(LF), ’<’, ’>’, ’@’ in s with ’X’ except for the first
character and the last character.

2. Submit s to each mail user agent as the challenge from the server.
3. Check whether the mail user agent returns the correct response.

✒ ✑
The results of the experiments are shown in Table 1, where OK implies the

agent returns the correct response, NG implies response is incorrect or the agent
returns an error.

Table 1. Experimental results on mail user agents

agent name Exp1 Exp2 Exp3

Thunderbird-1.5 NG OK NG
Mew-5.1 NG OK NG

Al-Mail-1.13a NG OK NG
Becky!-2.27 NG OK NG

EdMax-2.85.5F NG OK OK

7

The result supports the conditions for accepting challenge strings described
below:

– Strings must begin with ’<’ and end with ’>’.
– Strings must not contain 0x0a(LF).
– Strings must not contain ’<’ nor ’>’ except for the first character and the

last character.
– Strings should contain at least one ’@’.

In addition, strings must not contain 0x00(NULL), which terminates string.

5.3 Implementation of T32 for MD5

In this section, we explain how to implement T32 for MD5, that is, how to
generate extendable tail collision pair of MD5.

When we generate x and x′, we use the collision attack proposed by Wang
et al. However, different from the collision attack, x must consist of octets that
are accepted by mail user agents. At first, to simplify the situation, we ignore
this limitation. Therefore, we assume that any bit sequence can be chosen for x.
(We remove this assumption later).

Impact of a fixed tail value. If the following two facts are achieved, we can
obtain extendable tail collision pair (x, x′).

- x and x′ can have the appropriate message differences.
- x that satisfies all SCs can be found in practical time.

The value of the tail part for x and x′ must be identical, therefore, no message
difference is allowed in the tail part. Fortunately, as is described in Section 2.2,
message difference for Wang et al.’s attack does not involve m15 but involves the
MSB of m14. Therefore, we can locate tail part in m15 but cannot locate it in
the MSB of m14. Consequently, as long as the tail part is less than or equal to
39 bits (= 4 octets and 7 bits) 4, we can make the desired message differences,
and find a collision pair. This means, we can implement Ti, (0 ≤ i ≤ 39), but
cannot implement it for i ≥ 40.

Message Modification with fixed m15. To find x that satisfies all SCs,
message modification is available. Since we don’t generate a collision pair but a
tail collision pair, exactly the same message modification as Wang et al.’s attack
cannot be applied. However, since tail part of x is at most 39 bits, other 473 bits
still have freedom. This enables us to find x that satisfies all SCs in practical
time (≈ 230 MD5 computations).

Remember the single-message modification (SMM) proposed by Wang et al.
In this method, all sufficient conditions for step i, (1 ≤ i ≤ 16) are satisfied by

4 If the tail part is more than 39 bits, it will locate in m14. Since MD5 uses big endian,
it will locate in the MSB of m14, and we cannot make the message differences.

8

modifying mi−1. In the APOP attack, since m0 to m14 can freely be chosen,
all SCs up to step 15 are satisfied by the SMM. Similarly, MMM that does not
involve m15 can be applied to the APOP attack.

After the SMM and MMM that does not involve m15 are applied, the number
of remaining SCs becomes 34, which obtains the desired x and x′ with complexity
of 234 MD5 computations. By changing procedures for message modification that
involves m15 so that m15 would not be involved, 4 more SCs can be satisfied.
Finally, x and x′ are generated with complexity of 230 MD5 computations.

Other message modification named “Tunnel” by Klima [7] or “Message mod-
ification for starting the collision search from the intermediate step” by Sasaki
et al. [13] are also available. By combining SMM, MMM and these modification,
x and x′can be generated in about five seconds on a PC.

5.4 How to avoid the limitation of APOP challenge string?

In the beginning of this section, we assumed that any bit string can be chosen
as x. However, some strings cannot be accepted by the actual APOP. Forbidden
strings are described in Section 5.2.

Start from ’<’ and include ’@’. To avoid these limitations, the property
that Wang et al.’s attack works for any initial value can be used. That is, we put
an additional common message block before the tail collision. Let the 512-bit
message that starts from ’<’ and include an ’@’ be Pre. The generated tail
collision pair becomes (Pre||x) and (Pre||x′).

End with ’>’. APOP string must end with ’>’. This means we need an
additional fixed character in the tail part of x and x′. Because of this limitation,
the generated tail collision pair becomes (Pre||x||’>’) and (Pre||x′||’>’). As
explained before, fixed length can be 39 bits in maximum. Therefore, even with
the limitation of ’>’, we still have freedom for 31 bits, that is, 3 octets in the
tail part. This is the reason why the number of recoverable octets is 3. Note
that several Japanese mail user agents seem to parse the challenge message as
Japanese string. That is, ’>’ may be considered as the part of the next previous
character.

Do not include 0x00(NULL), 0x0a(LF), ’<’ and ’>’. APOP string must
not include 0x00(NULL), 0x0a(LF), ’<’ and ’>’. For these strings, we have not
tried intelligent countermeasures. If these strings are included in the message
after message modification, we choose other random message.

6 Conclusion

This paper shows an attack against a challenge-and-response protocol whose
challenge is based on MD5(m‖k), where m is random string whose length is

9

variable and k is a secret key, utilizing the collision tractable property in MD5.
The attack can be applicable to APOP and recovers the first three octets of pass-
word using several hundred queries under the man-in-the-middle environment.
The result implies that the collision property in hash function does not only
influence the security against digital signature, but also challenge-and-response
protocols. We should be aware of the risk using collision tractable hash function
such as MD5 even if the usage of the hash function does not seem to depend on
the collision resistance property.

This paper defines the new properties regarding hash functions, extendable
collision pairs and tail collision pairs. How more vulnerable are other dedicated
hash functions than those constructed on the Merkle-Damg̊ard way on these
properties is an independent interests.

7 Work in Progress

The proposed attack can recover 3 octets of APOP password. So the question is
whether we can recover more octets.

The biggest reason that we cannot recover the 4th octet is that message
difference (∆M) exists in the MSB of m14. Therefore, to extend the recoverable
octets, we need to change the ∆M . ∆M that is suitable for the APOP attack
will have following two properties.

1. Execution time for generating tail collision pair is practical.
2. The length of tail part can be long, therefore, message differences exist in

only early part of the message.

Wang et al.’s ∆M can find collision within few seconds, but can recover only 3
octets. Therefore, there may exist other ∆M that is somehow worse than Wang
et al.’s in terms of finding collision, but can recover more octets. However, so far,
only one research has existed to analyze the construction method of ∆M and
differential path of MD5 [2], and no research has been succeeded in constructing
collision attack by using different ∆M from Wang et al.’s. To extend the APOP
attack, further study for the construction of ∆M and differential path for MD5
collision attack will be needed.

References

1. Mihir Bellare. New proofs for NMAC and HMAC : Security without collision-
resistance. In Cynthia Dwork, editor, Advances in Cryptology — CRYPTO 2006,
volume 4117 of Lecture Notes in Computer Science, pages 602–619. Springer-
Verlag, Berlin, Heidelberg, New York, 2006.

2. John Black, Martin Cochran, and Trevor Highland. A study of the MD5 attacks:
Insights and improvements. In Matthew Robshaw, editor, Fast Software Encryp-
tion — 13th International Workshop, FSE 2006, volume 4047 of Lecture Notes in
Computer Science, pages 262–277, Berlin, Heidelberg, New York, 2006. Springer-
Verlag.

10

3. Scott Contini and Yiqun Lisa Yin. Forgery and partial key-recovery attacks on
HMAC and NMAC using hash collisions. In Xuejia Lai and Kefei Chen, editors,
Advances in Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in
Computer Science, pages 37–53. Springer-Verlag, Berlin, Heidelberg, New York,
2006.

4. David H. Crocker. Request for Comments 822: Standard for ARPA Internet Text
Messages. The Internet Engineering Task Force, 1982. (http://www.ietf.org/
rfc/rfc822.txt).

5. Magnus Daum and Stefan Lucks. Hash collisions (the poisoned message attack).
(http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/),
2005.

6. Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Message authentication with
MD5. CryptoBytes, 1(1):5–8, 1995.

7. Vlastimil Klima. Tunnels in hash functions: MD5 collisions within
a minute. (IACR Cryptology ePrint Archive: Report 2006/105
http://eprint.iacr.org/2006/105), 2006.

8. Gaetan Leurent. Message freedom in MD4 and MD5 collisions: Application to
APOP. FSE2007 submission version, 2007.

9. Jie Liang and Xuejia Lai. Improved collision attack on hash func-
tion MD5. (IACR Cryptology ePrint Archive: Report 2005/425
http://eprint.iacr.org/2005/425), 2005.

10. John G. Myers and Marshall T. Rose. Request for Comments 1939 (STD 53):
Post Office Protocol - Version 3. The Internet Engineering Task Force, 1996.
(http://www.ietf.org/rfc/rfc1939.txt).

11. Ronald L. Rivest. Request for Comments 1321: The MD5 Message Digest Algo-
rithm. The Internet Engineering Task Force, 1992. (http://www.ietf.org/rfc/
rfc1321.txt).

12. Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved col-
lision attack on MD5. (IACR Cryptology ePrint Archive: Report 2005/400
http://eprint.iacr.org/2005/400), 2005.

13. Yu Sasaki, Yusuke Naito, Noboru Kunihiro, and Kazuo Ohta. Improved collision
attacks on MD4 and MD5. IEICE Transactions Fundamentals of Electronics,
Communications and Computer Sciences (Japan), E90-A(1):36–47, 2007. (The
initial result was announced as [12].).

14. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer-Verlag, Berlin,
Heidelberg, New York, 2005.

11

