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Abstract. At DRM 2002, Chow et al. [4] presented a method for im-
plementing the DES block cipher such that it becomes hard to extract
the embedded secret key in a white-box attack context. In such a con-
text, an attacker has full access to the implementation and its execution
environment. In order to provide an extra level of security, an implemen-
tation shielded with external encodings was introduced by Chow et al.
and improved by Link and Neumann [10]. In this paper, we present an
algorithm to extract the secret key from such white-box DES implemen-
tations. The cryptanalysis is a differential attack on obfuscated rounds,
and works regardless of the shielding external encodings that are applied.
The cryptanalysis has a average time complexity of 214 and a negligible
space complexity.

Keywords. White-Box Cryptography, Obfuscation, DES, Data Encryp-
tion Standard, Cryptanalysis

1 Introduction

White-box cryptography aims to protect secret keys by embedding them
into a software implementation of a block cipher. The attack model for
these implementations is defined as the white-box attack model. In this
model, an attacker has full control over the implementation and its ex-
ecution environment. This includes static and dynamic analysis of the
implementation, altering of computation, and modification of internal
variables. In such a model, it is much more difficult to protect crypto-
graphic implementations than in the classical black-box model. In the
black-box model, an adversary can only use the input and output be-
haviour of the implementation in order to find the key. Another model is



the grey-box model, where an adversary can use side-channel information
such as power consumption, and timing information.

For the black-box model, several cryptographic block ciphers have
been proposed, such as DES (Data Encryption Standard) [13], and its
successor AES (Advanced Encryption Standard). Although these ciphers
provide cryptographic strength in their full number of rounds, attacks
have been presented on reduced round versions. Cipher designers aim
to reduce the number of rounds, for which a cipher provides sufficient
security, while cryptanalysists try to construct an attack on as many
rounds as possible. For AES-128 and AES-192, a cryptanalysis on 7 and
8 rounds has been presented respectively (out of 10 and 12 rounds) [9].
In a white-box attack model, this game of design and cryptanalysis fails
completely, since an attacker has access to the round functions, and can
thus perform a cryptanalysis on a chosen part of the implementation
representing a reduced number of round functions.

In 2002, Chow et al. [4] proposed a white-box implementation of DES.
The main idea is to implement the block cipher as a network of lookup
tables. All the operations of the block cipher, such as the key addition, are
embedded into these lookup tables, which are then randomised to obfus-
cate their behaviour. This process of obfuscation intends to preclude cryp-
tographic attacks on a reduced number of rounds, timing attacks, such
as cache attacks (e.g., [11]) or implementation attacks [8]. Parallel with
the white-box DES implementation proposal, Chow et al. [3] described
a white-box AES implementation based on similar design principles. For
both implementations, a variant was presented that is shielded with ex-
ternal encodings. Several publications describe cryptanalysis results of
‘naked’ white-box DES implementations, i.e., without the shielding ex-
ternal encodings [4,7,10]. The encoded white-box AES implementation
has been cryptanalysed by Billet et al. [2]. They use algebraic proper-
ties of the AES to attack the implementation on the obfuscated round
functions.

In this paper, we describe a cryptanalysis which applies to both naked
and encoded white-box DES implementations. Independently, Goubin et
al. [6] present similar results. Their paper describes a cryptanalysis of
the improved naked white-box DES implementation proposed by Link
and Neumann [10]. Based on this attack and the analysis of the typi-
cal external encodings, an attack is derived for encoded white-box DES
implementations. In contrast, the attack we discuss in this paper is in-
dependent of the definition of the external encodings. Hence, unlike the
attack of Goubin et al., a white-box DES implementation cannot be pro-



tected against our attack by choosing different external encodings. The
attack presented in this paper targets the internal behaviour of the im-
plementation; it is a differential cryptanalysis [1] on the obfuscated round
functions, which are accessible in a white-box environment. Because the
attack is independent of the definition and implementation of the exter-
nal encodings, it applies to both the (improved) naked and the encoded
white-box DES implementations.

The reminder of this paper is organised as follows: in Sect. 2 we give
a brief overview of the white-box DES implementation. The core of this
paper, the cryptanalysis of the implementation, is described in Sect. 3.
We have also implemented our attack and performed tests on white-box
DES binaries. The results and considerations of the implementation are
described in Sect. 4. Section 5 presents the conclusions.

2 White-Box DES Implementations

For the sake of completeness and to introduce the notation and termi-
nology used in the description of the cryptanalysis, we briefly outline the
construction of white-box DES implementations as presented by Chow et
al. [4].

The Data Encryption Standard (DES) is a block cipher operating on
64-bit blocks and with a key length of 56 bits; it is a Feistel cipher with
16 rounds, embedded between an initial permutation IP before the first
round, and its inverse permutation IP−1 after the last round. Fig. 1 (a)
depicts one round of the DES. It has the following building blocks: an
expansion operation E ; an addition of a 48-bit round key kr which is
generated from the key schedule; 8 S-box operations Si (each S-box is a
non-linear mapping from 6 bits to 4 bits); and a bit permutation P .

A DES white-box implementation represents DES as a functional
equivalent sequence of obfuscated lookup tables. In this section, we de-
scribe the transformation techniques as presented by Chow et al. [4].
Figure 1 (a) depicts one round of DES, and (b) a functionally equiva-
lent representation which consist of the functions Cr and Dr. The DES
permutation, XOR, and expansion operation are implemented as a 96-to-
96 bit affine function Dr, which can be represented as a matrix. Using a
technique referred to as matrix decomposition by Chow et al., Dr is trans-
formed into a sequence of lookup tables. To avoid sparse submatrices, Dr

can be split into non-sparse matrices by introducing mixing bijections [4].
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Fig. 1. (a) One round of DES (b) One round of white-box DES, before internal encod-
ings are applied

At the heart of each round of the white-box DES implementation are
12 T-boxes that implement the Cr function. These T-boxes contain the
S-boxes and the round key addition and are defined as

{

T r
j = b0b1||b2b7||Sj(b2b3b4b5b6b7 ⊕ kr

j ) ∀j = 1 . . . 8

T r
j = b0b1b2b3||b4b5b6b7 ∀j = 9 . . . 12 ,

where r denotes the round number (1 ≤ r ≤ 16), b0...7 represent the 8
input bits to each T-box, and kr

j represents 6 bits of the round key. The
first 8 T-boxes are called non-linear T-boxes, as they contain the non-
linear S-boxes. The other 4 are called bypass T-boxes. The 12 T-boxes of
Cr are defined in such a way that they are functionally equivalent to the
round key addition, S-box operations and the bypass of all 32 left bits
(Lr−1) and 32 right bits (Rr−1). Moreover, due to the bijective relation
between the inner 4 input bits and the output bits of an S-box, these T-
boxes are 8-to-8 bit bijections. This 8 bit entropy property is desirable as
it prevents the isolated T-boxes to leak information as described by Chow
et al. [4]. The order of the T-boxes can be permuted. Note that in that
case, the affine operations Dr−1 and Dr must be adjusted accordingly.
Denote with π the permutation operation, i.e., Si is implemented inside
T r

π(i).
The result is a network of key dependent lookup tables. To protect the

key information in these tables, input and output encodings are applied



to them. Let Λ be a lookup table, and f and g be random bijections.
Then g ◦ Λ ◦ f−1 is defined an encoded lookup table. We encode all the
lookup tables in the network in such a way that an output encoding is
canceled by the input decoding incorporated into the next lookup table.
Note that these input and output encodings are not wide, because they
cannot exceed the boundaries of the lookup tables they are applied to.
From now on, we refer to an encoded T-box as gi ◦ T r

π(i) ◦ f−1
i , and the

internal state as the 12-byte vector f1||f2|| . . . ||f12(Φr(Lr−1||Xr−1||Rr−1))
where Φr is the function which arranges the bits to the inputs of the T-
boxes. Remark that in Fig. 1 the internal states are depicted unencoded.

Once the full network of lookup tables has been encoded, the input
encodings at the beginning and output encodings at the end of the im-
plementation are not canceled out. Without these encodings, we call the
white-box DES implementation naked. Attacks on a naked implementa-
tion have been presented in [4,7,10]. In order to avoid such attacks, Chow
et al. recommend to add affine mixing bijections before and after DES. As
a result, not DES, but an encoded variant G ◦DESk ◦F is implemented.
F and G are called external encodings.

3 Cryptanalysis

Examination of the white-box DES implementation as presented by Chow
et al. shows that plaintext input differences between the rounds do not
propagate randomly. Denote the internal state before round r as the 96
bits that represent the encoded version of Lr−1||Xr−1||Rr−1. This is a 12-
byte vector vr

1||v
r
2|| . . . v

r
12, where vr

j is the encoded input to a T-box T r
j .

In our cryptanalysis we apply changes to the internal states and analyse
their propagation in the consecutive rounds to gain information about
the implementation. This information is then used to recover the key.
The applied technique builds on a generic strategy described for the first
time by Billet et al. [2]. The cryptanalysis also applies to the improved
implementation as presented by Link and Neumann [10], because only
the inputs to the T-boxes are used. Merging Cr and Dr, or any change
to Dr ◦ Cr (e.g., with mixing bijections) that does not change the inputs
to Cr beyond the input size boundary, does not affect the attack.

Below, we present the steps to classify differences to the input of the
T-boxes and show how this results in the recovery of the embedded secret
key. In Sect. 3.1, we identify the set of differences which represent flips
of restricted (Rr−1) bits. This leads to the identification of flips of the
two middle input bits of S-boxes in round r + 2, and results also in the



identification of single input bit flips to S-boxes in round r+3, as described
in Sect. 3.2. This information is then used in Sect. 3.3 to identify the S-
boxes contained inside the T-boxes, and the precise value of the input to
these S-boxes. In Sect. 3.4, we explain how this leads to the recovery of
the embedded key.

Initialisation Phase. At the initialisation of our cryptanalysis, we choose
a random plaintext and run it through the implementation, storing all in-
ternal states. We will deduce the inputs to the S-boxes for this plaintext
in Sect. 3.3. Because we are only interested in the propagation of differ-
ences applied to the internal states, the value of the plaintext is of no
importance. Hence, preceding external input encodings do not affect the
success of this cryptanalysis.

3.1 Finding Restricted Bit Flips

Let T r
j be an arbitrary encoded T-box in round r, encoded with input

encoding f r
j and output encoding gr

j . Let vr
j denote the 8-bit input vec-

tor to the encoded T-box computed at the initialisation phase. In this
section we present an algorithm to construct the set S

R
(T r

j ) = {∆v =

vr
j ⊕ v′ | v′ ∈ GF (2)8; v′ 6= vr

j ; f
r
j (vr

j ) ⊕ f r
j (v′) an Rr−1 bit flip} of all

input differences to the encoded T r
j which represent flips of one or two

restricted bits (|f r
j (vr

j ) ⊕ f r
j (v′)| = 1, 2). Similarly, we define the sets

SR(T r
j ) and SR\R(T r

j ). An input difference ∆v is applied to T-box T r
j as

follows: change the jth byte of the internal state before round r from vr
j

into v′, and compute the round function Dr ◦ Cr with this new internal
state as input.

The algorithm consists of two parts: (1) constructing the set SR(T r
j )

of all differences which represent single bit flips and some double bit flips
of Rr−1, and (2) to divide this set into SR(T r

j ) and SR\R(T r
j ).

Finding Single Rr−1 Bit Flips. Let ∆v = vr
j ⊕ v′(= ∆vr

j ) be a differ-
ence of the input of T r

j while the inputs vr
l to the other T-boxes T r

l are
fixed to the values from the initialisation phase (∀l 6= j : ∆vr

l = 0). The
following two properties can be proved for ∆v. The proofs are given in
Appendix A.

Property 1 If ∆v represents a single bit flip of Rr−1, then in round
r + 2, at most 2 T-boxes are affected (i.e., their input change).



Property 2 If ∆v represents flips of bits of Lr−1 or Yr, then in almost
all cases more than 2 T-boxes are affected in round r + 2. The exceptions
(false positives) can be detected by repeating this process up to α times
with different fixed inputs to the other T-boxes T r

l .

Hence, we are able to distinguish flips ∆v that represent flips of Rr−1

bits, and build the set SR(T r
j ). Algorithm 1 describes this procedure. The

total number of differences representing flips of bits of Rr−1 for all the T-
boxes of one round, is exactly 40: 16 single flips of bits of Rr−1 originating
from Xr−1, 16 single flips of bits of Rr−1, and 8 double flips of bits of
Rr−1. To agree with property 2, these double flips of restricted bits are
those that affect the both middle bits of an S-box in round r +2, and are
bypassed together through the implementation. Therefore they cannot
be distinguished from single bit flips of Rr−1. Because there are only 8
S-boxes, there cannot be more than 8 double bit flips. Depending on the
design of Φr, the number of double flips can reduce, but this does not
influence our cryptanalysis. To keep the discussion clear, we assume the
bypass bits are ordered, and therefore we will have 8 double bit flips.

Algorithm 1 Selecting single Rr−1 bit flips

1: Set all vr
l

2: for all ∆v ∈ GF (2)8\{0} do

3: Compute 2 round functions
4: while # affected T-boxes ≤ 2 and # checks ≤ α do

5: Extra check: set new vr
l ; ∀l 6= j

6: Compute 2 round functions
7: end while

8: if # affected T-boxes ≤ 2 then

9: ∆v → SR(T r
j )

10: end if

11: end for

Split Rr−1 into Rr−1 and Rr−1\Rr−1 Flips. Let ∆v represent flips
of Rr−1 bits. The following properties can be proved for ∆v ∈ SR(T r

j ).
The proofs are given in Appendix A.

Property 3 If ∆v represents a flip of bits of Rr−1, there are exactly
2 propagated differences in round r + 2: ∆m, ∆n. One (say ∆m, input
difference to T-box T r+2

m ) will affect strictly more than 2 T-boxes in round
r + 4, the other difference will affect at most 2 T-boxes in round r + 4.



Moreover, T r+2
m will be a non-linear T-box; ∆m represents flips of one or

both of the two middle bits of the internal S-box; and ∆n represents flips
of respectively one or two Rr+1 bits.

Property 4 If ∆v represents a flip of bits of Rr−1\Rr−1, there are ex-
actly 2 propagated differences in round r + 2. Both affected T-boxes are
non-linear T-boxes, and each of their input differences will affect strictly
more than two T-boxes in round r + 4.

Based on these properties, we have a tool to identify restricted bit flips,
and to distinguish non-linear T-boxes. In Algorithm 2, this procedure is
described. Note that during the algorithm, we also store the differences
∆m representing flips of middle bits (b4b5) to an S-box Sm in the set
SM (T r+2

m ).

Algorithm 2 Split Rr−1 into Rr−1 and Rr−1\Rr−1 flips

1: for all ∆v ∈ SR(T r
j ) do

2: Compute 2 round functions
3: ∆m, ∆n← propagated differences in round r + 2 of T r+2

m , T r+2
n m 6= n

4: δm← # affected T-boxes in round r + 4 propagated by ∆m in round r + 2.
5: δn← # affected T-boxes in round r + 4 propagated by ∆n in round r + 2.
6: if δm > 2 and δn = 2 then

7: ∆v → S
R
(T r

j ); ∆m→ SM (T r+2
m )

8: Denote T r+2
m as non-linear T-box

9: else if δm = 2 and δn > 2 then

10: ∆v → S
R
(T r

j ); ∆n→ SM (T r+2
n )

11: Denote T r+2
n as non-linear T-box

12: else if δm > 2 and δn > 2 then

13: ∆v → S
R\R

(T r
j )

14: Denote both T r+2
m and T r+2

n as non-linear T-box
15: end if

16: end for

The combination of Algorithm 1 and Algorithm 2 results into the
following useful information:











Sr
R

= ∪jSR(T r
j ): differences representing restricted bit flips

S
r+2
M = ∪jSM (T r+2

j ): differences representing S-box middle bit flips

T r+2
π(1) . . . T r+2

π(8) : the 8 non-linear T-boxes (π unkown)

3.2 Finding Single Bit Flips

In Sect. 3.1, differences representing flips of the 2 middle bits (b4b5) of
the S-boxes of round r+2 are found. Let T r+2

j be an arbitrary non-linear



T-box in round r + 2, and SM (T r+2
j ) its set of middle bit flips. We have

SM (T r+2
j ) = {∆m1,∆m2,∆m3} with ∆mi : vr+2

j → vr+2
j ⊕ ∆mi the 3

generated differences. One can verify that, except for S-box S8, each of
the four output bits of the S-box Sr+2

j are flipped at least once by going

through one of the values vr+2
j ⊕∆m1, v

r+2
j ⊕∆m2, v

r+2
j ⊕∆m3. Further-

more, as the middle bits are not bypassed in the same T-box, no other
output bits of the T-box are affected. Due to the diffusion property of the
DES permutation P, the 4 output bits of an S-box affect a single input bit
of 6 S-boxes in the next round, with two of them middle input bits (See
Coppersmith [5]). Based on the previously mentioned study, the two dif-
ferences representing bypass bits can be detected. Under the assumption
of ordered bypass bits, we have already built this set to compare with
(Sr+3

R
). The other propagated input differences to the T-boxes in round

r+3 represent single bit flips. Algorithm 3 describes this procedure, which
constructs the set SS(T r+3

i ) of differences representing single bit flips.

As mentioned, the described property does not hold for S8: for the
input 11b4b501, with arbitrary b4 and b5, the rightmost output bit cannot
be flipped by flipping the input bits b4 and b5. Thus, with a probability of
1/16, we are not able to find all single bit flips of round r+3. However, it
will become clear in the next section that we do not need all information
to successfully apply our cryptanalysis.

Algorithm 3 Finding single bit flips

1: for all ∆v ∈ SM (T r+2
π(j)

) j = 1 . . . 8 (for non-linear T-boxes) do

2: Compute one round function
3: for all ∆wi propagated difference to a non-linear T-box T r+3

i do

4: if ∆wi /∈ SS(T r+3
i ) then

5: ∆wi → SS(T r+3
i )

6: end if

7: end for

8: end for

3.3 Obtaining the Inputs to the S-boxes

Let T r+3
j be an arbitrary non-linear T-box in round r + 3. Using the

acquired information from the steps above, we deploy a filter algorithm
to identify the S-box (Sπ−1(j)) in the T-box T r+3

j , and to find the value

of its 6-bit input vector (f r+3
j |2...7(v

r
j ) ⊕ kr+3

j ).



We define the set P(T r+3
j ) = {(Sq, wl) | 1 ≤ q ≤ 8, wl ∈ GF (2)6} as

the set of all possible pairs of S-boxes and input vectors. Our strategy is
to remove all the invalid pairs from the set. We can do this by comparing
the number of affected T-boxes in round r + 4 when a difference ∆vi ∈
SS(T r+3

j )∪SM (T r+3
j ) is applied to the input of T r+3

j , with the number of
affected S-boxes in a non-white-box DES simulation with a pair (Sq, wl) ∈
P(T r+3

j ).

We define δi as the number of non-linear T-boxes that are affected
in round r + 4 when ∆vi is applied to the input of T r+3

j . To verify a
pair (Sq, wl), we take part of a non-white-box DES implementation with
S-box Sq and S-box input wl, and simulate the behaviour of a flip of the
i’th input bit to the S-box. Then, δ′i is defined as the number of affected
S-boxes in the next round of this simulation. Define ∆wi as the difference
to the input of the internal S-box of the T-box to which ∆vi is applied
(∆wi : wl → wl ⊕ f r+3

j |2...7(∆vi)).

If (Sq, wl) is a candidate solution, it should satisfy the following con-
ditions:

– There can only be one Sq for each round.

– ∆v7 = SM (T r+3
j )\SS(T r+3

j ) is the flip of both middle bits, represented
as ∆w7 = 001100, for which δ′7 can be computed. δ′7 must be smaller
or equal to δ7.

– {∆v3,∆v4} = SM (T r+3
j ) ∩ SS(T r+3

j ) represent the two single flips
of the input bits to the S-box, but we do not know in which or-
der. Moreover they only affect bits of Yr+3, and thus we must have
{δ′3, δ

′
4} ≤ {δ3, δ4}.

– Similarly {δ′1, δ
′
2, δ

′
5, δ

′
6} ≤ {δ1, δ2, δ5, δ6}.

Any pair (Sq, wl) that does not fulfil these conditions is removed from
the set P(T r+3

j ). At the end, if only pairs with one type Sq remain, then

this Sq is the internal S-box of T r+3
j (π(q) = j). As soon as S-boxes are

identified, we can also make use of S-box relations between consecutive
rounds. E.g., S1 in round r does not affect S-box S1 and S7 in round
r + 1. Moreover, if for example S3 is identified in round r + 1, then S1

affects its second input bit, which allows us to narrow down the conditions
(δ2 = δ′2).

Because all 8 DES S-boxes are very different, and are highly non-
linear, the filtering process will reduce most P(T r+3

j ) sets to a singleton

(Sq, wl), where Sq = Sπ−1(j) is the internal S-box and wl = f r+3
j |2...7(v

r+3
j )

the 6-bit input vector to this S-box.



3.4 Key Recovery

Given that we have found a sufficient number of inputs to S-boxes, we
start an iterated recovery of key bits, initiated by guessing one single key
bit, using the following two observations:

– The expansion operation E maps some of the input bits to 2 different
S-boxes, prior to the key addition. From Sect. 3.3, we know the value
of the input bits to these S-boxes, after the round key addition. Hence,
if we know one of the corresponding two bits of the round key, we are
able to compute the other key bit.

– The value of one single bit can be followed through several rounds.
Consider an Rr−1 bit. In round r and r + 2, after the expansion and
the round key addition, this is the (known) input to an S-box. In
round r + 1 it is XOR-ed with an output bit b of an S-box after the
permutation P operation. Because P is known, the S-boxes in round
r + 1 are identified and their input is known, we can compute the
value of b. Hence, if one bit of the round key bit in round r or r + 2
is known, we can compute the other key bit.

Iterated use of these algorithms generates the DES key bits. When a
new round key bit is computed, we can pull this back through the DES
key schedule. This is possible, because the 48-bit round key is a fixed
permutation of a subset of the 56-bit DES key. New key bits in turn
result into new round key bits, to which the two described methods can
be applied.

Depending on the initial key bit guess, two complementary keys k0

and k1 can be computed. Because of the complementation property DES
exhibits, both keys are a valid result. The complementation property of
DES [12] is defined as DESk =

⊕

1 ◦DESk⊕1 ◦
⊕

1 , where
⊕

1 represents
the XOR with the all one vector. Then G◦DESk ◦F = G′ ◦DESk⊕1 ◦F ′ ,
with F ′ =

⊕

1 ◦F and G′ = G ◦
⊕

1. Hence if k is the original DES
key, and F,G the external encodings used to shield the white-box DES
implementation, then the complementary key k ⊕ 1 is also a valid DES
key with external encodings F ′, G′.

3.5 Recovery of the External Encodings

The main goal in cryptanalysis of white-box implementations is to find
the embedded secret key. However, to break specific white-boxed imple-
mentations or decode ciphertext, recovery of the external encodings can
be required.



These external encoding can be recovered as follows: for every in-
put vEXTin to the encoded implementation, we are able to find the in-
puts to the S-boxes. For Feistel ciphers, given the input to two consec-
utive rounds and the secret key, the plaintext can be computed eas-
ily. Hence we are able to compute the input to the naked DES, i.e.,
vDESin = F (vEXTin). Moreover, we can also compute the output of the
naked DES, i.e., vDESout = DESk(vDESin). This is the input to the ex-
ternal output encoding for which its output vEXTout is the output of the
white-box implementation. Hence for any given input to the white-box
implementation, we can build different input-output pairs of the external
encodings. This way, with a sufficient number of chosen inputs, the ex-
ternal encodings can be computed. Here we assume that these encodings
are not too complex, that is, rather affine or simple non-linear mapping.

Chow et al. [4] proposed a specific class of external encodings, which
are block encoded affine mixing bijections. Suppose these block encodings
are nibble encodings. Then, for each of the 24 nibble encodings, we run
over all its possible inputs (24), and compute the value of the 96-bit
output vDESin. With the knowledge of all these mappings, we are able to
recover the external input encoding. The external output encoding can
be recovered similarly.

4 Implementation

We have implemented our cryptanalysis in C++, and conducted tests on
a Pentium M 2GHz. On average, about 6000 ≤ 213 obfuscated round func-
tions of the white-box DES implementation are needed to be computed
to check the difference propagations. This is less than our complexity
study in Appendix B indicates, due to some extra optimisations we have
applied (e.g., introducing requirements regarding round r + 1 in Prop-
erty 1 substantially improves the efficiency of the algorithm). Moreover,
our tests indicate that computations with 8 consecutive obfuscated round
functions is sufficient for the attack to succeed. There is no restriction on
which window of 8 round functions to chose.

In the conducted tests on several white-box DES implementations,
our cryptanalysis algorithm extracted the DES key in all tests in under
a second. On average the cryptanalysis requires 0.64 seconds.

5 Conclusion

We have described how to extract the embedded secret key of both the
naked as encoded white-box DES implementations of Chow et al. [4]. This



cryptanalysis also applies to the improved implementation as presented
by Link and Neumann [10], because the outputs of the T-boxes are not
used, only their inputs. The attack is a differential cryptanalysis on the
obfuscated rounds, and is independent of the definition of the external
encodings, in contrast to the attack of Goubin et al. [6].

The success of this cryptanalysis originates from properties which are
specific to the DES. The confusion property of the DES S-boxes, the diffu-
sion property of the DES permutation P and the design of the expansion
operation are used to extract the key. The analysis, while specific to DES,
nevertheless points the way to techniques to analyse other ciphers.
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A Appendix: Proofs

Property 1 If ∆v represents a single bit flip of Rr−1, then in round
r + 2, at most 2 T-boxes are affected (i.e., its input changes).

Proof. When ∆v represents a flip of a single bit of Rr−1, then in round
r + 1 it represents a flip of single bit of Lr, as the reader can deduce
from Fig. 1(b). Because of the expansion and selection operation, this
will result into 2 bits flipped to round r + 2 (one of Xr+1 and one of
Rr+1; or both Xr+1 flips). Thus at most 2 T-boxes in round r + 2 are
affected. ⊓⊔

Property 2 If ∆v represents flips of bits of Lr−1 or Yr, then in almost
all cases more than 2 T-boxes are affected in round r + 2. The exceptions
(false positives) can be detected by repeating this process up to α times
with different fixed inputs to the other T-boxes T r

l .

Proof. In round r+1, besides bypass bits, these differences represent flips
to the inputs of S-boxes. Therefore, the number of flips to the inputs of
round r + 2 explodes, and strictly more than 2 T-boxes will be affected.

There are a few exceptions in which not more than 2 T-boxes are
affected (false positives). Observe an affected S-box in round r+1. (There
will always be at least one affected S-box). The input to this S-box changes
in at least one and at most 3 bits (one for Yr and two for Lr−1 bit flips).



The effect on the output bits of this S-box depends on its other input
bits, which depend on the inputs vr

l set at the initialisation phase. Hence
the number of affected T-boxes in round r + 2 will very likely change if
we set other inputs to T r

l , witch l 6= j. With a very high probability, 2
extra checks are sufficient to detect these false positives, if we change all
the inputs to the other T-boxes (α = 2). ⊓⊔

Property 3 If ∆v represents a flip of single bits of Rr−1, there are ex-
actly 2 propagated differences in round r + 2: ∆m, ∆n. One (say ∆m,
input difference to T-box T r+2

m ) will affect strictly more than 2 T-boxes in
round r + 4, the other difference will affect at most 2 T-boxes in round
r + 4. Moreover, T r+2

m will be a non-linear T-box; ∆m represents flips of
one or both of the two middle bits of the internal S-box; and ∆n represents
flips of respectively one or two Rr+1 bits.

Proof. Let ∆v ∈ SR(T r
j ) represent a flip of single (or double) bits of

Rr−1. Then, in round r + 2, this will propagate to a flip of one (or both)
of the two middle input bits of an S-box Sm in T-box T r+2

m . Hence T r+2
m

is a non-linear T-box. Denote ∆m the propagated input difference to
T r+2

m . Furthermore, this flip will also be bypassed because of the selection
operation (see Fig. 1(b)). If this would be bypassed by T r+2

m as well, then
this T-box has an entropy of 7, in contradiction to the T-box design. Thus
a second T-box T r+2

n is affected, with input difference ∆n. Therefor, ∆v

will affect exactly 2 T-boxes T r+2
m , T r+2

n with input differences ∆m,∆n.

Consider the following DES S-box design properties [5]:

∆in = 0wxyz0 ⇒ |∆out| ≥ 2 (1)

|∆in| = 1 ⇒ |∆out| ≥ 2 , (2)

with ∆in the input difference to an S-box, ∆out its resulting output dif-
ference, and wxyz ∈ GF (2)4\{0}. Because of (1), ∆m represents a flip
of at least two Yr+2 bits at the output of the S-box. Due to the DES
permutation P diffusion property and (2), ∆m will affect more than 2
T-boxes in round r + 4. ∆n represents a flip of bits of Rr+1, and affects
no more than two T-boxes in round r + 4 (see Property 1). ⊓⊔

Property 4 If ∆v represents a flip of bits of Rr−1\Rr−1, there are ex-
actly 2 propagated differences in round r + 2. Both affected T-boxes are
non-linear T-boxes, and each of their input differences will affect strictly
more than two T-boxes in round r + 4.



Proof. If ∆v ∈ SR(T r
j ) represents a flip of bits of Rr−1\Rr−1, then for 2

S-boxes in round r + 2, exactly one input bit will be affected, and thus
exactly 2 non-linear T-boxes in round r + 2 are affected.

Because of S-box design property (2), each of these differences will
represent a flip of at least two Yr+2 bits. As a consequence of the DES
permutation P diffusion property, both these differences in round r + 2
will affect strictly more than two T-boxes in round r + 4. ⊓⊔

B Complexity

We define the complexity of the cryptanalysis as the number of round
functions of the white-box implementation that need to be computed.
The first step described, to retrieve flips of bits of Rr−1, has the largest
complexity. Because of the lack of any prior information on internal flips,
all differences have to be computed through several rounds in order to
learn this bit flip information.

In Algorithm 1, for all 12 T-boxes, and all 28 − 1 possible differences,
2 rounds need to be computed to observe the difference propagation. This
corresponds to a total of 12 · (28 − 1) · 2 = 6120 round function compu-
tations. For each positive result, we perform at most 2 double checks as
described in Property 2. Algorithm 2 requires 6 round computations for
each difference of SR (2 for ∆v, 2 for ∆l and 2 for ∆m). Hence, 240 round
functions computations are performed.

Consequently, we can retrieve all flips of bits of Rr−1 for one round
in less than 213 round computations in total. As described in Property 2,
from ∆v ∈ Sr

R
, we can efficiently compute ∆n ∈ S

r+2
R

. Because of the
one-to-one relation between ∆v and ∆n, this is sufficient to find all the
single S

r+2
R

bit flips. Thus, when for two consecutive rounds, S
R

is found,
we can compute this set for all subsequent rounds using Property 3 only.
Hence, with about 214 round computations, we can compute all flips of
single bits of Rr−1 for all rounds.

The complexity of the other steps of the cryptanalysis is negligible.
In Algorithm 3, for each ∆m ∈ Sr

M , one round function needs to be
computed. Hence, for each round, at most 24 round computations are
needed (for 16 single bit flips and at most 8 double bit flips). To compute
the exact inputs to the S-boxes, a filtering process needs to be applied
to each non-linear T-box. In the worst case, we need to compute the
difference propagation for all 7 input differences. Thus at most 7 round
computations for each of the 8 non-linear T-boxes. The simulation process
for each T-box needs to be performed at most 26 · 8 = 29(= |P(T r

j )|)



times, which is the equivalent effort of computing one white-box DES
round function (which consists of 552 ∼ 29 lookup table computations).
The total complexity to compute the inputs to all S-boxes of one round
is thus 8 · (7 + 1) = 26.

The space complexity is negligible too. Most space is used in Sect. 3.3
to store the set P(T r

j ) of candidate pairs (Si, wl). We can also choose to
store the simulations of these pairs. They can be pre-computed because
the simulation does not require any information on the implementation
or the key.


