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Abstract

The aim of this paper is to construct pairing friendly elliptic curves. In this
paper, we explain a method of finding the polynomials representing

√−D and
ζk over the field containing

√−D and ζk and how to construct a pairing friendly
elliptic curves over the cyclotomic fields containing Q(ζk,

√−D) for arbitrary
k and D by CP method. By using the factorization of the cyclotomic polyno-
mial combined some polynomial, we extend the construction over cyclotomic
fields to the construction over some extensions of the cyclotomic fields contain-
ing Q(ζk,

√−D). We explain the limitation of finding more families of pairing
friendly elliptic curves with embedding degree 10. For all computation, we use
the PARI-GP [13].

1 Introduction

We begin by defining some notations. The embedding degree is related to
the pairings on elliptic curves. Let E be an elliptic curve defined over a field
Fq, where q is prime or prime power. Consider the weil pairing

en : E[r]× E[r] → µr,

where E[r] is the r torsion group of E(Fq) and µr is the group of r th roots of
unity. Some extension of Fq contains µr. The smallest extension degree of Fq is
called the embedding degree of E. We can define the embedding degree as the
following.

Definition 1.1 Let E be an elliptic curve defined over Fq, and let r be an order
of prime subgroup of E. Then E is said to have an embedding degree k with
respect to r if r divides qk − 1, but does not divides qi − 1 for all 0 < i < k.

The pairings like the Weil pairing, converts a discrete logarithm problem in
E(Fq)(ECDLP) to one in F∗qk(DLP). The pairing based cryptography uses this
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fact. To define the pairing friendly elliptic curve, we need one more parameter
ρ = log q/ log r, the ratio of the size between the finite field and the order of
subgroup of an elliptic curve. An ordinary elliptic curve over Fq is called a
pairing friendly elliptic curve if the embedding degree is not too large and its ρ
value is close to 1. For the supersingular curves, there is a well known fact that
its embedding degrees are less than or equal to 6 [19].

We consider nonsupersingular elliptic curves. There are several methods of
constructing elliptic curves with prescribed embedding degree k [2, 3, 5, 9, 10,
11, 18, 21]. All of these construction use the complex multiplication method(CM
method). To apply the CM method, we have to solve the following diophantine
equation for given a prime or a prime power q and a positive integer D.

Dy2 = 4q − t2.

If we find the solution, an order of the elliptic curve E over Fq made by CM
method is

q + 1− t.

Thus to make a pairing friendly elliptic curve by CM method, we need to find
(t,r,q) satisfying the following conditions:

Condition 1.2 (pairing friendly elliptic curve)

(1) q is a prime of prime power and r is a prime.

(2) r divides q + 1− t.

(3) r divides qk − 1 but does not divides qi − 1 for 1 < i < k.

(4) Dy2 = 4q − t2 for some integer y.

The Condition 1.2.(3) is changed by the following lemma [2].

Lemma 1.3 [2, Lemma 1] Conditions 1.2.(3) implies that r divides Φk(t− 1),
where Φk(t) is k the cyclotomic polynomial.

To obtain families of curves, we can parametrize t, r and q as polynomials
t(x), r(x) and q(x).

Definition 1.4 [10, Definition 2.6 ] Let t(x), r(x) and q(x) be polynomials
with rational coefficients. For a given positive integer k and positive square-free
integer D, we say that the triple (t(x), r(x), q(x)) represents a family of elliptic
curves with embedding degree k and discriminant D if the following conditions
are satisfied:

(1) q(x) represents primes or prime power and r(x) represents primes.

(2) r(x) divides q(x) + 1− t(x).

(3) r(x) divides Φk(t(x)− 1), where Φk(x) is the k-th cyclotomic polynomial.
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(4) Dy2 = 4q(x)− t(x)2 = 4h(x)r(x)− (t(x)− 2)2 has infinitely many integer
solutions,

where h(x) is a cofactor of #E(Fq) = h(x)r(x) = q(x) + 1− t(x).

Now we define ρ = degq(x)/degr(x).
The goal of most constructions is to find polynomials (t(x), r(x), q(x)) satisfying
Definition 1.4.

Brezing and Weng gave the construction based on CP method [5].

Construction 1.5 (Brezing and Weng’s method)

1. Fix D, k ∈ N.

2. Choose an irreducible polynomial r(x) such that ζk,
√−D ∈ K, where ζk is

a primitive k-th root of unity and K = Q[x]/(r(x)).

3. Choose t(x) which represents 1 + ζk in K.

4. Choose b(x) which represents
√−D in K.

5. Compute y(x) = (t(x)− 2)b(x)/D in K.

6. Compute q(x) = (t(x)2 + Dy(x)2)/4 ∈ Q[x].

7. If q(x) and r(x) represent prime for some x, by the CM method, construct
an elliptic curve over Fq(x) with an order r(x) subgroup.

The elliptic curves constructed by this method have ρ less than 2. The difficult
point of Construction 1.5 is to find a polynomial r(x) satisfying the following
condition:

Condition 1.6

(1) K = Q[x]/(r(x)) contains ζk and
√−D.

(2) The polynomials represent ζk and
√−D are easily found.

(3) q(x) represent primes or prime power and r(x) represents primes.

The smallest field satisfying Condition 1.6.(1) is Q(ζk,
√−D). But if this

field is not a cyclotomic field, denominators of coefficients of t(x) and b(x) are
very large in generally. We give some example for this in section 3. Most
previous results are produced when Q(ζk,

√−D) is a cyclotomic field. i.e. D’s
are 1, 2 or 3 [5].

In this paper, we explain how to construct a pairing friendly elliptic curves
over some extension fields of Q(ζk,

√−D) for arbitrary k and D. First, we work
over cyclotomic field. One of advantages of cyclotomic field is that the ring of
algebraic integer of cyclotomic field Q(ζl) is Z[ζl].

Lemma 1.7 If
√−D is contained in Q(ζl) then

√−D is represented by ζl with
integer coefficients.
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Proof. The ring of algebraic integer of Q(ζl) is Z[ζl] and
√−D is an algebraic

integer. Thus there is
√−D in Z[ζl]. ¤

Since
√−D is represented by ζl with integer coefficients, Lemma 1.7 guarantees

Condition 1.6.(2) and (3) for many cases of q(x). Another advantage is that
r(x) always represent primes. Section 2.4 explains this.

The remaining problem is how to find polynomials representing
√−D and

ζk. In previous works, they found such polynomials with some conditions of k
and D. We explain the method of finding the polynomials representing

√−D
and ζk over cyclotomic fields without any conditions. By using this method ,
we make a general construction over cyclotomic fields.

Barreto and Naehrig proposed the method that applied the idea of Galbraith,
McKee and Valença to Brezing and Weng’s method, especially in Construction
1.5, they let r(x) be an irreducible factor of Φk(u(x)) for some polynomial u(x)
[3]. We explain this method in Section 4.

This paper is organized as follows:
In Section 2, we explain the choice of cyclotomic fields containing ζk and

√−D
and the method of computing polynomials representing ζk and

√−D. When
q(x) is reducible, we give some results on an extension of finite field. In Section
3, we explain the construction over Q(ζk,

√−D) where this is not a cyclotomic
field and its problems. In Section 4, we explain the factorization of Φk(u(x)) for
some u(x) and make a construction on extensions of cyclotomic fields by using
Barreto and Naehig’s idea. In Section 5, we explain the limitation of find more
families of pairing friendly elliptic curves with embedding degree 10. In Section
6, we give the tables of results.

2 Construction on Q(ζk, ζd)

The following is the main construction on cyclotomic field.

Construction 2.1 (Construction on cyclotomic field)

1. [Initialize]

Fix D, k ∈ N, where D is a square free integer.

Let d be D if D ≡ 3 mod 4, 4D if D ≡ 1 or 2 mod 4.

Let l = lcm(k, d).

Let r(x) = Φl(x), where Φl(x) is l-th cyclotomic polynomial.

Let K = Q[x]/(r(x)) = Q(ζl).

2. [Find the polynomials representing to ζk and
√−D]

Let t(x) = 1 + xα, where α is multiple of l/k.

By the Table 3, find b(x) representing to
√−D in K.
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3 [Compute the family]

Compute y(x) = (t(x)− 2)b(x)/D in K.

Compute q(x) = (t(x)2 + Dy(x)2)/4 in Q[x].

4. [Check Definition 1.4.(1)]

Check whether q(x) satisfies Definition 1.4.(1).

5. [Construct an elliptic curve]

If q(x) and r(x) represent primes for some x, by the CM method, construct
an elliptic curve over Fq(x) with an order r(x) subgroup.

Since deg r(x) increases as D increases, we can expect that ρ will be more
near to 1 for large D. But we almost obtain the best ρ values when D is small.
We compute that for deg r(x) ≤ 100, k ≤ 50 and D ≤ 50. When D is equal to
1, 2 or 3, ρ is the minimum value, except k = 3, 4 and 6. We give the result
table in section 6.

Now we explain each steps.

2.1 Step 1 : Initialize

We have to construct a field K which has ζk and
√−D. For any square free

integer D, let d be D if D is equivalent to 3 modulo 4, 4D otherwise i.e. −d is
the discriminant of Q(

√−D). The following lemma gives the method of choice
of cyclotomic field containing ζk and

√−D.

Lemma 2.2 Q(ζd) is the minimal cyclotomic field containing
√−D, where −d

is the discriminant of Q(
√−D).

Proof. By Conductor-discriminant Formula [25], −d is equal to its conductor.
¤

Lemma 2.2 shows that K = Q(ζl) is the minimal l-th cyclotomic field which
has ζk and

√−D.

2.2 Step 2 : Polynomials representing ζk and
√−D

There are ϕ(k) numbers of primitive k-th roots of unity and the polynomial xl/k

is one of k-th roots of unity in K. If gcd(α, k) = 1, (xl/k)α is also a primitive k-
th root of unity. Thus we can choose ϕ(k) numbers of polynomials representing
primitive k-th roots of unity.

The polynomial xl/d is corresponding to ζd in K. There are ϕ(d) numbers of
primitive d-th roots of unity, but a square root of −D has only two possibility,
±√−D. So if we represent

√−D by one of primitive d-th roots of unity, we
can find the polynomial corresponding to

√−D in K. Since
√−D is in Q(ζd)
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and integral, we can find the solutions of the polynomial x2 +D in K, moreover
Z[ζd]. We compute this equation by PARI [13]. There is a function in PARI
which gives the roots of the polynomial in number field. The following is the
Code of finding the representation of

√−D in ζd.

PARI Code : Find the representation of
√−D in ζd

Input : D
Output : polynomial corresponding to

√−D in Q(ζd)

1. Represent_D(D) = \
2. {
3. local( d,f,nf,sqD ) ; \
4. if ( issquarefree(D) , \
5. d = -quaddisc(-D) ; \
6. f=polcyclo(d,y) ; \

/* initialize of number field nf */
7. nf=nfinit(f) ; \

/* roots of x^2+D in nf */
8. sqD=nfroots(nf,x^2+D) ; \

/* change the variable y to x */
9. sqD=subst(sqD[2].pol,y,x) ; \

10. ) ; \
11. sqD
12. }

We make a table for the representations of
√−D in Q(ζd) in section 6.

2.3 Step 3 : Compute the family

All computations for polynomials, in Construction 2.1, is worked in K except
q(x) i.e. compute them modulo r(x).

Lemma 2.3 ρ is less that 2.

Proof. degt(x) and degy(x) are less than degr(x). Thus since q(x) = (t(x)2 +
Dy(x)2)/4, degq(x) is less than 2degr(x) and so ρ=degq(x)/degr(x) is less that
2. ¤

2.4 Step 4 : Check Definition 1.4.(1)

We have to check whether q(x) and r(x) satisfy Definition 1.4.(1). To do it, we
need the following conjecture.([11, 14])

Conjecture 2.4 ([11, 14]) There are infinitely many a ∈ Z such that f(a) is
prime if the following three conditions are satisfied:
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(1) The leading coefficient of f is positive.

(2) f is irreducible.

(3) The set of values f(Z+) has no common divisor larger than 1.

For any l, r(x) = Φl(x) satisfies this conjecture.

Proposition 2.5 For any l, the set of values Φl(Z+) has no common divisor
larger than 1.

Proof. If l is equal to 1, it is clear. Suppose that l is larger than 1.
Recall that

xl − 1 =
∏

d|l
Φd(x).

Since Φ1(x) = x− 1, Φl(x) divides

xl − 1
x− 1

= xl−1 + xl−2 + · · ·+ 1.

Thus Φl(1) divides l and Φl(l) divides ll−1 + ll−2 + · · · + 1. Since gcd(l, ll−1 +
· · ·+ 1) = 1, gcd(Φl(1), Φl(l)) = 1. ¤

Thus we only check for q(x) by computing for some values.

2.5 Construct an elliptic curve

Suppose that r(x), q(x), t(x) and y(x) represent some prime r, prime power q
and some integers t and y for some x ∈ Z, where q is not divided by 2. Then

4q2 = t2 + Dy2.

An order of the elliptic curve constructed from (q, t, y) by CM method is divided
by r.

Let k = Q(
√−D), Ok a ring of algebraic integer of k and O∗k a unit group

of Ok.
First, we have to find a root of the Hilbert class polynomial of D modulo r for
given D, say j0. Then j0 is the j-invariant of an elliptic curve Ej0 of the form

Ej0 : y2 = x3 + 3κx + 2κ with κ =
j0

1728− j0
if D 6= 1, 3

Ej0 : y2 = x3 + ax with a ∈ Fq
∗ if D = 1

Ej0 : y2 = x3 + b with b ∈ Fq
∗ if D = 3.

Let

π =
t +

√−Dy

2
.
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Then

#Ej0(Fq) = Nk(1− ζπ)
q = Nk(ζπ)

for π ∈ Ok and ζ ∈ O∗k.
If D =1 or 3 then j0=1728 or 0 and the corresponding elliptic curves have
quartic or sextic twists, respectively. If D 6= 1 and 3, the elliptic curve has
quadratic twists. Especially, the quadratic twist of Ej0 is of the form

E′
j0 : y2 = x3 + 3κc2x + 2κc3

where κ = j0/(1728− j0) and c ∈ Fq.
So we have to choose an elliptic curve with the correct order among the twists.
Let m be an integer such that m = Nk(1 − ζπ) and it is divided by r. Let
m′ = Nk(1−ζ ′π) for some ζ ′ not equal to ζ ∈ O∗k. If [m]P = ∞ and [m′]P 6= ∞
for some P ∈ Ej0(Fq) then Ej0 is the elliptic curve that we want to find.

We explain the CM method in Appendix A.

2.6 Some results when q(x) is reducible

If q(x) is a power of irreducible polynomial, we may construct a pairing friendly
elliptic curve over extension of finite field. It is not always possible. The fol-
lowings are only results in our computation when q(x) is a power of irreducible
polynomial.

Some families over extension of prime field :

Example 2.6 k = 3, D = 3, α = 1.

r(x) = x2 + x + 1.

t(x) = x + 1.

q(x) = (x + 1)2.

If x + 1 is prime or prime power and x2 + x + 1 is prime, we can construct an
elliptic curve over F(x+1)2 with embedding degree 3 and ρ = 1.

Example 2.7 k = 3, D = 3, α = 2.

r(x) = x2 + x + 1.

t(x) = −x− 1.

q(x) = x2.

If x is prime or prime power and x2 +x+1 is prime, we can construct an elliptic
curve over Fx2 with embedding degree 3 and ρ = 1.
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Example 2.8 k = 4, D = 1, α = 1.

r(x) = x2 + 1.

t(x) = x + 1.

q(x) = 1/2(x + 1)2.

If q(x) is prime power, x + 1 is a power of 2. Then x2 + 1 is always divided by
2. i.e. r(x) cannot be prime. So the construction is impossible.

Example 2.9 k = 4, D = 1, α = 3.

r(x) = x2 + 1.

t(x) = −x + 1.

q(x) = 1/2(x− 1)2.

If q(x) is prime power, x− 1 is a power of 2. Then x2 + 1 is always divided by
2. i.e. r(x) cannot be prime. So the construction is impossible.

Example 2.10 k = 6, D = 3, α = 1.

r(x) = x2 − x + 1.

t(x) = x + 1.

q(x) = 1/3(x + 1)2.

If q(x) is prime power, x + 1 is a power of 3. Then x2 − x + 1 is always divided
by 3. i.e. r(x) cannot be prime. So the construction is also impossible.

Example 2.11 k = 6, D = 3, α = 5.

r(x) = x2 − x + 1.

t(x) = −x + 2.

q(x) = 1/3(x− 1)2.

If q(x) is prime power, x− 1 is a power of 3. Then x2 − x + 1 is always divided
by 3. i.e. r(x) cannot be prime. So the construction is also impossible.

Consider the field Fq with characteristic 2 or 3. Let q = pn, where p=2 or 3.

Lemma 2.12 Let r be the largest prime factor of an elliptic curve E over Fpn .
Then the embedding degree

k =| pn |= | p |
gcd(| p |, n)

.

where | a | is multiplicative order of a modulo r.
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Proof. r divides qk − 1 = pnk − 1 and does not divide pni − 1 for 0 < i < k.
Thus the multiplicative order of pn modulo r is k. ¤

If | p | is small, we expect a small embedding degree k. But for most prime r,
2 and 3 have a large order. Thus most ordinary curves over a finite field with
chatacteristic 2 or 3 have a large embedding degree. In Example 2.6, r(2i) and
r(3j) are prime when i =1, 3 and j =1, 3, 9 for i, j < 1000, respectively.
Note that if r divides 2nk−1, then l is a prime factor of nk-th mersenne number.

3 Construction on Q(ζk,
√−D)

Let K = Q(ζk,
√−D). We also construct pairing friendly elliptic curves

over K, where this field is not a cyclotomic field i.e. d does not divide k. The
following is the PARI code of finding the representation of ζk and

√−D in K.

PARI Code : Find the representation of ζk and
√−D in Q(ζk,

√−D)

Input : k, D
Output : r(x), t(x) and b(x) in Q(ζk,

√−D)

1. Represent_kD(k,D)= \
2. {
3. local(POLCOMP,r,sq_D,ZETA_k) ; \
4. if ( issquarefree(D),\
5. POLCOMP=polcompositum(x^2+D,polcyclo(k),1)[1] ; \
6. r=POLCOMP[1] ; \
7. sq_D=POLCOMP[2].pol ; \
8. ZETA_k=POLCOMP[3].pol ; \
9. ) ; \

10. [r,ZETA_k+1,sq_D]
11. }

We only use the PARI function polcompositum. This gives the polynomial
r(x), and the roots of x2 + D = 0 and Φk(x) = 0 as elements of Q[x]/(r(x)). If
K is not a cyclotomic field, the denominator of coefficients of r(x) are growing
as D and k increases. polred in PARI, makes its coefficient small. But the
degree of decrease is only a little and this function is very slow. So this method
is not good for large discriminant and large k.
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Example 3.1 k = 8, D = 17.

K = Q(ζ8,
√−17).

r(x) = x8 + 68x6 + 1736x4 + 19448x2 + 84100.

t(x) = −17/267960x7 − 607/133980x5 − 17221/133980x3 − 39268/33495x + 1.

b(x) = −17/267960x7 − 607/133980x5 − 17221/133980x3 − 72763/33495x.

q(x) = 17/15956124800x14 − 1/2475950400x13 + 186583/1220643547200x12 −
· · · − 41207687/30949380x + 1921757/853776.

Example 3.2 k = 7, D = 1.

K = Q(ζ7,
√−1)

r(x) = x12 + 2x11 + 9x10 + 14x9 + 31x8 + 34x7 + 41x6 + 12x5 − 23x4

−28x3 + 11x2 + 8x + 1.

t(x) = −114243472/65265341x11 − 204769600/65265341x10

−988109696/65265341x9 − 1398866651/65265341x8

−3273455408/65265341x7 − 3238008452/65265341x6

−4092584160/65265341x5 − 608191962/65265341x4

+2627467472/65265341x3 + 2600701292/65265341x2

−1754413800/65265341x− 439258918/65265341.

q(x) = 8021189411500160/4259564735846281x22

+28586727396255616/4259564735846281x21

+163906886117738456/4259564735846281x20

+441581971739245064/4259564735846281x19

+ · · ·
+1002227778135310510/4259564735846281x

+124828323194560706/4259564735846281.

Example 3.3 k = 7, D = 1.
By the method in section 2,

K = Q(ζ7, ζ4).
r(x) = x12 − x10 + x8 − x6 + x4 − x2 + 1.

t(x) = x4 + 1.

q(x) = 1/4(x22 − 2x18 + x14 + x8 + 2x4 + 1).

Remark 3.4 Example 3.1, 3.2 show that the degree of increase of coefficients
is more influenced by k than D. Strictly speaking, it is influenced by the degree
ϕ(k) = [Q(ζk) : Q].

Remark 3.5 Example 3.2, 3.3 are constructed over the same fieldQ(ζ7,
√−1) =

Q(ζ7, ζ4). These examples show that the results are very different as the choice
of r(x).
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Remark 3.6 We can apply this method to all extension fields of Q(ζk,
√−D).

But if that field does not have a special property, this method is not useful.

4 Construction on extensions of Q(ζk, ζd)

4.1 Construction on extensions of Q(ζk, ζd)

We explain a construction on extensions of Q(ζk, ζd) by using a factorization of
Φl(u(x)) for some polynomial u(x).

Lemma 4.1 Let r(x) be an irreducible factor of Φl(u(x)) over Q for some poly-
nomial u(x) and l an integer defined in Construction 2.1. Let K = Q[x]/(r(x)).
Then K contains ζk and

√−D.

Proof. Φl(u(x)) divides (u(x))l − 1. Thus u(x) is a l-th root of unity in K.
By Lemma 2.2, ζk and

√−D are in K. ¤

By substitution ζk by u(x), we can use Construction 2.1 for the construction
on some extension fields of Q(ζk, ζd).

Construction 4.2 (Construction on some extension of cyclotomic field)

1. [Initialize]

Fix D, k ∈ N, where D is a square free integer.

Let d be D if D ≡ 3 mod 4, 4D if D ≡ 1 or 2 mod 4.

Let l = lcm(k, d).

Choose a polynomial u(x) in Q[x] such that Φl(u(x)) splits.

Let r(x) be an irreducible factor of Φl(u(x)).

Let K = Q[x]/(r(x)).

2. [Find the polynomials representing to ζk and
√−D]

Let t(x) = 1 + u(x)α, where α is multiple of l/k.

By the Table 3, find b(x) representing to
√−D in K.

3 [Compute the family]

Compute y(x) = (t(x)− 2)b(x)/D in K.

Compute q(x) = (t(x)2 + Dy(x)2)/4 in Q[x].

4. [Check Definition 1.4.(1)]

Check r(x) and q(x) satisfy Definition 1.4.(1).
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5. [Construct an elliptic curve]

If q(x) and r(x) represent prime for some x, by the CM method, construct
an elliptic curve over Fq(x) with an order r(x) subgroup.

Remark 4.3 If the degree of r(x) in Construction 4.2 is equal to ϕ(l), K =
Q[x]/(r(x)) is equal to Q(ζk, ζd).

4.2 The factorization of the cyclotomic polynomials

Galbraith, McKee and Valença explained the factorization of the cyclotomic
polynomials with its degree 4 combined a quadratic polynomial by converting
some equation in the cyclotomic field into an elliptic curve. But if the degree of
combining polynomial is larger than 2, the corresponding equation comes from
some curves with large genus. It is very difficult to find rational points of such
curves.

Lemma 4.4 Let u(x) be a polynomial of degree larger than 1 over Q and k > 1.
Then

(1) [6, Lemma 3.6.1] If u(x) − ζk is irreducible over Q(ζk) then Φk(u(x)) is
the power of an irreducible polynomial over Q.

(2) [12, Lemma 1] If u(x) − ζk = 0 has a solution in Q(ζk) then Φk(u(x))
splits.

(3) The degrees of irreducible factors of Φk(u(x)) are multiples of ϕ(k).

Proof. Define the norm of a polynomial A(x) as

N (A) =
∏

σ∈Gal(Q(ζk)/Q)

σ(A)

Then by Galois theory N (A) ∈ Q[x].

(1) Let v(x) = u(x) − ζk. Suppose that v(x) is irreducible over Q(ζk). Let
N (v) =

∏
i vi be a factorization of N (v). Since v(x) divides N (v) and v(x) is

irreducible over Q(ζk), v(x) divides vi(x) in Q(ζk)[x] for some i. Since vi(x) is a
polynomial over Q, σ(v(x)) divides vi in Q(ζk) for all σ ∈ Gal(Q(ζk)/Q). Thus
N (v) divides v

ϕ(k)
i in Q[x] and N (v) is equal to Φk(u(x)). So Φk(u(x)) = vn

i

for some n ≥ ϕ(k).

(2) Let θ be a solution of u(x) − ζk in Q(ζk). Then θ is also a solution of
Φk(u(x)). Since θ ∈ Q(ζk), Φk(u(x)) is reducible over Q.

(3) Let l(x) be an irreducible factor of Φk(u(x)). Then l(x) divides u(x)k − 1
i.e. u(x) is a k-th root of unity of Q[x]/(l(x)). Since Q[x]/(l(x)) contains Q(ζk),
degl(x) = [Q[x]/(l(x)) : Q] is divided by ϕ(x). ¤
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Remark 4.5 The converse of Lemma 4.4.(1) is not true. Suppose v(x) =
u(x) − ζk is reducible over Q(ζk). Let v(x) = v1(x)v2(x). Then Φk(u(x)) =
N (v) = N (v1)N (v2). But there is the case that N (v1) is equal to N (v2).
When ϕ(k) ≤ 3, converse is true by Lemma 4.4.(2).

If u(x) is a quadratic polynomial with integer coefficient, we can solve the
equation u(x) = ζk by the following lemma.

Lemma 4.6 Suppose that Aζk + B is a square in Q(ζk), where A and B are
rational integers and Ac + B is square for some c in Q. Then there exists a
quadratic polynomial u(x) such that Φk(u(x)) is factored into two irreducible
polynomials of degree ϕ(k). u(x) is of the form

A/4x2 +
√

Ac + Bx + c.

Proof. Let

x =
−b±√Aζk + B

2a

Then x is a solution of ax2+bx+c = ζk in Q(ζk), where a = A/4, b =
√

Ac + B.
By Lemma 4.4, this is true. ¤

We find the necessary conditions of a factorization of Φk(axn) for n =
1, 2, 3, 4.

Lemma 4.7

(1) Suppose that Φk(ax2) is reducible over Q, where a is a square free integer.
Then a is a divisor of k or k/2 if k is odd or even, respectively.

(2) Suppose that Φk(ax4) is reducible over Q, where a is a quartic free integer.
Then a squarefree part of a is a divisor of k or k/2 if k is odd or even,
respectively.

(3) If Φk(xn) splits, it is a product of cyclotomic polynomials.

(4) If k is divided by 4 then Φk(x) is an even polinomial.

Proof. (1) Suppose that Φk(ax2) is reducible over Q. By Lemma 4.4, ax2−ζk

has a solution in Q(ζk). If k is odd, ζk is a square in Q(ζk). So a is also a
square. By Lemma 2.2, a divides k. Let k be even. ax2− ζk has also a solution
in Q(ζ2k). Since ζk is a square in Q(ζ2k), a is also a square in Q(ζ2k). By
Lemma 2.2, 4a divides 2k.

(2) Suppose that Φk(ax4) is reducible over Q. By Lemma 4.4, ax4 − ζk is
reducible over Q(ζk). If k is odd, ζk is a square in Q(ζk). So a is also a square.
By Lemma 2.2, a squarefree part of a divides k. Let k be even. ax4 − ζk is
also reducible over Q(ζ2k). Since ζk is a square in Q(ζ2k), a is also a square in
Q(ζ2k). By Lemma 2.2, a squarefree part of 4a divides 2k.
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(3) Φk(xn) divides xnk − 1. Since

xm − 1 =
∏

d|m
Φd(x)

an irreducible factor of Φk(xn) is a cyclotomic polynomial.

(4) Let k=2k′ with k′ is even.

degΦk′(x2) = 2ϕ(k′) = 2ϕ(k′/2).
degΦk(x) = ϕ(k) = 2ϕ(k′/2).

Since ζk is a root of Φk′(x2) and Φk(x), Φk′(x2) = Φk(x). ¤

Remark 4.8 By Lemma 4.7.(4), if 4 divides k then we do not need to consider
Φk(axn) for a negative a.

Remark 4.9 Let a = a′b2, where a′ is a square free integer. If Φk(ax2) splits,
Φk(ax4) also splits and this is the same result by substitution x to bx2. Thus
we only need to consider ax4 for square integer a.

Lemma 4.10 If a not equal to ±1 is a qubicfree integer and 3 does not divides
k then Φ(ax3) is irreducible.

Proof. Suppose that Φ(ax3) is reducible. Then by Lemma 4.6, ax3 = ζk

is solvable in Q(ζk). Since x3 = ζk is solvable in Q(ζk) by (1), x3 = a is also
solvable in Q(ζk). Thus Q( 3

√
a) ⊂ Q(ζk). But since the discriminant of x3 − a

is −33a2 i.e. not square, the Galois group of x3 − a is S3. Since Q(ζk)/Q is an
abelian extension, this is a contradiction. ¤

We factored Φ(u(x)) for degree of u(x) is 3, 4, 5 except above Lemma’s and
the coefficients of u(x) are less than or equal to 10, and give some results of
Construction 4.2 in section 6.

5 The limitation of finding a pairing friendly el-
liptic curve with embedding degree 10

Theorem 5.1 [12, Theorem 2, 3, 4] Let u(x) be a quadratic polynomial. Then

(1) There is no u(x) which splits Φ8(u(x)).

(2) There is infinitely many u(x) which split Φk(u(x)) when k =5, 10.

(3) The only u(x) are 2x2 and 6x2 which split Φ12(u(x)).
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Theorem 5.1 show that there are infinitely many quadratic polynomial u(x)
which split Φk(u(x)) when k = 10. We tried to find another families with
embedding degree 10, by using Lemma 4.6.

Theorem 5.2 For 1 ≤ A ≤ 4000 and −1000 ≤ B ≤ 1000,

(1) There are three integer pair (A,B) = (40,−55), (44,−32) and (220,−160),
up to square, satisfying Lemma 4.6 when k = 10.

(2) If (A,B) = (40,−55), the CM equation 4r2(x)− (t(x)− 2)2 is a quadratic
polynomial, especially, u(x) = 10x2 + 5x + 2. Otherwise the degree of CM
equations is 4.

Remark 5.3 If (a,B) satisfies Lemma 4.6, (e2a, e2B) also satisfies Lemma 4.6
for any integer e. They represent the same families.

Remark 5.4 In Theorem 5.2.(1), u(x) = 10x2 ± √
40c− 55x + c. For any c

which makes
√

40c− 55 square, u(x)’s are equal by translation and reflextion.

Example 5.5 (Freeman’s family when k = 10)

(A,B) = (40,−55).
u(x) = 10x2 + 5x + 2.

Φ10(u(x)) = (25x4 + 25x3 + 15x2 + 5x + 1)(400x4 + 400x3 + 240x2 + 60x + 11)
t(x) = 10x2 + 5x + 3.

r(x) = 25x4 + 25x3 + 15x2 + 5x + 1.

q(x) = 25x4 + 25x3 + 25x2 + 10x + 3.

Dy2 = 15x2 + 10x + 3.

Example 5.6 If substitute x by 1− x in example 5.5 then c = 7.

u1(x) = 10x2 + 15x + 7 = 10(1− x)2 + 5(1− x) + 2.

Example 5.7 If substitute x by 2x in example 5.5 then this is the result for
(A, B) = (22 × 10, 22 × (−55)).

u2(x) = 40x2 + 10x + 2 = 10(2x)2 + 5(2x) + 2.

Example 5.8 Let (A,B) = (44,−32).

u3(x) = 11x2 + 10x + 3.

Φ10(u(x)) = (11x4 + 21x3 + 16x2 + 6x + 1)
×(1331x4 + 2299x3 + 1606x2 + 494x + 61).
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Example 5.9 Let (A,B) = (220,−160).

u3(x) = 55x2 + 40x + 8.

Φ10(u(x)) = (275x4 + 475x3 + 315x2 + 95x + 11)
×(33275x4 + 39325x3 + 18315x2 + 3945x + 331).
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6 Results

Table 1,2 give the best ρ value for our computation.

Table 1 : The best ρ value for k

k D ρ u(x) deg

3 1 1.500 2x2, 6x2 4

4 3 1.500 2x2, 6x2 4
6 1.500 x 8

5 3 1.500 x, x2 8

6 1 1.500 x 4
7 1.500 x,−x2, 3x2 12

7 3 1.333 x,−3x2, x2 12

8 3 1.250 x 8

9 3 1.333 x,−3x2, x2 6

10 1 1.500 x, x3 8
3 1.500 3x2 8

11 3 1.200 x,−3x2, x2 20

12 3 1.000 6x2 4

13 3 1.167 x,−3x2, x2 24

14 3 1.333 x,−x2, 3x2 12

15 3 1.500 x,−3x2, x2 8

16 3 1.375 x 16

17 1 1.188 x, x3 32

18 2 1.583 x 24

19 3 1.111 x,−3x2, x2 36

20 3 1.375 x 16

21 3 1.333 x,−3x2, x2 12

22 1 1.300 x, x3 20

23 3 1.091 x,−3x2, x2 44

24 3 1.250 x 8

25 3 1.300 x,−75x2,−3x2 40
x2, 25x2

k D ρ u(x) deg

26 3 1.167 x,−x2, 3x2 24

27 3 1.111 x, x2 18

28 1 1.333 x, x3 12

29 3 1.071 x, x2 56

30 3 1.500 x,−x2, 3x2 8

31 3 1.067 x,−3x2, x2 60

32 3 1.063 x 32

33 3 1.200 x,−3x2, x2 20

34 3 1.125 3x2 32

35 3 1.500 x,−3x2, x2 48

36 2 1.417 x 24

37 3 1.056 x,−3x2, x2 72

38 3 1.111 x,−x2, 3x2 36

39 3 1.167 x,−3x2, x2 24

40 3 1.438 x 32

41 3 1.050 x, x2 80

42 3 1.333 x,−x2, 3x2 12

43 3 1.048 x,−3x2, x2 84

44 3 1.150 x 40

45 3 1.333 x,−3x2, x2 24

46 3 1.136 3x2 44

47 3 1.043 x,−3x2, x2 92

48 3 1.125 x 16

49 3 1.190 x,−147x2,−3x2 84
x2, 49x2

50 3 1.300 x,−25x2,−x2 40
3x2, 75x2

* deg means the degree of r(x).
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Table 2 : The best ρ value for D

k D ρ u(x) deg

3 1 1.500 2x2, 6x2 4
5 1.875 6x2, 10x2, 30x2 16
7 1.833 x,−7x2,−3x2, x2, 21x2 12

−4x4 24
11 1.900 −11x2,−3x2, 33x2 20
13 1.958 2x2, 6x2, 26x2, 78x2 48
15 1.750 x,−15x2,−3x2, x2, 5x2 8
19 1.944 x,−19x2,−3x2, x2, 57x2 36
21 1.917 2x2, 14x2, 42x2 24
23 1.864 x,−3x2, x2 44
31 1.967 x,−31x2,−3x2, x2, 93x2 60
35 1.958 −35x2, 21x2, 105x2 48
39 1.667 x, x2 24
43 1.976 x,−43x2,−3x2, x2, 129x2 84
47 1.935 x,−3x2, x2 92

4 3 1.500 2x2, 6x2 4
5 1.750 x, x3 8
6 1.500 x 8
7 1.833 x, 2x2, 14x2, x3 12
11 1.500 2x2 20
13 1.833 x, x3 24
15 1.875 2x2, 6x2, 10x2, 30x2 16
19 1.944 x, 2x2, 38x2, x3 36
22 1.875 x3 80
23 1.864 2x2 44
29 1.964 x, x3 56
30 1.875 x 32
31 1.967 2x2, 62x2 60
35 1.958 10x2, 14x2, 70x2 48
39 1.958 x, 6x2, 78x2 48
43 1.976 86x2 84
47 1.935 2x2 92

5 1 1.750 x, x3 8
3 1.500 x, x2 8
5 1.750 x, x3 8
7 1.833 x, x2, x3 24
10 1.875 x, x3 16
11 1.800 x, x2, x3 40
13 1.979 2x2, 26x2 96
15 1.750 −15x2,−3x2, 5x2 8
19 1.833 x, x2, x3 72
21 1.979 6x2, 42x2 96
23 1.955 −23x2 88
35 1.917 −35x2, 5x2 24
39 1.979 −39x2,−3x2 96

6 1 1.500 x 4
2 1.750 x 8
5 1.875 x, 10x2 16
6 1.750 x 8
7 1.500 x,−x2, 3x2 12
10 1.938 x 32
11 1.900 −33x2, 3x2, 11x2 20

4x4 40
13 1.917 2x2 48

k D ρ u(x) deg
14 1.958 x 48
15 1.750 x,−5x2,−x2 8
17 1.969 x 64
19 1.944 x,−57x2,−x2, 3x2, 19x2 36
21 1.917 x, 14x2 24
22 1.925 x 80
23 1.864 x,−x2, 3x2 44

36x4 88
26 1.979 x 96
30 1.938 x 32
31 1.700 x,−x2 60
33 1.850 x 40
35 1.958 −105x2,−5x2, 3x2, 7x2 48

15x2, 35x2

39 1.917 x,−x2 24
42 1.958 x 48
43 1.976 x,−129x2,−x2, 3x2, 43x2 84
47 1.935 x,−x2 92

7 1 1.500 x, x3 12
3 1.333 x,−3x2, x2 12
5 1.958 x, 2x2, 10x2, 14x2, 70x2, x3 48
7 1.667 x,−7x2, x2, x3 6
11 1.900 x, x2, x3 60
14 1.750 x, x3 24
15 1.958 x,−35x2,−15x2,−7x2 48

−3x2, x2, 5x2, 21x2, 105x2

35 1.917 −35x2,−7x2, 5x2 24

8 1 1.500 2x3 + 2x2 + 4x + 1 4
2x3 + 4x2 + 6x + 3
9x3 + 3x2 + 2x + 1

2 1.500 2x3 + 2x2 + 4x + 1 4
2x3 + 4x2 + 6x + 3
9x3 + 3x2 + 2x + 1

3 1.250 x 8
7 1.875 x3 48
11 1.925 x3 80
13 1.875 x, x3 48
15 1.938 x 32
17 1.938 x, x3 64
19 1.889 x, x3 72
22 1.850 x, x3 40
34 1.969 x, x3 64

9 1 1.833 x 12
2 1.917 x 24
3 1.333 x,−3x2, x2 6
5 1.875 x 48
6 1.750 x 24
7 1.833 x,−3x2, x2, 9x2 36
10 1.896 x 96
11 1.933 x,−99x2,−11x2, x2 60
15 1.833 x,−15x2,−3x2, x2, 5x2 24

9x2, 45x2

30 1.938 x 96
39 1.917 9x2 72
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k D ρ u(x) deg

10 1 1.500 x, x3 8
2 1.813 x3 32
3 1.500 3x2 8
5 1.750 x, x3 8
6 1.938 x 32
7 1.917 x,−5x2,−x2, 7x2, 35x2, x3 24
10 1.875 x, x3 16
11 1.900 x,−x2, x3 40
13 1.938 x, x3 96
14 1.938 x, x3 96
15 1.500 15x2 8
19 1.722 x,−x2, x3 72
21 1.979 x, 6x2, 42x2, 70x2, 210x2 96
23 1.932 x,−5x2,−x2, x3 88
30 1.938 x 32
35 1.917 x,−5x2,−x2, 7x2, 35x2, x3 24
39 1.979 3x2, 39x2 96

11 1 1.300 x, x3 20
2 1.975 x3 80
3 1.200 x,−3x2, x2 20
5 1.925 x, x3 80
6 1.925 x 80
7 1.700 x, x2, x3 60
11 1.600 x, x2, x3 10
15 1.925 x, x2 80
33 1.950 6x2, 22x2, 66x2 40

12 1 1.500 2x2 4
2 1.750 x 8
3 1.000 6x2 4
7 1.750 2x2 24
11 1.850 x 40
15 1.750 x 16
17 1.906 2x2 64
19 1.972 x, 2x2, 6x2, 38x2, 114x2 72
23 1.932 x, 2x2 88
33 1.950 2x2, 6x2, 22x2, 66x2 40
35 1.979 2x2, 10x2, 14x2, 70x2 96
39 1.917 2x2 48

13 1 1.250 x, x3 24
2 1.667 x, x3 48
3 1.167 x,−3x2, x2 24
5 1.896 x, x3 96
6 1.896 x 96
7 1.639 x, x2, x3 72
13 1.750 x, x3 24
15 1.896 x, x2 96
26 1.875 x, x3 48
39 1.833 x,−3x2, x2 24

14 1 1.500 x, x3 12
2 1.750 x, x3 24
3 1.333 x,−x2, 3x2 12
5 1.958 x, 2x2, 10x2, 14x2, x3 48
6 1.958 x 48
7 1.583 x5 + x4 + x3 + x2 + x + 1 24
10 1.979 x, x3 96
11 1.867 x,−x2, x3 60

k D ρ u(x) deg

14 1.917 x, x3 24
15 1.833 x,−x2 48
21 1.833 x 24
35 1.917 x,−5x2,−x2, 7x2, 35x2, x3 24
42 1.875 x 48

15 1 1.875 x, 10x2 16
2 1.750 x 32
3 1.500 x,−3x2, x2 8
5 1.875 x 16
6 1.750 x 32
7 1.917 x, x2 48
10 1.938 x 32
11 1.925 x, x2 80
15 1.750 x,−15x2,−3x2, x2, 5x2 8
21 1.979 x, 30x2, 42x2, 70x2, 210x2 96
30 1.813 x 32
35 1.958 −35x2,−15x2,−7x2,−3x2 48

5x2, 21x2, 105x2

39 1.979 65x2 96

16 2 1.625 x3 16
3 1.375 x 16
5 1.813 x, x3 32
7 1.625 x, x3 48
10 1.875 x, x3 32
11 1.875 x, x3 80
14 1.958 x3 96
26 1.958 x, x3 96

17 1 1.188 x, x3 32
2 1.750 x, x3 64
3 1.125 x, x2 32
7 1.563 x, x2, x3 96
17 1.938 x, x3 32
34 1.906 x, x3 64

18 1 1.833 x 12
2 1.583 x 24
3 1.667 3x2 6

4x4, 36x4 12
5 1.875 x 48
6 1.917 x 24
7 1.833 x,−9x2,−x2, 3x2 36
11 1.867 x,−x2 60
15 1.833 −45x2,−5x2, 3x2, 15x2 24
39 1.944 39x2 72

19 1 1.167 x, x3 36
2 1.778 x, x3 72
3 1.111 x,−3x2, x2 36
19 1.667 x, x2, x3 18

20 1 1.500 x, x3 8
2 1.938 x3 32
3 1.375 x 16
5 1.750 2x2, 10x2 8
6 1.938 x 32
7 1.792 x3 96
11 1.975 x, 2x2, 10x2, 22x2, 110x2, x3 80
21 1.979 2x2, 6x2, 10x2, 14x2, 30x2 96

42x2, 70x2, 210x2
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k D ρ u(x) deg

35 1.958 x, 2x2, 10x2, 14x2, 70x2, x3 48
21 1 1.833 x 24

2 1.792 x 48
3 1.333 x,−3x2, x2 12
5 1.979 x, 2x2, 6x2, 10x2, 14x2, 30x2 96

42x2, 70x2, 210x2

6 1.833 x 48
7 1.667 x, x2, 21x2 12
14 1.875 x 48
15 1.958 x,−15x2,−7x2,−3x2, x2 48

21x2, 105x2

21 1.833 x 24
35 1.958 x,−35x2,−15x2,−7x2 48

−3x2, x2, 5x2, 21x2, 105x2

−4x4,−196x4 96
42 1.875 x 48

22 1 1.300 x, x3 20
2 1.675 x3 80
3 1.300 3x2 20
5 1.950 x, x3 80
6 1.925 x 80
7 1.700 x,−x2, x3 60
11 1.800 x,−x2, 11x2, x3 10

x3 20
484x4 20

15 1.975 x,−165x2,−33x2,−5x2 80
−x2, 3x2, 11x2, 15x2, 55x2

22 1.850 x, x3 40
33 1.950 x, 2x2, 6x2, 66x2 40

23 1 1.136 x, x3 44
2 1.636 x, x3 88
3 1.091 x,−3x2, x2 44
23 1.727 x, x2, x3 22
46 1.977 x, x3 88

24 2 1.500 x 8
3 1.250 x 8
10 1.875 x 32
11 1.775 x 80
13 1.979 x 96
15 1.813 x 32
33 1.925 x 80
39 1.979 x 96
42 1.958 x 48

25 1 1.350 x, x3 40
3 1.300 x,−75x2,−3x2, x2, 25x2 40
5 1.750 x, x3 40
15 1.750 x, x2 40

26 1 1.250 x, x3 24
2 1.604 x3 96
3 1.167 x,−x2, 3x2 24
5 1.958 x, x3 96
6 1.917 x 96
7 1.639 x,−x2, x3 72
13 1.833 x, x3 24
15 1.958 x,−x2 96
26 1.875 x, x3 48

k D ρ u(x) deg

39 1.917 x,−13x2,−x2, 3x2, 39x2 24
27 1 1.611 x 36

2 1.472 x 72
3 1.111 x, x2 18
6 1.806 x 72
15 1.750 x, x2, 9x2 72

28 1 1.333 x, x3 12
2 1.708 x3 48
3 1.417 x 24
5 1.958 x, x3 48
6 1.875 x 48
7 1.500 x, x3 12
10 1.938 x, x3 96
15 1.979 30x2, 42x2, 210x2 96
21 1.917 6x2, 14x2, 42x2 24
35 1.958 2x2, 10x2, 14x2, 70x2 48
42 1.958 x 48

29 1 1.107 x, x3 56
3 1.071 x, x2 56
29 1.964 x, x3 56

30 1 1.875 x, 2x2, 6x2, 10x2, 30x2 16
2 1.813 x 32
3 1.500 x,−x2, 3x2 8
5 1.625 x 16
6 1.938 x 32
7 1.917 x,−x2 48
10 1.813 x 32
11 1.950 x,−x2 80
15 1.750 −5x2, 3x2, 15x2 8
21 1.979 14x2, 42x2 96
30 1.938 x 32
35 1.958 x,−x2, 7x2, 35x2 48
39 1.938 x,−x2 96

31 1 1.100 x, x3 60
3 1.067 x,−3x2, x2 60
31 1.667 x, x2, x3 30

32 2 1.438 x3 32
3 1.063 x 32
5 1.750 x, x3 64
6 1.750 x 32
7 1.479 x, x3 96
10 1.969 x, x3 64
14 1.917 x, x3 96

33 1 1.750 x 40
2 1.575 x 80
3 1.200 x,−3x2, x2 20
6 1.825 x 80
11 1.600 x, x2 20
15 1.950 x, x2 80
22 1.975 x 80
33 1.950 x, 22x2 40

34 1 1.188 x, x3 32
2 1.625 x, x3 64
3 1.125 3x2 32
7 1.563 x,−x2, x3 96
17 1.938 x, x3 32
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k D ρ u(x) deg

34 1.906 x, x3 64

35 1 1.542 x, x3 48
2 1.917 x, x3 96
3 1.500 x,−3x2, x2 48
5 1.792 x, x3 48
7 1.750 x, x2, x3 24
10 1.917 x, x3 96
14 1.979 x, x3 96
15 1.917 x,−3x2, x2 48
21 1.938 x 96
35 1.917 x,−35x2,−7x2, x2, 5x2, x3 24

36 1 1.667 x 12
2 1.417 x 24
3 1.833 2x2, 6x2, 18x2 12
5 1.917 x 48
6 1.917 x 24
7 1.972 x 72
10 1.896 x 96
15 1.958 x 48

37 1 1.083 x, x3 72
3 1.056 x,−3x2, x2 72
37 1.861 x, x3 72

38 1 1.167 x, x3 36
2 1.667 x, x3 72
3 1.111 x,−x2, 3x2 36
19 1.833 x3 36
38 1.917 x, x3 72

39 1 1.708 x 48
2 1.521 x 96
3 1.167 x,−3x2, x2 24
6 1.917 x 96
13 1.917 x 48
15 1.917 x,−15x2,−3x2, x2, 5x2 96
26 1.938 x 96
39 1.833 x, x2 24

40 2 1.750 x3 32
3 1.438 x 32
5 1.750 x, x3 16
7 1.813 x, x3 96
10 1.875 x3 32
14 1.958 x, x3 96
15 1.750 x 32
30 1.938 x 32
35 1.938 x, x3 96

41 1 1.075 x, x3 80
3 1.050 x, x2 80
41 1.925 x, x3 80

42 1 1.917 x, 2x2, 6x2, 14x2, 42x2 24
2 1.625 x 48
3 1.333 x,−x2, 3x2 12
5 1.938 x 96
6 1.875 x 48

k D ρ u(x) deg

7 1.667 3x2, 7x2 12
14 1.958 x 48
15 1.958 −105x2,−21x2, 3x2, 15x2 48

35x2

21 1.917 x, 2x2, 6x2, 42x2 24
35 1.958 x,−105x2,−21x2,−5x2 48

−x2, 3x2, 7x2, 15x2, 35x2

42 1.958 x 48

43 1 1.071 x, x3 84
3 1.048 x,−3x2, x2 84
43 1.810 x, x2, x3 42

44 1 1.200 x, x3 20
2 1.525 x3 80
3 1.150 x 40
5 1.925 x, x3 80
6 1.950 x 80
11 1.750 x3 40
22 1.900 x, x3 40
33 1.900 x 40

45 1 1.958 x 48
2 1.729 x 96
3 1.333 x,−3x2, x2 24
5 1.958 x 48
6 1.938 x 96
10 1.854 x 96
15 1.750 x, x2, 9x2 24
30 1.938 x 96

46 1 1.136 x, x3 44
2 1.659 x, x3 88
3 1.136 3x2 44
23 1.727 x,−x2, x3 22
46 1.909 x, x3 88

47 1 1.065 x, x3 92
3 1.043 x,−3x2, x2 92
47 1.783 x, x2, x3 46

48 2 1.375 x 16
3 1.125 x 16
6 1.750 x 16
7 1.833 x 96
10 1.844 x 64
14 1.958 x 96
15 1.781 x 64
30 1.938 x 64

49 1 1.214 x, x3 84
3 1.190 x,−147x2,−3x2, x2, 49x2 84
7 1.381 x, x2, x3 42

50 1 1.350 x, x3 40
2 1.900 x, x3 80
3 1.300 x,−25x2,−x2, 3x2, 75x2 40
5 1.850 x, x3 40
10 1.875 x, x3 80
15 1.800 x,−5x2,−x2, 15x2 40
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Table 3 : The representation of
√−D

D representation
2 x3 + x
3 2x + 1
5 2x7 − x5 + 2x3

6 2x7 + x5 − x3 + x
7 2x4 + 2x2 + 2x + 1
10 x15 + 2x9 + 2x7 − x5 − 2x3 + 2x
11 2x9 + 2x5 + 2x4 + 2x3 + 2x + 1
13 2x21 − 2x19 − 2x15 + x13 − 2x11 − 2x7 + 2x5

14 2x23 + x21 − 2x17 + 2x15 + 2x13 − 2x11 + x7 + 2x5

15 2x7 − 2x5 + 4x4 − 2x3 + 2x2 + 4x− 3
17 2x31 − 2x29 + 2x27 + 2x23 − x17 + 2x11 + 2x7 − 2x5 + 2x3

19 2x17 + 2x16 + 2x11 + 2x9 + 2x7 + 2x6 + 2x5 + 2x4 + 2x + 1
21 2x23 + x21 + 2x19 + 2x17 − 2x15 − 2x13 + 2x11 − 2x3 + 2x
22 2x37 − x33 − 2x31 + 2x27 − 2x25 − 2x23 − 2x15 + x11 − 2x9 + 2x5 + 2x3 − 2x
23 2x18 + 2x16 + 2x13 + 2x12 + 2x9 + 2x8 + 2x6 + 2x4 + 2x3 + 2x2 + 2x + 1
26 2x47 +2x45− 2x41 +x39 +2x37− 2x33 +2x31 +2x21− 2x19 +2x15 +x13− 2x11 +2x7 +2x5

29 2x55+2x47+2x43−2x41+2x39−2x37+2x31−x29+2x27−2x21+2x19−2x17+2x15+2x11+2x3

30 2x31 + 4x29 + 2x27 + x25 + 2x23 − 2x21 − 2x19 − x15 − 2x9 − 2x7 + x5 + 4x
31 2x28+2x25+2x20+2x19+2x18+2x16+2x14+2x10+2x9+2x8+2x7+2x5+2x4+2x2+2x+1
33 4x37 − x33 − 4x31 + 2x27 + 4x25 + 2x23 − 2x15 + 2x11 + 2x9 − 4x5 − 2x3 + 2x
34 2x63 − 2x53 − x51 + 2x49 + 2x39 + 2x33 + 2x31 − 2x27 + 2x25 + 2x23 − 2x21 + x17 − 2x13 −

2x11 + 2x9 + 2x7 − 2x3 + 2x
35 4x22 − 2x21 + 2x20 − 4x16 + 4x15 − 2x14 − 4x11 + 2x10 − 4x9 + 4x8 + 2x5 − 4x4 + 1
37 2x69 + 2x61 − 2x59 + 2x57 − 2x55 − 2x51 + 2x45 − 2x43 − 2x39 + x37 − 2x35 − 2x31 + 2x29 −

2x23 − 2x19 + 2x17 − 2x15 + 2x13 + 2x5

38 2x69 − 2x65 + 2x63 − x57 + 2x55 + 2x53 + 2x47 − 2x43 − 2x41 + 2x39 + 2x37 − 2x35 − 2x33 +
2x29 + 2x23 + 2x21 − x19 + 2x13 − 2x11 + 2x7

39 2x23 + 4x20 − 4x19 + 2x17 + 2x14 − 2x13 − 2x12 + 4x11 + 2x10 − 2x9 + 4x8 − 4x6 + 4x5 +
2x4 − 2x3 + 4x2 + 2x− 3

41 2x79 + 2x75 + 2x71 − 2x69 + 2x67 − 2x65 + 2x63 + 2x55 − 2x53 + 2x47 − x41 + 2x35 − 2x29 +
2x27 + 2x19 − 2x17 + 2x15 − 2x13 + 2x11 + 2x7 + 2x3

42 2x47 + 4x43 + 2x41 − 2x37 − 3x35 + 2x27 + 2x25 + 4x23 + x21 − 2x19 + 2x17 − 4x15 − 4x11 +
x7 − 2x5 + 2x3 + 2x

43 2x41 + 2x40 + 2x38 + 2x36 + 2x35 + 2x31 + 2x25 + 2x24 + 2x23 + 2x21 + 2x17 + 2x16 + 2x15 +
2x14 + 2x13 + 2x11 + 2x10 + 2x9 + 2x6 + 2x4 + 2x + 1

46 2x87 − 2x85 + 2x81 − 2x77 − 2x75 + 2x73 + 2x71 − x69 − 2x59 + 2x55 + 2x49 + 2x47 + 2x41 +
2x39 − 2x35 + 2x31 − 2x29 − 2x27 + 2x25 + x23 − 2x13 + 2x9 − 2x3 + 2x

47 2x42 + 2x37 + 2x36 + 2x34 + 2x32 + 2x28 + 2x27 + 2x25 + 2x24 + 2x21 + 2x18 + 2x17 + 2x16 +
2x14 + 2x12 + 2x9 + 2x8 + 2x7 + 2x6 + 2x4 + 2x3 + 2x2 + 2x + 1
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7 Conclusion

We have proposed a general construction of pairing friendly elliptic curves over
an extension field of K = Q(ζk,

√−D). We can find a suitable field containing
Q(ζk,

√−D) for our construction by the method in section 4. But we can not
find a suitable field between K = Q(ζk,

√−D) and Q(ζk,
√−D). Most good ρ

value appear when the discriminant 1 and 3. The advantage of elliptic curves
with j-invariant 0 or 1728 is that computations of the pairing are reduced. But
the security of these curves is also reduced. If a discriminant D is very large,
it is difficult to compute the Hilbert class polynomial. Thus if anyone needs
a pairing friendly elliptic curves with a discriminant not equal to 1 or 3 and
sufficiently small, our method is useful.

APPENDIX

A CM method

Let K be an imaginary quadratic field Q(
√−D), OK the maximal order of K,

HO the ring class field associated to an order O in K, C(OK) the ideal class
group of OK and hK the class number of K.

Theorem A.1 [15, Theorem 4] Let p be a rational prime which splits completely
in K and P a prime of HO above p with residue degree f = fP|p and such
that [OK : O] /∈ P. Let E be an elliptic curve over HO which has complex
multiplication by O and good, ordinary reduction at P. Then there is an element
π ∈ O \ pO satisfying the system of norm equations

q = NK(π)
#E(Fq) = NK(1− π)

for the P-reduces curve E of E, where q = pf . The endomophism ring of E is
stable under the reduction map E P−→ E, i.e. EndE = EndE = O. Moreover,
every elliptic curve over Fq with endomophism ring O arises in this way.

Proof. See [7, Theorem 14.16]. ¤

Theorem A.2 [15, Theorem 5] The imaginary quadratic field K of Theorem
A.1 is given by

K = Q(
√

(q + 1−m)2 − 4q).

Proof. See [7, Section 14] ¤

Since an elliptic curve E/C is isomorphic to E/Λ for some lattice Λ ⊂ C, we
consider E/C as E/Λ.
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Proposition A.3 [23, Proposition 11.1] There is a one to one correspondence
between C(OK) and isomophism classes of elliptic curves E/C with End(E) ∼=
C(OK).

Proof. See [23, Proposition 11.1] and [7, Section 14] ¤

Theorem A.4 [23, Theorem 11.2]

(1) j(Λ) is an algebraic integer.

(2) [K(j(Λ)) : K] = [Q(j(Λ)) : Q].

(3) The field HK = K(j(Λ)) is the maximal unramified abelian extension of
K (I.e. HK is the Hilbert class field of K.)

(4) Let {Λ1}, . . ., {ΛhK
} be a complete set of representatives for C(OK).

Then j(Λ1), . . ., j(ΛhK
) form a complete set of Gal(HK/K) conjugates

for j(Λ).

Proof. See [7, Section 14]. ¤

By (A.4.(4)), the minimal polynomial of HK is given by

HD(x) =
∏

(x− j(Λ)).

Theorem A.5 Let p > 3 be a prime and j j-invariant of E over Fp. Then E
over Fp is given by

E : y2 = x3 + 3κx + 2κ with κ =
j

1728− j
if j 6= 0, 1728

E : y2 = x3 + ax with a ∈ Fp
∗ if j = 1728

E : y2 = x3 + b with b ∈ Fp
∗ if j = 0.

Proof. See [23, Proposition 5.4]. ¤

The reduction of E modulo a prime p of HK is again an elliptic curve. Its
j-invariant is a root of HD(x) modulo p, where p is the integer prime in p.
But by reduction, every isomorphism class of elliptic curves over HK splits into
several isomorphism classes of elliptic curves over Fp. I.e. an isomorphism class
of elliptic curves over Fp is not uniquely determiner by j-invariant. For fixed
j-invariant, the number of their isomorphism classes is given by the number of
unit in OK .

Theorem A.6 [15, Theorem 11] Let E and E′ be elliptic curves over Fp. If
E is ordinary, then E and E′ are isomorphic if and only if j(E) = j(E′) and
#E(Fp) = #E′(Fp).

Proof. See [7, Proposition 14.19]. ¤
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Theorem A.7 If D > 4, all elliptic curves with given j-invariant, j 6= 0, 1728,
over Fp are given by

y2 = x3 + 3κc2x + 2κc3

where κ = j/(1728− j) and c ∈ Fp

Proof. See [23, Proposition 5.4] and [7, Theorem 14.16]. ¤

Remark A.8 We must choose p such that p splits in K because HD(x) has a
root modulo p. By Hensel’s lemma, if HD(x) has a root modulo p, HD(x) has
hk number of roots. Thus we find hk number of curves with the same orders.
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