
Smooth Projective Hashing and Two-Message Oblivious Transfer

Shai Halevi
IBM Research

Yael Tauman Kalai∗

Microsoft Research

October 31, 2010

Abstract

We present a general framework for constructing two-message oblivious transfer protocols
using a modification of Cramer and Shoup’s notion of smooth projective hashing (2002). This
framework is an abstraction of the two-message oblivious transfer protocols of Naor and Pinkas
(2001) and Aiello et al. (2001), whose security is based on the Decisional Diffie Hellman As-
sumption. In particular, we give two new oblivious transfer protocols. The security of one is
based on the Quadratic Residuosity Assumption, and the security of the other is based on the
N ’th Residuosity Assumption. Compared to other applications of smooth projective hashing,
in our context we must deal also with maliciously chosen parameters, which raises new technical
difficulties.

We also improve on prior constructions of factoring-based smooth universal hashing, in that
our constructions do not require that the underlying RSA modulus is a product of safe primes.
(This holds for the schemes based on the Quadratic Residuosity Assumption as well as the
ones based on the N ’th Residuosity Assumption.) In fact, we observe that the safe-prime
requirement is unnecessary for many prior constructions. In particular, the factoring-based
CCA secure encryption schemes due to Cramer-Shoup, Gennaro-Lindell, and Camenisch-Shoup
remain secure even if the underlying RSA modulus is not a product of safe primes.

1 Introduction

In [5], Cramer and Shoup introduced the first practical encryption scheme that was proved CCA
secure in the standard model, with security based on the Decisional Diffie Hellman (DDH) Assump-
tion. They later presented an abstraction of this scheme based on a notion that they called “smooth
projective hashing” [6]. This abstraction yielded two new CCA secure encryption schemes; the se-
curity of one is based on the Quadratic Residuosity Assumption [12] and the security of the other
is based on the N ’th Residuosity Assumption [19].1 The notion of smooth projective hashing was
later used by Gennaro and Lindell [10] in the context of key generation from humanly memorizable
passwords. That work abstracts and generalizes an earlier protocol for this problem due to Katz
et al. [14], whose security is based on the DDH Assumption.

In this work we use smooth projective hashing to construct efficient two-message oblivious
transfer protocols. Our work follows the same pattern, in that it abstracts and generalizes earlier

∗Much of this work was carried out while visiting IBM T.J. Watson Research, New York. Also supported in part
by NSF CyberTrust grant CNS-0430450.

1The N ’th Residuosity Assumption is also referred to in the literature as the Decisional Composite Residuosity
Assumption and as Paillier’s Assumption.

1

protocols for this problem [17, 1] whose security is based on the DDH Assumption. Using smooth
projective hashing in this context raises a new issue. Specifically, we must deal with the case
that the hash family itself is chosen maliciously by the adversary. To this end, we add an extra
requirement to the definition of smooth projective hashing. This issue did not arise in the previous
two applications because these were either in the public key model or in the common reference
string model, and in these models the parameters can be assumed to be generated honestly.

We show that even with this additional requirement, we can still construct smooth projective
hashing from any of the following assumptions: the DDH Assumption, the N ’th Residuosity As-
sumption, and the Quadratic Residuosity Assumption. Moreover, for the last two constructions we
can prove security even when the underlying RSA modulus is not a product of safe primes. We
note that all previous factoring-based constructions of smooth projective hashing did rely on the
assumption that the underlying RSA modulus is a product of safe primes.

1.1 Oblivious Transfer

Oblivious transfer, first introduced by Rabin [20], is a central primitive in modern cryptography.
It is a protocol between a sender, holding two strings γ0 and γ1, and a receiver holding a choice
bit b. At the end of the protocol the receiver should learn the string of his choice (i.e., γb) but learn
nothing about the other string. The sender, on the other hand, should learn nothing about the
receiver’s choice b. Oblivious transfer serves as the basis of a wide range of cryptographic tasks.
Most notably, any secure multi-party computation can be based on a secure oblivious transfer
protocol [21, 11, 15]. Oblivious transfer has been studied in several variants, all of which have
been shown to be equivalent. The variant considered in this paper is the one by Even, Goldreich
and Lempel [9] (a.k.a. 1-out-of-2 oblivious transfer), shown to be equivalent to Rabin’s original
definition by Crépeau [7].

Much work has been devoted to improving the efficiency of oblivious-transfer protocols, mo-
tivated by the fact that oblivious transfer is many times the main efficiency bottleneck with in
protocols for secure multi-party computation. In particular, constructing round-efficient oblivious
transfer protocols is an important task. Indeed, Naor and Pinkas [17, Protocol 4.1] and Aiello et
al. [1] independently constructed a two-message (1-round) oblivious transfer protocol based on the
DDH Assumption. Their work was the starting point of our work.

1.2 Smooth Projective Hashing

Smooth projective hashing was introduced by Cramer and Shoup [6]. Informally, a projective hash
family is a family of keyed hash functions with two types of keys: the primary hashing key that can
be used to compute the hash function on every point in its domain, and a projective key that can only
be used to compute the hash function on a “special subset” of its domain. Moreover, to efficiently
compute the hash value using the projective key one also needs a “witness” for membership in the
special subset. (The domain is typically denoted by X and the special subset is typically denoted
by L.) A projective hash family is smooth if the projective key gives (almost) no information about
the value of the hash function on points outside the special subset. An important property that is
used in all the applications of such families is that it is hard to distinguish members of the special
subset from non-members. This is called the hard subset membership property.

2

1.3 Oblivious transfer from smooth projective hashing

We present a methodology for constructing a two-message oblivious transfer protocol from any
(variant of a) smooth projective hash family. In particular, the protocols in [17, 1] can be viewed as
a special case of this methodology. Moreover, we show that this methodology gives rise to two new
oblivious transfer protocols; one based on the Quadratic Residuosity Assumption, and the other
based on the N ’th Residuosity Assumption. Similarly to the protocols from [17, 1], our protocols
achieve a indistinguishability-based security notion, not a simulation-based notion, see Section 3
for further discussion of this point.

The basic idea. Given a smooth projective hash family with the hard subset membership prop-
erty, consider the following two-message oblivious transfer protocol. Recall that the sender S takes
as input a pair of strings γ0, γ1, and the receiver R takes as input a choice bit b.

R→ S: Generate the hashing parameters Λ (that define the domain X and the special subset L).

Choose a random triple (x0, x1, wb) where xb
$← L, wb is a “witness” for membership of xb ∈ L,

and x1−b
$← X \ L. Send (Λ, x0, x1).

S → R: Choose independently at random a primary hashing key k and a corresponding projective
keys pk. Send pk along with y0 ← γ0 ⊕Hk(x0) and y1 ← γ1 ⊕Hk(x1).

R: Retrieve γb by computing yb ⊕Hk(xb), using the witness wb and the projective key pkb.

The functionality of the protocol is implied by the projection property. The security of the
receiver is implied by the hardness of the subset membership problem on X, since guessing the value
of b implies distinguishing between a random member and a random non-member. The security of
the sender (against an honest-but-curious receiver) is implied by the smoothness property of the
hash family. Specifically, given a random projective key pk and any element in x ∈ X \L, the value
Hk(x) is statistically indistinguishable from random. Thus, the message y1−b gives no information
about γ1−b (since x1−b ∈ X \ L).

Malicious receivers. The above protocol works for an honest-but-curious receiver, but the se-
curity of the sender is no longer guaranteed when considering malicious receivers. For example, a
malicious receiver might choose x0, x1 ∈ L and learn both γ0 and γ1. To overcome this problem,
we extend the notion of smoothness so that it is possible to verify that the function is smooth on
at least one of x0, x1. Note that this must hold even if the hashing parameters Λ are maliciously
chosen by the receiver.

Implementing this extended notion in the context of the DDH assumption is straightforward
[17, 1]. Loosely speaking, in this case the hashing parameters consist of a prime p and two elements

g0, g1 ∈ Z∗p of prime order q|(p− 1). The hashing domain is X
def
= ⟨g0⟩ × ⟨g1⟩ = {(gr00 , gr11) : r0, r1 ∈

Zq}, the special subset is L
def
= {(gr0, gr1) : r ∈ Zq}, and the witness is the exponent r. To enable

the sender to verify that two elements x0, x1 are not both in L, we instruct the receiver to generate
x0, x1 by choosing at random two distinct elements r0, r1 ∈ Zq, setting xb ← (gr00 , gr01), wb ← r0,
and x1−b ← (gr00 , gr11). Notice that xb is uniformly distributed in L, x1−b is uniformly distributed
in X \L, and the sender can easily verify that at least one of x0, x1 is not in L by merely checking
that they agree on their first coordinate and differ on their second coordinate.

3

1.4 Factoring-based smooth projective hashing

Implementing smooth projective hashing with the extra verifiability property in the context of the
Quadratic Residuosity Assumption and the N ’th Residuosity Assumption is not as easy. This part
contains the bulk of technical difficulties of this work.

On top of providing the additional verifiability property, we were also able to somewhat relax
the underlying assumptions that were used in prior work. The factoring-based constructions of
smooth projective hashing, in the work of Cramer and Shoup (as well as all subsequent works),
were only proved secure for the special case where the RSA modulus in use is a product of safe
primes. Namely, they used N ← pq where p, q are distinct odd primes such that p′ = (p− 1)/2 and
q′ = (q − 1)/2 are also odd primes.2 This restriction was explained by “technical reasons,” but we
observe that it is not needed: in fact our factoring-based constructions can be proved secure also
for “generic” RSA moduli (i.e., for any N ← pq where p, q are two odd primes of the same size).

Moreover, using the same tools we can eliminate the need for safe primes in the CCA encryption
schemes that are based on smooth projective hashing (i.e., they too can be implemented without
safe primes). Indeed, we observe that encryption schemes in the literature that are based on the
N ’th Residuosity or Quadratic Residuosity Assumptions (cf. [6, 10, 3]) remain secure even when
the underlying RSA modulus is not chosen as a product of safe primes. In the appendix we explain
how the proofs for the existing schemes can be modified to prove this stronger result, and exemplify
it in detail for the proof of Camenisch and Shoup from [3].

Eliminating the safe primes. We describe the idea that allows us to eliminate the need for safe
primes in the construction of smooth projective hashing based on the N ’th Residuosity Assumption.
(For the construction based on the Quadratic Residuosity Assumption, the idea is similar but even
simpler.)

The only place where prior work really used the safe-prime condition is in proving the hard
subset membership property. Namely, one needs to prove that it is hard to distinguish the special
subset of the hashing scheme from the entire domain.

In the construction based on the N ’th Residuosity Assumption, the hashing parameters are the
RSA modulus N and a random N ’th residue g modulo N2, such that g is a quadratic non residue
with Jacobi symbol +1. The hashing domain is all the elements in Z∗N2 with Jacobi symbol +1,
denoted by JN2 , and the special subset is the subgroup ⟨g⟩ that is generated by g. The safe-prime
condition is used to argue that, with high probability, g generates the subgroup of all the N ’th
residues with Jacobi symbol +1. This is the case since the size of JN2 is φ(N2)/2 = Nφ(N)/2 =
N(p − 1)(q − 1)/2 = 2Np′q′. Thus, with high probability, a random quadratic non residue in the
group JN2 generates the entire group JN2 , which implies that, with high probability, g generates the
subgroup of all the N ’th residues with Jacobi symbol +1. Thus, the N ’th Residuosity Assumption
(for elements with Jacobi symbol +1) immediately implies that it is hard to distinguish the special
subset from the entire domain.

When N is just a plain old RSA modulus, we lose the property that with high probability g
generates the subgroup of all the N ’th residues with Jacobi symbol +1 (this subgroup is typically
not cyclic). We thus need a slightly more involved reduction to prove the hard subset membership
property. In Lemma 5 we show that the N ’th Residuosity Assumption implies that it is hard to

distinguish the subgroup L
def
= ⟨g⟩ from the subgroup X

def
= ⟨g⟩ · ⟨1 +N⟩ of all the elements that can

2p′ and q′ are also called Sophie Germain primes.

4

be generated as x ← gr(1 + N)s mod N2. We therefore get a smooth projective hashing scheme
with domain X and special subset L, and we have the hard subset membership property.

One can see, however, that this construction is still missing one aspect that was present in prior
notions. Namely, there could be elements of Z∗N2 that are not in the hashing domain X. Moreover,
given the parameters N, g and an element x ∈ Z∗N2 , there does not seem to be an easy way of
deciding whether or not x ∈ X. This does not pose any problem for the application to oblivious
transfer, but it potentially poses some problems in the case of chosen-ciphertext-secure encryption.
Luckily, we show in the appendix that the proof of CCA security can be carried through even with
this aspect missing.

2 Notations

For any positive integer X we denote the set {0, 1, . . . , X − 1} by either [X] or ZX . We always
denote the security parameter by n. A function ν : N → [0, 1] is said to be negligible if for every
polynomial p(·) and for every large enough n, ν(n) < 1/p(n). For an algorithm A, y ← A(x)
denotes running A on input x and assigning the result to y. If A is randomized then we denote

y
$← A(x) and y is a random variable. We also denote by x

$← S the action of uniformly choosing
an element from the set S.

For any two random variables X,Y , let Dist(X,Y) denotes the statistical difference between X
and Y , namely Dist(X,Y) , 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|, where S contains the support of

both X and Y . We say that X and Y are ϵ-close, denoted X
ϵ≈ Y , if Dist(X,Y) ≤ ϵ. We say that

the ensembles X = {Xn}n∈N and Y = {Yn}n∈N are statistically indistinguishable, denoted X
s≡ Y ,

if there exists a negligible function ϵ(·) such that for every n ∈ N, the random variables Xn and Yn
are ϵ(n)-close.

We say that the ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguish-

able, denoted X
c≡ Y , if for every non-uniform probabilistic polynomial-time (PPT) distinguisher

D there exists a negligible function ϵ(·) such that for every n ∈ N,

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < ϵ(n)

For simplicity, throughout this paper we say that two random variables Xn and Yn are computa-
tionally (or statistically) indistinguishable, meaning that the corresponding distribution ensembles
{Xn}n∈N and {Yn}n∈N are computationally (or statistically) indistinguishable.

3 Security of Oblivious Transfer

Our definition of oblivious transfer is similar to the ones considered in previous works on oblivious
transfer in the Bounded Storage Model [8, 2], and similar to the definition considered in [17] in the
context of their DDH-based two-message oblivious transfer protocol. We remark that the definition
below is specific for two-message protocols, as we only deal with such protocols in this work. In
these protocols, the receiver R sends the first message, and the sender S sends the second message.

Definition 1 (Secure implementation of Oblivious Transfer) A two-message, two-party pro-
tocol (S,R) is said to securely implement oblivious transfer for ℓ-bit strings (where ℓ : N→ N) if it is
a protocol in which both the sender and the receiver are probabilistic polynomial-time machines that

5

get as input a security parameter n in unary representation. Moreover, the sender gets as input
two strings γ0, γ1 ∈ {0, 1}ℓ(n), the receiver gets as input a choice bit b ∈ {0, 1}, and the following
conditions are satisfied:

• Functionality: If the sender and the receiver follow the protocol then for any security parameter
n, any two input strings γ0, γ1 ∈ {0, 1}ℓ(n), and any bit b, the receiver outputs γb whereas the
sender outputs nothing.3

• Receiver’s security: Denote by R(1n, b) the message sent by the honest receiver with input
(1n, b). Then the ensembles {R(1n, 0)}n∈N and {R(1n, 1)}n∈N are computationally indistin-

guishable; {R(1n, 0)}n∈N
c≡ {R(1n, 1)}n∈N.

• Sender’s security: Denote by S(1n, γ0, γ1, q) the response of the honest sender with input
(1n, γ0, γ1) when the receiver’s first message is q. Then there is a negligible function ν such
that for any n > 0, any three messages γ0, γ1, γ

′ ∈ {0, 1}ℓ(n), and any message q ∈ {0, 1}∗
(from a possibly cheating, not necessarily polynomial-time receiver), it holds that

Dist(S(1n, γ0, γ1, q), S(1n, γ0, γ
′, q)) ≤ ν(n) or Dist(S(1n, γ0, γ1, q), S(1n, γ′, γ1, q)) ≤ ν(n)

Note that similarly to the definitions in [8, 2, 17], Definition 1 is not a simulation-based definition
but rather an indistinguishability-based one. Although it is a meaningful notion and is sufficient
for some application, it is still weaker than the simulation-based notion: In particular it is cannot
offer the same composability properties, and hence it is harder to use it as a building block in secure
multi-party computation protocols.

The simulation-based definition compares the “real world,” where the parties execute the pro-
tocol, to an “ideal world,” where no message is exchanged between the two parties; rather, there
is a trusted party that takes an input from both parties, computes the output of the Oblivious
Transfer functionality on these inputs, and sends the corresponding output to each party. Loosely
speaking, the simulation-based definition asserts that for every efficient adversary A (controlling
either the sender or the receiver) in the “real world” there exists an efficient simulator S, control-
ling the same party in the “ideal world,” so that the outputs of the parties in the ideal world are
computationally indistinguishable from their outputs in the real world. In particular, the simulator
S needs to simulate the view of the adversary A in a computationally indistinguishable manner.

We note that Definition 1 does give a simulation-based guarantee in the case that the sender is
corrupted (if you allow a resetting simulator). In this case, the simulator (who does not know the
choice bit of the actual receiver) simulates the (honest) receiver first with choice bit b = 0, and then
it resets the sender and simulates the honest receiver with choice bit b = 1. This way the simulator
extracts both messages γ0 and γ1 from the corrupted sender A. It then gives (γ0, γ1) to the trusted
party. Then the simulator uses the view of the cheating sender A in the first execution (with the
choice-bit b = 0). The fact that this view is indistinguishable from the “real world” view follows

from the receiver’s security which asserts that {R(1n, 0)}n∈N
c≡ {R(1n, 1)}n∈N, and from the fact

that sender does not receive any output from the trusted party.
On the other hand, Definition 1 does not give a simulation-based guarantee in the case that the

receiver is corrupted. The reason is that a malicious receiver is not guaranteed to “know its own
choice bit b”, and therefore the simulator does not know which input bit to send to the trusted party

3This condition is also referred to as the completeness condition.

6

in order to obtain the desired output γb. However, Definition 1 does guarantee an exponential time
simulation of the receiver’s view of the interaction (similarly to the definition from [17]). Loosely
speaking, the simulator can extract in exponential time a choice-bit b that is consistent with the
receiver’s first message q. Then the simulator gives this bit b to the trusted party, receives an
output γ, and simulates the sender’s message in the protocol by setting it to be S(γ, 0ℓ(n), q) if
b = 0 and S(0ℓ(n), γ, q) if b = 1. This implies that the interaction gives no more information than
what an unbounded receiver can derive from just the value of γb. (We note that if the receiver is
“honest but curious” then the same simulation strategy can be implemented in polynomial time,
and thus Definition 1 does guarantee simulation-based security for honest-but-curious adversaries.)

4 Smooth Projective Hash Functions

Our definition of smooth projective hashing differs in some ways from prior definitions [6, 10],
mainly in that we add the requirement that it is possible to verify that at least one of two given
elements is a non-member. We also depart from the presentation in previous work and define the
notion of smooth projective hashing in terms of the procedures that are used to implement it rather
than in terms of languages and sets. (This is merely a presentation issue, we believe that it makes
the presentation clearer.) At the end of this section we briefly discuss the mapping between our
presentation and the one used in previous work.

Syntax. A hash family H is defined by means of the following six polynomial-time algorithms,
H = (PG, IS, IT,HG,Hash, pHash):

• The parameter-generator PG is a randomized algorithm that takes as input the security

parameter and outputs some parameters, Λ
$← PG(1n).We assume that the security parameter

can be inferred from Λ, and denote the security parameter corresponding to Λ by n(Λ).

• The instance-sampler IS is a randomized algorithm that takes as input the parameters Λ and

outputs a triple, (w, x, x′)
$← IS(Λ). The intent is that x is a member of the special subset, x′

is a non-member, and w is a witness for the membership of x in the special subset.

• The instance-testing algorithm IT tests the parameters Λ and two strings x0, x1, namely
IT(Λ, x0, x1) ∈ {0, 1}. The intent is to test that at least one of x0, x1 is not a member in the
special subset.

• The hash-key generator HG is a randomized algorithm that takes as input the parameters Λ

and outputs two keys (i.e., a primary hashing key and a projective key), (k, pk)
$← HG(Λ).

• The primary hash algorithm Hash takes the parameters Λ, a hash key k, and an element x,
and outputs a string y ← Hash(Λ, k, x).

• The secondary (projection) hash algorithm pHash takes the parameters Λ, a projective key pk,
and a pair (w, x), and outputs a string y ← pHash(Λ, pk, w, x).

7

For every string Λ, consider using Λ as the hashing parameters and let GΛ denote the set of
possible hash values with these parameters, namely

GΛ
def
= {Hash(Λ, k, x) : (w, x, x′) ∈ support(IS(Λ)), (k, pk) ∈ support(HG(Λ))}
∪ {Hash(Λ, k, x′) : (w, x, x′) ∈ support(IS(Λ)), (k, pk) ∈ support(HG(Λ))}

It helps to think of GΛ as a group where we can efficiently compute the group operation and its
inverse. In most of this paper, the group GΛ will be the set of ℓ-bit strings (with the xor operation)
where ℓ = ℓ(n(Λ)) for some polynomially-bound function ℓ(·).

Definition 2 Let H = (PG, IS, IT,HG,Hash, pHash) and let Λ and x be two strings.

Smoothness. Let ϵ ≥ 0. We say that H is ϵ-smooth on (Λ, x) if the following two distributions
are ϵ-close: [

(pk,Hash(Λ, k, x))

]
(k,pk)

$←HG(Λ)

and

[
(pk, y)

]
(k,pk)

$←HG(Λ), y
$←GΛ

The first distribution is induced by choosing (k, pk)
$← HG(Λ) and outputting (pk,Hash(Λ, k, x)),

and the second is induced by choosing independently y
$← GΛ and (k, pk)

$← HG(Λ) and out-
putting (pk, y).

Projection. We say that H is projective on (Λ, x) if for every pair of primary hashing keys k, k′

for which there exist a projective key pk such that both (k, pk) and (k′, pk) are in the support
of HG(Λ), it holds that Hash(Λ, k, x) = Hash(Λ, k′, x).

It is easy to verify that ϵ-smoothness on (Λ, x) and projection on (Λ, x) are contradictory require-
ments (assuming that ϵ < 1− 1

|GΛ|).

Definition 3 (Smooth Projective Hashing) A family H = (PG, IS, IT,HG,Hash, pHash) is a
smooth projective hash family if there exists a negligible function ϵ : N → [0, 1] such that for every
Λ ∈ support(PG), every (w, x, x′) ∈ support(IS(Λ)), and every (k, pk) ∈ support(HG(Λ)), it holds
that

(a) pHash(Λ, pk, w, x) = Hash(Λ, k, x).

(b) H is ϵ(n(Λ))-smooth on (Λ, x′).

(Clearly condition (a) above implies in particular that H is projective on (Λ, x), since the left-hand-
side is independent of k except via the corresponding pk.)

Definition 4 (Verifiable Smoothness) A smooth projective hash family H = (PG, IS, IT,HG,
Hash, pHash) is verifiably smooth if, in addition to the properties (a) and (b) in Definition 3, it
holds that:

(c) For every Λ ∈ support(PG) and every (w, x, x′) ∈ support(IS(Λ)), it holds that IT(Λ, x, x′) =
IT(Λ, x′, x) = 1.

8

(d) For every Λ, x0, x1 such that IT(Λ, x0, x1) = 1, it holds that either H is ϵ(n(Λ))-smooth on
(Λ, x0) or it is ϵ(n(Λ))-smooth on (Λ, x1) (or both).

Definition 5 (Hard Subset Membership) A smooth projective hash family H = (PG, IS, IT,
HG,Hash, pHash) is said to have a hard subset membership property if the distribution ensembles
{An}n∈N, {Bn}n∈N defined below are computationally indistinguishable:

Distribution An: Choose at random Λ
$← PG(1n) and (w, x, x′)

$← IS(Λ) and output (Λ, x, x′).

Distribution Bn: Choose at random Λ
$← PG(1n) and (w, x, x′)

$← IS(Λ) and output (Λ, x′, x).

Note that the difference between An and Bn is just in the order of x and x′. Note also that this
condition is stronger than just requiring indistinguishability between members and non-members in
the special subset (since x and x′ may be chosen in a dependent manner). This stronger requirement
is needed for the Oblivious Transfer application.

4.1 Comments

The definitions above are formulated in a way that is convenient for use in our application of
Oblivious Transfer, but may make it harder to see the correspondence to the notions that were
defined in previous work [6, 10]. We now briefly discuss this correspondence and provide some
other clarifications.

Dealing with “bad inputs.” We stress from the outset that many of the notations and defini-
tions above do not depend on the inputs to the various algorithms being chosen “the right way.” For
example, the set GΛ is well defined even when Λ is not in the support of the parameter-generation
algorithm, and similarly the property of H being ϵ-smooth on (Λ, x) is well-defined for any two
strings Λ and x.

In our application to Oblivious Transfer, we will use the hashing values only for instances that
pass the instance-testing procedure, and will use that procedure to weed out nonsensical inputs. In
particular, if we have some parameters Λ′ that are malformed (in a recognizable way) we can have
the instance-testing always rejecting them, and then the verifiable-smoothness requirement will be
vacuous for such parameters.

Hash domain and the “special subset.” Previous works presented the definitions in terms
of some (parameter dependent) domain XΛ for the hash function, and a “special subset” of that
domain, which is an NP language LΛ ⊂ XΛ. They also required that it be possible to sample both
members of LΛ and non-members in XΛ \ LΛ. In our case, the special subset LΛ is the support
of the second element in the output of the instance-sampler, and the non-members XΛ \ LΛ is the
support of the third element, namely

LΛ = {x : ∃ w, x′ s.t. (w, x, x′) ∈ support(IS(Λ))}
XΛ \ LΛ = {x′ : ∃ w, x s.t. (w, x, x′) ∈ support(IS(Λ))}.

Since we require that the hash family is projective on members of the special subset and smooth
on non-members, it follows that these two sets are indeed disjoint (assuming that |GΛ| > 1).

The sampleable distributions on these sets are the ones induced by the instance-sampler. We
comment that for our application we need to choose these elements in a dependent manner, since
we need to sample pairs (x, x′) that the instance-testing procedure accepts.

9

Projection and smoothness. The projection definition that we use is the usual one: for x ∈ LΛ

(i.e., x that was output as the second element in the output of IS(Λ)), the value of Hash(Λ, k, x)
is determined by the corresponding projective key pk, and moreover it can be efficiently computed
given a “witness” w using the algorithm pHash(Λ, pk, w, x). (This implies in particular that if there
are a few “witnesses” for the same x, the value of pHash(Λ, pk, w, x) is the same for all of them.)

Our smoothness definition is the per-instance definition of Gennaro-Lindell rather than “random
instance” definition of Cramer-Shoup. That is, we need H to be smooth for every non-member x
rather than just for a random non-member.

Some redundancies. One can observe that the definitions above are somewhat redundant. For
example, it is not hard to see that conditions (a), (c) and (d) of Definitions 3 and 4 together imply
also condition (b) (assuming that |GΛ| > 1). Also if H has the hard subset membership property
then requiring IT(Λ, x, x′) = 1 in condition (c) of Definition 4 implies that also IT(Λ, x′, x) = 1
(except perhaps with a negligible probability).

5 Constructing 2-Message OT Protocols

We now show how to construct a two-message Oblivious Transfer protocol from smooth projective
hash functions (defined in Section 4).

Let ℓ : N→ N be a (polynomially-bounded, efficiently computable) function, letH = (PG, IS, IT,
HG,Hash, pHash) be a verifiably-smooth projective hash family with the hard subset membership
property (cf. Definitions 3-5), and assume for simplicity that for every setting of the parameters
Λ ∈ {0, 1}∗ it holds that GΛ = {0, 1}ℓ(n(Λ)). (At the end of this section we briefly discuss the
(straightforward) modifications that are needed to deal with other domains.)4

Let n be the security parameter. Let (γ0, γ1) be the input of the sender, where γ0 and γ1 are
ℓ(n)-bit strings, and let b ∈ {0, 1} be the input of the receiver.

R→ S: The receiver chooses the hashing parameters Λ
$← PG(1n), then samples random instances

(w, x, x′)
$← IS(Λ), sets xb ← x and x1−b ← x′, and sends (Λ, x0, x1) to the sender.

S → R: The sender invokes the testing algorithm IT(Λ, x0, x1) (to verify that the hashing is
smooth on at least one of x0, x1). If the test fails then the sender aborts.

Otherwise the sender runs the hash-key generation algorithm twice independently to get

(k0, pk0)
$← HG(Λ) and (k1, pk1)

$← HG(Λ), sets y0 ← γ0 ⊕ Hash(Λ, k0, x0) and y1 ← γ1 ⊕
Hash(Λ, k1, x1), and sends (pk0, pk1, y0, y1) to the receiver.

R: The receiver retrieves γb by computing γb ← yb ⊕ pHash(Λ, pkb, w, x).

We next prove that the above protocol is secure according to Definition 1. The functionality
follows from the fact that H is projective, which means that the value Hash(Λ, k, xb) that the sender
computes is equal to the value pHash(Λ, pkb, w, x) that the receiver computes. The receiver’s secu-
rity follows from the hard subset membership property, which means that it is hard to distinguish
between the pairs (x, x′) and (x′, x). The sender’s security follows from verifiable smoothness,

4Recall that malformed Λ’s can be handled using the instance-testing algorithm. See discussion in Section 4.1.

10

which means that for at least one of b ∈ {0, 1} the value of Hash(Λ, kb, xb) is (almost) random in
GΛ = {0, 1}ℓ, even given the projective key pkb.

Theorem 1 The above 2-message OT protocol is secure according to Definition 1, assuming that
H is a verifiably-smooth projective hash family that has the hard subset membership property.

Proof The functionality trivially follows from H being projective. Similarly, the receiver’s secu-
rity trivially follows from H having the hard subset membership property, since {R(1n, 0)}n∈N =
{An}n∈N and {R(1n, 1)}n∈N = {Bn}n∈N, where {An}n∈N and {Bn}n∈N are from in Definition 5.
Hence a probabilistic polynomial-time sender Ŝ that can predict with non-negligible advantage
the choice bit b when interacting with R(1n, b) (on infinitely many auxiliary inputs {zn}n∈N with
|zn| ≤ poly(n)) is by definition a distinguisher between {An}n∈N and {Bn}n∈N.

It is left to prove the sender’s security. Fix n ∈ N and γ0, γ1, γ
′ ∈ {0, 1}ℓ(n). Let X = (Λ, x0, x1)

be the first message sent by the receiver. IfX is rejected by the testing algorithm, i.e. IT(Λ, x0, x1) =
0, then the sender aborts regardless of its input (so the three random variables S(1n, γ0, γ1, X),
S(1n, γ0, γ

′, X), and S(1n, γ′, γ1, X) are identical). If IT(Λ, x0, x1) = 1 then by verifiable smoothness
we know that either H is ϵ-smooth on (Λ, x0) or it is ϵ-smooth on (Λ, x1), for some negligible ϵ. In
the latter case we have

S(1n, γ0, γ1, X) = (pk0, pk1, γ0 ⊕ Hash(Λ, k0, x0), γ1 ⊕ Hash(Λ, k1, x1))
ϵ
≈ (pk0, pk1, γ0 ⊕ Hash(Λ, k0, x0), γ1 ⊕ y)

y
$←{0,1}ℓ(n)

= (pk0, pk1, γ0 ⊕ Hash(Λ, k0, x0), γ′ ⊕ y)
y

$←{0,1}ℓ(n)

ϵ
≈ (pk0, pk1, γ0 ⊕ Hash(Λ, k0, x0), γ′ ⊕ Hash(Λ, k1, x1))

= S(1n, γ0, γ
′, X)

and in the former case we similarly get S(1n, γ0, γ1, X)
2ϵ≈ S(1n, γ′, γ1, X). This concludes the proof,

since ϵ = ϵ(n) is negligible in n.

Why two hashing keys? We note that in the protocol above the sender chooses two independent
hashing key pairs (k0, pk0), (k1, pk1). One may wonder whether the proof would go through if the
sender used only one hashing key pair. We claim that the answer is no, and that choosing two
independent hash key pairs is essential, since otherwise the sender’s security property of Definition 1
may be compromised. To see this, consider a modification where the sender uses only one key pair
(k, pk), and consider a cheating receiver who sends a message X = (Λ, x0, x1) where H is smooth
on both (Λ, x0) and (Λ, x1). In this case, the definition of smooth projective hashing does not rule
out the possibility that each of the values Hash(Λ, k, x0), Hash(Λ, k, x1) separately is enough to
uniquely determines the hashing key k. In this case, the sender’s message implies some relation
between γ0 and γ1, violating Definition 1.

5.1 Working with different GΛ

In the protocol above we assumed that for all Λ the group GΛ is {0, 1}ℓ(n(Λ)). Although it is always
possible to use this setting (see discussion after Definition 6 in Section 6), one can sometimes gain
efficiency by working with other groups. For example, for constructions based on DDH it is more

11

natural to work with the underlying DDH group. The properties that we need from GΛ for our
construction to work are the following:

• GΛ should be a quasi-group: Denoting the (quasi) group operation by ‘+’, this means that
for all a, b ∈ GΛ there exist unique x, y ∈ GΛ such that a+ x = y + a = b.

• The group operation ‘+’ and its inverse ‘−’ can be computed efficiently. Namely, there should
be a polynomial-time algorithm that on inputs Λ and a, b ∈ GΛ computes c = a + b ∈ GΛ,
and another one that on inputs Λ and b, c ∈ GΛ computes a = c− b (i.e., an element a ∈ GΛ

such that a+ b = c).

• It should be possible to encode and decode the sender’s inputs as elements in GΛ. If the
sender’s inputs are ℓ-bit strings, there should be polynomial-time algorithms Encode,Decode
so that for all s ∈ {0, 1}ℓ it holds that Encode(Λ, s) ∈ GΛ and Decode(Λ,Encode(Λ, s)) = s.

To work with such a (quasi) group, we modify the protocol so that instead of just computing
yb ← γb ⊕ Hash(Λ, kb, xb), the sender encodes γb as an element Γb ∈ GΛ and then sends to the
receiver Yb ← Γb + Hash(Λ, kb, xb). Similarly, the receiver computes the inverse operation Γb ←
Yb − pHash(Λ, pkb, w, x) and decode Γb to get γb.

The security of this protocol is proved similarly to Theorem 1. The arguments for functionality
and receiver security are exactly as before. As for the sender security, we now replace γ ⊕ y for

y
$← {0, 1}ℓ(n) by Γ+Y for y

$← GΛ. Since GΛ is a quasi-group, this last distribution is the uniform
distribution over GΛ, regardless of what Γ is, and the proof follows.

6 Constructing Smooth Projective Hash Families

We next present two constructions of verifiably-smooth projective hash families with the hard
subset membership property. In one construction the hard subset membership property is based
on the Quadratic Residuosity Assumption, and in the other the hard subset membership property
is based on the N ’th Residuosity Assumption. A key vehicle in both constructions is the notion of
a verifiably-ϵ-universal projective hash family.

Definition 6 (Universal Hashing) Let H = (PG, IS, IT,HG,Hash, pHash), let Λ and x be two
strings, and let ϵ > 0. We say that H is ϵ-universal on (Λ, x) if for all y0 ∈ GΛ and all pk0 ∈ {0, 1}∗
it holds that

Pr
(k,pk)

[pk = pk0 and Hash(Λ, k, x) = y0] ≤ ϵ · Pr
(k,pk)

[pk = pk0]

where the probability is taken over a random choice (k, pk)
$← HG(Λ).

The definition of Verifiably-ϵ-universal Projective Hashing is similar to Definitions 3 and 4 of
Verifiably-ϵ-smooth Projective Hashing. Specifically, conditions (a) and (c) below are identical to
the ones in Definitions 3 and 4, and conditions (b′) and (d′) only differ in that we replaced ϵ-smooth
by ϵ-universal (and ϵ need not be negligible).

Definition 7 (Verifiably-ϵ-universal Projective Hashing) Let ϵ(·) be a function. A family
H = (PG, IS, IT,HG,Hash, pHash) is an ϵ-universal projective hash family if for every Λ in the
support of PG, every (w, x, x′) in the support of IS(Λ), and every (k, pk) in the support of HG(Λ),
it holds that

12

(a) pHash(Λ, pk, w, x) = Hash(Λ, k, x).

(b′) H is ϵ(n(Λ))-universal on (Λ, x′).

We say that H is verifiably-ϵ-universal projective hash family if in addition:

(c) For every Λ in the support of PG and every (w, x, x′) in the support of IS(Λ), it holds that
IT(Λ, x, x′) = IT(Λ, x′, x) = 1.

(d′) For every Λ, x0, x1 such that IT(Λ, x0, x1) = 1, it holds that either H is ϵ(n(Λ))-universal on
(Λ, x0) or it is ϵ(n(Λ))-universal on (Λ, x1) (or both).

Cramer and Shoup have shown in [6] how to transform an ϵ-universal projective hash family
into a smooth projective hash family (for any ϵ < 1), and the same transformation also works
for transforming verifiably-ϵ-universal projective families into verifiably-smooth projective families.
In a nutshell, one first reduces ϵ to ϵt by choosing t independent hashing key-pairs and hashing t
times the same element. One then uses a “strong randomness extractor” [18] to extract a nearly
uniform bit string from the t hash values. The new hash algorithms thus use t keys of the original
algorithms and also the seed s for the extractor, setting

Hash′(Λ, (s, k1, . . . , kt), x) = Extract(s;Hash(Λ, k1, x), . . . ,Hash(Λ, kt, x))

pHash′(Λ, (s, pk1, . . . , pkt), w, x) = Extract(s; pHash(Λ, pk1, w, x), . . . , pHash(Λ, pkt, w, x))

To extract ℓ bits, it is sufficient to choose t so that t · log(1/ϵ) ≥ ℓ + ω(log(n(Λ))) (see, e.g.,
Lemma 4 in the long version of [6]).5 We comment that the resulting construction always has
G′Λ = {0, 1}ℓ, regardless of the group GΛ of the original construction. In the remainder of this
paper we present two such constructions, one based on the Quadratic Residuosity Assumption and
the other based on the N ’th Residuosity Assumption. Both schemes are obtained by modifying the
universal projective schemes of Cramer and Shoup to add the verifiable-universality property (and
also to improve some parameters).

6.1 Some Algebraic Facts

We begin by recalling some algebraic facts that are used throughout the two constructions. For a
finite algebraic group G (written multiplicatively), the order of G is the number of elements in it.
The order of an element x ∈ G, denoted ord(x), is the smallest positive integer e such that xe = 1,
and it always divides the order of the group. Some other useful facts about the order of groups and
elements are stated below.

1. For any x ∈ G, ord(1/x) = ord(x). Also for any x, y ∈ G, ord(xy) divides ord(x) · ord(y).

2. For any integer m and element x ∈ G, ord(xm) = ord(x)
GCD(m,ord(x)) . In particular, if ord(x)

is co-prime with m then ord(xm) = ord(x), and if ord(x) is not co-prime with m then
ord(xm) ≤ ord(x)/2.

3. If m is co-prime with the order of G, then the map x 7→ xm is a permutation on G.

5Cramer and Shoup describe in [6] some optimizations to eliminate the extraction step in their factoring-based
constructions, but these optimizations are not applicable when the hashing parameters are potentially malicious.

13

An easy corollary from the second fact above, is that if ord(x) < 2ℓ then the order of xm
ℓ
must be

co-prime with m. Another corollary of the facts above, which we use in Section 6.3, is the following:

Lemma 2 Let x, y ∈ G be two elements and let m = ord(x/y). Then there exist two integers α, β,
such that α divides ord(x), β divides ord(y), and αβ = m.

Proof If we set α ← GCD(m, ord(x)) then clearly α divides both m and ord(x). It is left to

show that β
def
= m/α divides ord(y). Denote ρ

def
= ord(x)/α and observe that ρ and β are co-prime

(since ρ = ord(x)/GCD(m, ord(x)) and β = m/GCD(m, ord(x))). Now m = ord(x/y) must divide

ord(x) ·ord(1/y) = ord(x) ·ord(y). This means that also m
α divides ord(x)ord(y)

α , namely β | ρ ·ord(y).
But since β and ρ are co-prime, then β must divide ord(y).

6.2 A construction based on the Quadratic Residuosity Assumption

Let p, q be distinct odd primes, let N ← pq and let QRN denote the subgroup consisting of all
squares of elements in the multiplicative group Z∗N . Also, let JN be the subgroup of Z∗N consisting
of all elements with Jacobi symbol +1. Then the order of Z∗N is φ(N), the order of JN is φ(N)/2,
and the order of QRN is φ(N)/4. The Quadratic Residuosity Assumption asserts (informally) that
given only N , it is hard to distinguish random elements in JN from random elements in QRN .

Assumption 8 (Quadratic Residuosity [12]) The following ensembles are computationally in-
distinguishable

{(N, x) : p, q
$← Primes(n), N ← pq, x

$← JN}n∈N
c≡ {(N, y) : p, q

$← Primes(n), N ← pq, x
$← Z∗N , y ← x2 mod N}n∈N

where Primes(n) denotes the set of prime numbers between 2n and 2n+1 and JN is the subgroup of
Z∗N of elements with Jacobi symbol +1.

Blum integers. A Blum integer is a product of two primes, both of which are congruent to
3 modulo 4. It is not hard to see that if the Quadratic Residuosity Assumption holds, it must
also hold when the moduli are chosen as Blum integers. This follows since (a) Blum integers are

“dense” (i.e., when choosing p, q
$← Primes(n), there is a non-negligible probability to get p ≡ q ≡ 3

(mod 4)), and (b) Given a reliable oracle for Quadratic Residuosity, it is easy to check if a modulus
N = pq is a Blum integer (by checking that N ≡ 1 (mod 4) and that N − 1 is not a quadratic
residue modulo N). Below we will assume that determining quadratic residuosity is hard modulo
Blum integers.

The Cramer-Shoup Scheme. Cramer and Shoup constructed in [6] an ϵ-universal projective
hash family from the Quadratic Residuosity Assumption (in the special case where N is a product
of two safe primes). Omitting some details, the hash parameters are the modulus N ← pq and

a quadratic residue g
$← QRN , the hashing key is a random integer k

$← {1, 2, . . . , N/2}, the
projective key is pk ← g2k mod N , the “special subset” is LN,g = {g2w : w < N/2}, the exponent w
is a “witness” for x ∈ LN,g, and the “non-members” are those elements x ∈ JN \ QRN (i.e., the

14

elements of even order). Given the witness w for the element x and the projective key pk, one can
compute the hash value as

pHash(N, g, pk, w, x) = pkw = g2kw = xk (mod N)

Cramer and Shoup proved that when N is a product of two safe primes, this scheme is a (1/2)-
universal projective family. Moreover, they also proved that when N is a product of two safe
primes, distinguishing members from non-members can be reduced to the Quadratic Residuosity
Assumption. These proofs make strong use of the fact that when N is a product of two safe primes,
the subgroup of quadratic residues is cyclic and consists of exactly those elements in Z∗N whose
order is odd.

Our Modifications. In our case we must also consider a maliciously chosen modulus N that is
not necessarily a product of two primes. To get verifiable smoothness (or verifiable universality) we
need a way of checking that (a) the order of the element g is odd, and (b) the order of at least one
of the two given elements x0, x1 is even. The latter test can be done by checking that x0 = N − x1
(which implies that ord(x1/x0) = 2, and hence x0, x1 cannot both have odd order). For the former
test, since we do not know how to test that g has odd order, we instead force it into the subgroup
of odd-order elements by raising it to the power of 2⌈logN⌉. Namely, instead of using the element g
itself we use the element g2

⌈logN⌉
. (We note that the trick of forcing g into the odd-order subgroup

was used also in [13], as a way of eliminating the need for moduli of a special form.)

6.2.1 Detailed Construction

Using our notations from Section 4, we now describe the six algorithms that define the hash family
HQR = (PG, IS, IT,HG,Hash, pHash).

Parameter-generator PG(1n). Choose at random two n-bit prime numbers p, q, with p < q <

2p − 1 and p ≡ q ≡ 3 (mod 4). Set N ← pq, choose at random an element g′
$← Z∗N , set

g ← (g′)2 mod N , and output Λ← (N, g).

Instance-sampler IS(N, g). Choose at random w
$← ZN , compute T ← 2⌈logN⌉, x← (gT)w mod

N and x′ ← N − x. Output (w, x, x′).

Instance-testing algorithm IT(N, g, x, x′). Check that N > 22n, g, x ∈ Z∗N , and x′ = N − x.
Output ‘1’ if all the tests pass and ‘0’ otherwise.

Hash-key generator HG(N, g). Choose k
$← ZN , set T ← 2⌈logN⌉ and pk ← (gT)k mod N .

Output (k, pk).

Primary hashing algorithm Hash(N, g, k, x). Output xk mod N .

Projective hash algorithm pHash(N, g, pk, w, x). Output pkw mod N .

Remark. Since we only use the value gT for hashing (never g itself), one can be tempted to drop

the squaring in the Parameter-generator and simply choose at random g
$← Z∗N . We note, however,

that our proof of the hard subset membership property (Lemma 3) relies on this extra squaring
operation.

15

6.2.2 Proof of Security

We now show that the construction above has a hard subset membership domain under the
Quadratic Residuosity Assumption, and that it is a verifiable-ϵ-universal projective hash family
with ϵ ≈ 1

2 .

Lemma 3 Under the Quadratic Residuosity Assumption, the construction of H from Section 6.2.1
has the hard subset membership property.

Proof We need to prove indistinguishability between the ensembles

An =
⟨
N, g, x, x′

⟩
n

and Bn =
⟨
N, g, x′, x

⟩
where arithmetic is modulo N , and both ensembles are taken over choosing

p, q
$← Primes(n) s.t. p ≡ q ≡ 3 (mod 4), N ← pq, T ← 2⌈logN⌉, g′

$← Z∗N ,

g ← (g′)2, w
$← ZN , x← (gT)w, x′ ← N − x (mod N)

Recall that when N is a Blum integer, then the quadratic residues modulo N are exactly these
elements that have odd order in Z∗N (since the order of QRN is φ(N)/4, which is odd). Moreover,
every quadratic residue has exactly four square roots modulo N . If (r1, r2, r3, r4) are the four square
roots of some x ∈ QRN then exactly one of them is itself a quadratic residue modulo N (call it r1),
and exactly two have Jacobi symbol +1 modulo N , namely r1 and N − r1.

Assume for the sake of contradiction that there exists a PPT algorithm A that distinguishes
between the ensembles An and Bn with non-negligible probability. Let

p1(n)
def
= Pr[A(N, g, x, x′) = 1], p2(n)

def
= Pr[A(N, g, x′, x) = 1], and ϵ(n)

def
= |p1(n)− p2(n)|

We describe a PPT distinguisher D for Quadratic Residuosity modulo Blum integers with advantage
(close to) ϵ(n). Since the Quadratic Residuosity Assumption implies in particular that it is hard
to decide quadratic residuosity modulo Blum integers, then D violates the Quadratic Residuosity
Assumption. The distinguisher D(N, z) in our reduction works as follows:

1. Choose w
$← ZN and set T ← 2⌈logN⌉.

2. Set g ← z2 mod N , x0 ← z · (gT)w mod N and x1 ← N − x0.

3. Run A to get b← A(N, g, x0, x1), and output b.

Below we analyze the reduction under the simplifying assumption that the exponent w is chosen
uniformly in Zφ(N) rather than in ZN , both in the scheme and in the reduction. It is well known
that this modification changes the various distributions by only O(2−n) (where n is the bit-length
of p, q).

Under this assumption, we show that when z is a quadratic residue the input to A is distributed
according to An, and when z is a quadratic non-residue the input to A is distributed according to
Bn. It thus follows that when z is a random element in QRN then D outputs 1 with probability
p1(n) and when z is a random element in JN then D outputs 1 with probability p2(n), so the
advantage of D is p1(n) − p2(n) = ϵ(n) (minus the negligible deviation caused by our simplifying
assumption).

16

In both cases, the modulus N is chosen just like in the scheme HQR and the element g is a
random quadratic residue modulo N . It is left to show that (x0, x1) in the reduction are distributed
like (x, x′) in the scheme when z is a quadratic residue, and like (x′, x) in the scheme when z is a
quadratic non-residue.

Case 1: z ∈ QRN . In this case we know that β
def
= ord(z) is an odd integer, which implies that the

order of g = z2 mod N is the same as the order of z, namely ord(g) = ord(z) = β. Also, since β is

odd then µ
def
= 2−1 mod β and τ

def
= T−1 mod β exist, and we have z = gµ (mod N). Hence in this

case we can write
x0 = z · (gT)w = gµ+Tw = gT (τµ+w) (mod N)

Now notice that since w is random in Zφ(N) and β divides φ(N), the random variables τµ+w mod β

and w mod β are identically distributed, so x0 ← gT (w+µτ) mod N in the reduction is distributed
identically to x← (gT)w mod N in the protocol.

Case 2: z ∈ JN \QRN . In this case we know that z′
def
= N − z is a quadratic residue modulo N .

By the same reasoning as above, we know that β
def
= ord(z′) is an odd integer, which implies that

the order of g ← z2 = (z′)2 mod N is also β, that µ
def
= 2−1 mod β and τ

def
= T−1 mod β exist, and

that z′ ← gµ mod N . Hence in this case we can write

x1 = −(z · (gT)w) = z′ · (gT)w = gµ+Tw = gT (τµ+w) (mod N)

and by the same arguments as above we have that x1 ← gT (w+µτ) mod N in the reduction is
distributed identically to x← (gT)w mod N in the protocol.

Lemma 4 The construction of HQR from Section 6.2.1 is a verifiable-ϵ-universal projective hash
family, where ϵ < 1

2 +O(2−n).

Proof The projectiveness and the completeness of the instance-testing (conditions (a) and (c) in
Definition 7) are easy to check: For any RSA modulus N and any g ∈ QRN , w ∈ ZN , and k ∈ ZN ,
setting x← (gT)w mod N and pk ← (gT)k mod N (where T = 2⌈logN⌉) we get for Condition (a):

pHash(N, g, pk, w, x) = pkw = (gTk)w = (gTw)k = xk = Hash(N, g, k, x) (mod N)

Also Condition (c) holds trivially.
The more interesting property is the verifiable-ϵ-universality (property (d′)), which we prove

next. (Note that properties (a), (c), and (d′) together imply also property (b′).) Let (N, g, x, x′)
be any four elements such that IT(N, g, x, x′) = 1. Namely, N > 22n, g, x ∈ Z∗N , and x′ = N − x.
Note that since x/x′ = −1 (mod N) and ord(−1) = 2, then at least one of x, x′ has an even order
modulo N . We next show that for any element z of even order, HQR is ϵ-universal on (N, g, z),
which implies that it must be ϵ-universal on at least one of x, x′.

Fix an odd modulus N > 2 and some g, z ∈ Z∗N such that e
def
= ord(z) is even. Also denote

τ
def
= ord(gT) (where T = 2⌈logN⌉) and observe that τ must be odd and must divide φ(N). We

again make the simplifying assumption that the hashing key k is chosen from Zφ(N) instead of from

ZN , thus introducing an error of O(1/
√
N) = O(2−n) into the analysis. Under this assumption we

show that for any pk and any y, it holds that

Pr
k

$←Zφ(N)

[gTk = pk, y = zk] ≤ 1

2
· Pr
k

$←Zφ(N)

[gTk = pk]

17

We consider the following procedure for choosing k
$← Zφ(N): First choose k0

$← {0, . . . , τ − 1},
then k1

$← {0, 1, . . . , φ(N)
τ − 1}, and then set k ← k0+ τ · k1. Note that pk = (gT)k depends only on

the choice of k0. It is therefore sufficient to show that for any k0 (that determines pk) and any y,
it holds that Prk1 [z

k0+τ ·k1 = y] ≤ 1
2 . In other words, let Ky be the set of all values that yield y,

Ky
def
=

{
k1 ∈

[
0, φ(N)

τ − 1
]

: zk0+τ ·k1 = y (mod N)
}
,

and we need to show that Ky contains no more than φ(N)
2τ values. We observe that e (the order

of z) does not divide τ (the order of gT) since e is even and τ is odd. Therefore zτ ̸= 1 (mod N),
which means that for any value of k1, z

k0+τ ·k1 ̸= zk0+τ ·(k1+1) (mod N). Hence the set Ky cannot

contain two consecutive integers, and since φ(N)
τ is even then Ky cannot contain more than half

the values in [0, φ(N)
τ − 1]. This concludes the proof.

6.3 A construction based on the N ’th Residuosity Assumption

Let N be an odd positive integer and consider the multiplicative group Z∗N2 and the two subsets

RN
def
= {xN : x ∈ Z∗N2} and GN

def
= {1 + vN : v ∈ ZN}

RN is the set of N ’th residues, which is a subgroup of Z∗N2 of order φ(N). GN is also a subgroup
of Z∗N2 , which is homomorphic to the additive group ZN (and thus has order N). Moreover, the
order of an element (1 + vN) in Z∗N2 equals the order of v in the additive group ZN . The group
Z∗N2 is homomorphic to the direct product of GN and RN , Z∗N2 ≈ GN ×RN . In particular, Z∗N2 has
order N · φ(N). The N ’th Residuosity Assumption, originally introduced by Paillier [19], asserts
(informally) that for an RSA modulus N , it is hard to distinguish random elements of Z∗N2 from
random elements of RN .

Assumption 9 (N ’th Residuosity [19]) The following ensembles are computationally indistin-
guishable

{(N, x) : p, q
$← Primes(n), N ← pq, x

$← Z∗N2}n∈N
c≡ {(N, y) : p, q

$← Primes(n), N ← pq, x
$← Z∗N2 , y ← xN mod N2}n∈N

where Primes(n) denotes the set of prime numbers between 2n and 2n+1.

The Cramer-Shoup Scheme. Cramer and Shoup constructed in [6] an ϵ-universal projective
hash family from the N ’th Residuosity Assumption (in the special case where N is a product of
two safe primes). This construction is very similar to the quadratic Residuosity construction, with
the group of quadratic residues modulo N replaced with the group of N ’th residues modulo N2.
Omitting some details again, the hash parameters Λ are the modulus N ← pq and an N ’th residue

g ∈ RN (with Jacobi symbol +1), the hashing key is a random integer k
$← {1, 2, . . . , ⌊N2/2⌋}, the

projective key is pk ← gk mod N2, and the hash is computed as Hash(N, g, k, x) = xk mod N2.
The “special subset” is LN,g = {gw : w < N/2}, the exponent w is a “witness” for x ∈ LN,g, and
the “non-members” are those elements x ∈ Z∗N2 (with Jacobi symbol +1) whose order is divisible

18

by p or q. Given the witness w for the element x and the projective key pk, one can compute the
hash value as

pHash(N, g, pk, w, x) = pkw = gkw = xk (mod N2)

Cramer and Shoup proved that when N is a product of two safe primes, this scheme is an ϵ-universal
projective family with ϵ ≈ max{1/p, 1/q}). Moreover, for that case they reduced distinguishing
members from non-members to the N ’th Residuosity Assumption. Similarly to the Quadratic
Residuosity construction, here too the proofs make strong use of the fact that when N is a product
of two safe primes, the N ’th residues are exactly those elements of Z∗N2 whose order is co-prime
to N , and moreover the subgroup of N ’th residues with Jacobi symbol +1 is cyclic.

Our Modifications. In our case we must also consider a maliciously chosen modulus N that is
not necessarily a product of two primes. To get verifiable smoothness (or verifiable universality) we
need a way of checking that (a) the order of the element g is co-prime with N , and (b) the order of
at least one of the two given elements x0, x1 is not co-prime with N . For the former, since we do
not know how to test that g belongs to the subgroup of elements whose order is co-prime with N ,
we instead force it into that subgroup by raising it to the power of N ⌈2 logN⌉. Namely, instead of
using the element g itself we use the element gN

⌈2 logN⌉
mod N2. (Again, the use of this trick is

similar to [13].)
The latter verification can in principle be done by checking that x1 ̸= x0 and that (x1/x0)

N = 1
(mod N2). This implies that the order of x1/x0 in Z∗N2 divides N and is greater than one, and
as ord(x1/x0) divides ord(x1) · ord(1/x0) = ord(x1) · ord(x0), it means that ord(x1) and ord(x0)
cannot both be co-prime with N . In our scheme, however, we use a slightly more elaborate test
that yields better universality bound ϵ. Specifically, we test that x1/x0 is of the form (1 + vN)
where v and N are co-prime. With these modifications (which are introduced to get verifiability),
we also observe that we no longer need the RSA modulus to be a product of safe primes, and also
we do not restrict our attention to elements with Jacobi symbol +1.

6.3.1 Detailed Construction

Using our notations from Section 4, we now describe the six algorithms that define the hash family
HNR = (PG, IS, IT,HG,Hash, pHash).

Parameter-generator PG(1n). Choose two random n-bit prime numbers p, q (with p < q < 2p).

Set N ← pq, choose an element g′
$← Z∗N2 , set g ← (g′)N mod N2, and output Λ← (N, g).

Instance-sampler IS(N, g). Choose v, w
$← Z∗N , compute T ← N ⌈2 logN⌉, x← (gT)w mod N2 and

x′ ← x · (1 + vN) mod N2. Output (w, x, x′).

Instance-testing algorithm IT(N, g, x, x′). Check that N > 22n and that g, x ∈ Z∗N2 . Then set
d← x′/x mod N2, verify that (d− 1) is divisible by N (over the integers) and set v ← (d− 1)/N .
Finally, verify that v and N are co-prime. Output ‘1’ if all the tests pass and ‘0’ otherwise.

Hash-key generator HG(N, g). Choose k
$← ZN2 , set T ← N ⌈2 logN⌉ and pk ← (gT)k mod N2.

Output (k, pk). (Note that the order of gT must be co-prime with N .)

Primary hashing algorithm Hash(N, g, k, x). Output xk mod N2.

Projective hash algorithm pHash(N, g, pk, w, x). Output pkw mod N2.

19

Remark. Since we only use the value gT for hashing (never g itself), one can be tempted to drop

the exponentiation in the Parameter-generator and simply choose at random g
$← Z∗N2 . We note,

however, that our proof of the hard subset membership property (Lemma 5) relies on this extra
exponentiation.

6.3.2 Proof of Security

Lemma 5 Under the N ’th Residuosity Assumption, the construction of HNR from Section 6.3.1
has the hard subset membership property.

Proof We need to prove indistinguishability between the ensembles

An =
⟨
N, g, x, x′

⟩
n

and Bn =
⟨
N, g, x′, x

⟩
where the arithmetic is modulo N2, and both ensembles are taken over choosing

p, q
$← Primes(n), N ← pq, T ← N ⌈2 logN⌉, g′

$← Z∗N2 ,

g ← (g′)N , w, v
$← Z∗N , x← (gT)w, x′ ← x(1 + vN) (mod N2)

Assume for the sake of contradiction that there exists a PPT algorithmA that distinguishes between
the ensembles An and Bn with non-negligible probability. Let

p1(n)
def
= Pr[A(N, g, x, x′) = 1], p2(n)

def
= Pr[A(N, g, x′, x) = 1], and ϵ(n)

def
= |p1(n)− p2(n)|

Assume without loss of generality that there is an infinite set S ⊆ N such that for every n ∈ S it
holds that p1(n) ≥ p2(n), and moreover ϵ(n) = p1(n) − p2(n) ≥ 1

poly(n) . We now describe a PPT

distinguisher D for the N ’th Residuosity Assumption with advantage (close to) ϵ(n)/2 for every
n ∈ S, using A as a subroutine. D(N, z) works as follows:

1. Choose a random bit b
$← {0, 1} and v, w

$← Z∗N .

2. Set g ← zN mod N2, x← zw mod N2, and x′ ← x(1 + vN) mod N2.

3. Set xb ← x and x1−b ← x′, run A to get b′ ← A(N, g, x0, x1), and output b′ ⊕ b.

We first claim that when the input z is chosen as a random N ’th residue modulo N2 then the
distribution on (N, g, x, x′) is nearly identical to the distribution in the actual scheme. To see this,
first note that since N was chosen as N ← pq where p, q are primes and p < q < 2p − 1, then N
and φ(N) are co-prime. Next, we make the simplifying assumption that the exponent w is chosen
at random in Zφ(N) instead of from Z∗N (in both the reduction and the instant-sampling algorithm
of the scheme itself). It is well known that this modification changes the various distributions by
only O(2−n) (where n is the bit-length of p, q).

Since RN has order φ(N), which is co-prime with N , it follows that the maps x 7→ xN , x 7→ xT

and x 7→ xN
−1 mod φ(N) are all permutations on RN . Hence choosing g

$← RN (as done in the

scheme) induces the same distribution as choosing z
$← RN and setting g ← zN (as in the reduction).

Moreover, choosing w
$← Zφ(N) and setting x ← (gT)w (as in the scheme) induces the same

distribution as choosing w
$← Zφ(N) and setting x ← zw = gN

−1w (mod φ(N)) (as in the reduction).

20

Finally, computing x′ from x is done in exactly the same way in the scheme and in the reduction.
We thus get that for every n ∈ S,

Pr
N,z

$←RN

[D(N, z) = 1] ≥ Pr[b = 0] · Pr[A(N, g, x, x′) = 1] + Pr[b = 1] · Pr[A(N, g, x′, x) = 0]−O(2−n)

=
1

2
·
(
Pr[A(N, g, x, x′) = 1] + (1− Pr[A(N, g, x′, x) = 1])

)
−O(2−n)

=
1 + ϵ(n)

2
−O(2−n)

We next show that when z is a random element in Z∗N2 then the input to A is independent of the

bit b. We first observe that for any fixed x ∈ Z∗N2 and w ∈ Z∗N , choosing at random v
$← Z∗N

and setting x′ ← x(1 + vN) induces the same distribution as setting x′ ← x(1 + vwN) (since both
v and vw are uniform in Z∗N). In the rest of the analysis, we therefore consider this alternate
setting of x′ in Step 2 of the reduction. Namely, we consider the modified reduction where Step 2
is replaced by

2′. Set g ← zN mod N2, x← zw mod N2, and x′ ← x(1 + vwN) mod N2.

Note that with this alternate step, we have x′ = zw(1 + vN)w = (z(1 + vN))w (mod N2).

Next notice that for any fixed v ∈ Z∗N and a randomly chosen z
$← Z∗N2 , the two distribu-

tions (z, z(1 + vN)) and (z(1 + vN), z) are identical. This implies that also the two distributions
(zw, (z(1 + vN))w) and ((z(1 + vN))w, zw) are identical, for every fixed v, w ∈ Z∗N .

Finally, since for all z, v is holds that zN = (z(1 + vN))N (mod N2), the distribution of the
random variable (N, zN , zw, (z(1 + vN))w) = (N, g, x, x′) is identical to the distribution of the
random variable (N, zN , (z(1+ vN))w, zw) = (N, g, x′, x). Hence the input of A (and therefore also
its output) is independent of the bit b that D chooses in Step 1, and thus Pr[D(N, z) = 1] = 1

2 .
Combining the analysis for the two cases, we get that for every n ∈ S,

Pr
N,z

$←RN

[D′(N, z) = 1]− Pr
N,z

$←Z∗
N2

[D′(N, z) = 1] ≥ 1 + ϵ(n)

2
−O(2−n)− 1

2
=

ϵ(n)

2
−O(2−n)

Lemma 6 The construction of HNR from Section 6.3.1 is a verifiable-ϵ-universal projective hash
family where ϵ(n) ≤ 2−n + 2−2n.

Proof The projection and the completeness of the scheme (conditions (a) and (c) in Definition 7)
are easy to check: For any RSA modulus N and any g ∈ RN , w ∈ Z∗N , and k ∈ ZN2 , setting
x← (gT)w mod N2 and pk ← (gT)k mod N2 (where T = N ⌈2 logN⌉) we get for Condition (a):

pHash(N, g, pk, w, x) = pkw = (gTk)w = (gTw)k = xk = Hash(N, g, k, x) (mod N2)

As for Condition (c), the instance-sampler sets x′ ← x(1 + vN) mod N2 for some v ∈ Z∗N . Con-

dition (c) follows from the fact that (x′/x mod N2)−1
N = v, (x/x′ mod N2)−1

N = N − v, and both v and
N − v are co-prime with N .

The more interesting property is the verifiable-ϵ-universality (property (d′)), which we prove
next. (Note that properties (a), (c), and (d′) together imply also property (b′).) Fix any (N, g, x, x′)

21

such that IT(N, g, x, x′) = 1. Namely, N > 22n, g, x ∈ Z∗N2 , and x′ = x(1+vN) (mod N2) for some
v ∈ Z∗N (which means that also x′ ∈ Z∗N2). We show that either HNR is ϵ-universal on (N, g, x) or
it is ϵ-universal on (N, g, x′).

Denote d
def
= (x′/x) = 1 + vN (mod N2), and recall that the order of d in Z∗N2 is the same

as the order of v in the additive group ZN , which is exactly N (since v is co-prime with N). By
Lemma 2, there exist two integers α, β such that αβ = N , α divides ord(x) and β divides ord(x′).
We now show that H is (1β + 1

N−1)-universal on (N, g, x′), and a similar argument shows that it

is also (1α + 1
N−1)-universal on (N, g, x). Observing that N > 22n and thus either α or β must be

larger than 2n completes the proof.

Recall that the hashing key is chosen as k
$← ZN2 , the projective key is then computed as

pk ← gTk mod N2 where T = N ⌈2 logN⌉, and the hash function is computed as Hash(N, g, k, x) =
xk mod N2. We make the simplifying assumption that the hashing key k is chosen from Zφ(N2)

instead of from ZN2 , thus introducing an error of O(1/
√
N) = O(2−n) into the analysis.

For the rest of the proof denote τ
def
= ord(gT) and observe that τ is co-prime with N and

must divide φ(N). Consider now the following procedure for choosing the hashing key k, that

implies the same distribution as choosing k
$← Zφ(N2): Choose k0

$← {0, . . . , τ − 1}, then k1
$←

{0, 1, . . . , φ(N
2)

τ − 1}, and then set k ← k0 + τk1. Observe that the projective key pk depends only

on the choice of k0, since gT (k0+τ ·k1) = gTk0 (mod N2). Below we prove, however, that the hash
value on at least one of x, x′ must depend also on the choice of k1. Since k is chosen as k = k0+τk1,
we have

Hash(N, g, k, x′) = (x′)k = (x′)k0 · (x′)τk1 (mod N2).

Also, since τ is co-prime with N , then it is also co-prime with β (as β divides N). Hence for two
different values k1 ̸= k′1 (mod β) we also have τk1 ̸= τk′1 (mod β). As β also divides ord(x′), this
means that also τk1 ̸= τk′1 (mod ord(x′)), and therefore (x′)τk1 ̸= (x′)τk

′
1 .

Next notice that τ |φ(N) implies τ ≤ φ(N) and so φ(N2)
τ − 1 ≥ N − 1 ≥ β − 1. It follows

that when choosing k1
$← {0, 1, . . . , φ(N

2)
τ − 1}, the random variable (k1 mod β) can assume all

the values between 0 and β − 1, so (x′)τ ·k1 can assume at least β different values modulo N2.

Moreover, each value of (k1 mod β) occurs either
⌊
(φ(N

2)
τ − 1)/β

⌋
or

⌈
(φ(N

2)
τ − 1)/β

⌉
times, and

with φ(N2)
τ − 1 ≥ N − 1 it means that no value has probability of more than 1

β + 1
N−1 . Hence H is

(1β + 1
N−1)-universal on (N, g, x′).

A symmetric argument shows that H is (1α + 1
N−1)-universal on (N, g, x). Since αβ = N > 22n

then at least one of α, β must be larger than 2n, hence H is (2−n + 2−2n)-universal on at least one
of (N, g, x) or (N, g, x′).

7 Performance

We analyze the performance of our two oblivious transfer schemes: the one based on the Quadratic
Residuosity Assumption from Section 6.2 (cf. Figure 1), and the one based on the N ’th Residuosity
Assumption from Section 6.3.

22

Figure 1: Two-flow OT protocol using the QR-based smooth projective hashing. The modular
exponentiations are highlighted.

7.1 The QR-based scheme

We start with the performance of the sender, whose input consists of two ℓ-bit input strings γ0, γ1
(and also the security parameter n). The sender gets (N, g, x0) from the receiver and it first verifies
that 22n+2 > N > 22n and that g, x0 are co-prime with N , and computes x1 ← N − x0 and

h← g2
2n

mod N . Denoting λ = ℓ+ ω(n), the sender then chooses 2λ random elements k
(i)
b

$← ZN

(b ∈ {0, 1}, i ∈ {1, . . . , λ}), and computes pk
(i)
b ← hk

(i)
b mod N and y

(i)
b ← (xb)

k
(i)
b mod N . The

sender also chooses a random extractor seed s, uses it to compute Yb ← Extract(s; y
(1)
b , . . . , y

(λ)
b)⊕γb,

and sends back to the receiver all the pk
(i)
b ’s and also s, Y0 and Y1. Hence the total work for

the sender includes two GCD computations (to verify that g, x ∈ Z∗N), 4ℓ + ω(log n) modular

exponentiations (to compute h and all the pk
(i)
b ’s and y

(i)
b ’s), and a few other faster operations

(including one extraction operation).
The modular exponentiations can be sped up using multi-exponentiation techniques (see [16] for

a survey).6 For example, to compute the pk
(i)
b ’s, we can first compute all the powers h1, h2, h4, . . . ,

h2
2n+1

, and then each pk
(i)
b can be obtained as a subset product of these 2n+2 elements (with the

subset-size being roughly n on the average). Pre-computing more powers of h can be used to speed-
up the computation further: For a “window-size” parameter w, one can pre-compute ≈ 2w · 2n/w
powers, and then each pk

(i)
b can be computed as a multiple of at most 2n/w of these values. The

6Multi-exponentiation is typically used to speed up the computation of a product
∏

geii . But the same techniques
can be used when computing all the individual terms, if the base of the exponent is the same in all of them.

23

same optimizations can be applied to the computation of the y
(i)
b ’s. Using these techniques with

window-size w ≈ log ℓ, the complexity of the sender can be made as low as O(ℓ/ log ℓ) modular
exponentiations.

Considering next the receiver, it has the choice bit σ (and the security parameter n) as input.

The receiver generates a 2n-bit Blum integer N , then chooses g
$← QRN , w

$← ZN , computes
x← g2

2n·w mod N and x′ ← N − x, and sends to the sender N, g and one of x, x′. Upon receipt of

the reply ({pk(i)b }
i=1,...,λ
b=0,1 , s, Y0, Y1) from the sender, the receiver computes y

(i)
σ ← (pk

(i)
σ)w mod N for

i = 1, . . . , λ and then recovers γσ ← Extract(s; y
(1)
σ , . . . , y

(λ)
σ)⊕ Yσ. The total work is therefore one

key generation, ℓ+ ω(log n) modular exponentiations, and a few other faster operations (including
one extraction operation). We cannot use multi-exponentiation techniques for the receiver, since
these exponentiations all have different bases. However, since the receiver knows the factorization
of N then it can use Chinese-remaindering to speed up the exponentiation by a constant factor.

7.2 The NR-based scheme

Below we denote λ
def
=

⌈
ℓ+ω(logn)

n

⌉
. Since the constructions from Section 6.3 is 2−n-universal, we

need to repeat it λ times to get smoothness with output length of ℓ bits. We begin again with the
sender. On input γ0, γ1 (and n), the sender gets from the receiver (N, g, x0, x1) and it first verifies
that 22n+2 > N > 22n and that g, x0 are co-prime with N , then it computes d← x1/x0 (mod N2)
and checks that d−1 is divisible byN and that (d−1)/N is co-prime withN . If all the tests pass then

the sender computes h← gN
4n

mod N2, then chooses 2λ random elements k
(i)
b

$← ZN2 (b ∈ {0, 1},
i ∈ {1, . . . , λ}), and computes pk

(i)
b ← hk

(i)
b mod N2 and also y

(i)
b ← (xb)

k
(i)
b mod N2. The sender

also chooses a random extractor seed s, uses it to compute Yb ← Extract(s; y
(1)
b , . . . , y

(λ)
b)⊕ γb, and

sends back to the receiver all the pk
(i)
b ’s and also s, Y0 and Y1.

The complexity of the sender’s procedure is dominated by the computation of h ← gN
4n

(roughly 2n full exponentiations), which cannot be sped-up with techniques of multi-exponentiation.
(On the other hand, the computation of h is independent of the inputs σ, γ0, γ1, so in some appli-
cations it can perhaps be done off line.) For long input strings, ℓ > n2, the computation of the

pk
(i)
b ’s and y

(i)
b ’s may also become significant (4λ full exponentiations), and this can be sped-up

with multi-exponentiation techniques.
Considering the receiver, on input σ (and n), it generates a 2n-bit RSA modulus N , then

chooses g
$← RN , w, v

$← ZN , computes h← gN
4n
, x← hw, and x′ ← (1 + vN)x (all modulo N2),

and sends to the sender N, g and the pair {x, x′} (in order that depends on the choice bit σ).

Upon receipt of the reply ({pk(i)b }
i=1,...,λ
b=0,1 , s, Y0, Y1), the receiver computes y

(i)
σ ← (pk

(i)
σ)w mod N2

for i = 1, . . . , λ and then recovers γσ ← Extract(s; y
(1)
σ , . . . , y

(λ)
σ) ⊕ Yσ. Since the receiver knows

the factorization of N , the computation of x← gN
4n·w takes only two full exponentiations (one to

evaluate u← N4nw mod ϕ(N2) and the other to evaluate x← gu mod N2). Hence the total work
is one key generation and λ+O(1) exponentiations.

A small optimization. We observe that we can slightly improve the sender’s complexity by
having the sender check that N is not divisible by any number smaller than n. Then both the
sender and the receiver can use h← gT for T = N ⌈4n/ logn⌉ (instead of T = N4n as above), which
would reduce the complexity of the sender roughly by a logn factor. The reason that this works is

24

that we use the exponentiation to T only to ensure that the order of gT is co-prime with N . If N
does not have divisors smaller than n, then for every x whose order is not co-prime with N we

have that ord(xN) ≤ ord(x)/n, and therefore taking T = N⌈logn N2⌉, xT must have order co-prime
with N .

8 Conclusions

We presented in this work a general framework for constructing two-message oblivious transfer
protocols using verifiable smooth projective function families. This is a modification of Cramer
and Shoup’s notion of smooth projective hashing: Compared to the original notion, we add the
ability to generate pairs of inputs, so that one can verify that the function is not projective on both,
without revealing which is projective and which is not. Using this framework, we gave two new
oblivious transfer protocols; the security of one is based on the Quadratic Residuosity Assumption
and the security of the other is based on the N ’th Residuosity Assumption.

In contrast to previous work on factoring-based smooth projective hashing, we were able to
prove security of our schemes without requiring the RSA modulus to be a product of safe primes.
Moreover, we observe that the safe-prime requirement is unnecessary for several previous works;
in particular, for the CCA secure encryption schemes of Cramer-Shoup [6] and of Camenisch-
Shoup/Gennaro-Lindell [3, 10]. One open problem that remains is to check if the safe-prime re-
quirement can be eliminated from other factoring-based smooth projective hashing works. For
example, the password authentication schemes of Gennaro-Lindell [10] and of Canetti et al. [4].

Acknowledgments. We would like to greatly thank Alon Rosen, whose comments, suggestions
and involvement played an essential part in the creation of this work. We also thank Rosario
Gennaro for many discussions on smooth projective hashing.

References

[1] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods.
In Advances in Cryptology - EUROCRYPT’01, volume 2045 of Lecture Notes in Computer
Science, pages 119–135. Springer, 2001.

[2] C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bounded receiver. In
FOCS’98, pages 493–502. IEEE, 1998.

[3] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. In Advances in Cryptology – CRYPTO’03, volume 2729 of Lecture Notes in Computer
Science, pages 126–144. Springer, 2003. Long version available on-line from the Cryptology
ePrint Archive, report 2002/161 (version 20030825:120805), http://eprint.iacr.org/2002/
161.

[4] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology - EUROCRYPT’05, volume 3494 of
Lecture Notes in Computer Science, pages 404–421. Springer, 2005.

25

[5] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Advances in Cryptology – CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.

[6] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology – EUROCRYPT’02, volume 2332 of
Lecture Notes in Computer Science, pages 45–64. Springer, 2002. Long version available as
ECCC TR01-072 (Revision 2), http://www.eccc.uni-trier.de/report/2001/072/.

[7] C. Crépeau. Equivalence between two flavours of oblivious transfers. In Advances in Cryptology
- CRYPTO’87, volume 293 of Lecture Notes in Computer Science, pages 350–354. Springer,
1987.

[8] Y. Z. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious transfer in the
bounded storage model. In Theory of Cryptography - TCC’04, volume 2951 of Lecture Notes
in Computer Science, pages 446–472. Springer, 2004.

[9] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts. Com-
munications of the ACM, 28(6):637–647, June 1985.

[10] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In
Advances in Cryptology – EUROCRYPT ’03, volume 2656 of LNCS, pages 524–543. Springer,
2003. Full version available on the ePrint archive, http://eprint.iacr.org/2003/032/.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing – STOC ’87, pages 218–229. ACM, 1987.

[12] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, April 1984.

[13] S. Halevi. Efficient commitment schemes with bounded sender and unbounded receiver. Journal
of Cryptology, 12(2):77–90, 1999.

[14] J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using
weak passwords. JACM, 57(1):78–116, 2009.

[15] J. Kilian. Founding Cryptography on Oblivious Transfer. In STOC’88, pages 30–31. ACM,
1988.

[16] B. Möller. Algorithms for multi-exponentiation. In SAC’01, volume 2259 of Lecture Notes in
Computer Science, pages 165–180. Springer-Verlag, 2001.

[17] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA’01, pages 448–457.
ACM, 2001.

[18] N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–52,
1996.

26

[19] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Ad-
vances in Cryptology – EUROCRYPT’99, volume 1562 of Lecture Notes in Computer Science,
pages 223–238. Springer-Verlag, 1999.

[20] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard,
1981.

[21] A. C.-C. Yao. How to generate and exchange secrets. In FOCS’86, pages 162–167. IEEE, 1986.

A Factoring-Based CCA-Secure Encryption without Safe Primes

In this section we show that the factoring-based CCA secure encryption schemes from [6, 10, 3] —
all of which were only proved secure when used with RSA moduli that are product of safe primes
— remain secure even when used with “non-safe” RSA modulus. (We stress that we make no
modification to the encryption schemes, only the proofs are modified somewhat.) These schemes
are all very similar and all are proved in more-or-less the same way. Below we first give a very
high level explanation of how to modify these security proofs to prove security for “non-safe” RSA
moduli, and then exemplify this by providing detailed description for the proof from [3].

A.1 Modifying the Proofs: High Level Description

We begin with a very high-level description of the Cramer-Shoup construction of a CCA-secure
encryption scheme from a smooth projective hash family. (This description is over-simplified and
contains only the details that are important to convey our ideas.)

The encryption scheme. Very loosely speaking, the key generation algorithm first runs the

parameter-generator algorithm PG to obtain parameters Λ
$← PG(1n). Then it runs the hash-key

generator algorithm HG to obtain a primary hashing key and a projective key (k, pk)
$← HG(Λ).

It outputs (Λ, pk) as the public key, and k as the secret key. The parameters Λ define a hashing
domain X and a “special subset” L. The encryption algorithm chooses an element x in the special
subset L (together with a corresponding witness), and computes a tag π̂ which is (essentially) the
hash of x, computed using the projective key pk included in the public key. The ciphertext is a
triple (x, π̂, e), where e is the element that actually carries information about the encrypted message
(but we mostly ignore the element e in this high-level description). The decryption algorithm uses
the corresponding primary hashing key k included in the secret key to re-compute the hash of x.
It rejects the ciphertext if the computed hash differs from π̂, and otherwise it extracts the message
from e.

Recall the standard CCA-security game: The attacker gets the public key, and can interact
with a decryption oracle. At some point the attacker sends two messages (called the test messages,
and gets back the encryption of one of them (called the target ciphertext). The attacker can make
more calls to the decryption oracle, as long as it does not query it on the target ciphertext, and its
goal is to guess which of the two test messages is encrypted in the target ciphertext. The proof of
CCA-security then uses the following arguments:

1. The answers to decryption queries, where the x component belongs to the special subset
L, do not give any more information about the primary hashing key beyond what’s implied

27

by the public key itself. (This is an information-theoretic argument that follows from the
projectiveness of the hashing scheme.)

2. Decryption queries where x is not in the special subset L (i.e., where x ∈ X\L), have incorrect
tags w.h.p. (This is an information-theoretic argument that follows from the smoothness of
the hashing scheme.)

3. The adversary cannot distinguish whether the x component of the challenge ciphertext is in
the special subset L or is in X \ L (because of the hard subset membership property).

4. If the x component of the target ciphertext is in X \ L, then the target ciphertext con-
tains no information about the plaintext, assuming no additional information about the pri-
mary hashing key k is given beyond its corresponding projective key pk. (This is again an
information-theoretic argument, similar to the argument about the smoothness of the hashing
scheme.)

Roughly speaking, the last two arguments imply that barring some additional information from
the decryption queries, the target ciphertext cannot be distinguished from an entity that carries
no information about the plaintext. The first two arguments, on the other hand, imply that the
attacker cannot use the decryption queries to get any information beyond what’s already implied
by the public key. Combining these arguments, CCA security follows.

The difficulty in removing the “safe prime requirement.” Trying to use the constructions
from Section 6 to get CCA security as above we run into some issues. Consider for example the
construction of projective hashing based on the N ’th Residuosity Assumption. In this case, the
parameters are Λ ← (N, g) where N is an RSA modulus and g is an N ’th residue modulo N2,
the “special subset” is L = ⟨g⟩, and the witness for membership in L is the exponent r such that
gr = x mod N2. When N is not a product of safe primes, the set of N ’th residues in Z∗N2 is not
a cyclic group (even when restricted to elements with Jacobi symbol +1), and in particular the
“special subset” L = ⟨g⟩ does not contain all the N ’th residues in Z∗N2 . Since the hash function is
only smooth on non-N ’th-residues, we can no longer claim that it is smooth on any x /∈ L.

In the Oblivious-Transfer application we “solved” this problem by defining X = ⟨g⟩ · ⟨1 +N⟩,
which ensures that every element in X \ L is a non-N ’th-residue. However, in a CCA attack the
attacker may choose to supply ciphertext elements that are not in this set X, and there does not
seem to be an easy way of deciding whether or not x ∈ X. In essence, our problem is that we
cannot rule out the possibility that the attacker may find ciphertext elements which are neither in
the smooth domain nor in the projective domain.

Our solution. We overcome this problem by considering four sets rather than two: Namely, we
have the “big domain” X = Z∗N2 , the “small domain” X∗ = ⟨g⟩ · ⟨1 +N⟩, the “projective subset”
L = RN (of all the N ’th residues modulo N2), and the “special subset” L∗ = ⟨g⟩ = X∗ ∩ L. The
encryption scheme itself would produce only elements that belong to the “special subset” L∗, but
the attacker can submit decryption queries with arbitrary elements from the “big domain” X.

Then we use the facts that (a) the hashing scheme is projective on the “projective subset” L,7

(b) the hashing scheme is smooth (or at least universal) on X \L, and (c) the uniform distributions

7This statement is not precise; see remark below.

28

on L∗ and X∗ are indistinguishable (this is Lemma 7 below). The four arguments from above are
refined as follows:

1′. The answers to decryption queries, where the x component belongs to the projective subset
L, do not give any more information about the primary hashing key beyond what’s implied
by the public key itself.7 (This is an information-theoretic argument that follows from the
protectiveness of the hashing scheme.)

2′. Decryption queries where x is in X \ L have incorrect tags w.h.p. (This is an information-
theoretic argument that follows from the smoothness of the hashing scheme.)

3′. The adversary cannot distinguish whether the x component of the challenge ciphertext is in
the special subset L∗ or is in X∗ \ L∗ (because of the hard subset membership property).

4′. If the x component of the target ciphertext is in X∗ \ L∗ then the target ciphertext con-
tains no information about the plaintext, assuming no additional information about the pri-
mary hashing key k is given beyond its corresponding projective key pk. (This is again an
information-theoretic argument, similar to the argument about the smoothness of the hashing
scheme.)

As before, arguments 3′ and 4′ imply that barring some additional information from the decryption
queries, the target ciphertext cannot be distinguished from an entity that carries no information
about the plaintext. Arguments 1′ and 2′, on the other hand, imply that the attacker cannot use
the decryption queries to get information that will help him distinguish the target ciphertext from
an entity that carries no information about the plaintext.

Remark. Argument 1′ from above is slightly incorrect, in that the hashing schemes from Section 6
may fail to be projective on the “projective subset” L. Specifically, if the order of the element g
(which is a random N ’th residue) is not maximal (among the N ’th residues), then the projective
key gk does not contain enough information on the hashing key k to fully determine the value of
xk for every N ’th residue x.

An easy solution here is to consider a mental experiment in which the hashing scheme is aug-
mented by including a maximal-order N ’th residue h as a parameter and hk as part of the projective
key (so both h, hk are included in the public key of the encryption scheme). These elements are
never used by the encryption or decryption algorithms; their sole purpose is to leak to the adver-
sary more information on the secret key, so as to make the Argument 1′ from above correct. The
arguments above are then applied to prove that this modified scheme is CCA secure, which implies
that also the original scheme is CCA secure.

A.2 Reconstructing the Camenisch-Shoup Proof

We next reconstruct the proof from the long version of [3], augmenting it to show that the N ’th-
Residuosity-based encryption scheme of Gennaro-Lindell/Camenisch-Shoup [10, 3] is CCA secure
even when the modulus is not a product of safe primes.8 This modification is based on the same

8We chose to reconstruct the proof from [3] since the presentation of that proof is more “from first principles”
than that of the proof from [10].

29

approach as in Section A.1, but is explained in greater detail. The encryption scheme consists of
the following three algorithms.

Key generation. On security parameter n, choose a seed s for a collision-resistant hash function

Hs, choose p, q
$← Primes(n), and set N ← pq. Next choose at random g′

$← Z∗N2 and three integers

x1, x2, x3
$← [N2/4], and set g ← (g′)2N , y1 ← gx1 , y2 ← gx2 , and y3 ← gx3 (all modulo N2).

Output (s,N, g, y1, y2, y3) as the public key, and (x1, x2, x3) as the secret key.

Encryption. To encrypt m ∈ [N] (with label L ∈ {0, 1}∗) choose at random r
$← [N/4] and set

e← yr1(1 +N)m, u← gr, α← Hs(u, e, L), v ← abs ((y2y
α
3)

r) ,

where all the calculation are modulo N2, and abs(x)
def
=min{x,N2 − x}. The ciphertext is (e, u, v).

Decryption. To decrypt the ciphertext (e, u, v) with label L, set α← Hs(u, e, L), and check that
v = abs(v) and u2(x2+αx3) = v2 (mod N2). If so, let z ← (e/ux1)N+1 (mod N2), and if z − 1 is
divisible by N (over the integers) then compute m← z−1

N and output m.

Remark. Some aspects of this construction are not really relevant for our discussion: These
include the squaring of g′ during key-setup, the use of the “absolute values”, the squaring of u
and v and exponentiation to the N + 1 power during decryption, and also the inclusion of the
attached labels. The reason that we keep these aspects here is because they are present in the
scheme and proof from [3], and we want to stress that we are proving the exact same scheme (using
an almost identical proof), except that we omit the requirement of using safe primes. Clearly, the
same proof as below can be applied also to the simplified scheme without these components.

A.2.1 Proof of security

To prove security for moduli that are not product of safe primes, we use the following lemma.

Lemma 7 Under the N ’th Residuosity Assumption, given a random RSA modulus N and a random
N ’th residue gN ∈ RN the uniform distribution on

⟨
gN

⟩
⊆ RN is indistinguishable from the

uniform distribution on
⟨
gN

⟩
· ⟨1 +N⟩ ⊆ Z∗N2. More precisely, the following two ensembles are

computationally indistinguishable:⟨
N, gN , gNr

⟩ c≡
⟨
N, gN , gNr(1 +N)s

⟩
where the arithmetic is modulo N2 and both ensembles are taken over choosing

p, q
$← Primes(n), N ← pq, g

$← Z∗N2 , r
$← Zφ(N), s

$← ZN

Proof Assume that we have an algorithm A that can distinguish the two distributions above
with advantage ϵ, and we show a distinguisher D for N ’th Residuosity with advantage at least

ϵ − O(2−n). On input (N, z), D chooses t
$← [N], runs A on the tuple (N, zN , zt) and outputs

whatever A does.
Since N is co-prime with φ(N), it follows that if z is a random N ’th residue then so is zN ,

and moreover ⟨z⟩ =
⟨
zN

⟩
. Also, since (t mod φ(N)) is statistically close upto 2−n to the uniform

distribution over [φ(N)] then zt is statistically close to the uniform distribution over ⟨z⟩ =
⟨
zN

⟩
.

30

We now show that for a random z
$← Z∗N2 , the distribution (zN , zt) is statistically close to

(x, xr(1 +N)s) for a random x
$← RN and r

$← [φ(N)], s
$← [N]. Recall that Z∗N2

≈ GN ×RN , so
for every z ∈ Z∗N2 there is a unique representation z = z1 ·z2 (mod N2) with z1 ∈ GN and z2 ∈ RN .
Hence

(zN , zt) = ((z1z2)
N , (z1z2)

t) = (zN2 , zt2 · zt1)

Moreover for a uniform z
$← Z∗N2 we have that z1, z2 are independent and uniform in GN , RN ,

respectively. The same argument from above says that the distribution (zN2 , zt2) is statistically

close upto 2−n to (x, xr) for x
$← RN and r

$← [φ(N)]. Finally, recall that t is co-prime with N
except with probability O(2−n), and z1 is uniform in GN and independent from z2, t. It hence
follows that the statistical distance between the two distributions{

(zN , zt) : z
$← Z∗N2 , t

$← [N]
}

and
{
(x, xr · y) : x $← RN , r

$← [φ(N)], y
$← GN

}
is bounded by O(2−n).

Lemma 8 Under the N ’th Residuosity Assumption, the encryption scheme from Section A.2 is
CCA secure.

Proof The proof mimics closely the proof of Theorem 1 from the long version of [3]: We describe
almost the exact same nine games that were considered in the proof of Theorem 1 there, in fact
the only steps in which our proof differs from the one in [3] are Games 4-5 (see below).

Game 0. This is the standard CCA-game. Namely, the key-generation algorithm is run on security
parameter n, resulting in public key (s,N, g, y1, y2, y3) and secret key (x1, x2, x3) as above. The
attacker gets the public key as input, and it may issue decryption queries (ei, ui, vi, Li), i = 1, 2, . . .
For each query, the attacker gets the result of running the decryption algorithm on these ciphertexts
and labels. (This is called “Probing phase I” in [3]).

Next the attacker outputs two messages m0,m1 ∈ [N] and label L∗. Then a random bit

σ
$← {0, 1} is chosen and the message mσ is encrypted (with label L∗). This is done by choosing

r∗
$← [N2/4] and setting

u∗ ← gr
∗
, e∗ ← yr

∗
1 (1 +N)mσ , α∗ ← Hs(e

∗, u∗, L∗), and v∗ ← abs
(
(y2y

α∗
3)r

∗
)
.

Below we call m0,m1 the “target messages” and (e∗, u∗, v∗) the “target ciphertext”. The target
ciphertext is returned to the attacker, and then the attacker can keep making decryption queries as
before, under the condition that (ei, ui, vi, Li) ̸= (e∗, u∗, v∗, L∗). (This is called “Probing phase II”.)
Finally the attacker outputs a bit σ′, and it is considered successful if and only if σ′ = σ.

The goal of the analysis is to prove that under the N ’th Residuosity Assumption, the attacker
cannot succeed with probability noticeably better than 1/2. The analysis proceeds by making
successive small changes to the way some variables are computed in this game, each time proving
that the change can have at most a negligible effect on the success probability of the attacker, until
arriving at a game where the attacker’s view is independent of the bit σ (and therefore its success
probability is exactly 1/2).

31

Game 1. The only difference between this game and the previous one is that the decryption
oracle rejects any ciphertext query (ei, ui, vi, Li) during “Probing phase II” such that (ei, ui, Li) ̸=
(e∗, u∗, L∗) but Hs(ei, ui, Li) = Hs(e

∗, u∗, L∗). Clearly this only happens if the attacker finds a
collision in the hash function Hs, so the success probability in this game is at most negligibly
different than in Game 0.

Game 2. Next we also reject ciphertext queries (ei, ui, vi, Li) during “Probing phase II” such that
vi ̸= v∗ but v2i = (v∗)2. Observe that since vi, v

∗ < N2/2 then the condition above implies finding
a nontrivial square root of unity, and hence factoring N . It follows that this modification too can
only change the success probability by a negligible amount.

Game 3. We now change the way the target ciphertext is computed. Specifically, we now compute

e∗ ← (u∗)x1(1 +N)mσ , and v∗ ← abs
(
(u∗)x2+α∗x3

)
(where α∗ ← Hs(u

∗, e∗, L∗)). As these values coincide with the values of e∗, v∗ that were computed
before, this modification has no effect on the success probability.

Games 4-5. This is the only difference between our proof the one from [3]. In the proof from [3],
Game 4 modifies the choice of u∗, choosing it as a random square in the set of N ’th residues modulo

N2 (instead of setting u∗ ← gr
∗
for a random exponent r∗

$← [N2/4]), and Game 5 modified this
choice again, choosing u∗ as a random square in Z∗N2 .

In our proof, we skip Game 4 altogether and in Game 5 we choose u∗ as a random element in
⟨g⟩ · ⟨1 +N⟩. Here we appeal to Lemma 7, which tells us that for an N ’th residue g, a random
element in ⟨g⟩ is indistinguishable from a random element in ⟨g⟩ · ⟨1 +N⟩. Hence the difference in
success probability between Game 3 and Game 5 must be negligible.9

Game 6. As done in the proof from [3], we now choose u∗ not as a completely random element
in ⟨g⟩ · ⟨1 +N⟩, but rather a random element in that group subject to the restriction that its
order is divisible by N . Since a random element in that group satisfies this restriction with all but
exponentially small probability, then this has almost no effect on the success probability.

Game 7. We now modify the key-generation algorithm, choosing x1, x2, x3
$← [N · φ(N)/4] (in-

stead of choosing them from [N2/4]). This only has an exponentially small effect on the success
probability.

Game 8. The last game modifies again the decryption oracle, this time rejecting any ciphertext
query (ei, ui, vi, Li) for which ui is not an N ’th residue modulo N2.

Denote λ(N)
def
= φ(N)/4 and let x′1 ← x1 mod λ(N) and x′′1 ← x1 mod N . It is fairly easy to

see that in this game, the public key and the answers of the decryption oracle are independent of
x′′1 and depend on x1 only through x′1 (recall that g is a 2N ’th residue, so its order divides λ(N)).

Moreover we know that x′′1
$← [N], and we know that the order of u∗ is divisible by N (and u∗ is

a square), which means that u∗ can be written as u∗ = w(1 + N)t with w a 2N ’th residue and t
co-prime with N . Since the element e∗ is computed as

e∗ ← (u∗)x1(1 +N)mσ = wx′
1(1 +N)t·x

′′
1+mσ ,

9The element g in Lemma 7 was chosen as a random N ’th residue, whereas here g is chosen as a random 2N ’th
residue. However, it is clear that if

⟨
µN

⟩
is indistinguishable from

⟨
µN

⟩
· ⟨1 +N⟩ then also

⟨
µ2N

⟩
is indistinguishable

from
⟨
µ2N

⟩
· ⟨1 +N⟩.

32

then the distribution of e∗ is independent of mσ (and thus also of σ). It follows that the view of
the attacker is independent of σ, and therefore its success probability in this game is exactly 1/2.

It remains to bound the difference between the success probability of the attacker in games 7
and 8. Namely, we need to bound the probability that there exists some decryption query (ei, ui, vi, Li)

in Game 8 such that vi = abs(vi), u
2(x2+αix3)
i = v2i , the two conditions from Games 1 and 2 do not

hold, and yet ui is not an N ’th residue modulo N2.
Consider a particular decryption query (ei, ui, vi, Li) for which ui is not an N ’th residue mod-

ulo N2, and denote by oi the order of ui in Z∗N2 . We first observe that oi is not co-prime with N .
Indeed, if oi were co-prime with N then there would exist integers a, b such that aN + boi = 1, and
therefore

(uai)
N = (uai)

N (uoii)
b = uaN+boi

i = ui (mod N2),

contradicting our working assumption that ui is not an N ’th residue modulo N2. Since N = pq
with p, q primes, it follows that the order of ui is divisible by either p or q (or both).

The rest of the argument follows the exact same line as in the proof of [3] (but our presentation
is slightly different). We observe that the view of the attacker is completely determined by the
following values:

• N, g and xi mod λ(N) (which completely determine the answers of all the decryption queries),

• u∗, σ and x1 mod N (which together with the values above determine the value of the element
e∗ of the target ciphertext), and

• x2 + α∗x3 mod N (which together with the values above determines the value of the element
v∗ of the target ciphertext.

We therefore consider the alternative view of Game 8 where the values N, g, xi mod λ(N), u∗, σ,
and x1 mod N are chosen at the outset, and the values of x2, x3 are chosen as follows:

• If the i’th decryption query was made during “Probe phase I” then we choose x2, x3 mod N
after the attacker makes this query. Since both x2, x3 are uniform in [N] and since ui, vi are
fixed and the order of ui is divisible by p or q (and therefore so is the order of u2i), then the

probability of getting u
2(x2+αix3)
i = v2i is at most 1/min(p, q).

• If the i’th decryption query was made during “Probe phase II” then we choose the value of
x2 + α∗x3 mod N after the attacker determines the target messages m0,m1, and we choose
x2+αix3 mod N after the attacker makes the i’th decryption query. Since αi ̸= α∗ (and they
are both smaller than N) then the value of x2+αix3 mod N is still uniform in [N] even after

x2+α∗x3 mod N is fixed. Again, this implies that the probability of getting u
2(x2+αix3)
i = v2i

is at most 1/min(p, q).

We therefore determine that the probability that any decryption query i induces a difference
between Game 7 and Game 8 is at most 1/min(p, q), and therefore the difference in the success
probability between these two games is at most κ/min(p, q) where κ is the number of decryption
queries. This completes the security proof.

33

