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Abstract. We study the solution of the discrete logarithm problem for
the Jacobian of a curve of genus g defined over an extension field Fqn , by
decomposed attack, considering a external elements B0 given by points
of the curve whose x-coordinates are defined in Fq. In the decomposed
attack, an element of the group which is written by a sum of some el-
ements of external elements is called (potentially) decomposed and the
set of the terms, that appear in the sum, is called decomposed factor. In
order for the running of the decomposed attack, a test for the (poten-
tial) decomposeness and the computation of the decomposed factor are
needed. Here, we show that the test to determine if an element of the
Jacobian (i.e., reduced divisor) is written by an ng sum of the elements
of the external elements and the computation of decomposed factor are
reduced to the problem of solving some multivariable polynomial system
of equations by using the Riemann-Roch theorem. In particular, in the
case of a hyperelliptic curve, we construct a concrete system of equa-
tions, which satisfies these properties and consists of (n2−n)g quadratic
equations. Moreover, in the case of (g, n) = (1, 3), (2, 2) and (3, 2), we
give examples of the concrete computation of the decomposed factors by
using the computer algebra system Magma.

Keywords Decomposed Attack, Hyperelliptic curve, Discrete logarithm prob-
lem, Weil descent attack

1 Introduction

In this work, we treat the solution of the discrete logarithm problem of the
Jacobians of a curve C of genus g defined over an extension field Fqn (n ≥ 2) by
decomposed attack. In particular, when C is a hyperelliptic curve and ng(≥ 3)
is a small integer, we give the concrete algorithm for computing what is called
decomposed factors. In [5], Gaudry first proposes the decomposed attack for the
Jacobian of a hyperelliptic curve defined over a general finite field Fq considering
a external elements given by the Fq-rational points of the curve. This attack is
usually called ’Index Calculus’. However, the behavior of this attack is quite
different to the normal index calculus. So, it must be called another name, since
the theoritical experts (not computational experts) of the normal index calculus
can seldom (or never?) understand properly, even thought such variations are
widly used [3], [10]. In recent works of the decomposed attack, which are the



improvements of [5], it is known that the techniques of 1) using the rebalance
[4] and 2) using external elements [14], [12], [6],which were usually called large
prime variations in the past time, are available. On the contraly, the techniques
of large prime variations of normal index calculus are known as no contribution
to decreasing the complexities, it must be needed to rename another name.

In [7], Gaudry also presents the decomposed attack for an elliptic curve de-
fined over an extension field Fqn considering the external elements B0 given by
points of the curve whose x-coordinates lie in Fq. Actually, Gaudry proposes
also the rebalanced and the external element variations. In this methods, the
test for the potential decomposedness of P ∈ E(Fqn) (i.e., for being a sum of
n elements of the external elements ) and the computation of the decomposed
factor (i.e., the terms of the external elements whose summation equals to P )
are reduced to the problem of solving some system of multivariable polynomial
equations of degree 2n−1, n variables, and n equations, using Semaev’s formula
[13]. Moreover, Gaudry generalizes this decomposed attack to the case of the
abelian varieties defined over an extension field, including the case of Jacobians
of curves. However, in the case of non-elliptic curves, Semaev’s formulas are not
available. It is, in principal, possible to derive a similar system of equations using
group law. Unfortunately, such is cumbersome. In fact, in the case of the Jaco-
bian of a hyperelliptic curve of genus g, the sum of ng generic points is needed.
Assuming that an element of Jacobian is written by the Mumford representation
and that the group law is done by the Cantor algorithm [2], since the Cantor
algorithm needs g − 1 times reduction steps, explosions of the degree and terms
occur in this computation.

In this work, we show that instead of using the group law, another system
of equations is obtained from the theory of Riemann-Roch spaces (only in the
case of Jacobians of curves). With this tool, the system of the equations is now
simple to compute, and its parameters are easily controlled. In particular, in the
case of Jacobians of hyperelliptic curves, this system of the equations consists of
(n2 − n)g quadratic equations in (n2 − n)g indeterminates.

So, under the heuristic assumption that this system of the equations is (es-
sentially) projectively 0-dimensional, the computational amount for solving this
system of equations is estimated by O(2(n2−n)g·C) where C is some constant less
than 3. In the case of an elliptic curve (i.e., g = 1), this computational amount
heuristically equals to that of Gaudry’s original equations system using Semaev’s
formula.

2 Decomposed attack for the Jacobian of a general plane
curve

In this section, we present an overview of the decomposed attack for the Jacobian
of a general plane curve using the Riemann-Roch theorem. Let Ca be the affine
curve of genus g defined over an extension field Fqn (i.e., n ≥ 2) given by the
equation f(x, y) = 0, and let C be the corresponding non-singular complete
curve. Assume that Ca is non-singular. From this, we have a canonical embedding
ι : Ca → C. It is also assumed that C\ι(Ca) only consists of a single Fqn-
valued point, which is denoted by ∞ and is called the point at infinity. These
assumptions are true for hyperelliptic curves so there is no problem for the main



results of this work. Let D0 be a divisor of the form

D0 = Q1 + .. + Qg − (g)∞ (1)

where Q1, .., Qg ∈ C(Fqn) and the multiset {Q1, .., Qg} is stable under the action
of Galois group Gal(Fqn/Fqn). Put φ1(x) :=

∏g
i=1(x− x(Qi)) , and this is noted

in Fqn [x].
Also put

B0 := {P ∈ C |P = (x, y) ∈ C(Fqn), x ∈ Fq},
as the external elements. (Strictly saying, B0 must be a subset of JacC(Fqn),
and it is the set of the elements of the divisors P −∞ where P has the above
properties. Here, the term “−∞” is omitted for simplicity.)

Assumption 1 (heuristic assumption) The number of the multisets P = {P1, .., Png}
with Pi ∈ B0, which satisfy the relation

∑ng
i=1 Pi ∼

∑ng
i=1 P ′i for some different

(P 6= P ′) multiset P ′ = {P ′1, .., P ′ng} with P ′i ∈ B0, is less than qng−ε, where ε
is some positive constant.

Here, we shortly state the validity of this assumption in the case of hyperelliptic
curve. Let C : y2 = f(x) be the equation of hyperelliptic curve. For any P =
(x, y) ∈ C, put P̄ = (x,−y) ∈ C. So, there are series of trivial relations P + P̄ ∼
P ′+ P̄ ′ for any P, P ′ ∈ B0. The number of the multisets satisfying the condition
of Assumption 1 and coming from these trivial relations is only O(qng−1) and it
seems to be no series including many trivial relations. So, Assumption 1 seems
to be valid.

In the following, we assume Assumption 1. From this assumption, we see
easily that since “the number of the divisors of the form(1)”≈ qgn and |B0| ≈ q,
the probability, that there are some P1, P2, .., Png ∈ B0 (exactly ng elements,
Pi = Pj for some i 6= j being allowed) such that

D0 + P1 + P2 + ... + Png − (ng)∞
=

∑g
i=1 Qi + P1 + P2 + ... + Png − (ng + g)∞ ∼ 0,

(2)

is approximately 1/(gn)!, when q À ng.

Definition 1 If a divisor D0 is written by the form (2) for some P1, P2, .., Png ∈
B0 (exactly ng elements, Pi = Pj for some i 6= j being allowed), D0 is called
potentially decomposed and in this case, the multiset {Pi}ng

i=1 is called decomposed
factor.

We now fix D0 and discuss how it can be tested that D0 is potentially decom-
posed and the decomposed factor can be computed. So, Q1, ..., Qg and φ1(x),
which are depended on D0, are also fixed.

Let D =
∑

P∈C(Fqn ) npP , np ∈ Z be a divisor of C/Fqn . Assume that
D is stable under the action of Galois group Gal(Fqn/Fqn). Put deg(D) :=∑

P∈C(Fqn ) np, and L(D) := {f ∈ Fqn(C) | (f) + D ≥ 0} ∪ {0}. From the
Riemann-Roch theorem (cf [9] Corollary A.4.2.3), we have the following lemma.

Lemma 1. (Riemann-Roch) 1) L(D) is a Fqn vector space.
2) If deg(D) ≥ 2g − 1, dimL(D) = deg(D)− g + 1.



From this Lemma, dimL((ng)∞−D0) = dimL((ng + g)∞−∑g
i=1 Qi) = ng− g

Put {f1(x, y), f2(x, y), ..., fng−g(x, y)} by a base of L((ng)∞−D0)). From Hess
[8], we have the following lemma.

Lemma 2. A base of L((ng)∞−D0) is computable within Poly(q) time.

From this lemma, since ∞ and D0 is stable under the action of galois group
Gal(Fqn/Fqn), we have the following lemma directly.

Lemma 3. An element h ∈ L((ng)∞−D0) is written by

a1f1(x, y) + a2f2(x, y) + ... + ang−gfng−g(x, y)

where ai are values in Fqn .

Let
h(x, y) := A1f1(x, y) + A2f2(x, y) + ... + Ang−gfng−g(x, y) (3)

be a multivariable polynomial in Fqn [A1, ..., Ang−g, x, y]. For

a = (a1, ..., ang−g) ∈ Ang−g(Fqn)

and some polynomial p(x) ∈ Fqn [A1, ..., Ang−g, x], let pa(x) be the polynomial
obtained from p(x) by substituting ai for Ai. Now, we compute the intersections
of ha(x, y) = 0 on C. Remember that the equation of Ca is f(x, y) = 0. Put
S(x) := Resultanty(f(x, y), h(x, y)). From this construction, we then have the
following lemma.

Lemma 4. 1) S(x) is a multivariable polynomial in Fqn [A1, .., Ang−g, x].
2) degxS(x) = ng + g.
3) φ1(x) |S(x).

Proof. 1) is trivial. For any a = (a1, ..., ang−g) ∈ Ang−g(Fqn), since ha(x, y)) has
only poles (ng + g)∞ on points at infinity, we have 2) and since ha(x, y)) have
zeros at each Qi’s, we have 3).

Put g(x) := S(x)/φ(x). Since φ(x) ∈ Fqn [x], g(x) is also a multivariable polyno-
mial in Fqn [A1, .., Ang−g, x]. Thus, g(x) is written in the form

g(x) = Cngx
ng + Cng−1x

ng−1 + ... + C0

where each Ci ∈ Fqn [A1, .., Ang−g]. Note that if the indeterminates Ai are re-
placed by values ai, then one obtains a polynomial ga(x) in Fqn [x]. The solutions
of ga(x) = 0 mean the x-coordinates of the intersections ha(x, y) = 0 on C except
Q1, ..., Qg. So, we have the following lemma.

Lemma 5. The condition that D0 is potentially decomposed is equivalent to the
following: There is some a = (a1, ..., ang−g) ∈ Ang−g(Fqn) such that monic(ga(x)) ∈
Fq[x] and monic(ga(x)) ∈ Fq[x] factors completely in Fq[x].



Now, we find such ai’s. Let [α0(= 1), α1, .., αn−1] be a base of Fqn/Fq. We fix
this base. Let Ai,j (1 ≤ i ≤ ng, 0 ≤ j ≤ n − 1) be new indeterminates over Fq,
and let us consider the polynomials obtained by substituting Ai by

∑n−1
j=0 Ai,jαj

in g(x). Let us denote the coefficients obtained in this way again by Ci. Then
the coefficients can be written in the form

Ci =
n−1∑

j=0

Ci,jαj , Ci,j ∈ Fq[∪1≤I≤ng, 0≤J≤n−1{AI,J}].

The condition of monic(ga(x)) ∈ Fq[x] is equivalent to the condition that the
system of the equations

Ci,j = tiCng,j (0 ≤ i ≤ ng − 1, 0 ≤ j ≤ n− 1) (4)

of (n2 + n)g indeterminates ∪{Ai,j} and t0, ..., tng−1 defined over Fq has some
solutions in Fq. So, the monic(ga(x)) is directly computed from the solution of
(4) and we have shown the following lemma under the Assumption 2.

Theorem 1. The test whether D0 is potentially decomposed and the computa-
tion of the decomposed factor is essentially reduced to solving the system of the
equations (4).

In the next section, we will investigate the case of the hyperelliptic curve. In this
case, there is a concrete representation of the Riemann-Roch space, and so we
have a more concrete system of equations.

3 Decomposed attack for the Jacobian of a hyperelliptic
curve

Now, we discuss the special case of Jacobians of hyperelliptic curves. In this
case, there are concrete representations of the Riemann-Roch space and some
techniques that g(x) can be taken as a monic polynomial, and from this, a
simple system of equations is derived. Let C be a hyperelliptic curve (including
an elliptic curve) of genus g of the form

C : y2 = f(x), where f(x) = x2g+1 + a2gx
2g + ... + a0

over Fqn where the characteristic of Fq is not 2 and n ≥ 2. Put ∞ by the unique
point at infinity on C. Let D0 be a reduced divisor (i.e.,Fqn-rational point of the
Jacobian) of C. To represent D0, we use the so-called Mumford representation:

D0 = (φ1(x), φ2(x)),

where φ1(x) ∈ Fqn [x] is a monic polynomial with deg(φ1(x)) ≤ g and φ2(x) ∈
Fqn [x] satisfies deg(φ2(x)) < deg(φ1(x)) and f(x) − φ2(x)2 ≡ 0 mod φ1(x). In
the following, we will assume deg(φ1(x)) = g. Note that there are Q1, .., Qg ∈
C(Fqn)\{∞} satisfying the equation (1) and the multiset {Q1, .., Qg} is stable
under the action of Galois group Gal(Fqn/Fqn).



Similarly, put B0 := {P ∈ C |P = (x, y) ∈ C(Fqn), x ∈ Fq} as a external
elements. Then, from the (heuristic) Assumption 1, we can see easily that the
probability, that there are some P1, P2, .., Png ∈ B0 (exactly ng elements, Pi = Pj

for some i 6= j being allowed) satisfying the equation (2), is approximately
1/(gn)!, when q À ng.

In the following, we fix a reduced divisor D0. So, φ1(x), φ2(x), and Q1, ..., Qg,
which are depended on D0, are also fixed.

In this work, we show the following proposition.

Proposition 1. Let V1, V2, ..., V(n2−n)g be indeterminates and let D0 be a re-
duced divisor of C/Fqn . Then there are some computable degree 2 polynomials

Ci,j ∈ Fq[V1, V2, ..., V(n2−n)g] (0 ≤ i ≤ ng − 1, 0 ≤ j ≤ n− 1)

satisfying the following: The condition that D0 is potentially decomposed is equiv-
alent to the following 1) and 2):
1) The system of equations {Ci,j = 0 | 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n− 1} has some
solution v = (v1, .., v(n2−n)g) ∈ A(n2−n)g(Fq).
2) Put ci = Ci,0(v1, .., v(n2−n)g) for 0 ≤ i ≤ ng − 1. Then G(x) = xng +
cng−1x

ng−1 + ... + c0 ∈ Fq[x] factors completely.
Moreover, if D0 is potentially decomposed, the x-coordinates of the decomposed
factor are the solutions of G(x) = 0.

From this proposition, the following theorem is directly obtained.

Theorem 2. The test, whether D0 is potentially decomposed and the computa-
tion of the decomposed factor (if possible), is essentially reduced to solving the
system of the equations {Ci,j = 0 | 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n− 1}.

In the following, we construct such multivariable polynomials {Ci,j} and
show Proposition 1.

From the equation of C, we see ord∞x = 2, and ord∞y = 2g + 1. Put
N1 := b (n+1)g

2 c and N2 := bng−g−1
2 c.

Lemma 6. 1) N1 + N2 = ng − 1.
2) N2 + g − 1 < N1.

Proof. Trivial.

Lemma 7. {1, x, x2, .., xN1 , y, xy, ...xN2y} is a base of L((ng + g)∞).

Proof. From ord∞x = 2, ord∞y = 2g + 1, each element in the above list is in
L( (ng+g)∞). The independence is from the definition of the hyperelliptic curve.
Thus, since the number of the elements of the list N1 + N2 + 2 = ng + 1 is the
same as the dim L((ng + g)∞) (from Lemma 1), we finish the proof.

Lemma 8. {φ1(x), φ1(x)x, ..., φ1(x)xN1−g, (y−φ2(x)), (y−φ2(x))x, ..., (y−φ2(x))xN2}
is a base of L((ng)∞−D0) = L((ng + g)∞−∑g

i=1 Qi).

Proof. From the definition of φ1(x) and φ2(x), each element in the list has a zero
at each Qi. Since deg(φ1(x)) = g, deg(φ2(x)) ≤ g−1, and N2 +g−1 < N1(from
Lemma 6), each element in the list has at most (ng + g) poles at ∞. Then



they are in L((ng)∞−D0). Now, we show the independence. Assume they are
not independent, and there are some non zero f1(x), f2(x) ∈ Fqn [x] such that
φ1(x)f1(x) + (y − φ2(x))f2(x) = 0. However, the relation φ1(x)f1(x) + (y −
φ2(x))f2(x) = 0 induces yf2(x) ∈ Fqn [x] and f1(x) = f2(x) = 0. As this is
a contradiction, they are independent. On the other hand, the number of the
elements in the list is N1 + N2 + 1 − g = ng − g from Lemma 6, which is the
same as the dim L((ng)∞−D0). So we finish the proof.

From Lemma 8, an element h ∈ L((ng)∞−D0) is written by

h(x, y) = φ1(x)(a0 +a1x+ ...+aN1−gx
N1−g)+(y−φ2(x))(b0 +b1x+ ...+bN2x

N2)
(5)

where ai,bi are values in Fqn .

Lemma 9. Let h(x, y) ∈ L((ng)∞−D0). Assume div(h(x,y)) is written in the
form P1 + P2 + ... + Png +

∑g
i=1 Qi − (ng + g)∞ for Pi ∈ C(Fqn)\{∞}. Then

we have the following:
1) aN1−g 6= 0 when ng + g is even.
2) bN2 6= 0 when ng + g is odd.

Proof. When ng + g is even, assume aN1−g = 0, thus we have the order of the
zero of h(x, y) being truly less than ng + g and div(h(x, y)) is not written by the
form of (2). Similarly, when ng + g is odd, assume bN2 = 0. Thus we have the
order of the zero of h(x, y) being truly less than ng + g and div(h(x, y)) is not
written by the form of (2). So, we can assume that aN1−g 6= 0, if ng + g is even,
and bN2 6= 0, if ng + g is odd.

Now, we compute the intersections of h(x, y) = 0 on C. For this purpose, y
must be eliminated. Note that the point (x, y) fulfills h(x, y) = 0, if and only if
the equation

y =
−φ1(x)(a0 + a1x + ... + aN1−gx

N1−g) + φ2(x)(b0 + b1x + ... + bN2x
N2)

b0 + b1x + ... + bN2x
N2

.

(6)
holds. By this y’s representation, the number of the parameters must be de-
creased. So, put aN1−g = 1 when ng + g is even and put bN2 = 1 when
ng + g is odd (this can be done from the above lemma). Also put M1 ={

N1 − g − 1 when ng + g is even
N1 − g when ng + g is odd , and M2 =

{
N2 when ng + g is even
N2 − 1 when ng + g is odd .

Note that M1 + M2 = ng − g − 2 from Lemma 6.
Put

s(x) :=
{−(denominator of (6))2f(x) + (numerator of (6))2, if ng + g is even

(denominator of (6))2f(x)− (numerator of (6))2, if ng + g is odd .

and let S(x) be the multivariable polynomial obtained from the definition of
s(x) replacing the values ai and bi by the indeterminates Ai and Bi. From the
construction, S(x) is a monic polynomial of the degree ng + g, whose coeffi-
cients are degree 2 polynomials in Fqn [A0, .., AM1 , B0, .., BM2 ], and φ1(x)|S(x).
Put g(x) := S(x)/φ1(x). Since φ1(x) is a monic polynomial in Fqn [x], g(x) is



also a monic polynomial of degree ng, whose coefficients are degree 2 polynomi-
als in Fqn [A0, .., AM1 , B0, .., BM2 ]. Put Ci ∈ Fqn [A0, .., AM1 , B0, .., BM2 ] by i-th
coefficient of g(x), i.e.,

g(x) = xng + Cng−1x
ng−1 + ... + C0.

Similarly, for

v = (a0, ...aM1 , b0, ..., bM2) ∈ AM1+M2+2(Fqn)

and some polynomial p(x) in Fqn [A0, ..., AM1 , BM0 , ..., BM2 , x], let pv(x) be the
polynomial obtained from p(x) by substituting ai and bi for Ai and Bi. Then,
the zeros of gv(x) = 0 are the x-coordinate of the intersections of h(x, y) = 0 on
C except Q1, ..., Qg. Thus, we have the following lemma.

Lemma 10. The condition that D0 is a potentially decomposed reduced divisor
is equivalent to the following:
There is some v = (a0, .., aM1 , b0, ...bM2) ∈ AM1+M2+2(Fqn) such that gv(x) ∈
Fq[x] and gv(x) ∈ Fq[x] factors completely in Fq[x].

We now show how to find ai in Fqn (0 ≤ i ≤ M1) and bi in Fn
q (0 ≤ i ≤ M2)

such that gv(x) in Fq[x].
Let [α0(= 1), α1, .., αn−1] be a base of Fqn/Fq and fix this base. Let Ai,j

(0 ≤ i ≤ M1, 0 ≤ j ≤ n − 1) and Bi,j (0 ≤ i ≤ M2, 0 ≤ j ≤ n − 1) be new
indeterminates over Fq. Note that the number of the indeterminates {Ai,j} ∪
{Bi,j} is

(M1 + M2 + 2)n = (N1 + N2 − g + 1)n = (n2 − n)g.

For simplicity, substitute the variables Ai,j (0 ≤ i ≤ M1, 0 ≤ j ≤ n − 1) and
Bi,j (0 ≤ i ≤ M2, 0 ≤ j ≤ n − 1) by {V1, V2, ..., V(n2−n)g}. Let us consider the
polynomials obtained by substituting Ai by

∑n−1
j=0 Ai,jαj and Bi by

∑n−1
j=0 Bi,jαj

in g(x). Also let us denote the coefficients obtained in this way again by Ci. Then
the coefficients can be written in the form

Ci =
n−1∑

j=0

Ci,jαj , Ci,j ∈ Fq[V1, V2, ..., V(n2−n)g].

Thus from Lemma 10, the condition gv(x) ∈ Fq[x] is equivalent to the con-
dition that there are some v1, v2, ..., v(n2−n)g ∈ Fq such that

Ci,j(v1, v2, ..., v(n2−n)g) = 0 for 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n− 1.

Moreover, when gv(x) ∈ Fq[x], g(x) = xng + Cng−1,0x
ng−1 + ... + C0,0. The

condition that gv(x) factors completely in Fq[x] is equivalent to the above con-
dition, and G(x) := xng +cng−1x

ng−1 + ...+c0 factors completely in Fq[x] where
ci = Ci,0(v1, v2, ..., v(n2−n)g). In this case, the solutions of G(x) = 0 are the x-
coordinates of the decomposed factor. Then, we finish the proof of proposition
1 and construct the equation system {Ci,j = 0}.



4 Example

In this section, we examine three computational experiments of the decomposed
factors of Jacobian. The computations are done by using the computer algebra
system magma on a Windows XP preinstalled PC (CPU:Pentium M 2GHz,
RAM:1GB). (In order to solve equation system, the function “variety” prepared
in magma is used.) We compute three cases 1) (g, n) = (1, 3), 2) (g, n) = (2, 2),
and 3) (g, n) = (3, 2) where g and n are the genus and the extension degree of
the definition field of the chosen hyperelliptic/elliptic curve, respectively. In all
cases, one trial, which means the judge as to whether a given element of Jacobian
is decomposed or not and compute its decomposed factor, if it is decomposed,
is done within 1 second. Since the probability that an element of Jacobian is
decomposed is approximately 1/(gn)!, the amount of the time for obtaining one
potentially decomposed reduced divisor is within 6 sec, 24 sec, and 720 sec,
respectively. Further, we will give the following three examples.
Case 1. Let q = 1073741789(prime number), Fq3 := Fq[t]/(t3 + 456725524t2 +
251245663t + 746495860), and let E/Fq3 be an elliptic curve defined by y2 =
x3 + (1073741788t2 + t)x + (126t + 3969) and P0 := (t, t + 63) ∈ E. We in-
vestigate whether nP0 : n = 1, 2, ..30 are decomposed and find the following 7
decompositions. (24P0 is written by 2 forms.)
2P0 = (1050861583, 6509843t2 + 387051565t + 920296030)

+ (742900894, 362262801t2 + 6480079t + 886701711)
+ (571975376, 938916909t2 + 910769097t + 139897863)

5P0 = (806296922, 113931706t2 + 863383473t + 133427995)
+ (797256157, 360646567t2 + 663390692t + 1012046566)
+ (389333914, 986077188t2 + 829314065t + 687783827)

8P0 = (1063441336, 113661172t2 + 942865616t + 744283566)
+ (894045278, 863335768t2 + 637284565t + 937810737)
+ (694935460, 740353309t2 + 505910431t + 597402219)

20P0 = (996570058, 341336613t2 + 450680674t + 72874200)
+ (141768271, 589122734t2 + 930205049t + 713557032)
+ (73505168, 432994198t2 + 405986289t + 233154172)

24P0 = (529735815, 20343700t2 + 780030904t + 490121669)
+ (515960254, 269821984t2 + 561547517t + 348990487)
+ (207183771, 712543643t2 + 356522343t + 895634732)
= (818683055, 1034251164t2 + 705927333t + 1062879754)
+ (754504105, 23461217t2 + 961620879t + 1015889110)
+ (489159707, 271295793t2 + 600348670t + 1022482426)

26P0 = (628174301, 138296704t2 + 104824480t + 858118320)
+ (371888603, 417445284t2 + 850151153t + 126970733)
+ (55411433, 560274594t2 + 609956706t + 821692494)

Case 2. Let q = 1073741789(prime number), Fq2 := Fq[t]/(t2+746495860t+
206240189), and let C/Fq2 be a hyperelliptic curve defined by

y2 = x5 + (673573223t + 771820244)x + 6t + 9

and let
D0 := (x2 + 1073741787tx + 327245929t + 867501600,

(1023168391t + 350252228)x + 658555356t + 446913597)



be a reduced divisor of C. We investigate whether nD0 : n = 1, 2, ..100 are
decomposed and find the following 9 decompositions. (71D0 is written by 2
forms.)
6D0 ∼ (1025731975, 776505688t+911495013)+ (728060789, 648475468t+1067025179)

+(341799975, 145077925t+187604034)+(61964999, 227570631t+639782700)−4∞
19D0 ∼ (1039361498, 15180988t + 396695374) + (828360115, 179412594t + 719919461)

+ (483171045, 677645208t + 604714840) + (34566209, 753841024t + 14375633)− 4∞
33D0 ∼ (970690833, 608141084t + 889165804) + (260086243, 894605411t + 261264640)

+(208957980, 43330622t+581461318)+(190782894, 124873649t+510328990)−4∞
35D0 ∼ (699447787, 267523741t + 562899544) + (559470007, 197827114t + 99971197)

+(472594781, 579187919t+266558458)+(453661772, 449424806t+977318920)−4∞
48D0 ∼ (1009979214, 959734525t + 990871450) + (995813251, 44186049t + 288496638)

+(521299995, 556594200t+468424666)+(17946008, 977064852t+1071618742)−4∞
71D0 ∼ (1019155056, 573896856t+103042116)+ (944470217, 829781939t+184620624)

+(727156004, 462612591t+582877732)+(281900623, 553507533t+42660552)−4∞
∼ (502979299, 412632304t + 1036827718) + (74527656, 927651409t + 452588110)
+ (50078888, 801072540t + 888737005) + (2986754, 556402789t + 236723678)− 4∞

73D0 ∼ (843747137, 682161676t + 600252618) + (829302257, 145878028t + 853397395)
+(290487906, 645896278t+279001181)+(184873704, 567002729t+620354511)−4∞

80D0 ∼ (907811987, 216534804t + 936839244) + (808513243, 873487475t + 273845273)
+(520893378, 757248670t+381150138)+(486203744, 494475019t+791571132)−4∞

Case 3. Let q = 1073741789(prime number), Fq2 := Fq[t]/(t2+746495860t+
206240189), and let C/Fq2 be a hyperelliptic curve defined by

y2 = x7 + (111912375t + 1046743132)x + 6t + 9

and let
D0 := (x2 + 1073741787tx + 327245929t + 867501600,

(473621736t + 256126568)x + 145989647t + 687383736)
be a reduced divisor of C. We investigate whether nD0 : n = 1, 2, ..3000 are decomposed
and find the following 6 decompositions.
414D0 ∼ (1001437837, 752632260t+700158497)+(747112084, 656073918t+400137619)

+ (620249588, 127943213t + 635474623) + (614180498, 206297635t + 445250468)
+(515769009, 607297126t+554290493)+(488549466, 627952783t+854182612)−6∞

657D0 ∼ (939617127, 695261735t+239531611)+ (933351280, 935312661t+961494096)
+ (799612924, 341923983t + 677495100) + (294787599, 279723229t + 760003067)
+(273118782053704103t+577497766)+(153381525, 983211238t+517037777)−6∞

921D0 ∼ (1034634787, 400751409t+829801342)+(763888873, 757155774t+829936954)
+ (619620874, 800641683t + 200272230) + (603032615, 115219564t + 655011145)
+(436423191, 285214454t+450812747)+(125198811, 884750621t+123305741)−6∞

1026D0 ∼ (1024020017, 267457905t+41452942)+(794174628, 615676821t+723336407)
+ (738567269, 433647609t + 128304659) + (629287731, 465842490t + 789390318)
+(435082408, 878213106t+603353206)+(79621979, 479459622t+672937516)−6∞

1121D0 ∼ (764081031, 812350603t+347878564)+(673426715, 687737442t+381588704)
+ (6102522082007139t + 99219637) + (467560104, 619342780t + 228756808)
+ (179787786, 333322906t + 75482151) + (59221667, 860686653t + 625301206)− 6∞

2289D0 ∼ (729358563, 482925408t+170057124)+ (529840657, 42328987t+857983002)
+ (514618236, 436901100t + 416530686) + (350106356, 183495333t + 950710579)



+(175898979, 411808870t+427518366)+(96240558, 703780413t+461022225)−6∞

5 Conclusion

In this manuscript, we have proposed an algorithm which checks whether a
reduced divisor is potentially decomposed or not, and we have computed the
decomposed factor, if it is potentially decomposed. From this algorithm, concrete
computations of decomposed factors are done by computer experiments when
the pairs of the genus of the hyperelliptic curve and the degree of extension field
are (1, 3), (2, 2), and (3, 2).
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6 Appendix

In the appendix, we estimate the complexity of the decomposed attack, associ-
ated with input size q, for fixed g, n (i.e., g, n are considered as constants) under
the Assumption 1. Here, we apply the ideas of the “The Rebalanced method”
[4],“One external element method” [14], and “Two external elements method”
[12] [6], which are the techniques of solving discrete logarithm of the Jacobian
of a hyperelliptic curve over a general finite field, to our cost estimation for the
case of an extension field. These techniques are very complicated, and we only
give the outline of the algorithm and estimation of the complexity.

In this estimation, since n, g are fixed, the cost for solving the system of the
equations is considered as Poly(q). For simplicity, the terms of Poly(q)-part of
the complexity is omitted. For this purpose, we denote the symbol Õ where the
complexity Õ(N(q)) is estimated by

Õ(N(q)) < x(log q)yN(q) for some constants x, y ∈ R>0,

and the symbol ≈ that the relation N1(q) ≈ N2(q) is defined by

N2(q)
x1(log q)y1

< N1(q) < x2(log q)y2N2(q) for some constants x1, x2, y1, y2 ∈ R>0,

where N(q), N1(q)andN2(q) are functions of input size q.
Now, let G be a general finite group and we consider the general decomposed

attack over G. In the following, we also assume that
i) G has a prime order.
It is not an essential assumption, but it needs for the simplicity.

Definition 2 1) An element of g ∈ G written by g = g1 + ..+ gN for g1, ...gN ∈
B0 is called potentially decomposed.
2) The multiset {g1, ..., gN} is called decomposed factor.

Take B0 ⊂ G as the external elements. For some positive integer N(Constant),
we assume the following ii),iii),iv), and v):
ii) The probability that g ∈ G is potentially decomposed is O(1).
iii) For a g ∈ G, the cost for checking whether g is potentially decomposed or
not is Õ(1).
iv) For the potentially decomposed g ∈ G the cost of computing decomposed
factor {g1, ..., gN} from g is Õ(1). (If there are plural decoposed factors, the
computation of all decomposed factors is needed.)
v) |B0|2 ¿ |G|.



Note that o(|G|) < |B0|N from ii) and |B0|N < Õ(|G|) from iv). (Otherwise,
the expected number of decomposed factors is bigger than Õ(qε) for some ε > 0
and iv) does not hold.) In the normal index calculus, the number of the factor
basis which are used for the decomposition is basically large (i.e.,N >> 1). So,
the randomly chossen element is basically written by some linear sum of factor
basis in many many ways. However, it is difficult to compute such linear sums,
so, by the use of the lifting to integer or number field ring and by the use of the
sieving method, one can find some decomposition of randomly choosen element.
So, remark carefully that the prerequisite condition of the normal index calculus
and that of the decomposed attack is quite different.

In our case (i.e., G being the Jacobian of a hyperelliptic curve of genus g over
extension field Fqn , B0 being the set of Fqn-rational point of the curve whose
x-coordinate lie in Fq, N = ng), ii) is from (heuristic) Assumption 1, iii) and iv)
are from Theorem 2, and v) is from the notations.

Take B ⊂ B0 as a restricted external elements.

Definition 3 1) An element of g ∈ G written by g = g1+..+gN for g1, ...gN ∈ B
is called decomposed.
2) An element of g ∈ G written by g = g1 + .. + gN for one gi ∈ B0\B, and the
other gj ∈ B (1 ≤ j ≤ N, j 6= i) is called almost decomposed.
3) An element of g ∈ G written by g = g1 + .. + gN for two gi1, gi2 ∈ B0\B, and
the other gj ∈ B (1 ≤ j ≤ N, j 6= i1, i2)is called 2-almost decomposed.
4)In every case, the multiset {g1, ..., gN} is also called decomposed factor.

Now, we give the outlines of the algorithms, which are the variant of the
decomposed attack [4], [14], [12], and [6], by Algorithm 1 and Algorithm 2.

Algorithm 1 The outline of the Rebalanced method
Input: a, b ∈ G s.t. a = nb for some unknown n ∈ Z/|G|Z.
Output: find n.
1: Initializing the list of the relations L = {}
2: while |L| > suitable number N0 do
3: For a pair of random numbers (r1, r2), computing r1a + r2b.
4: if r1a + r2b being decomposed then
5: adding the informations of (r1, r2) and the decomposed factor to L.
6: (If there are plural decoposed factors, choosing one decomposed factor ran-

domly.)
7: Solving the linear algebraic computation of roughly |B| × |B| size, modulo |G|
8: Computing n

Note that Algorithm 1 and Algorithm 2 are probabilistic, since they need
random numbers. Also note that the probability that r1a + r2b is potentially
decomposed is O(1), since |G| is a prime number and r1a+r2b can be considered
as a random element of G. From the ideas of [4], [14], [12], and [6], we can obtain
the following lemma.

Lemma 11. Under the assumptions of i),ii),iii), iv) and v), we have the fol-
lowing:
1) Let N0 be the number of decomposed elements of G which are required in the



Algorithm 2 The outlines of the One (resp. Two)external element method
Input: a, b ∈ G s.t. a = nb for some unknown n ∈ Z/|G|Z.
Output: find n.
1: Initializing the list of the relations L = {}
2: while |L| > suitable numberN1 (resp. N2) do
3: For a pair of random numbers (r1, r2), computing r1a + r2b.
4: if r1a + r2b being almost-decomposed (resp. 2-almost decomposed) then
5: adding the informations of (r1, r2) and the decomposed factor to L.
6: (If there are plural decoposed factors, choosing one decomposed factor ran-

domly.)
7: Updating L by the elimination of the terms of external elements.
8: Solving the linear algebraic computation of roughly |B| × |B| size, modulo |G|
9: Computing n

rebalanced method. Then, N0 is estimated by Const× |B|, i.e., N0 = O(|B|).
2) Let N1 be the number of almost decomposed elements of G which are required
in the one external element method. Then, N2

1 /|B0| is estimated by Const×|B|,
i.e., N1 = O(|B|1/2|B0|1/2).
3) Let N2 be the number of 2-almost decomposed elements of G which are required
in the two external element method. Then, N2 is estimated by Const×|B0|, i.e.,
N2 = O(|B0|).
Proof. Since r1a + r2b is considered as a random element of G, if r1a + r2b is
potentially decomposed, the decomposed factor is considerd as rondom N -ple of
external elements B0. So, the (heuristic) assumption of the algorithm of [12] is
true and the cost estimations are done by similar way of [12].

Thus, we have the following estimations of the complexity.

Lemma 12. Under the assumptions of i),ii),iii), iv) and v), we have the fol-
lowing:
1) The complexity of the general decomposed attack taking B as a restricted ex-
ternal elements by the rebalanced method is minimized at |B| ≈ |B0|N/(N−1),
and it is estimated by Õ(|B0|(2N)/(N+1)).
2) The complexity of the general decomposed attack taking B as a restricted ex-
ternal elements and taking B0\B as a set of external elements by the one external
element method is minimized at |B| ≈ |B0|(2N−1)/(2N+1), and it is estimated by
Õ(|B0|(4N−2)/(2N+1)).
3) The complexity of the general decomposed attack taking B as a restricted
external elements and taking B0\B as a set of external elements by the two ex-
ternal element method is minimized at |B| ≈ |B0|(N−1)/N , and it is estimated by
Õ(|B0|(2N−2)/N ).

Proof. (Sketch of the proof) In every case, the cost of the part of linear algebra
is Õ(|B|2), and for the rebalance, which is needed for minimizing the complexity,
it is the same as the cost of the collecting divisors. So, we only need to estimate
the optimized size |B|.



1)The rebalanced method. The probability that g ∈ G is a decomposed group
element is O(|B/B0|N ). So, the cost to obtain one decomposed group element g

is Õ(|B0/B|N ). From Lemma 11, we must have O(|B|) number of such g. So

|B0/B|N · |B| ≈ |B|2

where the left hand side is the cost for collecting enough decomposed group
elements, and the right hand side is the cost for the linear algebra. Thus we have
|B| ≈ |B0|(2N)/(N+1).
2) The one external element method. The probability that g ∈ G is an
almost decomposed group element is O(|B/B0|N−1). From Lemma 11, we must
have O(|B|1/2|B0|1/2) number of such g. Similarly, we have

|B0/B|N−1 · |B|1/2|B0|1/2 ≈ |B|2

and |B| ≈ |B0|(2N−1)/(2N+1) is obtained.
3) The two external elements method. The probability that g ∈ G is a 2-
almost decomposed group element is O(|B/B0|N−2). From Lemma 11, we must
have O(|B0|) number of such g. Similarly, we have

|B0/B|N−2 · |B0| ≈ |B|2

and |B| ≈ |B0|(N−1)/N is obtained.

Now, we apply this lemma for the decomposed attack for the Jacobian of a
curve over an extension field. Note that B0 = {P −∞|x(P ) ∈ Fq}, |B0| ≈ q,
N = ng and thus, we have the following claim.

Claim 1 Assuming the (heuristic) Assumption 1 and Jac(C/Fqn) having a prime
order, we have the following:
1) The complexity of the decomposed attack by rebalanced method is estimated
by Õ(q(2ng)/(ng+1)).
2) The complexity of the decomposed attack by one external element method is
estimated by Õ(q(4ng−2)/(2ng+1)).
3) The complexity of the decomposed attack by two external element method is
estimated by Õ(q(2ng−1)/(ng)).


