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Abstract

The aim of this paper is to construct pairing friendly elliptic curves. In this
paper, we explain a method of finding the polynomials representing v/—D and
(x over the field containing v/—D and (; and how to construct a pairing friendly
elliptic curves over the cyclotomic fields containing Q((x, v —D) for arbitrary
k and D by CP method. By using the factorization of the cyclotomic polyno-
mial combined some polynomial, we extend the construction over cyclotomic
fields to the construction over some extensions of the cyclotomic fields contain-
ing Q(Cx, vV—D). We explain the limitation of finding more families of pairing
friendly elliptic curves with embedding degree 10. For all computation, we use
the PARI-GP [13].

1 Introduction

We begin by defining some notations. The embedding degree is related to
the pairings on elliptic curves. Let E be an elliptic curve defined over a field
Fg, where ¢ is prime or prime power. Consider the weil pairing

en : E[r] x Elr] — ur,

where E[r] is the r torsion group of E(F,) and p, is the group of r th roots of
unity. Some extension of F, contains p,. The smallest extension degree of I is
called the embedding degree of E. We can define the embedding degree as the
following.

Definition 1.1 Let E be an elliptic curve defined over Fy, and let r be an order
of prime subgroup of E. Then E is said to have an embedding degree k with
respect to r if r divides ¢¥ — 1, but does not divides ¢* — 1 for all 0 < i < k.

The pairings like the Weil pairing, converts a discrete logarithm problem in
E(F,)(ECDLP) to one in F (DLP). The pairing based cryptography uses this



fact. To define the pairing friendly elliptic curve, we need one more parameter
p = logq/logr, the ratio of the size between the finite field and the order of
subgroup of an elliptic curve. An ordinary elliptic curve over I, is called a
pairing friendly elliptic curve if the embedding degree is not too large and its p
value is close to 1. For the supersingular curves, there is a well known fact that
its embedding degrees are less than or equal to 6 [19].

We consider nonsupersingular elliptic curves. There are several methods of
constructing elliptic curves with prescribed embedding degree k [2, 3, 5, 9, 10,
11, 18, 21]. All of these construction use the complex multiplication method(CM
method). To apply the CM method, we have to solve the following diophantine
equation for given a prime or a prime power g and a positive integer D.

Dy? = 4q — %

If we find the solution, an order of the elliptic curve E over F, made by CM
method is

qg+1—t.

Thus to make a pairing friendly elliptic curve by CM method, we need to find
(t,r,q) satisfying the following conditions:

Condition 1.2 (pairing friendly elliptic curve)
(1) q is a prime of prime power and r is a prime.
(2) r divides ¢+ 1 —t.
(8) r divides ¢* — 1 but does not divides ¢* — 1 for 1 <i < k.
(4) Dy* = 4q — t* for some integer y.
The Condition 1.2.(3) is changed by the following lemma [2].

Lemma 1.3 [2, Lemma 1] Conditions 1.2.(8) implies that r divides @y (t — 1),
where @ (t) is k the cyclotomic polynomial.

To obtain families of curves, we can parametrize ¢, r and ¢ as polynomials
t(z), r(z) and g(z).

Definition 1.4 [10, Definition 2.6 | Let t(x), r(x) and q(z) be polynomials
with rational coefficients. For a given positive integer k and positive square-free
integer D, we say that the triple (t(x),r(x), q(x)) represents a family of elliptic
curves with embedding degree k and discriminant D if the following conditions
are satisfied:

(1) q(x) represents primes or prime power and r(x) represents primes.
(2) r(z) divides q(z) + 1 — t(z).

(3) r(z) divides P (t(x) — 1), where ®(x) is the k-th cyclotomic polynomial.



(4) Dy* = 4q(z) — t(x)? = 4h(z)r(x) — (t(x) — 2)? has infinitely many integer
solutions,

where h(z) is a cofactor of #E(F,) = h(z)r(x) = q(x) + 1 — t(z).

Now we define p = degg(x)/degr(x).
The goal of most constructions is to find polynomials (¢(x), r(z), ¢(z)) satisfying
Definition 1.4.

Brezing and Weng gave the construction based on CP method [5].

Construction 1.5 (Brezing and Weng’s method)
1. Fix D, k € N.

2. Choose an irreducible polynomial r(z) such that (i, v—D € K, where (}, is
a primitive k-th root of unity and K = Qlz]/(r(x)).

Choose t(x) which represents 1 + (i, in K.

Choose b(x) which represents v/—D in K.

Compute y(z) = (t(z) — 2)b(z)/D in K.
(

Compute q(z) = (t(z)? + Dy(x)?)/4 € Qlx].

N

If ¢(x) and r(z) represent prime for some z, by the CM method, construct
an elliptic curve over Fy(,y with an order r(x) subgroup.

The elliptic curves constructed by this method have p less than 2. The difficult
point of Construction 1.5 is to find a polynomial r(z) satisfying the following
condition:

Condition 1.6
(1) K = Q|x]/(r(x)) contains ; and /—D.
(2) The polynomials represent (;, and /—D are easily found.

(3) q(x) represent primes or prime power and r(x) represents primes.

The smallest field satisfying Condition 1.6.(1) is Q({x,v/—D). But if this
field is not a cyclotomic field, denominators of coefficients of t(x) and b(x) are
very large in generally. We give some example for this in section 3. Most
previous results are produced when Q((x, v—D) is a cyclotomic field. i.e. D’s
are 1, 2 or 3 [5].

In this paper, we explain how to construct a pairing friendly elliptic curves
over some extension fields of Q((, v/—D) for arbitrary k and D. First, we work
over cyclotomic field. One of advantages of cyclotomic field is that the ring of
algebraic integer of cyclotomic field Q(¢;) is Z[(].

Lemma 1.7 If v—D is contained in Q((;) then v/—D is represented by ¢, with
integer coefficients.



Proof. The ring of algebraic integer of Q((;) is Z[¢;] and v/—D is an algebraic
integer. Thus there is v/—D in Z[(]. O

Since v/ —D is represented by (; with integer coefficients, Lemma 1.7 guarantees
Condition 1.6.(2) and (3) for many cases of ¢(x). Another advantage is that
r(x) always represent primes. Section 2.4 explains this.

The remaining problem is how to find polynomials representing +/—D and
(k. In previous works, they found such polynomials with some conditions of k
and D. We explain the method of finding the polynomials representing +/—D
and (j over cyclotomic fields without any conditions. By using this method ,
we make a general construction over cyclotomic fields.

Barreto and Naehrig proposed the method that applied the idea of Galbraith,
McKee and Valenga to Brezing and Weng’s method, especially in Construction
1.5, they let r(x) be an irreducible factor of @ (u(z)) for some polynomial u(x)
[3]. We explain this method in Section 4.

This paper is organized as follows:

In Section 2, we explain the choice of cyclotomic fields containing (; and v/—D
and the method of computing polynomials representing ¢ and v/—D. When
q(z) is reducible, we give some results on an extension of finite field. In Section
3, we explain the construction over Q((x, v —D) where this is not a cyclotomic
field and its problems. In Section 4, we explain the factorization of ®(u(z)) for
some u(x) and make a construction on extensions of cyclotomic fields by using
Barreto and Naehig’s idea. In Section 5, we explain the limitation of find more
families of pairing friendly elliptic curves with embedding degree 10. In Section
6, we give the tables of results.

2 Construction on Q((x, (y)

The following is the main construction on cyclotomic field.
Construction 2.1 (Construction on cyclotomic field)
1. [Initialize]
Fix D, k € N, where D is a square free integer.
Let d be D if D=3 mod 4, 4D if D =1 or 2 mod 4.
Let I = lem(k, d).
Let r(z) = ®;(x), where ®;(z) is I-th cyclotomic polynomial.
Let K = Q[z]/(r(z)) = Q(G)-
2. [Find the polynomials representing to (j and v/—D]
Let t(x) = 1 + x®, where a is multiple of I/k.

By the Table 3, find b(z) representing to v/—D in K.



3 [Compute the family]

Compute y(z) = (t(z) —2)b(z)/D in K.

Compute g(z) = (t(x)? + Dy(z)?)/4 in Q[z].
4. [Check Definition 1.4.(1)]

Check whether ¢(z) satisfies Definition 1.4.(1).
5. [Construct an elliptic curve]

If ¢(x) and r(z) represent primes for some x, by the CM method, construct
an elliptic curve over Fy(,y with an order r(x) subgroup.

Since deg r(z) increases as D increases, we can expect that p will be more
near to 1 for large D. But we almost obtain the best p values when D is small.
We compute that for deg r(z) < 100, k < 50 and D < 50. When D is equal to
1, 2 or 3, p is the minimum value, except k = 3, 4 and 6. We give the result
table in section 6.

Now we explain each steps.

2.1 Step 1 : Initialize

We have to construct a field K which has (; and v/—D. For any square free
integer D, let d be D if D is equivalent to 3 modulo 4, 4D otherwise i.e. —d is
the discriminant of Q(v/—D). The following lemma gives the method of choice
of cyclotomic field containing ( and +/—D.

Lemma 2.2 Q({y) is the minimal cyclotomic field containing /—D, where —d
is the discriminant of Q(v/—D).

Proof. By Conductor-discriminant Formula [25], —d is equal to its conductor.
O

Lemma 2.2 shows that K = Q((;) is the minimal I-th cyclotomic field which
has (; and v/—D.

2.2 Step 2 : Polynomials representing (, and /—D

There are (k) numbers of primitive k-th roots of unity and the polynomial zl/k
is one of k-th roots of unity in K. If ged(a, k) = 1, (2!/F)® is also a primitive k-
th root of unity. Thus we can choose ¢(k) numbers of polynomials representing
primitive k-th roots of unity.

The polynomial z!/¢ is corresponding to (; in K. There are ©(d) numbers of
primitive d-th roots of unity, but a square root of —D has only two possibility,
++v—D. So if we represent /—D by one of primitive d-th roots of unity, we
can find the polynomial corresponding to v/—D in K. Since v/—D is in Q((y)



and integral, we can find the solutions of the polynomial #2 4 D in K, moreover
Z[{4]. We compute this equation by PARI [13]. There is a function in PARI
which gives the roots of the polynomial in number field. The following is the
Code of finding the representation of v/—D in (4.

PARI Code : Find the representation of /—D in (y

Input : D
Output : polynomial corresponding to +/—D in Q((y)

1. Represent_D(D) = \
2. {
3 local( d,f,nf,sqD ) ; \
4. if ( issquarefree(D) , \
5 d = -quaddisc(-D) ; \
6 f=polcyclo(d,y) ; \
/* initialize of number field nf */

7. nf=nfinit(f) ; \
/* roots of x"24D in nf */
8. sgD=nfroots(nf,x"2+D) ; \
/* change the variable y to x */
9. sqD=subst (sqD[2] .pol,y,x) ; \
10. ) 5\
11. sqD
12. }

We make a table for the representations of v/—D in Q((4) in section 6.

2.3 Step 3 : Compute the family

All computations for polynomials, in Construction 2.1, is worked in K except
q(z) i.e. compute them modulo r(z).

Lemma 2.3 p is less that 2.

Proof. degt(x) and degy(z) are less than degr(z). Thus since q(z) = (t(x)? +
Dy(z)?)/4, degq(z) is less than 2degr(x) and so p=degq(x)/degr(z) is less that
2. 0

2.4 Step 4 : Check Definition 1.4.(1)

We have to check whether ¢(z) and r(x) satisfy Definition 1.4.(1). To do it, we
need the following conjecture.([11, 14])

Conjecture 2.4 ([11, 14]) There are infinitely many a € Z such that f(a) is
prime if the following three conditions are satisfied:



(1) The leading coefficient of f is positive.
(2) f is irreducible.

(3) The set of values f(Z1) has no common divisor larger than 1.
For any I, r(z) = ®;(x) satisfies this conjecture.

Proposition 2.5 For any [, the set of values ®(Z") has no common divisor
larger than 1.

Proof. Iflis equal to 1, it is clear. Suppose that [ is larger than 1.

Recall that
ol —1= H@d(x).
d|l

Since @4 (x) = x — 1, ®;(x) divides

xt—1

B
rz—1

Thus ®;(1) divides [ and ®;(1) divides I'~! +1!=2 4 ... + 1. Since ged(l,1'"! +

Thus we only check for g(x) by computing for some values.

2.5 Construct an elliptic curve

Suppose that r(x), g(x), t(x) and y(z) represent some prime r, prime power ¢
and some integers t and y for some = € Z, where ¢ is not divided by 2. Then

4q2 =24+ Dyz.

An order of the elliptic curve constructed from (g, ¢, y) by CM method is divided
by r.

Let k = Q(v—D), Oy a ring of algebraic integer of k and O; a unit group
of Ok.
First, we have to find a root of the Hilbert class polynomial of D modulo r for
given D, say jo. Then jo is the j-invariant of an elliptic curve Ej; of the form

E; y? =23+ 3k + 26 with k = 17253707].0 if D#1,3
Ei, : y=2"+ax with a € F,* if D=1
E;, : y*=2+0b with b € F,* if D=3.

Let
t++v—-Dy
—

m =



Then

#Ej,(Fg) = Ni(1—(m)
q = Ni((m)

for m € O and ¢ € O}.

If D =1 or 3 then jy=1728 or 0 and the corresponding elliptic curves have
quartic or sextic twists, respectively. If D # 1 and 3, the elliptic curve has
quadratic twists. Especially, the quadratic twist of Ej; is of the form

Ej’v0 s y? =2 4 36T 4 2663

where k = jo/(1728 — jo) and ¢ € F,.
So we have to choose an elliptic curve with the correct order among the twists.
Let m be an integer such that m = Ni(1 — ¢x) and it is divided by r. Let
m’ = Nj(1—({'m) for some ¢’ not equal to ¢ € Oj. If [m]P = oo and [m/]P # oo
for some P € Ej (IF,) then Ej; is the elliptic curve that we want to find.

We explain the CM method in Appendix A.

2.6 Some results when ¢(z) is reducible

If g(x) is a power of irreducible polynomial, we may construct a pairing friendly
elliptic curve over extension of finite field. It is not always possible. The fol-
lowings are only results in our computation when ¢(z) is a power of irreducible
polynomial.

Some families over extension of prime field :

Example 2.6 k=3, D=3, a=1.

r(z) = z?+z+1.
t(x) = z+1
qiz) = (z+1>~

If z + 1 is prime or prime power and z2 + x + 1 is prime, we can construct an
elliptic curve over F(, )2 with embedding degree 3 and p = 1.

Example 2.7 k=3, D=3, a = 2.

r(z) = 2 +x+1
t(x) = —z—1
qz) = 27

If x is prime or prime power and %+ x + 1 is prime, we can construct an elliptic
curve over F, 2 with embedding degree 3 and p = 1.



Example 2.8 k=4, D=1, a=1.

r(z) = 2%+ 1.
t(x) = z+1
a@) = 1/2z+1)°

If g(z) is prime power, x + 1 is a power of 2. Then 22 + 1 is always divided by
2. i.e. r(x) cannot be prime. So the construction is impossible.

Example 2.9 k=4, D=1, a = 3.

r(z) = 2%+ 1.
t(x) = —-z+1
qz) = 1/2(z—1)%

If ¢(z) is prime power, x — 1 is a power of 2. Then 2% + 1 is always divided by
2. i.e. r(x) cannot be prime. So the construction is impossible.

Example 2.10 k=6, D=3, a=1.

r(z) = 2?—-z+1.
t(x) = x+1.
qz) = 1/3(x+1)%

If q() is prime power, z + 1 is a power of 3. Then 22 — z + 1 is always divided
by 3. i.e. r(x) cannot be prime. So the construction is also impossible.

Example 2.11 k=6, D=3, a =5.

r(z) = 2 —z+1.
tx) = —xz+2
qiz) = 1/3(z—1)~%

If g(x) is prime power, x — 1 is a power of 3. Then x? — z + 1 is always divided
by 3. i.e. r(x) cannot be prime. So the construction is also impossible.

Consider the field F, with characteristic 2 or 3. Let ¢ = p”, where p=2 or 3.

Lemma 2.12 Let r be the largest prime factor of an elliptic curve E over Fyn.
Then the embedding degree

|p|

7= el

where | a | is multiplicative order of a modulo .



Proof. r divides ¢¥* — 1 = p™ — 1 and does not divide p™ — 1 for 0 < i < k.
Thus the multiplicative order of p™ modulo r is k. O

If | p | is small, we expect a small embedding degree k. But for most prime r,
2 and 3 have a large order. Thus most ordinary curves over a finite field with
chatacteristic 2 or 3 have a large embedding degree. In Example 2.6, 7(2¢) and
7(37) are prime when i =1, 3 and j =1, 3, 9 for 4,5 < 1000, respectively.

Note that if r divides 2 —1, then [ is a prime factor of nk-th mersenne number.

3 Construction on Q((x,v—D)

Let K = Q(¢x,v—D). We also construct pairing friendly elliptic curves
over K, where this field is not a cyclotomic field i.e. d does not divide k. The
following is the PARI code of finding the representation of (; and v/—D in K.

PARI Code : Find the representation of {; and v—D in Q({x,v/—D)

Input : k, D
Output : r(x), t(x) and b(x) in Q((x, vV —D)

Represent_kD(k,D)= \
{
local (POLCOMP,r,sq_D,ZETA_k) ; \
if ( issquarefree(D),\
POLCOMP=polcompositum(x~2+D,polcyclo(k),1) [1] ; \
r=POLCOMP[1] ; \
sq_D=POLCOMP[2] .pol ; \
ZETA_k=POLCOMP[3].pol ; \
) 5\
[r,ZETA_k+1,sq_D]

© 00 N O d WN -~

—
o

11. }

We only use the PARI function polcompositum. This gives the polynomial
r(x), and the roots of 22 + D = 0 and ®(x) = 0 as elements of Q[z]/(r(z)). If
K is not a cyclotomic field, the denominator of coefficients of r(z) are growing
as D and k increases. polred in PARI, makes its coefficient small. But the
degree of decrease is only a little and this function is very slow. So this method
is not good for large discriminant and large k.

10



Example

Example

31 k=8, D=1T.

Q(¢s, V-17).

2® + 682° 4 17362" + 19448z + 84100.

—17/2679602" — 607/1339802° — 17221/1339802°% — 39268/334952 + 1.
—17/26796027 — 607/1339802° — 17221/1339802° — 72763 /33495
17/15956124800z'* — 1/24759504002" + 186583/12206435472002'% —
-+ - — 41207687/30949380z + 1921757/853776

32 k=7 D=1.
Q(C7; \/jl)

212 4+ 221 + 9210 + 142° + 312% + 3427 + 412° + 122° — 232*
—2823 + 1122 + 8z + 1.
—114243472/65265341x' — 204769600/652653412:'°
—988109696/652653412° — 1398866651 /652653412°
—3273455408/6526534127 — 3238008452/6526534 15
—4092584160/652653412° — 608191962/652653412*
+2627467472/652653412> + 2600701292/6526534 122
—1754413800/65265341x — 439258918/65265341.
8021189411500160/42595647358462812:%2
+28586727396255616/4259564735846281 2%
+163906886117738456/42595647358462812%°
+441581971739245064/42595647358462812:1°
+1002227778135310510/4259564735846281 2
+124828323194560706 /4259564735846281.

33 k=7 D=1.

By the method in section 2,

r(z) =
t(x) =

q(x) =

Q(¢7 Ca)-

g2 510 L8 6y a4 g2 g
zt 1

1/4(2% — 22" + 21 + 28 + 2% +1).

Remark 3.4 Example 3.1, 3.2 show that the degree of increase of coefficients
is more influenced by k than D. Strictly speaking, it is influenced by the degree
e(k) = [Q(¢k) - Q.

Remark 3.5 Example 3.2, 3.3 are constructed over the same field Q(¢7,v/—1) =
Q(¢7,¢4). These examples show that the results are very different as the choice

of r(x).

11



Remark 3.6 We can apply this method to all extension fields of Q(¢x, v —D).
But if that field does not have a special property, this method is not useful.

4 Construction on extensions of Q((x, (q)

4.1 Construction on extensions of Q({x, (4)

We explain a construction on extensions of Q((x,(s) by using a factorization of
®;(u(x)) for some polynomial u(zx).

Lemma 4.1 Let r(z) be an irreducible factor of ®;(u(x)) over Q for some poly-
nomial u(x) and l an integer defined in Construction 2.1. Let K = Q[z]/(r(z)).
Then K contains (. and /—D.

Proof. ®;(u(z)) divides (u(x))! — 1. Thus u(z) is a I-th root of unity in K.
By Lemma 2.2, (;, and +/—D are in K. O

By substitution (x by u(x), we can use Construction 2.1 for the construction
on some extension fields of Q((x, C4)-

Construction 4.2 (Construction on some extension of cyclotomic field)

1. [Initialize]
Fix D, k € N, where D is a square free integer.
Let d be D if D =3 mod 4, 4D if D =1 or 2 mod 4.
Let I = lem(k, d).
Choose a polynomial u(x) in Q[z] such that ®;(u(x)) splits.
Let (z) be an irreducible factor of ®;(u(x)).
Let K = Qlz]/(r()).
2. [Find the polynomials representing to (j and v/—D]
Let t(x) = 1 + u(x)®, where « is multiple of I /k.
By the Table 3, find b(z) representing to v/—D in K.
3 [Compute the family]
Compute y(z) = (t(z) — 2)b(z)/D in K.
Compute ¢(z) = (t(z)? + Dy(z)?)/4 in Q[z].
4. [Check Definition 1.4.(1)]
Check r(z) and g(z) satisfy Definition 1.4.(1).

12



5. [Construct an elliptic curve]

If g(z) and r(z) represent prime for some x, by the CM method, construct
an elliptic curve over Fy(,y with an order r(x) subgroup.

Remark 4.3 If the degree of r(z) in Construction 4.2 is equal to ¢(I), K =
Q[z]/(r(z)) is equal to Q(C, Ca)-

4.2 The factorization of the cyclotomic polynomials

Galbraith, McKee and Valenca explained the factorization of the cyclotomic
polynomials with its degree 4 combined a quadratic polynomial by converting
some equation in the cyclotomic field into an elliptic curve. But if the degree of
combining polynomial is larger than 2, the corresponding equation comes from
some curves with large genus. It is very difficult to find rational points of such
curves.

Lemma 4.4 Let u(x) be a polynomial of degree larger than 1 over Q and k > 1.
Then

(1) [6, Lemma 3.6.1] If u(x) — (j is irreducible over Q(¢x) then Oy (u(x)) is
the power of an irreducible polynomial over Q.

(2) [12, Lemma 1] If u(z) — ¢z = 0 has a solution in Q((x) then Py (u(x))
splits.

(8) The degrees of irreducible factors of ®r(u(x)) are multiples of p(k).

Proof. Define the norm of a polynomial A(x) as

N(A) = 11 o(A)

c€Gal(Q(Cr)/Q)
Then by Galois theory N(4) € Q[z].

(1) Let v(z) = u(x) — Cx. Suppose that v(z) is irreducible over Q(¢x). Let
N(v) = T], vi be a factorization of N'(v). Since v(z) divides N'(v) and v(zx) is
irreducible over Q((x), v(x) divides v;(z) in Q(¢x)[x] for some 7. Since v;(z) is a
polynomial over Q, o(v(x)) divides v; in Q(¢x) for all ¢ € Gal(Q(¢x)/Q). Thus
N (v) divides vf(k) in Q[z] and N (v) is equal to ®g(u(z)). So Pp(u(z)) = v7
for some n > (k).

(2) Let 0 be a solution of u(x) — ¢t in Q(¢x). Then 6 is also a solution of
O (u(x)). Since 6 € Q(Cx), Pr(u(x)) is reducible over Q.

(3) Let I(x) be an irreducible factor of ®(u(x)). Then I(x) divides u(z)* — 1

i.e. u(z) is a k-th root of unity of Q[x]/(I(x)). Since Q[z]/(I(x)) contains Q((x),
degl(z) = [Qlz]/(l(z)) : Q] is divided by ¢(z). O

13



Remark 4.5 The converse of Lemma 4.4.(1) is not true. Suppose v(z) =
u(x) — ( is reducible over Q((x). Let v(z) = vi(x)va(x). Then Py (u(x)) =
N(@w) = N(v1)N(vz). But there is the case that N(vy) is equal to N(vg).
When ¢(k) < 3, converse is true by Lemma 4.4.(2).

If u(z) is a quadratic polynomial with integer coefficient, we can solve the
equation u(z) = i by the following lemma.

Lemma 4.6 Suppose that A(, + B is a square in Q((x), where A and B are
rational integers and Ac + B is square for some ¢ in Q. Then there exists a
quadratic polynomial u(xz) such that ®y(u(x)) is factored into two irreducible
polynomials of degree p(k). u(z) is of the form

A/4z* +VAc+ Bz + c.
Proof. Let
. —b++A( + B
N 2a
Then z is a solution of az?+bx+c = (j, in Q((x), where a = A/4, b= /Ac + B.
By Lemma 4.4, this is true. U

We find the necessary conditions of a factorization of ®j(az™) for n =
1,2,3,4.

Lemma 4.7

(1) Suppose that ®(ax?) is reducible over Q, where a is a square free integer.
Then a is a divisor of k or k/2 if k is odd or even, respectively.

(2) Suppose that ®y(ax?) is reducible over Q, where a is a quartic free integer.
Then a squarefree part of a is a divisor of k or k/2 if k is odd or even,
respectively.

(8) If Dy (™) splits, it is a product of cyclotomic polynomials.
(4) If k is divided by 4 then ®p(z) is an even polinomial.

Proof. (1) Suppose that ®(az?) is reducible over Q. By Lemma 4.4, az? — (j,
has a solution in Q(¢x). If k is odd, (i is a square in Q({x). So a is also a
square. By Lemma 2.2, a divides k. Let k be even. ax? — ¢ has also a solution
in Q(¢ax). Since (i is a square in Q(Cax), @ is also a square in Q((a2x). By
Lemma 2.2, 4a divides 2k.

(2) Suppose that ®j(ax?) is reducible over Q. By Lemma 4.4, az* — ¢}, is
reducible over Q({). If k is odd, i is a square in Q({x). So a is also a square.
By Lemma 2.2, a squarefree part of a divides k. Let k be even. az? — (j, is
also reducible over Q((ax). Since (i is a square in Q((ax), a is also a square in
Q(C2k). By Lemma 2.2, a squarefree part of 4a divides 2k.
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(3) @1 (z") divides 2% — 1. Since

2™ —1= H@d(x)

dlm

an irreducible factor of ®;(2™) is a cyclotomic polynomial.

(4) Let k=2k" with k" is even.

deg®y (%) = 2p(k) = 2p(k'/2).
deg®i(z) = (k) = 2p(K'/2).
Since ¢}, is a root of ®p/(2?) and @k (z), Pp(2?) = Py (). O

Remark 4.8 By Lemma 4.7.(4), if 4 divides k then we do not need to consider
& (az™) for a negative a.

Remark 4.9 Let a = a’b?, where a’ is a square free integer. If ®;(ax?) splits,
®;.(az?) also splits and this is the same result by substitution = to bz?. Thus
we only need to consider axz?* for square integer a.

Lemma 4.10 If a not equal to 1 is a qubicfree integer and 3 does not divides
k then ®(ax?®) is irreducible.

Proof. Suppose that ®(az3) is reducible. Then by Lemma 4.6, az® = (j
is solvable in Q((x). Since 23 = (j is solvable in Q(¢x) by (1), 2* = a is also
solvable in Q((x). Thus Q(¥/a) C Q(¢x). But since the discriminant of 2* — a
is —3%a? i.e. not square, the Galois group of #® — a is Ss. Since Q((;)/Q is an
abelian extension, this is a contradiction.

We factored ®(u(x)) for degree of u(z) is 3, 4, 5 except above Lemma’s and
the coefficients of u(x) are less than or equal to 10, and give some results of
Construction 4.2 in section 6.

5 The limitation of finding a pairing friendly el-
liptic curve with embedding degree 10
Theorem 5.1 [12, Theorem 2, 3, 4] Let u(x) be a quadratic polynomial. Then
(1) There is no u(x) which splits s (u(z)).
(2) There is infinitely many u(z) which split ®y(u(zx)) when k =5, 10.
(3) The only u(z) are 22> and 622 which split ®12(u()).
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Theorem 5.1 show that there are infinitely many quadratic polynomial u(x)
which split @ (u(x)) when k& = 10. We tried to find another families with
embedding degree 10, by using Lemma 4.6.

Theorem 5.2 For 1 < A <4000 and —1000 < B < 1000,

(1) There are three integer pair (A, B) = (40, —55), (44, —32) and (220, —160),
up to square, satisfying Lemma 4.6 when k = 10.

(2) If (A, B) = (40, —55), the CM equation 4r?(x) — (t(z) — 2)? is a quadratic
polynomial, especially, u(z) = 1022 + 5z + 2. Otherwise the degree of CM
equations s 4.

Remark 5.3 If (a, B) satisfies Lemma 4.6, (e2a,e?B) also satisfies Lemma 4.6
for any integer e. They represent the same families.

Remark 5.4 In Theorem 5.2.(1), u(x) = 1022 £ \/40c — 55x + c¢. For any c
which makes /40c — 55 square, u(z)’s are equal by translation and reflextion.

Example 5.5 (Freeman’s family when k = 10)

(A,B) = (40,-55).
u(z) = 102% + 5z + 2.
Dio(u(z)) = (252" 4 252° 4 1522 + 5z + 1)(4002* + 40023 + 24022 + 60z + 11)
t(x) = 10z% + 5z + 3.
r(z) = 252" + 2523 + 152% 4 5z + 1.
q(z) = 252" +252° 4+ 252 + 102 + 3.
Dy? = 1522 +10z+ 3.

Example 5.6 If substitute x by 1 — x in example 5.5 then ¢ =1T7.

up(z) = 102+ 150 +7=10(1 —z)> +5(1 —2) + 2.

Example 5.7 If substitute x by 2x in example 5.5 then this is the result for
(A, B) = (22 x 10,22 x (=55)).

ug(z) = 402% + 10z +2 = 10(22)* 4 5(2x) + 2.

Example 5.8 Let (A, B) = (44, —32).

uz(r) = 11z + 10z + 3.
dio(u(z)) = (12 +212% + 162% + 62 + 1)
x (13312* + 22992% + 16062 + 494z + 61).
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Example 5.9 Let (A, B) = (220, —160).

u

s(z) = 552?440z + 8.
Pio(u(r)) =

(2752 + 4752° + 3152 + 95z + 11)
x (33275z2* 4 393252° + 1831522 4 3945z + 331).
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6 Results

Table 1,2 give the best p value for our computation.

Table 1 : The best p value for k&
k || D o u(x) deg | k || D o u(x) deg
3 1 | 1.500 | 222, 622 4 26 || 3 | 1.167 | =, —22, 327 24
4 3 [ 1.500 | 227,622 4 27 | 3 | 1.111 | 2,27 18
6 | 1.500 | = 8 28 [ 1 [1.333 [ x,2° 12
5 | 3 11.500 | z,a? 8 20 | 3 11.071 | z,2? 56
6 1 | 1.500 | = 4 |30 3 ]1.500 | x,—z7, 32> 8
7 | 1.500 | x, —z?, 32 12 |31 ] 3 [ 1.067 | z,—32%, 22 60
7 1 3 [1.333 ] x,—32%, 22 12 [ 32 31063 = 32
8 [ 311250 | = 8 33 [ 3 [ 1.200 | =, —327%, 27 20
9 | 311333 z,—322,22 6 34 | 311125 | 327 32
10 1 [1.500 ] 23 8 35 [ 3 | 1.500 | =, =322, 2 48
3 | 1.500 | 322 8 36 || 2 | 1.417 | = 24
11 || 3 | 1.200 | x, —327, 2> 20 |37 [ 3 [ 1.056 | z, —3z72,2° 72
12 || 3 | 1.000 | 622 4 38 [ 3 | 1.111 | =, —22, 327 36
13 [ 3 [ 1.167 | x,—327,27 24 |39 | 3 [ 1.167 | @, —327, 22 24
14 || 3 [ 1.333 | o, —2?, 32> 12 40 ]| 3 [ 1.438 | = 32
15 | 3 [ 1.500 | z, —32%, 22 8 41 31 1.050 | =, 22 80
16 | 31137 |« 16 |42 || 3 | 1.333 | z, —22, 322 12
17 1 [ 1188 | z,2° 32 |43 ][ 3 | 1.048 | z, —322, 22 84
18] 2 [ 1583 | = 24 44 [ 31150 | = 40
19 [ 3 | 1.111 | =, —322%,2° 36 || 45 || 3 | 1.333 | z, —327, 22 24
20| 311375 |« 16 |46 || 3 | 1.136 | 327 44
21 || 3 [ 1.333 | =, 3272, 2° 12 |47 || 3 | 1.043 | z, =322, 272 92
22 1 ]1.300 | z,2° 20 |48 3 [ 1125 | = 16
23 | 3 | 1.091 | o, —322, 22 44 |49 [ 3 | 1.190 | z, —14727%, —32> 84
24 311250 | = 8 x2, 4922
25 | 3 | 1.300 | =, —7522, —322 40 |50 |[ 3 ] 1.300 | x, —2522, —2? 40
x?, 2522 32, 75x2

* deg means the degree of r(x).
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Table 2 : The best p value for D

k D p u(x) deg D p u(x) deg

3 1 1.500 | 2x2,6x> 4 14 [ 1.958 | = 13
5 | 1.875 | 622,1022, 3022 16 15 | 1.750 | =z, —52%, —a® 8
7 | 1.833 | z,—72% —32%, 2%, 212> 12 17 | 1.969 | = 64

— 4zt 24 19 | 1.944 | z, 5722, —2?, 322,192 36
11 | 1.900 | —1122, —322,332> 20 21 | 1.917 | =,142” 24
13 | 1.958 | 222, 622,2622, 7822 48 22 1 1.925 | = 80
15 | 1.750 | x, —1522, =322, 22, 522 8 23 | 1.864 | =, —4127 322 44
19 | 1.944 | x,—1922, —322, 22, 572 36 36z 88
21 | 1.917 | 222,142, 4222 24 26 | 1.979 | x 96
23 | 1.864 | =, 322,02 m 30 | 1938 | & 32
31 | 1.967 | =, —3122, —322,22,9322 | 60 311 1.700 | =, —x 60
35 | 1.958 | —3542,2122, 10502 48 gg’ 1'222 ? 05a?. 52 3a?. 7a? ig
39 | 1.667 | x> 24 : ISR
43 | 1.976 | x,—4322, —322, 2%, 12022 | 84 1527, 35z
47 | 1.935 | z, —322, 2> 92 Zg 13;; oo i;}

2 2 .

498 | 1.500 | 2x7, 6x 4 43 | 1.976 | xz,—129z2, —22,322,432% | 84
5 | L7350 | @,z 8 47 | 1.935 | z,—2? 92
6 | 1.500 | x 8 -

7 | 1833 | @20 140,07 12 ; 1'3%03 BT 2 122
1:1,) iggg ixrs ;Z 5 1.958 | =z, 2x2,210:c22, 1343c2, 7022, 23| 48
15 | 1.875 | 22,622, 1022, 302> 16 7| 1667 | _27“7 FRE 6
19 | 1.944 :z:,32:r2, 3822, 20 36 ﬁ 1'228 DT gg
22| 1875 ) @ 2 80 15 | 1.958 | =, —35z2, —15z2, —7z? 48
23 1864 1 227 44 —3¢2, 22, 522, 2122, 10522

§8 }:g?g o gg 35 | 1.917 | —3522, 742, 52 24
31 | 1.967 | 222, 6242 60 1 1.500 212 + sz 44z +1 4
35 | 1.958 | 1022, 1422, 702 48 2I3 Tz 46z +3

39 | 1.958 | z,622, 7822 48 9z + 3z 42z +1

13 | 1976 | 8622 84 2 | 1500 | 22% 4222 44z 1 4
47 | 1.935 | 222 92 20+ 4o’ +6x 43

5 [ 1 | 1.750 | =,2° 3 927 + 327 + 2z +1
3 | 1.500 | x,x2 8 3 | 1250 ) x 8
5 | 1750 | x,a° 8 L 12;? . gg
7 | 1.833 | z,2%, 23 24 : T
10| 1.875 | x,2° 16 }g’ 1'222 o ‘312
11 | 1.800 | z, 22z 40 17 | 1938 | 2 ? 61
13 | 1.979 | 222,262 96 19| 1889 | T 7o
15 | 1.750 | —1522, —322, 522 8 9o | 1850 T® 0
19 | 1.833 | z,22, 2 72 31 | 1060 Ty ® 64
21 | 1.979 | 622,422 96 155 i z =
23 | 1.955 —23x§ , 88 5 1017 | z o1
35 | 1917 | 3502 50 24 3 | 1.833 | x _3x2 %7 p
39 | 1.979 | —3922, —3x 96 s | 187 | 2 48

6] 1 | 1.500 | x 4 6 | 1750 | @ 24
2 | L0 e 8 7 | 1.833 | @, —322, 22,922 36
5 | 1.875 | z,10z 16 10l 1896 | = 96
6 | L1750 & 8 11 | 1.933 | 2, —9922, —1122, 22 60
7 | 1.500 | x, —x7, 3x 12 15 | 1.833 | @, —1522, —322, 22, 522 24
101938 | o 32 007, 4507
11| 1900 | —332% 32% 1le 20 30 | 1038 | = 96

o 40 39 | 1.917 | 9a2 72
13 | 1.917 | 2z 48
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k p u(z) deg| k u(z) deg
10 1.500 | x,x° 8 x, x> 24
1.813 | 28 32 x, —x> 48
1.500 | 3x2 8 x 24
1.750 | z,a° 8 x, —bx?, —x?, 72?3522, 25| 24
1.938 | = 32 z 48
1.917 | =z, —522, —22,722,352%,2°% 24 || 15 z, 1022 16
1.875 | z,2° 16 x 32
1.900 | =z, —2?, 2% 40 x, —3x2, x2 8
1.938 | z, 2 96 z 16
1.938 | z,2° 96 z 32
1.500 | 1522 8 z, z? 48
1.722 | 2, —x2, 23 72 z 32
1.979 | =z,622,4252,702%,2102% | 96 z, T 80
1.932 | o, —522, —22, 2 38 z, —152%, —32%, 2% 52° | 8
1.938 | = 392 x, 3022, 4222, 7022, 2102 | 96
1.917 | z, 522, —22, 72,3522, 2% 24 @ 32
1.979 31‘2’ 3942 96 —325122, —215$2, 2—7272, —3z2 48
11 1.300 | z,x° 20 5z%, 2127, 105z
1.975 | «° 80 65z 96
1.200 | x, —3x2,x? 20 | 16 «® 16
1.925 | z,z 80 x 16
1.925 | « 30 @,a? 32
1.700 | =z,z2,2° 60 z, T 48
1.600 | z,2%, x 10 T, @ 32
1.925 | z,x 80 €, @ 80
1.950 | 6x2,22x2, 6622 40 L 96
12 1.500 | 22 4 T,z 96
1750 | @ g | 17] 1 x, x5 32
1.000 | 6x2 4 2 z, x> 64
1.750 | 222 24 3 x, z? 32
1.850 | = 40 7 z, 2>,z 96
1.750 | x 16 17 z, 3 32
1.906 | 2z 64 34 x, 3 64
1.972 | z,222 622, 38x2, 11422 72 | 18] 1 x 12
1.932 | z,22? 88 2 x 24
1.950 | 222,622, 2222, 6622 40 3 33> 6
1.979 | 22,1022, 1422, 7022 96 4a*, 362" 12
1.917 | 222 48 5 z 48
13 1250 | z,x 24 6 = s oo 24
1.667 a:,mS 48 7 x, 79:5 ,—x°, 3 36
1.167 | x, —3x2,x2 24 11 T, —x s 60
1.896 o 96 15 —45zx°, —bx~,3x", 15z 24
1.896 | « 96 39 3922 72
1.639 | z,2%,4° 7o | 19| 1 z,z° 36
1750 | z,a° 24 2 z, z° 72
1.896 | z,a° 96 3 x, —3x3,x? 36
1.875 | a8 48 19 z, 2%, ® 18
1.833 | x,—322, 22 24 | 20 1 x, z° 8
4 1 | 1.500 | =,° 12 2 z’ 32
2 | 1750 | z,2° 24 3 x o 16
3 | 1.333 | x, —x2,3x2 12 5 227, 10z 8
5 | 1.958 | a,242,1022, 1422, 2° 48 6 z 32
6 | 1958 | x 48 7 P e
7 1.583 Pttt 4l b1 24 11 x, 22,10z ,22x , 110z°, = 80
10 | 1.979 | z,2° 96 21 222, 62%,102%, 142°, 302° | 96
11| 1.867 | z,—a% 2" 60 422%, 702%, 210z
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k D p u(z) deg| k D P u(z) deg
35 | 1.958 | x,2x2,1022, 1422, 7022, z°| 48 39 | 1.917 | =, —1322, —x2 322,39z> | 24
21 [ 1 1833 | = 24 | 27 ([ 1 1611 | = 36
2 1.792 | = 48 2 1.472 | z 72
3 1.333 | x, —3x2 x? 12 3 1.111 | x,x2 18
5 1.979 | z,222 62,1022, 1422, 30zf 96 6 1.806 : 72
4222, 7022, 21022 15 | 1.750 | =z, 22,922 72
6 1.833 | 48 [ 280 1 1.333 | x,x° 12
7 1.667 | =z, 22, 2122 12 2 1.708 | z° 48
14 | 1.875 | = 48 3 1.417 | = 24
15 | 1.958 | x, —1522, —722, —322,22 | 48 5 1.958 | z,z° 48
2122, 105> 6 1.875 | z 48
21 | 1.833 | = 24 7 1.500 | z,z° 12
35 | 1.958 | =, —35z2, —1522, —7a> 48 10 | 1.938 | z,2° 96
—322, 22,522, 2122, 10522 15 | 1.979 | 30z2,42z2, 21022 96
—4z*, —196z* 96 21 | 1.917 | 6x2, 1422, 4222 24
42 | 1.875 | = 48 35 | 1.958 | 22, 1022, 1422, 7022 48
22 1 1.300 | x,x° 20 42 | 1.958 | x 48
2 1.675 | 28 80 [ 29 1 1.107 | z,2° 56
3 1.300 | 322 20 3 1.071 | x,x2 56
5 1.950 | z,z° 80 29 | 1.964 | z,a® 56
6 1.925 | z 80 30 1 1.875 | z,222, 62,1022, 30z> 16
7 | 1.700 | z,—a2 2° 60 2 1.813 | = 32
11 | 1.800 | z, —2? 1122, 23 10 3 1.500 | x,—x2,3x2 8
a3 20 5 1.625 | z 16
48424 20 6 1.938 | = 32
15 | 1.975 | z, —165z2, —3322, —522 80 7 1.917 | z, —a? 48
—22, 322, 1122, 1522, 5522 10 | 1.813 | z 32
22 | 1.850 | z,2° 40 11| 1.950 | z,-=2? 80
33 | 1.950 | x,242, 62,6622 40 15 | 1.750 | —52?, 327, 1527 8
231 | 1.136 | 0,2° 14 21 | 1.979 | 1422, 4222 96
9 1.636 | w. a3 ]38 30 | 1.938 | = 32
3 | 1.091 | x, —3x2, %2 44 35 | 1.958 | z,—z?, 722, 3527 48
23 | 1.727 | z,2°,2° 22 39 | 1.938 | @, —a” 96
46 | 1.977 | a,2° gg | 3L|[ 1 | 1.100 | z,2° 60
511 2 1500 | = 3 3 1.067 | x, —3x2 x2 60
3 1.250 | x 8 31 | 1.667 | =, 22, 2° 30
10 | 1.875 | = 32 | 32 2 1.438 | 2% 32
11 | 1.775 | = 80 3 | 1.063 | x 32
13 | 1.979 | = 96 5 1.750 | z,z° 64
15 | 1.813 | = 32 6 1.750 | = 32
33 | 1.925 T 80 7 1.479 z, x> 96
39 | 1.979 | = 96 10 | 1.969 | z,2° 64
42 | 1958 | = 48 14 | 1.917 | 2,23 96
25| 1 | 1.350 | x,2” 40 |33 T [ 1750 [ = 10
3 1.300 | x,—75x2%, —3x2, x2,25x2% | 40 2 1.575 | « 20
5 | 1750 | @,a® 40 3 | 1.200 | x,—3x?, x? 20
15 | 1.750 | x, x> 40 6 1.825 | = 80
26 || 1 1.250 | xz, x> 24 11 | 1.600 | z, x> 20
2 1.604 | 23 96 15 | 1.950 | x> 80
3 1.167 | x, —x2,3x2 24 22 | 1.975 | z 80
5 1.958 | z,z° 96 33 | 1.950 | z,22z? 40
6 1.917 | = 96 | 34 1 1.188 | z,° 32
7 | 1639 | z,—a? 2 72 2 | 1.625 | z,2° 64
13 | 1.833 | z,23 24 3 1.125 | 3x2 32
15 | 1.958 | z,—= 96 7 1.563 | x, —22,2° 96
26 | 1.875 | z,z° 48 17 | 1.938 | z,z° 32

21




k D p u(z) deg| k D P u(z) deg
34 [ 1.906 | z,x 64 7 1.667 | 327, 7« 12
35 1 1542 | z,x 48 14 | 1.958 | = 48
2 1.917 | z,x 96 15 | 1.958 | —105x2, —21x2, 322, 1522 | 48
3 1.500 | x, —3x2 x2 48 352
5 1.792 | z, 2 48 21 | 1.917 | x,2z2,622,422° 24
7 1.750 | =z, 22,23 24 35 | 1.958 | =, —105z2, —21z2, —5z? 48
10 | 1.917 | x,a° 96 —z2,3x2, 722, 1522, 3522
14 | 1.979 | z,23 96 42 | 1.958 | =z 48
15 | 1.917 | 2, —322, 22 ag [ 43][ 1 | 1071 | a,2° 84
21 | 1.938 | =z 96 3 1.048 | x, —3x2 x2 84
35 | 1.917 | =, —35z2, —722, 22,522, 2% 24 43 | 1.810 | z,2? 2° 42
36| 1 1.667 | = 12 || 44 1 1.200 | z,z° 20
2 1.417 | x 24 2 1.525 z3 80
3 1.833 | 222,622, 18z> 12 3 1.150 | x 40
5 1.917 | = 48 5 1.925 | z,z° 80
6 1.917 | = 24 6 1.950 | = 80
711972 )z 72 11 | 1.750 | «® 40
10 | 1.896 | = 96 22 | 1.900 | =z, 40
15 1.958 x 48 33 1.900 T 40
37 ([ 1 1.083 | z,z° 72 45 1 1958 | = 1
3 | 1.056 | x,—3x2%, x? 72 2 1.729 | z 96
37 | 1.861 | z,a3 72 3 1.333 | x, —3x2,x? 24
38| 1 1.167 | z,a° 36 5 1.958 | z 48
2 1.667 | z,z° 72 6 1.938 | = 96
3 1.111 | x, —x2,3x2 36 10 | 1.854 | z 96
19 | 1.833 | 2° 36 15 | 1.750 | x, 22,922 24
38 | 1.917 | =, 28 72 301938 | = 96
39 1 1.708 T 48 46 1 1.136 x, x> 44
2 1521 | = 96 2 1.659 | z,z° 88
3 | 1.167 | x, —3x2,x? 24 3 | 1.136 | 3x2 44
6 1.917 | =z 96 23 | 1.727 | =z, —z2,2° 22
13| 1.917 | = 48 46 | 1.909 | x,2° 88
15 | 1.917 | =z, —1522, =322, 22, 522 96 [ 47| 1 1.065 | z,2° 92
26 | 1.938 | x 96 3 1.043 | x, —3x2,x? 92
39 | 1.833 | x,a° 24 47 | 1.783 | z,22, 28 46
40 ][ 2 1.750 | 2% 32 487 2 1.375 | = 16
3 | 1.438 | x 32 3 | 1.125 | x 16
5 1.750 | z,z° 16 6 1.750 | x 16
7 1.813 | z,z° 96 7 1.833 | z 96
10 | 1.875 | «° 32 10 | 1.844 | = 64
14 | 1.958 | z,z° 96 14| 1.958 | = 96
15 1.750 T 32 15 1.781 x 64
30 1.938 T 32 30 1.938 x 64
35 | 1.938 | z,2° o6 | 49([ 1 [ 1214 | =,2° 84
a1 1.075 | «,z° 30 3 1.190 | x, —147x2, —3x2,x2%,49x7 84
3 1.050 x,x2 80 7 1.381 J,,Q(fz,,ﬁ 42
41 | 1.925 | z,2° g0 || 50 1 1.350 | z,2° 40
42 ([ 1 1.917 | z,2z2,6x>, 14z2, 42> 24 2 1.900 | z,2° 80
2 1.625 | = 48 3 1.300 | x,—25x2, —x2,3x2,75x2| 40
3 | 1.833 | x,—x2,3x2 12 5 1.850 | z,z® 40
5 1.938 | = 96 10 | 1.875 | z,z® 80
6 1.875 | x 48 15 | 1.800 | =, —522, —x2, 1522 40
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Table 3 : The representation of \/—D

D | representation

2 >+

3 2x + 1

5 227 — 25 + 223

6 27 + 25 — a2 42

7 | 22t + 222 + 2241

10 | 2 + 229 + 227 —2® — 225 + 22

11 | 22° +22% +22* + 223 420 + 1

13 | 2221 — 2219 — 2215 4 £13 — 2211 — 257 4 245

14 | 2223 4+ 221 — 2217 4 2215 4 2413 — 2211 4 27 4 245

15 | 227 — 225 4+ 42* — 203 + 222 + 42 -3

17 | 2237 — 2229 + 2277 + 2223 — 217 4+ 2217 + 227 — 22° + 223

19 | 2217 + 2216 4+ 2210 4+ 229 4+ 227 4+ 225 + 225 + 224 + 20 + 1

21 | 2223 4 221 4 2219 4 2217 — 2215 — 2213 4 2211 — 223 4 22

22 | 2237 — 233 — 2231 4 2427 — 2225 — 2423 — 2215 4 11 _ 249 4 245 4 223 — 2z

23 | 2218 42216 4 2413 4+ 2212 4 229 4 228 4 226 + 224 + 223 4 222 4 20+ 1

26 | 22T + 2275 — 22 + 239 4 2237 — 2233 + 23T 4 2221 — 2219 4 2415 4 215 — 21T 1 227 + 220

29 | 225542047 42243 — 2241 42239 — 237 4 2231 — 29 4 2027 2221 42219 217 4 2215 4 2211 4243

30 | 231 4+ 4229 4+ 2227 + 125 4 2223 — 2221 — 2219 — 215 — 249 — 227 4 25 + 4z

31 | 2228 4222542220 42219 4 2418 1 2216 4 2214 1 2210 4 249 1 228 4+ 207 4225 + 204 4222 + 22 +1

33 | 4237 — 233 — 4231 + 2227 4 4225 4 2223 — 2215 4 2211 4 249 — 425 — 223 + 22

34 | 2283 — 2253 — BT 42279 4 2439 4 2433 4+ 2231 — 2227 4+ 2225 + 2223 — 22T 4 17T — 2,13 —
2711 4 229 4 227 — 223 4+ 22

35 | 4222 — 2221 + 2220 — 4216 4 4215 — 2214 — 4211 4 2210 — 4g® + 428 + 225 — 42t + 1

37 | 209 4 2461 — 2459 4 2457 — 2455 _ 2451 4 9445 _ 9443 _ 9939 4 937 _ 9935 _ 9931 4 9229
2223 — 2219 4 217 — 2415 4 2413 4 245

38 | 2269 — 2265 4 2463 — 257 4 2255 4 2453 4 2247 — 2043 — 2241 4 239 4 2237 — 235 — 2433 |-
23729 + 23323 + 23}21 _ $19 + 23,:13 _ lel + 23:.7

39 | 2223 4 4220 — 4219 4 2217 4 2214 — 2213 — 2212 4 4211 4 2210 — 229 4 428 — 426 + 425 +
2% — 203 + 422 + 22 — 3

41 | 2279 4+ 2270 4+ 2271 — 2259 + 2257 — 2255 4 2253 + 2255 — 2253 4 2277 — 2T 4 223° — 2277 +
2227 4 2219 — 2217 4 2415 — 2213 4 2411 4 227 4 243

42 | 2247 4+ 4243 4 204 — 2237 — 3235 4 2227 + 2225 + 4228 + 221 — 2219 + 2217 — 421° — 421! +
27 — 2% 4+ 223 + 22

43 | 2% + 2240 4 2238 4 2236 4 2935 4 2431 4 2425 4 2224 4 2223 4 2221 4 2217 4 2216 4 2215 -
214 4 2213 4+ 2211 4 2210 229 4 226 4 224 422 + 1

46 | 2287 — 2285 4 2281 — 2277 — 2275 4 2273 4 2271 — 269 — 2459 4 2455 4 2449 4 2447 4 2441 4
2$39 _ 2:1:35 + 2$31 _ 2%29 _ 2$27 + 21‘25 + $23 _ 2$13 + 25179 _ 2$3 + 2z

47 | 2242 42237 + 2236 4+ 2434 4 2232 4 2228 4 2227 4 2225 4 2424 4 2221 4 2418 4 2217 4 2416 4

20 4+ 2212 4 229 + 228 + 227 4+ 226 + 224 + 223 + 222 + 22 + 1
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7 Conclusion

We have proposed a general construction of pairing friendly elliptic curves over
an extension field of K = Q({x,v/—D). We can find a suitable field containing
Q(Ck, vV—D) for our construction by the method in section 4. But we can not
find a suitable field between K = Q((, v/—D) and Q(Cx,v—D). Most good p
value appear when the discriminant 1 and 3. The advantage of elliptic curves
with j-invariant 0 or 1728 is that computations of the pairing are reduced. But
the security of these curves is also reduced. If a discriminant D is very large,
it is difficult to compute the Hilbert class polynomial. Thus if anyone needs
a pairing friendly elliptic curves with a discriminant not equal to 1 or 3 and
sufficiently small, our method is useful.

APPENDIX

A CM method

Let K be an imaginary quadratic field Q(+/—D), Ok the maximal order of K,
Hpo the ring class field associated to an order O in K, C(Ok) the ideal class
group of Ok and hg the class number of K.

Theorem A.1 [15, Theorem 4] Let p be a rational prime which splits completely
in K and ‘B a prime of Ho above p with residue degree f = fy|, and such
that [Okx : O] ¢ PB. Let € be an elliptic curve over Ho which has complex
multiplication by O and good, ordinary reduction atPB. Then there is an element
7w € O\ pO satisfying the system of norm equations

q = Ng(m)
#E([F,) = Ng(l-m)

for the B-reduces curve E of £, where ¢ = p’. The endomophism ring of & is

stable under the reduction map & *, E, i.e. End€ = EndE = O. Moreover,
every elliptic curve over Fy with endomophism ring O arises in this way.

Proof. See [7, Theorem 14.16]. O

Theorem A.2 [15, Theorem 5] The imaginary quadratic field K of Theorem
A.1 is given by

K =Q(v(g+1-m)?—4q).
Proof. See [7, Section 14] O

Since an elliptic curve E/C is isomorphic to E/A for some lattice A C C, we
consider E/C as E/A.
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Proposition A.3 [23, Proposition 11.1] There is a one to one correspondence
between C(Ok) and isomophism classes of elliptic curves E/C with End(E) =
C(Ok).

Proof. See [23, Proposition 11.1] and [7, Section 14] O

Theorem A.4 [23, Theorem 11.2]
(1) j(A) is an algebraic integer.
(2) [K(j(A)) : K] = [Q(i(A)) : Q.

(8) The field Hx = K(j(A)) is the mazimal unramified abelian extension of
K (Le. Hk is the Hilbert class field of K.)

(4) Let {A1}, ..., {An,} be a complete set of representatives for C(Ok).

Then j(A1), ..., j(An,) form a complete set of Gal(Hk /K) conjugates
for j(A).
Proof. See [7, Section 14]. O

By (A.4.(4)), the minimal polynomial of Hg is given by

Hp(z) = [ [(= - j(a)).

Theorem A.5 Let p > 3 be a prime and j j-invariant of I& over F,. Then E
over I, is given by

E . =2 +3kc+26 with & = #ﬂ' if 40,1728

E : y¥=22+az with a € F,* if j=1728

E : y*=22+0b with b € F,* if j=0.
Proof. See [23, Proposition 5.4]. O

The reduction of E modulo a prime p of Hg is again an elliptic curve. Its
j-invariant is a root of Hp(z) modulo p, where p is the integer prime in p.
But by reduction, every isomorphism class of elliptic curves over Hg splits into
several isomorphism classes of elliptic curves over [F,,. I.e. an isomorphism class
of elliptic curves over I, is not uniquely determiner by j-invariant. For fixed
j-invariant, the number of their isomorphism classes is given by the number of
unit in Og.

Theorem A.6 [15, Theorem 11] Let E and E’ be elliptic curves over F,. If
E is ordinary, then E and E' are isomorphic if and only if j(E) = j(E') and
#E(F,) = #FE'(F,).

Proof. See [7, Proposition 14.19]. O

25



Theorem A.7 If D > 4, all elliptic curves with given j-invariant, j # 0,1728,
over I, are given by

y? = 2 + 3kctx + 263

where k = j /(1728 — j) and c € F,,

Proof. See [23, Proposition 5.4] and [7, Theorem 14.16]. O

Remark A.8 We must choose p such that p splits in K because Hp(z) has a
root modulo p. By Hensel’s lemma, if Hp(z) has a root modulo p, Hp(x) has
hi number of roots. Thus we find Ay number of curves with the same orders.

References

[1]

D. Boneh and M. Franklin, Identity-based encryption from thr Weil pair-
ing, In Advances in Cryptology-Crypto 2001, Lecture Note in Computer
Science, vol. 2139, Springer-Verlag, 2002, 213-229.

P.S.L.M. Barreto, B. Lynn, and M. Scott, Constructing elliptic curves
with prescribed embedding degrees, Security in Communication Networks
- SCN’2002, Lecture Note in Computer Science, vol. 2576, Springer-Verlag,
2002, 263-273.

P.S.L.M. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime
order, Workshop on Selected Areas in Cryptography - In Proceedings of
SAC 2005, Lecture Notes in Computer Science, vol. 3897, Springer-Verlag,
2006, 319-331.

LF. Balke, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography,
London Mathematical Society Lecture Note Series, 265, 1999.

F. Brezing and A. Weng. Elliptic curves sutable for pairing based cryptog-
raphy, Designs, Codes and Cryptography, 37(2005),133-141.

H. Cohen. A course in Computational Algebraic Number Theory, Graduate
Texts in Mathematics, vol. 138, Springer-Verlag, 2000.

D.A. Cox, Primes of the form 2% + ny?, John Wiley & Sons, New York
1989.

C. Cocks and R.G.E. Pinch, Identity-based cryptosystems based on the Weil
pairing, unpublished manuscript, (2001).

R. Dupont, A. Enge, and F. Morain. Building Curves with Arbitrary Small
MOV Degree over Finite Prime Fields, J. Cryptology, 18(2)(2005), 79-89.

D. Freeman. Constructing pairing-friendly elliptic curves with embedding
degree 10, In Algorithmic Number Theory Symposium - ANTS-VII, lecture
Notes in Computer Science, vol. 4076, Springer-Verlag, 2006, 452-465.

26



[11]

[12]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Freeman, M. Scott, E. Teske. A tazonomy of pairing-friendly el-
liptic curves, Cryptology ePrint Archive Report 2006/372. Available
at:http://eprint.iacr.org/2006/372/.

S. Galbraith, J. McKee, and P. Valenca. Ordinary abelian varieties having
small embedding degree, In Proc. Workshop on Mathematical Problems and
Techniques in Cryptology, CRM, Barcelona, 2005, 29-45.

The PARI Group, Bordeaux, PARI-GP Version 2.3.1.
S. Lang. Algebra, Addison-Wesley, Reading, MA, 1993, 3rd ed.

G.-J. Lay and H.G. Zimmer, Constructing elliptic curves with given group
order over large finite fields, In Algorithmic Number Theory Symposium
- ANTS-1, Lecture Notes in Computer Science, vol. 877, Springer-Verlag,
1994, 250-263.

R. Lidl and H. Niederreiter, Introduction to finite fields and their applica-
tiona, Cambridge University Press, 1997.

A. Murphy and N. Fitzpatrick, Flliptic curves for pairing ap-
plications, Cryptology ePrint Archive Report 2005/302. Available
at:http://eprint.iacr.org/2005/302/.

A. Miyaji, M. Nakabayashi, and S. Takano, New explicit conditions of el-
liptic curve traces for FR-reduction, IEICE Transactions on Fundamentals,
E84-A(5) (2001), 1234-1243.

A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve loga-
rithms to logarithms in a finite field, IEEE Transactions on Information
Theory, 39 (1993), 1639-1646.

A. Menezes and S. Vanstone, Isomorphism classes of elliptic curves over
finite fields of characteristic 2, Utilitas Mathematica. 38 (1990), 135-153.

M. Scott and P.S.L.M. Barreto, Generating more MNT elliptic curves, De-
signs, Codes and Cryptography, 38 (2006), 209-217.

A. Shamir, Identity based cryptosystems and signature schemes, In Ad-
vances in Cryptology-Crypto 1984, Lecture Note in Computer Science, vol.
196, Springer-Verlag, 1984, 47-53.

J.H. Silverman, The Arithmetic of FElliptic Curves. Springer, Graduate
Texts in Mathematics, vol. 106, Springer-Verlag, 1986.

V. Miller, The Weil pairing, and its efficient calculation, J. Cryptology, 17
(2004), 235-261.

L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1997.

27



