
A Zero-Knowledge Identification and Key Agreement Protocol

D.R. Stinson∗ and J. Wu†

David R. Cheriton School of Computer Science, University of Waterloo
200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada

{dstinson, j32wu}@uwaterloo.ca

Abstract
In this paper, we propose a zero-knowledge authenticated key agreement protocol with key

confirmation (AKC) in asymmetric setting. The protocol has several desirable security attributes
like some classical AKCs such as STS [7] and MQV [13]. One highlight of our protocol is its
zero-knowledge property, which enables succinct proofs of the claimed security attributes, while
the overhead in communication and computation resulting from the special design to achieve
zero-knowledge is insignificant.

Keywords: mutual identification, key agreement, zero-knowledge.

1 Introduction

An authenticated key agreement protocol (AKC) enables two parties, Alice (A) and Bob (B), to
establish a shared secret key via unsecured communication channels. Each run of the protocol
produces a unique session key between A and B. Both parties are assured that (if their intended
peer acts honestly and follows the protocol1) no third party can possibly compute the session key
(this property is called key authentication). Furthermore, if they are assured that their peer has
possession of the session key (assuming their intended peer acts honestly and follows the protocol),
then the protocol is said to provide explicit key confirmation. If they are assured that their peer
can compute the session key (assuming their intended peer acts honestly and follows the protocol),
then the protocol is said to provide implicit key confirmation.

An AKC can be viewed as a secure mutual identification scheme coupled with a secure distri-
bution of a session key (see [3], [17, §11]). Therefore security analysis for an AKC can be divided
into two steps: first, show that the AKC is a secure mutual identification scheme; and, second,
show that the session key is secure.

A mutual identification scheme is secure if the only way an adversary can get an honest party
to accept is by faithfully relaying the messages between the party and its intended peer. In another
words, the scheme is secure if no honest party will accept after the adversary is active, i.e., if
he drops, injects, switches, alters messages, or does anything other than faithfully relaying the
messages. Depending on the communication capabilities granted to the adversary, the attacks can
be divided into several types:

∗research supported by NSERC discovery grant 203114-06
†research supported by an NSERC post-graduate scholarship
1A dishonest peer may simply give away a session key to a third party, so we do not specify any outcome about

the secrecy of the session key if an intended peer acts dishonestly or does not follow the protocol.

1

1. passive attacks, in which the adversary can only observe the messages exchanged between
legitimate parties before trying to impersonate one.

2. concurrent attacks, in which the adversary can carry out the protocol concurrently with
legitimate parties before trying to impersonate one.

3. active-intruder attacks, in which the adversary can carry out the protocol with legitimate
parties while trying to impersonate one.

Note that active-intruder attacks cover concurrent attacks, which cover passive attacks in turn.
In some formal security models for mutual identification schemes, e.g., the Bellare-Rogaway model
[3], Blake-Wilson-Menezes model [13, 4], and Canetti-Krawczyk model [5], an active-intruder attack
is captured using an equivalent idea named matching conversation, or a somewhat more formal
notion, matching session IDs.

The security of a session key is defined in term of indistinguishability, i.e., a session key is
indistinguishable from a key randomly drawn from the key space to an adversary when the adver-
sary observes all the messages between the two parties. Because the protocol is a secure mutual
identification scheme, an active adversary will cause a key agreement session to be aborted and no
session key will be established. So we only need to consider a passive adversary for session key
security.

In the above part, the capabilities of an adversary are discussed based only on the communica-
tion model. The adversary may have some capabilities other than eavesdropping and manipulating
messages, e.g., the adversary may somehow get some session keys, or public keys of the legitimate
parties (in the asymmetric setting). In such cases, the possible damage should be limited to the
maximum possible extent. Some other attacks should also be taken into consideration. A number
of desirable attributes for AKCs have been identified in the literature (see, e.g., [13, 4]), including

1. known session key secrecy: if some session keys are revealed to an adversary, other unrevealed
session keys are still secure.

2. perfect forward secrecy: if the long-term private keys of one or more entities are compromised,
the secrecy of previous session keys is not affected.

3. key compromise impersonation resilience: when A’s long-term private key is disclosed, this
loss does not enable an adversary to impersonate other entities to A.

4. unknown key share resilience: A cannot be coerced into sharing a key with entity B without
A’s knowledge.

To achieve the above security features is not an easy task. The design of AKC protocols
is extremely error prone. The literature is filled with protocols which have been found to contain
certain security flaws. In [3], Bellare and Rogaway first proposed a formal security model for AKCs.
Since then, there have been several extensions to the model, e.g., the Blake-Wilson-Menezes model
[13, 4] for the asymmetric setting, and Bellare-Canetti-Krawczyk’s modular model [1], which is a
construction approach as well as a proof model. A formal proof with respect to such cryptographic
definitions provides a strong assurance that a protocol is behaving as desired.

Extending the zero-knowledge unilateral identification scheme presented in [18], in this paper
we propose an authenticated key agreement protocol with key confirmation in the asymmetric

2

Protocol 2.1: Protocol Setup

1. The TA chooses a large prime p such that p − 1 is divisible by another large prime q,
log2 q ≈ k, and log2 p ≈ k′, where k′ is polynomial in k and k is a security parameter.

2. The TA chooses an element g ∈ Zp
∗ having order q.

3. The TA publishes the triple (p, q, g).

4. The TA publishes a hash function h : {0, 1}∗ → {0, 1}k.

5. Each potential prover A chooses a private key a from Zq
∗ uniformly at random, computes

v = ga mod p, and registers v as his or her public key.

6. The TA verifies that v 6= 1 and that A possesses the private key a. If both of these facts
are verified, then the TA issues a certificate to A certifying that v is indeed A’s public key.

setting. The protocol provides the security attributes listed above. One highlight of the protocol
is its zero-knowledge property, which enables succinct proofs of these claimed security attributes.
Meanwhile the overhead in communication and computation resulting from the special design to
achieve zero-knowledge is insignificant. The security proof is based on a security definition different
from but complying with the popular security definition in [3], which simplifies the proof for our
protocol.

The remainder of the paper is organized as follows: section 2 describes the protocol; section 3
discusses its zero-knowledge property; section 4 proves the protocol is a secure mutual identification
scheme; section 5 proves the protocol is a secure AKC; section 6 discusses its computation and
communication performance; and section 7 concludes this paper.

2 Protocol Definition

2.1 Initial Setup

The initial setup for our scheme is described in Protocol 2.1. (Observe that the setup of the
scheme is defined in terms of a security parameter k.) We assume the existence of a trusted
authority, denoted by TA, who will issue certificates for all potential participants in the scheme.
Furthermore, we assume that every potential prover proves to the TA that he or she knows the
private key corresponding to the public key that is being registered.

2.2 Protocol Description

In a session of the scheme, two parties A and B try to convince each other of their identities.
Each party “accepts” only if the other one responds to challenges in an appropriate way. Upon
acceptance, each party computes a session key.

We are working in the pre-specified peer model. This means that, before a session of the protocol
is executed, the two parties exchange certificates. There is no guarantee that the certificates are

3

Protocol 2.2: Protocol Description

1. B chooses r1 ∈ Zq
∗ uniformly at random, computes

y1 = gr1 mod p and h1 = h(va
r1 mod p),

and sends (y1, h1) to A.

2. A verifies (y1, h1):
If y1 /∈ {2, . . . , p− 1} or 1 6= y1

q mod p or h1 6= h(y1
a mod p), then A rejects.

Otherwise A chooses r2 ∈ Zq
∗ uniformly at random, computes

y2 = gr2 mod p and h2 = h(vb
r2 mod p ‖ y1

a mod p),

and sends (y2, h2) to B.

3. B verifies (y2, h2) :
If y2 /∈ {2, . . . , p − 1} or 1 6= y2

q mod p or h2 6= h(y2
b mod p ‖ va

r1 mod p), then B
rejects.
Otherwise B accepts, computes

h3 = h(y2
b mod p) and K = y2

r1 mod p,

sends h3 to A, and keeps K as the established session key.

4. A verifies h3. If h3 6= h(vb
r2 mod p), then A rejects. Otherwise A accepts and computes

K = y1
r2 mod p

as the session key.

exchanged securely. For example, an adversary may substitute one certificate with another one.
However, before any party, say A, engages in a session, we assume that A has received and verified
the certificate of a party, say B, who will be termed the intended peer of A. If the intended peer of
A is B, it does not necessarily follow that the intended peer of B is A.

The steps in a session are described in Protocol 2.2. In each session a transcript is generated.
The transcript consists of the messages exchanged between the two parties. For example, in a
session in which both parties accept, the transcript is (y1, h1, y2, h2, h3). When one party rejects,
we denote the messages afterwards as ⊥. For example, if A rejects (y1, h1), then we denote the
transcript as (y1, h1,⊥). In the following parts we omit the operation “mod p” to simplify the
expression.

Assuming both parties follow the protocol, the message flows can be depicted as follows:

4

A
y1=gr1 , h1=h(va

r1)←−−−−−−−−−−−− B

A
y2=gr2 , h2=h(vb

r2‖y1
a)−−−−−−−−−−−−−−−→ B

A
h3=h(y2

b)←−−−−−− B

2.3 Completeness

It is straightforward to verify that Protocol 2.2 is complete. Suppose A and B are both honest.
First B sends out (y1 = gr1 , h1 = h(va

r1)). After receiving the challenge (y1, h1), A checks if
y1

q = 1 and h(y1
a) = h1. Since

h(y1
a) = h(gar1) = h(va

r1) = h1,

A accepts and sends the response (y2 = gr2 , h2 = h(vb
r2 ‖ y1

a)) to B. B then checks if
y2

q = 1 and h(y2
b ‖ va

r1) = h2. Since

h(y2
b ‖ va

r1) = h(vb
r2 ‖ y1

a) = h2,

B also accepts, computes his session key Kb = y2
r1 , and sends h(y2

b) = h3 to A. Since

h(vb
r2) = h(y2

b) = h3,

A will accept and compute her session key Ka = y1
r2 = y2

r1 = Kb.

3 Zero-Knowledge Properties

In a session of the protocol, each party acts as a prover to convince the other party of his or her
identity, and also as a verifier to verify the identity of the other party as well. We show that,
for an honest verifier, the protocol is perfect zero-knowledge, and for an arbitrary (including a
dishonest) verifier, the protocol is statistical zero-knowledge assuming that the KEA assumption
(see Definition 3.3) holds and the hash function h() used in the protocol is a random oracle.

3.1 Perfect Zero-Knowledge for Honest Verifiers

First we consider A as a prover and B as a verifier. Suppose B is honest. The real transcripts
between A and B can be simulated by a polynomial time simulator S without participating a real
session, and the distributions of the real transcripts and the simulated transcripts are identical:

Theorem 3.1. If A is considered as an honest prover and B is considered as an honest verifier,
Protocol 2.2 is perfect zero-knowledge for B.

Proof. The set T of real transcripts obtained by A and B consists of all transcripts T having the
following form:

T = (y1, h1, y2, h2, h3)
= (gr1 , h(va

r1), gr2 , h(vb
r2 ‖ y1

a), h(y2
b))

= (gr1 , h(gar1), gr2 , h(gbr2 ‖ gar1), h(gbr2))

5

where r1 and r2 are chosen uniformly from Z∗
q at random independently.

The set T̂ of simulated transcripts can be constructed by S as follows. S chooses r1 and
r2 uniformly independently at random from Z∗

q , and computes the simulated transcript T̂ , using
g, va, vb, and h():

T̂ = (gr1 , h(va
r1), gr2 , h(vb

r2 ‖ va
r1), h(vb

r2))
= (gr1 , h(gar1), gr2 , h(gbr2 ‖ gar1), h(gbr2)).

Since the randomly chosen r1 and r2 in T and T̂ have identical probability distributions, the
transcripts T and T̂ have identical probability distributions, and the protocol is perfect zero-
knowledge for B.

Similarly, when A is considered as an honest verifier in the protocol, S can simulate the real
transcripts in the same way, therefore we have

Theorem 3.2. If B is considered as an honest prover and A is considered as an honest verifier,
Protocol 2.2 is perfect zero-knowledge for A.

Proof. As in the proof of Theorem 3.1, the set T of real transcripts obtained by A and B consists
of all transcripts T having the following form:

T = (gr1 , h(gar1), gr2 , h(gbr2 ‖ gar1), h(gbr2))

where r1 and r2 are chosen uniformly from Zq at random independently.
S chooses r1 and r2 uniformly at random from Zq, and computes the simulated transcript T̂ ,

using g, va, vb, and h():

T̂ = (gr1 , h(gar1), gr2 , h(gbr2 ‖ gar1), h(gbr2)).

The transcripts T and T̂ have identical probability distributions, and the protocol is perfect zero-
knowledge for A.

3.2 Statistical Zero-Knowledge for Arbitrary Verifiers

Now we consider the case in which a verifier might be dishonest. A dishonest verifier may generate
messages not following the protocol. First let A be a prover and B be an arbitrary (including
an dishonest) verifier. B may violate the protocol during a session, e.g., he may generate (y1, h1)
without choosing r1, or he might choose r1 with a nonuniform probability distribution. We show
that the protocol is statistical zero-knowledge for B if the KEA assumption holds and the hash
function h() is a random oracle.

KEA is a non-standard cryptographic assumption first proposed by Damg̊ard in [6]. Its applica-
tion can be found in various papers, e.g., [2, 11, 12, 18]. Although it is a strong assumption, it seems
to hold in most groups where the computation of discrete logarithms is intractable. Informally,
KEA says that, in a prime order group 〈g〉, given ga with a unknown, the only way (except with
negligible probability) to construct in polynomial time a pair of the form (d, da) is to first compute
d = gr for some r, and then compute da = (ga)r. More formally, the assumption is stated in the
next definition.

6

Definition 3.3. The Knowledge-of-Exponent Assumption is as follows: Let g be a generator of
a multiplicative (sub)group. For any polynomial-time algorithm A that takes as input g and ga

where a is an unknown randomly chosen value, and which produces as output a pair of the form
(d, d′), d ∈ 〈g〉, there exists a polynomial-time “extractor” A′, which takes the same input and
outputs the pair (d, d′) along with an exponent r, such that for sufficiently large k, it holds that

Pr[d′ = da and gr 6= d] <
1

Q(k)

for any polynomial Q().

The KEA implies that we have access to the internal state of an algorithm. Therefore a sim-
ulation based on KEA is non-black-box in nature. In a non-black-box simulation, the simulator
has access to any internal information of a verifier, e.g., its private key and its control flow. How-
ever, the simulator must be polynomial time, and it does not have access to the prover (neither its
internal information nor as an oracle) in the simulation.

For a dishonest verifier, we need to consider auxiliary-input zero knowledge. That is, the
verifier may collect auxiliary input, e.g., some messages from previous sessions, and use them in
a new session. In this case, we assume that the simulator has access to the transcripts of these
previous sessions as well as the internal states of the verifiers while they were involved in producing
the auxiliary input.

Based on the KEA assumption, we have the following result:

Theorem 3.4. When A is considered as an honest prover and B as an arbitrary verifier, the
protocol is auxiliary-input statistical zero-knowledge for B if the KEA assumption holds and h() is
a random oracle.

Proof. S simulates transcripts as follows: first S receives the challenge pair (y1, h1) from B, then
he completes the transcript as follows:

1. If y1 /∈ {2, . . . , p − 1}, or 1 6= y1
q, or h1 is not generated by a verifier querying h(), then S

outputs the transcript
T̂ = (y1, h1,⊥).

2. If h1 is a reply of h(), say h1 = h(z), which means a verifier C generates the pair (y1, z) ←
A(g, va) first, then S computes r1 with the corresponding extractor (y1, z, r1)← A′(g, va).2

(a) If (y1, z) = (gr1 , va
r1), then S chooses r2 ∈ Zq

∗ uniformly at random, computes

y2 = gr2 , h2 = h(vb
r2 ‖ z).

S sends (y2, h2) to B and receives h3, then output the transcript

T̂ = (y1, h1, y2, h2, h3).

(b) Otherwise (i.e., (y1, z) 6= (gr1 , va
r1)), S outputs the transcript

T̂ = (y1, h1,⊥).
2C does not has to be the same as B, because B may get y1, h1 from the auxiliary input.

7

From the structure of the protocol and the simulation process, we see that a difference between
the distributions of the real transcripts T = {T} and the simulated transcripts T̂ = {T̂} only
happens when the challenge pair (y1, h1) is valid, i.e., y1 ∈ {2, . . . , p−1}, 1 = y1

q, and h1 = h(y1
a).

At this time, the real transcript T is always (y1, h1, y2, h2, h3), while the simulated transcript T̂ may
be (y1, h1, y2, h2, h3) or (y1, h1,⊥). In the following three cases, the real and simulated transcripts
are different:

1. h1 is not the reply of a query on h() but h1 = h(y1
r).

In this case, C happens to choose h1 = h(y1
a). The statistical distance between the probability

distributions of T and T̂ caused by this reason is 1/2k.

2. h1 is the reply of a query on h(z), h(z) = h(y1
a) but z 6= y1

a.

In this case, C finds a second pre-image of h(y1
a). The statistical distance between the

probability distributions of T and T̂ caused by this reason is no more than 1/2k.

3. h1 is the reply of a query on h(z), z = y1
a but gr1 6= z.

In this case, C first generates a pair (y1, z) such that y1 ∈ 〈g〉 and z = y1
a, but the corre-

sponding extractor fails to find r1 such that gr1 = y1. The statistical distance between the
probability distributions of T and T̂ caused by this reason is less than 1/Q(k) due to KEA
assumption.3

Therefore, the statistical distance d between the probability distributions of T and T̂ is

d < 1/Q(k) + 1/2k−1.

Next we consider B as a prover and A as an arbitrary (including a dishonest) verifier. In this
case A may violate the protocol during a session. We have the following result:

Theorem 3.5. When B is considered as an honest prover and A as an arbitrary verifier, the
protocol is statistical zero-knowledge for A if KEA assumption holds and h() is a random oracle.

Proof. S simulates the transcripts as follows: choose r1 ∈ Zq
∗ and compute

y1 = gr1 , h1 = h(va
r1),

sends (y1, h1) to A, receives (y2, h2) returned by A, and complete the transcript as follows:

1. If y2 /∈ {2, . . . , p− 1}, or 1 6= y2
q, or h2 is not generated by A querying h(), then output the

transcript
T̂ = (y1, h1, y2, h2,⊥).

3Note y1 ∈ 〈g〉 is necessary for KEA to hold. If y1 /∈ 〈g〉, the proof breaks down. Correspondingly, if in the
protocol, y1 ∈ 〈g〉 is not checked, then the protocol will suffer from a small sub-group attack. The same reason holds
for checking y2 ∈ 〈g〉.

8

2. If h2 is generated by A querying h(), say h2 = h(z), which means A generates the pair (y2, z)
first. If y1

a is not the suffix of z, then S outputs the transcript

T̂ = (y1, h1, y2, h2,⊥).

Otherwise (z = s ‖ y1
a for certain s), A must have constructed the pair (y2, s) ← A(g, vb).

Then S computes r2 with the corresponding extractor (y2, s, r2)← A′(g, vb).

(a) If (y2, s) = (gr2 , vb
r2), then S computes h3 = h(vb

r2), and outputs the transcript

T̂ = (y1, h1, y2, h2, h3).

(b) Otherwise S outputs the transcript

T̂ = (y1, h1, y2, h2,⊥).

From the structure of the protocol and the simulation process, we see that a difference between the
distributions of the real transcripts T = {T} and the simulated transcripts T̂ = {T̂} only happens
when the pair (y2, h2) is valid, i.e., y2 ∈ {2, . . . , p − 1}, 1 = y2

q, and h2 = h(y2
b ‖ y1

a). At this
time, the real transcript T is always (y1, h1, y2, h2, h3), while the simulated transcript T̂ may be
(y1, h1, y2, h2, h3) or (y1, h1, y2, h2,⊥). Using a similar argument as in Theorem 3.4, we conclude
that the statistical distance d between the probability distributions of T and T̂ is

d < 1/Q(k) + 1/2k−1.

3.3 Concurrent Zero-knowledge

The zero-knowledge property of our protocol is preserved under three types of composition of
sessions of the protocol, namely, sequential composition, parallel composition, and concurrent com-
position. In sequential composition, the protocol is invoked many times, where each invocation
follows the termination of a previous one. Every zero-knowledge protocol is zero-knowledge under
sequential composition. Under parallel composition, many instances of the protocol are invoked
at the same time and they proceed at the same pace. In general, zero-knowledge properties are
not preserved under parallel composition. Concurrent composition generalizes both sequential and
parallel composition. In this setting, polynomially many instances of the protocol are invoked at
arbitrary times and they proceed at an arbitrary pace [9].

With the same simulation techniques used in the proofs of Theorem 3.1, 3.2, 3.5 and 3.4, we
can show the following results:

Theorem 3.6. When A is considered as an honest prover and B as an honest verifier, concurrent
composition of Protocol 2.2 preserves perfect zero-knowledge for B if KEA assumption holds and
h() is a random oracle.

Theorem 3.7. When B is considered as an honest prover and A as an honest verifier, concurrent
composition of Protocol 2.2 preserves perfect zero-knowledge for A if KEA assumption holds and
h() is a random oracle.

9

Theorem 3.8. When A is considered as an honest prover and B as an arbitrary verifier, concurrent
composition of Protocol 2.2 preserves statistical zero-knowledge for the B if KEA assumption holds
and h() is a random oracle.

Theorem 3.9. When B is considered as an honest prover and A as an arbitrary verifier, concurrent
composition of Protocol 2.2 preserves statistical zero-knowledge for A if KEA assumption holds and
h() is a random oracle.

Here we only give a proof for Theorem 3.9. Proofs for Theorem 3.6, 3.7, and 3.8 can be obtained
in a similar way.

Proof. Let T be the transcript of a concurrent composition of the protocol between A and B. Then
T is a composition of m individual transcripts, where m is polynomial in k. Let each of these
individual transcripts be ((y1, h1)i, (y2, h2)i, (y3)i), where the superscript i ∈ [1,m] is a unique ID
of the transcript. We assume transcript 1 starts first and transcript m finishes last. Then

T = ((y1, h1)1, · · · , (y1, h1)i, · · · , (y2, h2)i, · · · , (h3)i, · · · , (h3)m).

The position of each message is known to both A and B.
S simulates the composite transcript T as follows: for the individual transcript i, constructs

((y1, h1)i, (y2, h2)i, (h3)i) the same way as in Theorem 3.5. and puts (y1, h1)i, (y2, h2)i and (h3)i in
the simulated transcript T̂ . The positions of these messages correspond to where they are supposed
to be in a real transcript.

From the proof of Theorem 3.5, we know that the statistical distance di between the probability
distributions of each pair of individual transcripts T i and T̂ i is

di < 1/Q(k) + 1/2k−1.

T and T̂ are composition of m such individual transcripts. Therefore, the statistical distance d
between the probability distributions of T and T̂ is

d < m/Q(k) + m/2k−1.

4 Secure Mutual Identification

In this section we show that the protocol is a secure mutual identification scheme. The security
definition and proof for the mutual identification scheme are essentially the same as those for the
unilateral identification protocol in [18]. Also we will show that the security definition complies
with the Bellare-Rogaway model in [3].

The security of the protocol is based on the intractability of the Computational Diffie-Hellman
(CDH) Problem. The CDH Problem is to compute the value of gab, given g, ga and gb. The CDH
Assumption is defined as follows.

Computational Diffie-Hellman Assumption.
Let g be a generator for a group of order q, and let k = log2 q. The CDH Assumption is that there
is no polynomial-time algorithm (i.e., poly-time in k) that can compute gab for a non-negligible

10

fraction of all possible pairs a, b ∈ Zq, when it is given g, ga, and gb as input. That is, for any
polynomial-time algorithm A, and for any polynomial Q(), it holds that

Pr[A(ga, gb) = gab] <
1

Q(k)

for all sufficiently large k, where a and b are random numbers uniformly distributed over Zq
∗.

Next, we observe that the following result is obvious from the structure of Protocol 2.2.

Theorem 4.1. An adversary can impersonate a prover with public key v = ga with non-negligible
probability if and only if the adversary can compute gab, when it is given a random challenge gb,
for a non-negligible fraction of all values b ∈ Zq

∗. That is, there exists a polynomial-time algorithm
Av with respect to public key v = ga, and a polynomial Q1(), such that for any large large k, it
holds that

Pr[Av(gb) = gab] >
1

Q1(k)
,

where b is randomly chosen from Zq
∗ and k = log2 q.

Remark. In the above theorem, the prover can be either B who initiates a mutual identification
session, or A who responses to the initiation.

Here is the notion of security that we will use.

Definition 4.2. An identification protocol is secure if there is no polynomial-time adversary who
can impersonate a non-negligible fraction of all possible provers with non-negligible probability. That
is, for any polynomial Q(), and for all sufficiently large k, it holds that

Pr[Av exists] <
1

Q(k)

where v = ga, a is randomly chosen from Zq
∗ and Av is as defined in Theorem 4.1.

4.1 Concurrent Attack

Theorem 4.3. Protocol 2.2 is secure against concurrent attacks in the random oracle model under
the CDH and KEA Assumptions.

Proof. Suppose that the protocol is not secure against concurrent attacks. Because the protocol is
concurrent zero-knowledge, an adversary can impersonate a prover in a session without participating
in any other sessions of the scheme. Next, since the adversary can impersonate a non-negligible
fraction of all possible provers, there exists a polynomial Q2() such that, for sufficiently large k,

Pr[Av exists] >
1

Q2(k)

for randomly chosen a ∈ Zq
∗, where v = ga, k = log2 q, and Av satisfies

Pr[Av(gb) = gab] >
1

Q1(k)
,

11

as defined in Theorem 4.1. Therefore, given a pair ga and gb where a and b are randomly chosen
from Zq

∗, the probability that the adversary can compute gab is at least

Pr[Av exists and Av(gb) = gab] = Pr[Av exists] · Pr[Av(gb) = gab]

>
1

Q1(k)Q2(k)

for any large k. This contradicts the CDH Assumption.

4.2 Active-intruder attack

One model to capture the adversary’s ability to carry out active attacks is the Bellare-Rogaway
model [3]. In this model, an adversary O interacts with multiple legitimate entities. O can generate,
switch, alter, drop, and delay messages, or do anything he likes when he interacts with these entities.
The security in this model is defined in terms of matching conversations as follows.

A secure mutual identification scheme is the one in which

1. if two honest parties have matching conversations, they will both accept, and

2. the probability that one honest party accepts while his intended peer is not engaged in a
matching conversation is negligible.

This is equivalent to the secure definition for mutual authentication from [17, §11.1] and [19].

Definition 4.4. A secure mutual identification scheme is the one in which

1. if both parties are honest, then they both accept, and

2. if the adversary has been active, then the probability that any honest party accepts after a flow
in which the adversary is active is negligible.

The two definitions are equivalent in that there will not be a matching conversation if and only
if the adversary is active. Next we prove the protocol is a secure mutual identification protocol in
terms of Bellare-Rogaway model. We need to show that if an honest party A accepts, her intended
peer B is engaged in a matching conversation (with overwhelming probability).

Theorem 4.5. Suppose A is an honest participant whose intended peer is B. Suppose that A
engages in a session in which she

1. receives and accepts m1 = (y1, h1 = h(y1
a)),

2. sends m2 = (y2 = gy, h2 = h(vb
y ‖ y1

a)), and finally

3. receives and accepts m3 = h3 = h(vb
y).

Then B will have engaged in a session in which his intended peer is A, and in which he

1. sent m1,

2. received and accepted m2, and finally

3. sent m3.

12

Proof. Let O be a polynomial time algorithm which runs (possibly multiple) instances of A and B
as oracles. Each oracle only interacts with O, and executes the protocol correctly. O knows A’s
and B’s public keys, but does not know their private keys. O can initiate an oracle to start a new
session, or send a challenge to an oracle to start a new session. O can manage sessions concurrently.

Suppose an A oracle completes a session S with view (m1,m2,m3), where m1, m2 and m3 are
as defined above.

After receiving A’s reply m2 in the session S, O responded with m3 = h3 = h(vb
y). O cannot

compute h3 unless it can compute the input vb
y = y2

b = gyb. However, due to the CDH, it is
infeasible to compute gyb given gb and gy. Therefore, O must have obtained h3 from a B oracle.
Furthermore, from the structure of the protocol, it is clear that m3 can only be returned by a
B oracle as the third flow in a session S ′ in which the second flow was (gy, h(gby ‖ s)), for some
s ∈ Zp

∗. Because y is a fresh random value chosen by A, it holds with overwhelming probability
that s = y1

a and the above-mentioned second flow of the session S ′ is indeed m2.
Now, in the session S ′, the B oracle sent m3 = gby in response to m2 = (gy, h(gby ‖ y1

a))).
Suppose in S ′, B’s intended peer is Z with a private key z and a public key Vz. Let B’s first
message in S ′ be (gx′

, h(Vz
x′

)), then Vz
x′

= y1
ax, which implies zx′ = ax.

x′ is a fresh random number chosen by B. z and a are private keys which were determined
before the session S ′. z and x may be chosen by the adversary, but the adversary does not know
x′ or a. If zx′ = ax holds for random x′, then there are two possible cases:

• z = a

In this case, x = x′. B’s intended peer is A, and B’s first message is m1.

• z 6= a

In this case, only z = 0, x = 0 can make zx′ = ax hold for random x′ and unknown a 6= 0.
But this case is precluded by the protocol checking y1 6= 1 and Vz 6= 1.

Therefore, it holds with overwhelming probability that in session S ′, B’s intended peer is A,
and m1 is the first flow in S ′.4

This completes the proof.

Using similar methods, it is possible to prove a similar result concerning B’s view of a session
of the protocol.

Theorem 4.6. Suppose B is an honest participant whose intended peer is A. Suppose that B
engages in a session in which he

1. sends m1 = (y1 = gx, h1 = h(va
x)),

2. receives and accepts m2 = (y2, h2 = h(y2
b ‖ va

x)), and finally

3. sends m3 = h3 = h(y2
b).

Then A will have engaged in a session in which her intended peer was B, and in which she

1. received and accepted m1,

2. sent m2, and finally

3. received and accepted m3.
4If Vz 6= 1 and y1 6= 1 are not verified in the protocol, the the proof breaks down. Correspondingly, the protocol

will suffer from an impersonation attack. The same reason holds for checking y2 6= 1.

13

5 Key Agreement

After a successful mutual identification session using Protocol 2.2, A and B agree on a session key
K = gr1r2 . To be an authenticated key agreement scheme, the protocol must satisfy the following
properties [17, §11]:

1. the protocol is a secure mutual identification scheme,

2. if the two parties engaged in the session are honest, then no information about the session
key K can be computed by the adversary.

The attack model considered here includes passive/concurrent/active-intruder attacks. We have
proved the first property in section 4. For the second property, since an active-intruder attack
will cause a session to be aborted and no session key will be established, we only need to consider
passive and concurrent attacks. Next we formally define and prove the second property.

5.1 Secure Authenticated Key Agreement with Key Confirmation

We define the security of a key agreement under passive and concurrent attacks as follows:

Definition 5.1. A key agreement protocol is secure against passive and concurrent attacks if any
polynomial time adversary cannot distinguish the established session key of a target session involving
two honest participants from a random key drawn from the key space.

Based on KEA assumption we have proved that the protocol is concurrent zero-knowledge. If the
adversary can succeed using a concurrent attack, then he can succeed using a passive attack. Next
we show that a passive attacker cannot distinguish a session key from a random key drawn from
the key space. We prove this property based on the Decision Deffie-Hellman (DDH) assumption.

For the group 〈g〉 used in our protocol, DDH assumption states that given random r1, r2, r ∈
Zq, it is intractable to distinguish (gr1 , gr2 , gr1r2) from (gr1 , gr2 , gr), i.e., for any polynomial time
algorithm A and any polynomial Q, if k is sufficiently large, then

|Pr[A(gr1 , gr2 , gr1r2) = 1]− Pr[A(gr1 , gr2 , gr) = 1]| < 1/Q(k).

Based on DDH, by reduction, it is easy to prove that for random r1, r2, r, a, b ∈ Zq,

(ga, gb, gr1 , gr2 , h(gar1), h(gbr2), h(gbr2 ‖ gar1), gr1r2)

and
(ga, gb, gr1 , gr2 , h(gar1), h(gbr2), h(gbr2 ‖ gar1), gr)

are computationally indistinguishable, i.e, K = gr1r2 is indistinguishable from a random key.
Since the protocol is a secure mutual identification scheme, it provides implicit key confirmation.

Summarizing the above discussion, we have the following result:

Theorem 5.2. The protocol is an authenticated key agreement protocol secure against passive,
concurrent, and active-intruder attacks, and it provides implicit key confirmation to both parties,
assuming the KEA assumption and DDH assumption hold, and h() is a random oracle.

14

5.2 Known Session Key Attacks

In a known session key attack, the adversary O is allowed to acquire the session keys of the sessions
he observes and/or participates in. The objective of O is to determine the key of a target session
from which he cannot acquire the key. The target session may happen before, after, or in parallel
with other sessions. One restriction on O is that he can only request the key of a session from a
party that accepts in the session.

Theorem 5.3. The protocol is secure against known session key attacks, given that the DDH
assumption and the KEA assumption hold, and h() is a random oracle.

Proof. Let St be the target session, and Tt be the transcript of that session. In this proof, denote
[1,m] = {1, . . . ,m}. Let {(Ti,Ki)|i ∈ [1,m]} be the transcript and session key pairs that O
accumulated by observing and/or participating in some sessions identified by integers i ∈ [1,m],
where m is polynomial in the security parameter k. If O can succeed in the known session key
attack, then there must be a polynomial time algorithm A such that A({(Ti,Ki)|i ∈ [1,m]}, Tt)
can compute some partial information about Kt.

First observe that with r1, r2 and the public keys of the session participants, O can compute a
simulated (T̂ , K̂) pair without observing or participating in a real session:

T̂ = (gr1 , h(va
r1), gr2 , h(vb

r2 ‖ va
r1), h(vb

r2)), K̂ = gr1r2 . (1)

Next we show that the probability distributions of {(Ti,Ki)|i ∈ [1,m]} and a simulated {(T̂i, K̂i)|i ∈
[1,m]} can be statistically indistinguishable.

O constructs a (T̂i, K̂i) pair according to how the corresponding (Ti,Ki) pair is generated:

1. (Ti,Ki) is from an observed session between A and B.

O simulates the transcript by choosing random r1 and r2, and computing (T̂i, K̂i) using (1).
Since r1 and r2 in (Ti,Ki) and (T̂i, K̂i) have identical probability distributions, (T̂i, K̂i) and
(Ti,Ki) have identical probability distributions too.

2. (Ti,Ki) is from a session that O initiates and A accepts.

Since the other party A accepts (y1, h1), with overwhelming probability O can obtain r1

such that y1 = gr1 due to KEA assumption. By choosing random r2, O can complete the
transaction (T̂i, K̂i) using (1) without interacting with A. The probability distributions of
(Ti,Ki) and (T̂i, K̂i) are statistically indistinguishable. The detailed analysis is similar to
that of Theorem 3.4.

3. (Ti,Ki) is from a session in which O participates, and which is initiated and accepted by B.

Since B accepts (y2, h2), with overwhelming probability O can obtain r2 such that y2 =
gr2 . By choosing random r1, O can construct (T̂i, K̂i) using (1) without interacting with B.
The probability distributions of (Ti,Ki) and (T̂i, K̂i) are statistically indistinguishable. The
detailed analysis is similar to that of Theorem 3.5.

Therefore O can build simulated {(T̂i, K̂i)|i ∈ [1,m]} which are statistically indistinguishable
from {(Ti,Ki)|i ∈ [1,m]}.

When A is a deterministic algorithm, it is obvious that the probability distributions of outputs
of A({(T̂i, K̂i)|i ∈ [1,m]}, Tt) and A({(Ti,Ki)|i ∈ [1,m]}, Tt) are statistically indistinguishable.

15

When A is a randomized algorithm, it is equivalent to a deterministic algorithm Ad which has
an additional random input r, where r has the same probability distribution as the random numbers
within A. When ({(T̂i, K̂i)|i ∈ [1,m]}, Tt) and ({(Ti,Ki)|i ∈ [1,m]}, Tt) are statistically indistin-
guishable, ({(T̂i, K̂i)|i ∈ [1,m]}, Tt, r) and ({(Ti,Ki)|i ∈ [1,m]}, Tt, r) are also statistically indistin-
guishable, and the outputs of Ad({(T̂i, K̂i)|i ∈ [1,m]}, Tt, r) and Ad({(Ti,Ki)|i ∈ [1,m]}, Tt, r) are
statistically indistinguishable. So the probability distributions of the outputs of A({(T̂i, K̂i)|i ∈
[1,m]}, Tt) and A({(Ti,Ki)|i ∈ [1,m]}, Tt) are also statistically indistinguishable.

Therefore, if O can succeed in known session key attacks, then with negligible difference in
probability, he can also succeed in a completely passive attack in which no session other than the
target session takes place. This contradicts Theorem 5.2.

5.3 Other Attributes of the Protocol

The protocol also provides the following desired attributes for key agreement protocols:

• perfect forward secrecy.

Since a session key K = gr1r2 is independent of the private keys a and b, disclosing a or b
does not help to gain any information about previous K.

• key compromise impersonation resilience and unknown key share resilience.

Since the protocol is a secure mutual identification scheme, it is secure against key compromise
impersonation and unknown key share attacks.

6 Performance

Comparing our protocol with MQV (AKC version) [13] and STS [7], we can see they have a sim-
ilar structure in terms of exchanged messages, except that in our protocol, the first message is a
challenge pair consisting of y1 = gr1 and h1 = h(va

r1), while in MQV and STS the first message
only contains gr1 . Computing and sending h1 incurs additional communication and computation
overhead. Suppose all these protocols are implemented on a subgroup of Zp

∗. If we use SHA-1
as the hash function h(), then the additional communication overhead incurred by y1 is 160 bits.
Usually p needs to be at least 1024 bits. Therefore the increase in communication is insignificant.
In view of computation, in all these protocols, in each session, each participant needs to do several
exponentiation operations, which are the main computational overhead. Since computing or veri-
fying h1 incurs only one exponentiation and one hash operation for each party, the increase in the
computation is also insignificant.

Our protocol can also be implemented in the setting of an elliptic curve E of prime order
q, where q ≈ 2160. In this setting, the verifications that y1

q mod p 6= 1 and y2
q mod p 6= 1 are

unnecessary; it would suffice to verify that y1 and y2 are points on E and that y1 and y2 are not
the points at infinity. In the elliptic curve setting, the message length would be roughly 800 bits,
and each party is required to perform only four “exponentiations” (i.e., scalar multiples of a point
on the elliptic curve E).

16

7 Conclusion

In this paper, we proposed a zero-knowledge authenticated key agreement protocol with implicit
key confirmation (AKC) in the asymmetric setting. The protocol has several desirable security
attributes. One highlight of the protocol is its zero-knowledge property, which enables succinct
proofs of the claimed security attributes, while the overhead in communication and computation
resulting from the special design to achieve zero-knowledge is insignificant.

Acknowledgement

The authors thank Yunlei Zhao for pointing out some flaws in a previous version of our proto-
col in their technical report [20]. We have made some corrections to our protocol based on our
correspondence with Zhao.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of
authentication and key exchange protocols. Proceedings of STOC 98, 419–428, ACM, 1998.

[2] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. Proceedings of Crypto 2004. Lecture Notes in Computer Science 3152,
273–289, Springer-Verlag, 2004.

[3] M. Bellare and P. Rogaway. Entity authentication and key distribution. Proceedings Crypto
93. Lecture Notes in Computer Science 773, 232–249, Springer-Verlag, 1994.

[4] S. Blake-Wilson, D. Johnson, and A.J. Menezes. Key agreement protocols and their security
analysis. Proceedings of the sixth IMA International Conference on Cryptography and Coding.
Lecture Notes in Computer Science 1355, 30–45, Springer-Verlag, 1997.

[5] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. Proceedings of Eurocrypt 2001. Lecture Notes in Computer Science 2045,
453–474, Springer-Verlag, 2001.

[6] I.B. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks,
Proceedings of Crypto 91. Lecture Notes in Computer Science 576, 445–456, Springer-Verlag,
1992.

[7] W. Diffie, P.C. van Oorschot, and M.J. Wiener. Authentication and authenticated key ex-
changes. Designs, Codes, and Cryptography, vol.2, 107–125, 1992.

[8] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of Cryptology
vol. 1, 77–94, 1988.

[9] O. Goldreich. Zero-knowledge twenty years after its invention. Technical report, Department
of Computer Science, Weizmann Institute of Science, 2002.

17

[10] L. Guillou and J. Quisquater. A “paradoxical” identity-based signature scheme resulting from
zero-knowledge. Proceedings of Crypto 88. Lecture Notes in Computer Science 403, 216–231,
Springer-Verlag, 1990.

[11] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. Proceeding of
Crypto 98. Lecture Notes in Computer Science 1462, 408–423, 1998.

[12] H. Krawczyk. HMQV: A high-performance secure Diffe-Hellman protocol. Proceedings of
Crypto 05. Lecture Notes in Computer Science 3621, 546–466, 2005.

[13] L. Law, A.J. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenti-
cated Key agreement. Designs, Codes and Cryptography, vol. 28, Issue 2, 119-134, 2003.

[14] T. Okamoto. Provably secure and practical identitication schemes and corresponding signature
schemes. Proceeding of Crypto 92. Lecture Notes in Computer Science 740, 31–53, Springer-
Verlag, 1993.

[15] M.D. Raimondo, R. Gennaro, and H. Krawczyk, Deniable authentication and key exchange.
Proceedings of the 13th ACM conference on Computer and communications security. 400–409,
ACM Press, 2006.

[16] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, vol. 4,
161–174, 1991.

[17] D.R. Stinson. Cryptography: Theory and Practice, Third Edition, Chapman & Hall/CRC,
Boca Raton, 2006.

[18] D.R. Stinson and J. Wu. An efficient and secure two-flow zero-knowledge identification proto-
col, to appear in Journal of Mathematical Cryptology.

[19] H.B. Wang, Desired features and design methodologies of secure authenticated key exchange
protoco in the public-key infrastructure setting. Master’s Thesis, University of Waterloo, 2005.

[20] A.C.C. Yao, F.F. Yao, Y.L. Zhao, and B. Zhu, Deniable Internet Key-Exchange,
http://eprint.iacr.org/2007/191.

18

