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Abstract

We propose an interesting efficient member ID-based group signa-
tures, i.e., verification of output from algorithm OPEN run by the
group manager does not have to refer to a registration table (acting as
certification list).

The proposal is free of GM-frameability, i.e., secret key of member
is not escrowed to GM, which is unique among all known member
ID-based group signatures as far as we know.

The proposal also has two distinguished extra features, one is that
the group manager does not have to maintain a registration table to
obtain the real identity of the signer in contrast to other schemes,
another is that it provides an alternative countermeasure against tam-
pered registration table to applying integrity techniques to the table
in case registration table is maintained.

Keywords: Digital Signature; Group Signature; Identity based;
Partial trapdoor one-way function.

1 Introduction

1.1 Group Signature

Group signature schemes [1] are motivated by enabling members of a group
to sign on behalf of the group without leaking their true identities; but the
signer’s identity is able to be opened, i.e., discovered by the group manager
(GM for short) on disputes. Group signatures have been found useful in var-
ious applications, e.g. anonymous authentication, internet voting, electronic
bidding.

A group signature, however, can be viewed as a proof of knowledge of
one of the secret key (sk1, ..., skn) corresponding to a list of public keys
(pk1, ..., pkn) [2], or a proof of knowledge of a signature (also called group
member certificate) signed by GM [3, 4, 5, 6, 7, 8, 9, 10], in contrast with an
ordinary signature scheme which is the counterpart of handwritten signature
in the digital world and can be viewed as a proof of knowledge of secret key
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sk corresponding to the public key pk. The counterpart of a group signature
in the real world is official seal, at the sight of which, anyone can be assured
that it is made by some person from the claimed authority, but have no idea
of who that person is.

In further details, a group signature scheme is composed of the following
steps:

(1) GM, the group manager, firstly chooses the security parameters as
well as a group secret key and a group public key.

(2) Any group member candidate is required to choose his member secret
key, and run an interactive protocol with GM to join in the group, during
which GM generates a signature (also called member certificate) on the
member secret key blindly, i.e., without knowing the secret key value.

(3) Any group member can generate group signatures using his member
secret key and member certificate, called group signing key all together. In
most efficient group signatures [3, 4, 5, 6, 7, 8, 9, 10], a group signature is gen-
erated by applying Fiat-Shamir’s heuristic method [11] to a zero-knowledge
proof of knowledge of a member secret key and the corresponding member
certificate.

(4) A group signature is verified with respect to the group public key
according to the prescribed algorithm VERIFY. The identity of the group
member who has generated the group signature is unavailable to any one
except GM.

(5) On disputes, e.g., some members of the group are suspicious of abus-
ing their authority to issue licences to ineligible persons, GM is able to find
out the identity of the group member by “opening” the group signature,
i.e., executing an algorithm with group secret key and the group signature
as inputs.

(6) The attribution to some group member should be convincing, i.e.,
the output of the above “opening” process is judgeable according to the
prescribed algorithm JUDGE.

Common Enhancements. In some applications, GM is required to
be two independent authorities, one issuing member certificates (called IA,
issuing authority), and another opening group signatures (called OA, open-
ing authority) ([6, 7, 8, 9, 10] etc.). The goal is to balance the burdens of
servers and provide strong security against corrupted IA or OA.

Additionally a third party public key infrastructure can be deployed [12].
Any group member candidate also has a user secret key and a user public
key for another signature scheme independent from the group signature
scheme. When joining in the group, a group member candidate generates
a signature on the protocol transcripts using his user secret key, GM stores
the transcripts and signature in a database. When a dispute occurs later,
e.g., a group member accuses GM of forging member certificate and group
signatures for him, GM can rebut the accusation by showing the signature.
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1.2 ID-based Group Signature

ID-based cryptosystems have a feature that encryption of plaintexts or ver-
ification of signatures do not have to be referred to a CA, i.e., Certificate
Authority, for public keys. In the case of group signatures, either verifi-
cation of group signature (VERIFY algorithm) or verification of output of
“opening” (JUDGE algorithm), or both of them can be chosen to be identity
based.

If only VERIFY is chosen to be identity based, as the first ID-based
group signature [13] where verification was carried out by evaluating on all
the identities of members in the group, the group signatures are not efficient
enough.

If only JUDGE is chosen to be identity based, as in [14, 15, 16], we call
it a member ID-based group signature. Unfortunately most of the schemes
are found insecure[17, 18].

If both VERIFY and JUDGE are chosen to be identity based, i.e., group
members and GM are all identity based, it is called a fully identity based
group signature [19].

But the identity based JUDGE in [19] has a drawback of CA-frameability,
i.e., it is frameable by dishonest CA (the CA may be different from GM), be-
cause member certificates are ID-based signatures from CA and all ID-based
signatures are known to have the problem of key escrow.

The member ID-based group signature in [20] is a modification of ACTJ’s
group signature [6] as follows: the certificate (Ai, ei) and secret key xi of a
member with identity IDi satisfy axia0 = A

H(IDi)ei

i mod n, where H(IDi)
is a hash evaluation on identity string ID, instead of axia0 = Aei

i mod n.
The resulted group signature generation complexity and signature size are
comparative to our proposal, but GM still has to remember the link between
ID, H(ID) and hH(ID), it is not a real member ID-based group signature
in this sense.

In other words, there exists no efficient secure member ID-based group
signature without CA-frameability yet, as far we know.

1.3 Model and Definition of (Member ID-based) Group Sig-
nature

The member ID-based group signature proposed in this paper is in line with
the following definition and model, which is very similar to ordinary group
signature [21, 12], except that real identity has replaced pseudo-name there.

Our member ID-based group signature defined as follows is also different
from other ID-based schemes where extraction algorithms are required to
generate secret keys from identities – where shortcoming of key escrow comes
from.
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Definition 1. A group signature is a signature scheme composed of the
following algorithms between GM, members and verifiers.

– SETUP: an algorithm run by GM (IA and OA) to generate group public
key gpk and group secret key gsk;

– JOIN: a probabilistic interactive protocol between GM (IA) and a group
member candidate IDi. If the protocol finishes successfully, the candidate
becomes a new group member with member secret key mski and member
certificate certi; and GM (IA) adds an entry for i (denoted as regi) in its
registration table reg storing the protocol transcript, e.g. certi.

– SIGN: a probabilistic algorithm run by a group member, on input a
message m and mski, certi, returns a group signature σ;

– VERIFY: a deterministic algorithm which, on input a message-signature
pair (m,σ) and GM’s public key gpk, returns 1 or 0 indicating the group
signature is valid or invalid respectively;

– OPEN: a deterministic algorithm which, on input a message-signature
pair (m,σ), secret key gsk of GM (OA), returns identity of the group
member who signed the signature, and a proof π.

– JUDGE: a deterministic algorithm with output of OPEN as input, re-
turns 1 or 0, i.e., the output of OPEN is valid or invalid.

Remark 1. The verification of outputs of OPEN is implicitly included in
[21]. [12] explicitly defined it as an extra algorithm JUDGE .

We roughly describe a formal adversary model of group signature, the
more formal definition is referred to [21]. Note that the definition here is a
bit different from [21]. A major difference are that Oread, Owrite, and the
interface oracle state string stateI are missing, the reasons are as follows:
what Oread returns are stateI , which is useful only when Objoin has been
queried. In defining anonymity and traceability, Objoin is never queried, so
it is insignificant to query Oread in these scenarios. As for Owrite, what this
oracle does is inserting to St(defined below). In defining non-frameability,
GM is adversarially controlled, insertions are surely easy to do without hav-
ing to refer to Owrite. We comment that these difference is only on the sense
of description, and will not affect the security results.

The model specifies a series of oracles, some major oracles of them are
described as follows:

Define a public-state string St, which is composed of Stuser and Sttrans

that are both initialized to empty.
Opub: returns the group public key.
Okey: returns the group secret key.
Oa−join: An adversary might want to actively join in the group by con-

trolling some members, that is query this oracle. This oracle will respond
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join requests from adversaries by acting as GM (IA). If the interaction is
successful, the member and joining in transcript will be added into Stuser

and Sttrans respectively. The user will also be marked as Ua (adversarially
controlled).

Ob−join: The adversarial GM might want to attack honest members
during execution of JOIN, that is query this oracle. This oracle will act as
honest group members interacting with GM. If the interaction is successful,
the member and joining in transcript will be added into Stuser and Sttrans

respectively. The user will also be marked as U b (honest).
Osign(IDi,m): If group member IDi is created from Ob−join, this oracle

returns a group signature of IDi on m.
Oopen(m,σ): This oracle returns the result of running OPEN on (m,σ),

i.e., the identity of the group member and a proof of its claim.
Och(b, IDi0 , IDi1 ,m): This oracle returns a valid group signature σ on

m with IDib being the signer.
Anonymous. Assume an adversary want to distinguish the signer of a

group signatures from another group signature when GM is not adversari-
ally controlled. It can be depicted as follows: the adversary is allowed to
query oracles Opub, Oa−join, Oopen at most polynomial times. Then A query
Och(b, ., ., .) with input (IDi0 , IDi1 ,m). The challenge oracle Och(b, ., ., .) is
expected to return a valid group signature σ on m by member ib. Now A
is still allowed to query the above oracles except that Oopen(m,σ) is for-
bidden to query (denoted as O¬{σ}open ). A should try to distinguish the two
challenge oracles (b = 0, 1). A group signature scheme is anonymous if the
probability for any polynomial time bounded A to win is negligible, i.e.,
Pr[GA

anon−1(1
v) = 1]− Pr[GA

anon−0(1
v) = 1] is negligible.

Experiment GA
anon−b(1

v), b ∈ {0, 1}
(gpk, gsk) ← Setup (1v);
(aux, IDi0 , IDi1 ,m) ← AOpub,Oa−join,Oopen ,
(aux, σ) ← AOCh(b,.,.,),

d ← AOpub,Oa−join,O¬{σ}
open (aux),

return d.

Table 1: Anonymity.

A detailed discuss of anonymity of group signature is presented in Section
1.3.1.

Traceable. Namely misidentification in [21]. Assume an adversary has
controlled some group members, and they want to produce a valid group
signature that would fail to trace to one of their identities when GM is
not adversarially controlled. It can be depicted as follows: adversary A is
allowed to query oracles Opub, Oa−join, Oopen at most polynomial times, and
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it should output a message signature pair (m,σ). A wins if σ is valid and
OPEN(m,σ, gsk) fails to output members in Ua. A group signature scheme
is traceable if the probability for any polynomial time bounded A to win is
negligible, i.e., Pr[GA

trace(1
v) = 1] is negligible.

Experiment GA
trace(1

v)
(gpk, gsk) ← Setup (1v), r ← 0,
(m,σ) ← AOpub,Oa−join,Oopen ,
if VERIFY(m,σ, gpk) = 1,

(IDi, π) ← OPEN(m,σ, gsk),
if JUDGE(m,σ, IDi, π) = 1 and IDi /∈ Ua,
r ← 1.

return r.

Table 2: Traceability.

Non-frameable. Assume an adversary want to produce a valid group
signature that would trace to an honest member when GM is adversarially
controlled. It can be depicted as follows: adversary A is allowed to query
Opub, Okey, Ob−join, Osign at most polynomial times,it should output a
message signature pair (m,σ). A wins if σ is valid and OPEN(m,σ, gsk)
fails to output members in U b, and Osign(.,m) has not been queried to this
honest member (denoted as (IDi,m) /∈ hist(Osign)). A group signature
scheme is non-frameable if the probability for any polynomial time bounded
A to win is negligible, i.e., Pr[GA

frame(1
v) = 1] is negligible.

Experiment GA
frame(1

v)
(gpk, gsk) ← Setup (1v), r ← 0,
(m,σ) ← AOpub,Okey ,Ob−join,Osign ,
if VERIFY(m,σ, gpk) = 1,

(IDi, π) ← OPEN(m,σ, gsk),
if JUDGE(m,σ, IDi, π) = 1 and IDi ∈ U b and (IDi,m) /∈ hist(Osign),
r ← 1.

return r.

Table 3: Non-frameability.

Definition 2. A group signature scheme is secure if it is anonymous, trace-
able and non-frameable.

In the definition above, there exists a risk that GM might be corrupted,
e.g., GM can frame an honest group member IDu just by selecting a new
member secret key msku and generating a new member certificate certu, any
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group signature generated from (msku, certu) is valid and can be opened to
reveal IDu.

This can be fixed by introducing an additional trusted third authority
CA independent from GM as explicitly defined in the model of [12]: every
member is given a user public key from CA and a user secret key kept to
himself; a member sends a commitment to its member secret key, along
with a signature of it using his user secret key, to GM (IA); GM (IA) gen-
erates a member certificate on the commitment; a group signature should
include an encryption of the commitment that has been signed; execution
of OPEN should reveal the commitment and the signer identity is obtained
by matching it with stored transcript; the group member will not be able to
repudiate because he has signed on this commitment which is now correctly
decrypted from the group signature. Note that this method is applicable to
all group signature schemes, the application to our proposal is easier (Sec-
tion 3.5.2), so we will not consider such GM corruption risk in the sequel
and assume that GM is trusted, since otherwise we can make it trusted by
an independent CA.

1.3.1 A Discussion of Anonymity

The provability of ACJT’s scheme in the formal model [12] has been ques-
tioned in [10]. The reason is mainly due to the IND-CPA secure ElGa-
mal encryption [22] adopted in ACJT’s scheme. After enhancing ElGamal
into an IND-CCA2 secure scheme, the enhanced ACJT’s scheme is formally
proved secure in another formal model [21] which is subtly different from
[12]. We point out that this is a misunderstanding that an IND-CCA2 secure
encryption scheme is necessary to compose a secure group signature.

Two Different Oracles. The problem lies in a confusion between open
oracle Oopen in a group signature and decryption oracle Odec in the under-
lying encryption scheme in security proofs. Anonymity of ACJT is often
reduced to indistinguishability of ElGamal, any query to Oopen is inter-
cepted and the encryption part is extracted and transferred to Odec. But in
OPEN algorithm, the first step is to verify the validity of a group signature.
Oopen could and should only allow valid group signatures in, and transfer
their encryption parts to Odec. If this sounds familiar, that is the way we
construct IND-CCA2 encryption scheme from IND-CPA scheme [23].

Decryption (Open) Oracle can be different. We classify a Odec

(Oopen) oracle in two levels:

– Responsible Oracle: Given a purported ciphertext (group signature), a
responsible Odec (Oopen) will never apply its private decryption key until
it is assured of the validity of the ciphertext (group signature).

– Irresponsible Oracle: Given a purported ciphertext (group signature), an
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irresponsible Odec (Oopen) always inadvertently apply its private decryp-
tion key without caring for the validity of the ciphertext (group signature).

Irresponsible decryption oracle reflects a not well designed decryption soft-
ware that might misuse its decryption key by decrypting whatever it has
got before checking the validity of the ciphertext, throw away decryption
outputs inadvertently when they are found meaningless. In the sequel, we
assume that all Odec and Oopen oracles are responsible.

The classification and assumption are reasonable. It is well known that
an IND-CCA2 encryption scheme is available by double encrypting the same
message under an IND-CPA encryption scheme [24], which is exactly the
method used to enhance ACJT’s scheme, e.g. [21, 10]. The resulting IND-
CCA2 ciphertext consists of two independent IND-CPA ciphertexts and a
proof that the same plaintext is encrypted. The strong security of IND-
CCA2 comes from the difficulty of composing valid ciphertexts from the
challenged cipher by a computation bounded adversary, and the decryption
oracle is assumed to decrypt valid ciphertexts only. Here the decryption ora-
cle has already been implicitly assumed responsible, because an irresponsible
decryption oracle can decrypt either one of the two ciphertexts even when
the whole ciphertext is invalid. So even the encryption enhanced group sig-
natures, e.g., [21, 10], may be no longer secure if Odec is irresponsible. Thus
the assumption of responsible Oopen is reasonable.

A further discussion is referred to [25].

1.4 Our Contribution

We propose an interesting efficient member ID-based group signatures, i.e.,
verification of output from algorithm OPEN does not have to refer to a
registration table (acting as certification list).

The proposal is CA (GM in the case of group signature) non-frameable,
i.e., secret key of member is not escrowed to GM, which is unique among all
known member ID-based group signatures as far as we know.

Extra Feature 1. In the proposal, GM does not have to maintain a
registration table to obtain the real identity of the signer. We observe that
in most group signature schemes [3, 4, 5, 6, 7, 8, 9, 10], GM firstly derives
some information from the group signature, then searches for the identity
of signer in the registration table.

The significance of eliminating the registration table and the reason why
the methods attaining the goal are not straightforward are as follows.

There may be arguments of the motivation for eliminating the registra-
tion table. Some may feel it natural to have a table to check and deem its
elimination unnecessary. That is because we have seen none of the group
signatures without doing so. Why should we distrust the output of OPEN
and refer to the registration table for consistency, while we would trust every
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piece of plain-text obtained from a decryption algorithm and never bother
to refer to somewhere for a checkup?

A natural approach to free GM from retrieving the registration database
may be let GM include the identity of the group member in the member
certificate, but generally this will not work, because another problem will
arise: how to generate the group signature efficiently? Since current efficient
group signatures are in fact proof of knowledge of membership certificate and
user secret key.

The compact group signature in [26] which has an advantage of prov-
ability without random oracles, also enables GM or tracer to retrieve signer
identity directly. But it has a disadvantage that its signing time, verification
time, and signature size are all logarithmic in the number of signers. An-
other shortcoming of [26] is that it permits GM-frameability, i.e., the whole
group signing key of every group member is known to GM and GM is able
to generate group signatures in the name of any group member.

Remark 2. The above arguments are on the condition that GM is not
corrupted and trustable which is so in most cases. In case of corrupted GM
or GM is not trustable, registration table is unavoidable, please refer to the
end of Section 1.3 and Section 3.5.2 for a detailed discussion.

Extra Feature 2. In case registration table is preferred, the proposal
provides an alternative countermeasure against tampered registration table
to applying integrity techniques to the table: the honest GM firstly opens a
group signature and obtains the identity of a group member directly, then
GM can choose to continue searching the identity in the registration ta-
ble; if they are same, it is ok, otherwise GM can conclude that either the
registration table has been tampered by someone, or the group signature
scheme has been broken. But in previous group signature schemes, GM has
to completely rely on stored registration table to retrieve identities, and any
inconsistence with registration table will lead to failure of OPEN.

Extra Feature 3. Our proposal is the first application of partial trap-
door one-way functions [27] as far as we know.

Efficiency. Besides all the above benefits, the proposal is efficient. The
signing time, verification time, and signature size (2.3 times length of [6])
are all constant, independent with the number of signers.

2 Notations and Preliminary Background

2.1 Notations

Notations appear in the sequel are defined as follows.

• PK{(α, β, ...) : R(α, β, ...)}, denotes Proof of Knowledge, an inter-
active protocol of proving knowledge of (α, β, ...) satisfying relation
R(α, β, ...).
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• SK{(α, β, ...) : R(α, β, ...)}{m}, denotes Signature of Knowledge, a
non-interactive protocol of proving knowledge of (α, β, ...) satisfying
relation R(α, β, ...).

• ±{0, 1}k, a set of k bits long integers.

• H(a, b, c, ..., m), a hash function evaluated on concatenate of a, b, c, ...,m.

• S(2lx , 2µx) denotes integer interval (2lx − 2µx , 2lx + 2µx).

2.2 Paillier’s Cryptosystem[27]

The public key cryptosystem is defined in Z∗n2 .
Let n = pq, φ(n) = (p− 1)(q − 1), λ(n) = lcm(p− 1, q − 1).
Structure of Z∗n2 . The order of Z∗n2 is nφ(n) and Z∗n2 w Zn×Z∗n. There

exists isomorphic maps εg from Zn × Z∗n to Z∗n2 : εg(x, y) = gxyn mod n2,
given any g ∈ Z∗n2 with order multiple of n.

Partial Discrete Logarithm Problem. PDL[n, g] is defined as fol-
lows: given w ∈ 〈g〉, compute x ∈ Zn, denoted as [w]g, that εg(x, y) =
w mod n2, y can be any value in Z∗n.

Suppose the order of g is αn (1 ≤ α ≤ λ), PDL[n, g] is easy to compute
given trapdoor α or the factorization of n:

[w]g =
L(wα mod n2)
L(gα mod n2)

mod n,

where L is defined as: L(u) = (u − 1)/n, u ∈ Z∗n2 and u = 1 mod n. Oth-
erwise, PDL[n, g] is assumed hard when unknown α is not small. So PDL
problem is assumed hard with trapdoor.

Discrete Logarithm Problem over Z∗n2 . DL[n, g] is defined as fol-
lows: given w ∈ 〈g〉, compute x, that gx = w mod n2. DL problem over Z∗n2

is assumed hard without trapdoor.
Setting α = λ/2 will be the case discussed in [28]. Now 〈g〉 = QRn2 , the

cyclic group of quadratic residues modulo n2.
Decisional Diffie-Hellman Problem over Z∗n2 . In group QRn2 ,

where n = pq = (2p′ + 1)(2q′ + 1), DDH problem over Z∗n2 is to distin-
guish between gxy mod n2 and gz mod n2, given gx mod n2 and gy mod n2

for unknown random x, y, z ∈ [1, pqp′q′]. DDH problem over Z∗n2 is assumed
hard when factorization of n is unknown [28].

Strong RSA Problem over Z∗n2 . Strong RSA problem is hard over
Z∗n2 if strong RSA assumption hold in Z∗n, it is self-evident that if (u, v) can
be computed for a randomly chosen y ∈ Z∗n2 satisfying uv = y mod n2, then
uv = y mod n meaning Strong RSA solved for y in Z∗n.

Partial Trapdoor One-way Function. It is well known that in a
large prime ordered group G, f(x) = gx is a one-way function without
trapdoor; and in group Z∗n (n is an integer with two large prime factors),
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RSA(y) = ye mod n is a trapdoor one-way function meaning that y is com-
pletely computable in polynomial time given factorization of n.

In Z∗n2 , however, f(x) = gx mod n2 has a property somewhere between
the two kinds of one-way functions, that is partial trapdoor one-way func-
tion, which means only part of preimage is polynomial computable even if
trapdoor is given.

The partial trapdoor one-way function has not been fully utilized in any
application. Paillier’s Cryptosystem [27] only took the advantage of the
property as a normal trapdoor one-way function. In Section 3, we will show
its first application in group signatures.

2.3 ACJT’s Group Signature[6].

Ateniese et al. proposed the first practical group signature based on strong
RSA assumption. Later it is improved and proved in a formal model [21].

It begins by choosing proper security parameters that satisfy the fol-
lowing relationships: a collision resistant hash function H, two intervals
Γ = S(2le , 2µe) ⊆ {1, ..., 22lp−2}, ∆ = S(2lx , 2µx), where lx > ε(µx + k) + 2,
le > ε(µe + k) + 2, µe > lx + 2. ε is any real number larger than 1.
le, µe, lx, µx, lp, k are integers. Note that Γ and ∆ are two distant disjoint
intervals.

SETUP. IA randomly chooses two lp bits long safe primes p, q, i.e,
p′ = (p−1)/2 and q′ = (q−1)/2 are large primes too and a, a0, g, h ∈R QRn

where n = pq, IA’s secret key is {p′, q′, p, q}; OA chooses secret key x ∈R Zn,
calculates y = gx mod n. Group public key is gpk = {n, a, a0, y, g, h}.

JOIN. Group member candidate Ui randomly selects his member secret
key xi ∈ ∆ and sends axi as well as a proof πi of knowledge of xi ∈ ∆ to IA;
IA randomly chooses a prime ei ∈R Γ, calculates Ai := (axia0)1/ei mod n,
and sends member certificate (Ai, ei) to Ui. IA sets regi = (Ai, ei, a

xi , πi, Ui).
In the end Ui’s group signing key is (Ai, ei, xi).

SIGN and VERIFY. Ui signs on m by computing T1 = Aiy
r mod n,

T2 = gr mod n, T3 = geihr mod n and generating an honest verifier zero-
knowledge proof of (Ai, ei ∈ Γ, xi ∈ ∆), which is formulated specifically as
follows

τ = SK{(α, β, γ, δ) : a0 = Tα
1 /aβyγ mod n, T2 = gδ mod n,

1 = Tα
2 /gγ mod n, T3 = gαhδ mod n, α ∈ Γ, β ∈ ∆}{m},

The verification of the group signature σ = (T1, T2, T3, τ) is the verification
of the above proof.

OPEN. Given a group signature σ = (T1, T2, T3, τ) of m, OA firstly run
VERIFY on it, if it is valid then calculates A := T1/T x

2 mod n, compares it
with items in reg, if there is some j that A ∈ regj , OA concludes that the
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signer is Userj , outputs (j, τ ′ = SK{x : y = gx mod n, T1/Aj = T x
2 mod

n}, regj).
JUDGE. Given (m,σ, j, τ ′), run the verification of τ ′, output 1 if it is

valid, 0 otherwise .
The following Lemmas has been proved in [6].

Lemma 2.1. The above scheme is coalition resistant, i.e., given polyno-
mial number of (Ai, ei, xi), it is negligible for an polynomial time bounded
adversary to forge a new (A∗, e∗, x∗), assuming Strong RSA assumption on
QRn.

Lemma 2.2. The interactive protocol underlying the above scheme (SIGN
and VERIFY) is statistical honest verifier zero-knowledge and sound, under
Strong RSA assumption over QRn.

It was further proved [21] that

Theorem 2.3. The above scheme is secure against misidentification attacks,
i.e., traceable, assuming Strong-RSA problem is hard over QRn, in random
oracle model.

Theorem 2.4. The above scheme is non-frameable assuming Discrete-logarithm
problem is hard over QRn with known factorization, in random oracle model.

Theorem 2.5. The above scheme is anonymous, assuming DDH with known
factorization is hard over QRn, in random oracle model.

Remark. The group signature scheme described here is a bit different
from [21] that Ai is single ElGamal encrypted here, but Ai is double El-
Gamal encrypted there: (Aiy

r, gr, Aiy
′r′ , g′r′) and a proof of the same Ai is

encrypted in two ciphertexts. As discussed in Section 1.3.1, single ElGamal
encryption is enough under responsible Oopen.

3 The Proposal of Member ID-based Group Sig-
nature

3.1 Brief Idea

The idea is to apply [6] on a different group, i.e., QRn2 , where a partial
trapdoor one-way function exists [27]. Following the same idea, more such
group signatures are obtained from [7, 29, 30]. It is not a straightforward
conversion or combination, there are some tricks in OPEN algorithm.

Recall that in ACJT’s original scheme, the member certificate (Ai, ei)
and member secret key xi satisfy Aei

i = axia0 mod n, adding in identity and
changing the underlying group to QRn2 will get Aei

i = aIDi+nxia0 mod n2.
The JOIN, SIGN and VERIFY are quite similar to original ACJT scheme,
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except that aIDi+nxi is also encrypted besides Ai, OPEN can now get IDi

directly by solving PDL problem with trapdoor.
Note that our proposal description excludes the third party PKI for

simplicity reason.

3.2 The Proposal

SETUP. Choose a ln bits long RSA modulo n = pq = (2p′ + 1)(2q′ + 1),
let QRn2 , a cyclic group with order pqp′q′, denotes the quadratic residue in
Z∗n2 . Further choose the following parameters:

H : {0, 1}∗ 7→ {0, 1}k: a collision resistant hash function with a proper
security parameter k;

lx, µx: S(2lx , 2µx) ⊆ (1, p′q′), i.e., interval (2lx−2µx , 2lx +2µx) ⊆ (1, p′q′);
lz, µz: S(2lx , 2µx) ⊆ (2lz−2µz

n , 2lz +2µz

n − 1), lz > ε(k + µz) + 2;
ε: any real number greater than 1;
le, µe: le > ε(k + µe) + 2, µe > lz + 2.
Group secret key is (x ∈R Z∗pqp′q′ , p, q, p′q′).
Group public key is gpk = (n, a0, a, g, h, y, l, µ, le, µe, lz, µz, ε), where

(a0, a, g, h) are random generators of QRn2 , y = gx mod n2.
Let Γ = S(2le , 2µe), ∆ = S(2lz , 2µz).
JOIN. A user with identity IDi ∈ Z∗n becomes the a group member in

the following steps after GM has authenticated that it is really talking with
IDi.

IDi → GM: IDi selects xi ∈R S(2lx , 2µx), computes zi = IDi + nxi,
Ci = azi mod n2, sends Ci, and a proof of knowledge of xi ∈R S(2lx , 2µx)
that Cia

−IDi = (an)xi ;
IDi ← GM: GM chooses a prime ei ∈ S(2le , 2µe), computes Ai =

(a0Ci)
1
ei mod n2, and sends them to IDi.

IDi checks that the member certificate (Ai, ei) and member secret key
xi satisfy aIDi+nxia0 = Ai

ei mod n2.
SIGN. Similar to ACJT scheme except that the computations are in

Z∗n2 and azi , where zi = IDi + nxi, is encrypted instead of Ai. The details
are as follows:

(1) To sign a message m, IDi encrypts azi under GM’s public key y,
and randomize Ai: W1 = aziyr mod n2, W2 = gr mod n2, W3 = Ar

i mod n2,
W4 = geihr mod n2, where r ∈R {0, 1}2ln−2.

(2) IDi then generates a signature of knowledge:

SK{(ei, zi, r, rzi) : W1 = aziyr mod n2,W2 = gr mod n2, 1 = arziar
0W

−ei
3 mod n2,

1 = grziW zi
2 mod n2,W4 = geihr mod n2, ei ∈ S(2le , 2µe), zi ∈ S(2lz , 2µz)}{m}.

that can be realized as follows:
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(2.1) Choose k1 ∈R ±{0, 1}ε(k+µe), k2 ∈R ±{0, 1}ε(k+µz), k3 ∈R ±{0, 1}ε(k+2ln−2),
k4 ∈R ±{0, 1}ε(k+2ln+lz−2), and compute

R1 = ak2yk3 mod n2, R2 = gk3 mod n2, R3 = ak4ak3
0 W−k1

3 mod n2,

R4 = gk4W−k2
2 mod n2, R5 = gk1hk3 mod n2.

(2.2) Calculate c = H(gpk,m, W1,W2,W3,W4, R1, R2, R3, R4, R5) and

s1 = k1 − c(ei − 2le), s2 = k2 − c(zi − 2lz), s3 = k3 − cr,

s4 = k4 − crzi (in Z).

(2.3) The group signature on m is σ = (W1,W2,W3,W4, s1, s2, s3, s4, c).
VERIFY. Given σ = (W1,W2,W3,W4, s1, s2, s3, s4, c) as a purported

group signature on m, verifiers check if

c = H(gpk, m,W1,W2,W3,W4,W
c
1as2−c2le

ys3 mod n2, gs3W c
2 mod n2,

as4as3
0 W

−(s1−c2le )
3 mod n2, gs4W−s2+c2lz

2 mod n2, gs1−c2le
hs3W c

4 mod n2)

and s1 ∈ ±{0, 1}ε(k+µe)+1, s2 ∈ ±{0, 1}ε(k+µz)+1, s3 ∈ ±{0, 1}ε(k+2ln−2)+1,
s4 ∈ ±{0, 1}ε(k+2ln+lz−2)+1.

The group signature is valid if the above requirements are satisfied, in-
valid otherwise.

OPEN. Given a group signature, GM firstly verifies its validity, de-
crypts (W1,W2) to get aIDi+nxi = W1/W2

x mod n2 if that is the case,
then further decrypts aIDi+nxi to get IDi as solving PDL problem in QRn2

(Section 2.2). GM also outputs two non-interactive zero-knowledge proofs
τ1 = SK1{x : y = gx mod n2,W x

2 = W1/D mod n2} and τ2 = SK2{γ :
(aIDi/D)γ = 1 mod n2, (an)γ = 1 mod n2}, where D = aIDi+nxi . The out-
put is (IDi, D, τ1, τ2).

JUDGE. The output of OPEN is verified by checking τ1 and τ2.
A possible set of parameters is ε = 1.1, ln = 1024, µz = 1623, lz = 1963,

µx = 598, lx = 939, µe = 1965, le = 2339, k = 160 and the group signature
length will be 19669 bits, i.e., 2458 bytes, about 2.3 times of that of [6] under
parameters ε = 1.1, ln = 1024, k = 160, lx = 838, µx = 600, le = 1102 and
µe = 840 [10].

3.3 Other Member ID-based Group Signatures

Applying our idea to existing group signatures based on Strong RSA assump-
tion, e.g. [7, 29, 30], will also lead to member ID-based group signatures
that have similar features to the above proposal.

Take [7] as an example, the member certificate (ri, si) and member se-
cret key xi satisfy gxi = riy

ri
1 gsi

1 mod n in original scheme, they will satisfy
gIDi+nxi = riy

ri
1 gsi

1 mod n2 instead after our idea being applied. The secu-
rity analysis is similar to Section 3.4.
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3.4 Security Proofs

Lemma 3.1. The interactive protocol underlying the proposal (SIGN and
VERIFY) is statistical honest verifier zero-knowledge and sound, under Strong
RSA assumption over QRn2.

Proof. See Appendix A.

Theorem 3.2. The proposal is traceable under Strong RSA assumption over
QRn2, in random oracle model.

Proof. See Appendix B.

Theorem 3.3. On the condition of Lemma 3.1, the proposal is anonymous
against adversaries except IA, i.e., GM in this scheme, under DDH assump-
tion over QRn2 when factor of n is unknown, in random oracle model.

Proof. See Appendix C.

Theorem 3.4. The proposal is non-frameable against adversaries (including
GM) under Partial Discrete Logarithm assumption over QRn2, in random
oracle model.

Proof. See Appendix D.

3.5 Discussions

3.5.1 Revocation

The efficient revocation method provided for ACJT’s scheme [31, 8] is still
applicable to our proposals. GM lets eID be the R(ID)-th prime in Γ,
where R is a pseudo random function. To revoke ID from the group, GM
just recalculates and publishes eID and updates the dynamic accumulator,

i.e., sets a ← a
1

eID , a0 ← a
1

eID
0 .

For the original ACJT scheme, the revocation method above has a disad-
vantage that running OPEN algorithm on a group signature with encrypted
certificate, i.e., Ai, might result in a different value from the stored certifi-
cates by GM, because the members might have updated their certificates
since they were firstly issued member certificates. Although this problem
can be fixed in a few ways, our proposal inherently overcomes this disad-
vantage because no matter how the member certificates have been updated,
decrypting a group signature always outputs the identity string.
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3.5.2 Countermeasure for Corrupted GM

To counter the risk of corruption of GM mentioned in Section 1.3, modify
the proposal as follows:

Each group member candidate with identity IDi (e.g., social security
number, registered name), selects his user secret key uski and obtains corre-
sponding user public key upki in advance. He also chooses a member secret
key ski = xi ∈R S(2lx , 2µx), commits it to Comi = axi mod n2, publishes
regi=(IDi, Comi, Siguski

(Comi)) before joining a group. regi can be chosen
not to publish, but it must be available to GM(OA) and judgers on disputes.

Given (IDj , τ1, τ2) from OA, a judger checks wether τ1 is SK1{x :
y = gx mod n2,W x

2 = W1/(aIDjComn
j ) mod n2} and wether τ2 is SK2{γ :

[aIDj/(aIDjComn
j )]γ = 1 mod n2, (an)γ = 1 mod n2}.

reg here only needs to store a commitment of secret key skID and a
signature on it, they are used to provide non-repudiation of the participation
of the group signature generation, not for retrieving ID in OPEN as other
group signature schemes [6, 12] etc..

reg here can be maintained by a third CA and generated even before a
group member candidate joins in the group.

If non-repudiation is not required, i.e., GM is trusted that it will not
generate a member certificate for any group member candidate without his
awareness and participation, then reg can be totally discarded, GM does
not need to remember anything except generated random numbers to pre-
vent certificate collision among group members, actually even these are not
necessarily to remember if pseudo-random functions are adopted.

4 Conclusions

We propose an efficient GM non-frameable member ID-based group signa-
tures, i.e., verification of output from algorithm OPEN does not have to
refer to a registration table (acting as certification list), and secret key of
member is not escrowed to GM (which is unique among all known member
ID-based group signatures as far as we know).

The proposal also has three extra features. The first is that GM does
not have to maintain a registration table to obtain the real identity of the
signer. The second is that it provides an alternative countermeasure against
tampered registration table to applying integrity techniques to the table
in case the registration table is preferred. The third is that it is the first
application of partial trapdoor one-way functions [27] as far as we know.
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A Proof of Lemma 3.1

Proof. Soundness: By resetting the prover under the same random inputs,
an honest verifier can get (W1,W2,W3,W4, s1, s2, s3, s4, c, m) and (W1, W2,
W3, W4, s′1, s′2, s′3, s′4, c′, m) where s′i 6= si, i = 1, 2, 3, 4, c′ 6= c, satisfying

W c
1as2−c2le

ys3 = W c′
1 as′2−c′2le

ys′3 mod n2,

gs3W c
2 = gs′3W c′

2 mod n2,

as4as3
0 W

−(s1−c2le )
3 = as′4a

s′3
0 W

−(s′1−c′2le )
3 mod n2,

gs4W−s2+c2lz

2 = gs′4W
−s′2+c′2lz

2 mod n2,

gs1−c2le
hs3W c

4 = gs′1−c′2le
hs′3W c′

4 mod n2.
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Let ∆si = si − s′i, i = 1, 2, 3, 4, ∆c = c′ − c, then

a∆s2+∆c2lz
y∆s3 = W∆c

1 mod n2, (1)

g∆s3 = W∆c
2 mod n2, (2)

a∆s4a∆s3
0 = W∆s1+∆c2le

3 mod n2, (3)

g∆s4 = W∆s2+∆c2lz

2 mod n2, (4)

g∆s1+∆c2le
h∆s3 = W∆c

4 mod n2, (5)

From formulas (1), (2), (5),we deduce

∆c|∆s3,∆c|∆s2,∆c|∆s1, (6)

otherwise Strong RSA assumption would be broken [32].
Similarly, from formula (4)

∆s2 −∆c2lz |∆s4. (7)

From formulas (2), (4),we deduce

∆s3

∆c
=

∆s4

∆s2 + ∆c + 2lz
. (8)

From formulas (6),(7),(8), we deduce ∆s4 = ∆c∆s3
∆c (∆s2

∆c + 2lz), let r =
∆s3
∆c , zi = ∆s2

∆c + 2lz , ei = ∆s1
∆c + 2le , it follows that ∆s4

∆c = rzi.
From formula (3) and above results,

W ei
3 = (azia0)r mod n2,

which means W3 has the form of ((azia0)
1
ei )r mod n2.

From checking the lengths of s1, s2, s
′
1, s

′
2, c, c

′, we are assured that ei, zi

are in the specified intervals with great probability.
Honest Verifier Zero-knowledge: For W1,W2,W3,W4 ∈ Z∗n2 , select

the following random values

s1 ∈ ±{0, 1}ε(k+µe)+1, s2 ∈ ±{0, 1}ε(k+µz)+1, s3 ∈ ±{0, 1}ε(k+2ln−2)+1,

s4 ∈ ±{0, 1}ε(k+2ln+lz−2)+1, c ∈ {0, 1}k,

then compute

R1 = W c
1as2−c2le

ys3 mod n2, R2 = gs3W c
2 mod n2, R3 = as4as3

0 W
−(s1−c2le )
3 mod n2,

R4 = gs4W−s2+c2lz

2 mod n2, R5 = gs1−c2le
hs3W c

4 mod n2).

The distribution of (W1,W2,W3,W4, s1, s2, s3, s4, c, R1, R2, R3, R4, R5) is sta-
tistically indistinguishable with that from the real prover.
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B Proof of Theorem 3.2

B.1 Preliminaries

Lemma B.1 (Generalized Forking Lemma [21]). Consider a PPT (proba-
bilistic polynomial time) algorithm P, a PPT predicate Q, and a hash func-
tion H with range {0, 1}k thought of as a random oracle. The predicate Q
satisfies that Q(x) = > ⇒ {x = (ρ1, c, ρ2) ∧ c = H(ρ1)}. P is allowed to
ask queries on H and R, where R is a process that given (t, c) reprograms
H so that H(t) = c, and it is assumed that P behaves in such a way that
queries (t, c) to R adhere to the following conditions:

1. c is uniformly distributed over {0, 1}k.

2. The probability of the occurrence of a specific t = t0 is upper bounded
by 2/2k.

Suppose that PH,R(param) returns a x such that Q(x) = > with non-
negligible probability ε ≥ 10(qR + 1)(qR + qH)/2k, where qR, qH are numbers
of queries to R and H respectively. Then there exists a PPT P ′ so that if
y ← P ′(param) it holds with probability 1/9 that (1) y = (ρ1, c, ρ2, c

′, ρ2),
(2) Q(ρ1, c, ρ2) = > and Q(ρ1, c

′, ρ′2) = >, (3) c 6= c′. The probabilities are
taken over the choices for H, the random coin tosses of P and the random
choice of the public parameters param.

B.2 Proof of Theorem 3.2

Proof. Suppose there exists an adversary A breaking traceability of the
proposal, i.e., A is able to non-negligibly output a valid group signature
(m,W1,W2, W3,W4, s1, s2, s3, s4, c) which can be opened to a group mem-
ber IDi∗ who has not been queried to Oa−join, and group signature of m
by this member has not been queried to Osign. An algorithm B can be con-
structed to resolve Strong RSA problem in QRn2 , i.e., calculating (u, e > 1)
that ue = z mod n2 given a random z ∈ QRn2 , utilizing A.

B selects x ∈R Z∗n2 , chooses g, h ∈R Z∗n2 which are quadratic residues
module n2 with high probability. B sets y = gx mod n2, a = z

Q
i∈[1,Q] ei ,

a0 = ar, where r ∈ Z∗n2 and ei, i ∈ [1, Q] are randomly chosen primes from
Γ. Q is the maximum query number to Oa−join.

B simulates answers to the following queries.
Opub: returns gpk = (n, a0, a, g, h, y, l, µ, le, µe, lz, µz, ε).
Oa−join: A will sends Ci and a proof of knowledge of xi ∈ S(2lx , 2µx) that

Cia
−IDi = anxi . B rewinds A and provides a new random challenge, then

extracts xi from the two proofs of knowledge obtained from A (the detail of
the rewind technique is referred to Section 6 of [33]). B then returns (ei, Ai),
where Ai = z(IDi+nxi+r)

Q
j 6=i ej . B maintains a list L of (IDi, xi, ei, Ci).
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Oopen(σ): Given a group signature σ = (W1,W2, W3,W4, s1, s2, s3, s4, c)
of m, B declines the query if σ is not valid, otherwise decrypts (W1,W2) to
get C = W1/W x

2 since it knows the decryption key x. If there exists a Cj

in L that Cj = C, then B generates a proof of knowledge τ1 = SK1{x : y =
gx mod n2,W x

2 = W1/C mod n2}, and simulates another proof of knowl-
edge τ2 = SK2{γ : (aIDj/C)γ = 1 mod n2, (an)γ = 1 mod n2}. B returns
(IDj , C, τ1, τ2). If C does not exist in L, B just generates τ1 and returns
(NULL,C, τ1).

Now A outputs a valid group signature (W1,W2, W3,W4, s1, s2, s3, s4, c)
of m by IDi∗ , i

∗ /∈ [1, Q]. Apply Lemma B.1 to A, where VERIFY is the
predicate, B will get a A′ that outputs (m, W1, W2, W3,W4, s1, s2, s3, s4, c)
and (m, W1, W2, W3,W4, s

′
1, s

′
2, s

′
3, s

′
4, c

′ 6= c), then B can extract (r∗, e∗, z∗)
satisfying W3

e∗ = (az∗a0)r∗ mod n2, and z∗ 6= IDi mod n for any i ∈ [1, Q]
queried by A.

If (W3, e
∗, z∗) = (Ar∗

I , eI , nxI + IDI) for some I ∈ [1, Q], let z∗ = IDi∗ +
nx∗, then aIDI−IDi∗+n(xI−x∗) = 1 mod n2, so np′q′|(IDI−IDi∗+n(xI−x∗)),
from |IDI − IDi∗ | < n, we can get IDI = IDi∗ ; then an(xI−x∗) = 1 mod n2,
since ord(an) = p′q′, we can get p′q′|(xI − x∗), so xI = x∗ from |xI −
x∗| < p′q′. Then IDi∗ = IDI , i.e., IDi∗ has been queried to Oa−join, a
contradiction to the presumption for A.

So it must be (W3, e
∗, z∗) 6= (Ar∗

i , ei, nxi + IDi) for any i ∈ [1, Q], then
(W3, e

∗, z∗) is a breaking of coalition resistance of ACJT scheme (Section
2.3) under public key (ar∗ , ar∗

0 ) (Lemma 2.1). Although Lemma 2.1 is in
QRn, it is evident that it can also be proved in QRn2 following the proof in
[6]. The Strong RSA problem can be resolved quite similarly to the proof
of Lemma 2.1.

C Proof of Theorem 3.3

Proof. Suppose there exists an adversary A breaking anonymity of the pro-
posal, i.e., A can output b′ = b with non-negligible probability given a group
signature of m by IDib , where b ∈ {0, 1} is chosen by Och. Then we can
construct an algorithm B resolving DDH problem in QRn2 when B does not
know the factor of n.

Given (gα, gβ, gγ), where α, β ∈ Z∗n2 , B is to decide if γ = αβ, or just an
random value independent from α, β.

B selects x ∈R Z∗n2 , sets y = gx mod n2, h = gβ , a = gr1
Q

i∈[1,Q] ei ,
a0 = ar1 , where r1, r2 ∈R Z∗n2 and ei, i ∈ [1, Q] are randomly chosen primes
in Γ. Q is the maximum query number to Oa−join.

Game G1:
B simulates the following queries.
Opub: returns gpk = (n, a0, a, g, h, y, l, µ, le, µe, lz, µz, ε).
Oa−join: A will sends Ci and a proof of knowledge of xi ∈ S(2lx , 2µx)
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that Cia
−IDi = anxi . B rewinds A and provides a new random challenge,

then extracts xi from the two proofs of knowledge. The detail of the rewind
technique is referred to Section 6 of [33]. B then returns (ei, Ai), where
Ai = gr1(IDi+nxi+r2)

Q
j 6=i ej . B maintains a list L of (IDi, xi, ei, Ci). IDi is

marked Ua.
Oopen(σ): Given a group signature σ = (W1,W2, W3,W4, s1, s2, s3, s4, c)

of m, B declines the query if σ = σb or σ is not valid, otherwise decrypts
(W1,W2) to get C = W1/W x

2 since it knows the decryption key x, if there
exists a Cj in L that Cj = C, then B generates a proof of knowledge τ1 =
SK1{x : y = gx mod n2,W x

2 = W1/C mod n2}, and simulates another proof
of knowledge τ2 = SK2{η : (aIDj/C)η = 1 mod n2, (an)η = 1 mod n2}. B
returns (IDj , C, τ1, τ2). If C does not exist in L, B just generates τ1 and
returns (NULL,C, τ1).

Och(b, IDi0 , IDi1 ,m): If IDi0 , IDi1 are marked Ua, B retrieves (IDik ,
xik , eik , Cik), k = {0, 1} from list L, sets W1 = aIDib

+nxib (gα)x,W2 =
gα,W3 = Aα

i = (gα)r1(IDib
+nxib

+r2)
Q

j 6=ib
ej ,W4 = geib (gγ), then simulates

τ , a proof of knowledge of (eib , zib , α, zibα), where zib = IDib + nxib , as
in the proof of honest verifier zero-knowledge (Appendix A). B returns
σb = (W1,W2,W3,W4, τ).

B outputs 1 if b′ = b (implying γ = αβ), outputs 0 otherwise (implying
γ random).

If γ = αβ, then σb is a perfect group signature of m by IDib , which is
more advantageous for A to win than the case of random γ.

Game G2:
B simulates oracle queries similarly to Game G1 except Och(b, IDi0 ,

IDi1 , m).
Och(b, IDi0 , IDi1 ,m): If IDi0 , IDi1 are marked Ua, B retrieves (IDik ,

xik , eik , Cik), k = {0, 1} from list L, sets W1 = aIDib
+nxib (gα)x,W2 =

gα, W3 = Ar′
i , (r′ ∈R Z∗n2),W4 = geib (gγ), then simulates τ , a proof of

knowledge of (eib , zib , α, zibα), where zib = IDib + nxib . B returns σb =
(W1,W2,W3,W4, τ).

The difference between G1 and G2 is that (g, Aib ,W2,W3) is a DDH
quadruple in G1, while a random quadruple in G2.

Game G3:
B simulates oracle queries similarly to Game G1 except Och(b, IDi0 ,

IDi1 , m).
Och(b, IDi0 , IDi1 ,m): If IDi0 , IDi1 are marked Ua, B retrieves (IDik ,

xik , eik , Cik), k = {0, 1} from list L, sets W1 = aIDib
+nxib (gα)x, W2 = gr′′ ,

W3 = Ar′
i , (r′, r′′ ∈R Z∗n2),W4 = geib (gγ), then simulates τ , a proof of

knowledge of (eib , zib , α, zibα), where zib = IDib + nxib . B returns σb =
(W1,W2,W3,W4, τ).

The difference between G2 and G3 is that (y, g, W1/azib ,W2) is a DDH
quadruple in G2, while a random quadruple in G3.
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Denote A’s output in Game Gi as AGi , then suppose A is a successful
adversary against anonymity attacks, that is ∃ε > 0 which is non-negligible,
so that

|P [AG1 = b|γ = αβ]− 1/2| ≥ ε.

It is easy to see that for b ∈ {0, 1},

|P [AG1 = b|α, β, γ ∈R Z∗n2 ]−P [AG2 = b|α, β, γ ∈R Z∗n2 ]| ≤ AdvDDH
A ≤ AdvDDH ,

|P [AG2 = b|α, β, γ ∈R Z∗n2 ]−P [AG3 = b|α, β, γ ∈R Z∗n2 ]| ≤ AdvDDH
A ≤ AdvDDH ,

where AdvDDH is the maximum value for all algorithm A.
In Game G3, every component of the challenge is randomized indepen-

dently if α, β, γ ∈R Z∗n2 , so there exists a negligible ε1

|P [AG3 = b|α, β, γ ∈R Z∗n2 ]− 1/2| < ε1,

So

ε ≤ |P [AG1 = b|γ = αβ]− 1/2|
= |P [AG1 = b|γ = αβ]− P [AG1 = b|α, β, γ ∈R Z∗n2 ]|

+|P [AG1 = b|α, β, γ ∈R Z∗n2 ]− P [AG2 = b|α, β, γ ∈R Z∗n2 ]|
+|P [AG2 = b|α, β, γ ∈R Z∗n2 ]− P [AG3 = b|α, β, γ ∈R Z∗n2 ]|
+|P [AG3 = b|α, β, γ ∈R Z∗n2 ]− 1/2|

≤ |P [BG1 = 1|γ = αβ]− P [BG1 = 1|α, β, γ ∈R Z∗n2 ]|+ 2AdvDDH + ε1

≤ AdvDDH
B + 2AdvDDH + ε1

≤ 3AdvDDH + ε1

This is a contradiction to DDH assumption.

D Proof of Theorem 3.4

Proof. Suppose there exists an adversary A breaking the non-frameability
of the proposal, i.e., A is able to successfully produce a valid group signa-
ture that can be opened to an honest group member IDI who is not queried
to Ob−join by A, and Osign(IDI ,m) is not queried. We can utilize A to
construct an adversary B who is given factors of n, breaking Discrete Loga-
rithm Assumption in QRn2 , i.e., given a random DLA instance b ∈R QRn2 ,
to calculate δ that aδ = b mod n2.

B selects group secret key and public key exactly as GM does in the
proposal since it knows the factor of n. Additionally B sets a random variable
I with value randomly chosen from {1, ..., Q}, where Q is the maximum
query number made by A.

B simulates answers to the following queries.



25

Opub: returns gpk = (n, a0, a, g, h, y, l, µ, le, µe, lz, µz, ε).
Okey: returns (x, p, q, p′q′).
Ob−join: B selects an IDi, computes Ci = aIDianxi and πi, where xi ∈R

S(2lx , 2µx), πi is a proof of knowledge of such a xi. If i = I, B sets xI = loga b
which is unknown to itself, computes CI = aIDI bn mod n2, simulates a proof
of knowledge of xI . B returns (IDi, Ci, πi) and waits for a response from A.
A should return (ei, Ai), where Aei

i = Cia0 mod n2 or a signal of failure. B
maintains a list L of (IDi, xi, ei, Ci). IDi is marked U b.

Osign(IDj ,m): If IDj is marked U b and j 6= I, B knows the member
secret key and member certificate, so B just generates a group signature
exactly as SIGN. If j = I, B does not know the member secret key of IDI ,
but it will simulate a group signature as in proof of honest verifier zero-
knowledge (Appendix A).

If A outputs a group signature σ = (m,W1,W2,W3,W4, s1, s2, s3, s4, c)
that is opened to IDI with non-negligible probability, B can derive an
algorithm A′ which can output another group signature (m,W1,W2,W3,
W4, s

′
1, s

′
2, s

′
3, s

′
4, c

′ 6= c) which is opened to IDI too according to Lemma
B.1. Then B can extract (r∗, e∗, z∗) that W e∗

3 = (az∗a0)r∗ mod n2. Because
σ is opened to member IDI , then there must exist a x∗ that IDI +nx∗ = z∗.
We show that x∗ = xI .

If not, i.e., nxI+IDI 6= nx∗+IDI . But we have aIDI+nxI = aIDI+nx∗ mod
n2 from OPEN and JUDGE, i.e., an(xI−x∗) = 1 mod n2, that is p′q′|(xI−x∗)
since ord(an) = p′q′. Because |xI − x∗| < p′q′, it follows that x∗ = xI =
loga b.

Thus PDL assumption in QRn2 is broken.


