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Abstract

In a threshold broadcast encryption scheme, a sender chooses (ad-hoc) a
set of n receivers and a threshold t, and then encrypts a message by using the
public keys of all the receivers, in such a way that the original plaintext can be
recovered only if at least t receivers cooperate. Previously proposed threshold
broadcast encryption schemes have ciphertexts whose length is O(n). In this pa-
per, we propose new schemes, for both PKI and identity-based scenarios, where
the ciphertexts’ length is O(n − t). The construction uses secret sharing tech-
niques and the Canetti-Halevi-Katz transformation to achieve chosen-ciphertext
security. The security of our schemes is formally proved under the Decisional
Bilinear Diffie-Hellman (DBDH) Assumption.

1 Introduction

In a threshold public key encryption scheme a message is encrypted and sent to a
group of receivers, in such a way that the cooperation of at least t of them (where t
is the threshold) is necessary in order to recover the original message. Such schemes
have many applications in situations where one wants to avoid that a single party
has all the power/responsibility to protect or obtain some critical information. The
usual strategy to implement this idea is the following: the set of receivers, which
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is decided on from the beginning, runs an interactive setup protocol which takes as
input a threshold (chosen by themselves) and outputs a public key for the set and
shares of the matching secret key.

The fact that the set of receivers and the threshold are set from the beginning
can limit the applications of these schemes in real life. One can imagine that the
sender of the message, who wants to protect some information, may want to decide
who will be the designated receivers in an ad-hoc way, just before encrypting the
message, and also decide the threshold of receivers which will be necessary to recover
the information (e.g. depending on the secrecy level of the message to be sent).
With this motivation in mind, a scheme for this situation would have the following
properties:

1. There is no setup phase or predefined groups. Each potential receiver has his
own pair of secret/public keys.

2. The sender chooses (ad-hoc) the set of receivers P and the threshold t for
the decryption. Then he encrypts the message by using the public keys of all the
receivers in P.

3. A ciphertext corresponding to the pair (P, t) can only be decrypted if at least t
members of P cooperate by using their secret keys. Otherwise, it is computationally
infeasible to obtain any information about the plaintext.

Note that, when t = 1, the resulting scheme will be a broadcast encryption

scheme [10], where a sender encrypts a message in such a way that any member
of the set of receivers can decrypt it. For this reason, we have decided to use the
name threshold broadcast encryption scheme (TBE scheme, for short) to refer to
this kind of schemes. Other possible names could be dynamic threshold encryption
(as used in [11]) or ad-hoc threshold encryption. To the best of our knowledge, only
two works have dealt with this extension of the concept of broadcast encryption. In
[11] the authors propose a scheme based on RSA; even if the authors claim that the
length of the ciphertexts is constant, the ciphertext contains an integer modulo N ,
where N is the product of all the RSA moduli of the receivers. Therefore, the actual
length of the ciphertext is O(n), where n is the number of receivers. In [9], the
authors propose a TBE scheme for identity-based scenarios; again, the length of the
ciphertexts is O(n). In this same work [9], and previously in [7], a naive solution to
the problem of threshold broadcast encryption was sketched: the sender distributes
the message m into n pieces mi, by using a threshold secret sharing scheme [12],
and then encrypts each mi by using the public key of the i-th receiver. The length
of the ciphertext is also O(n).

In this paper we propose two new threshold broadcast encryption schemes, one
for PKI-based scenarios and one for identity-based scenarios, where the length of
the ciphertexts is O(n − t), being n the number of receivers and t the threshold
for the decryption. We do not include the description of the set of receivers when
we measure the length of the ciphertext; such a description can be quite short (for
example, if the receivers are all the members of a company) or can be O(n)-long,
if the best/only way to describe the set is by including all the public keys of the
receivers.

The idea in the design of our schemes is to combine the following tools: (1)
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a chosen plaintext selective-ID secure identity-based encryption scheme; (2) some
secret sharing techniques to create, for each encryption, an ad-hoc master public
key whose matching master secret key will be distributed among the receivers of the
message; (3) and the generic transformation due to Canetti, Halevi and Katz [8], to
achieve chosen-ciphertext security. This last transformation has already been used
by Boneh, Boyen and Halevi to construct a standard threshold encryption scheme
[5] where interaction is not required among the decrypting servers (which differs
from other previous schemes [14, 7]). This property is very desirable in our scenario
of threshold broadcast encryption, where the receivers are chosen ad-hoc and maybe
they do not know each other.

Our scheme for PKI-based scenarios uses a scheme by Boneh and Boyen [4] as the
basic selective-ID secure identity-based encryption scheme. In this way, security of
the resulting threshold broadcast encryption scheme under chosen-ciphertext attacks
can be proved in the standard model. For the identity-based scenario, it is necessary
to combine the techniques in the scheme of Boneh-Franklin [6] and the techniques
in [4]; in this way, the maximum security of the obtained identity-based threshold
broadcast encryption scheme is achieved in the random oracle model.

The rest of the work is organized as follows. In Section 2 we recall some tools
(secret sharing, bilinear pairings, one-time signatures) that will be necessary for the
construction of our schemes. In Section 3 we give the general definitions of the
protocols and the security definitions for threshold broadcast encryption schemes.
We propose our PKI-based scheme in Section 4, and we formally prove its security by
reduction to the hardness of the Decisional Bilinear Diffie-Hellman (DBDH) problem.
The description of our identity-based scheme is sketched in Section 5. Finally, we
conclude our work in Section 6.

2 Preliminaries

2.1 Threshold Secret Sharing Schemes

The idea of secret sharing schemes was independently introduced by Shamir [12]
and Blakley [3]. A (d,N)-threshold secret sharing scheme is a method by means
of which a special figure, usually called dealer, distributes a secret s among a set
P = {R1, . . . , RN} of N players. Each player Ri privately receives from the dealer
a piece of information si (or share). Then, those subsets with at least d players can
recover the secret s from their shares, while subsets containing less than d players
do not obtain any information at all about the secret.

Shamir’s secret sharing scheme [12] solves this problem by means of polynomial
interpolation. Let GF (q) be a finite field with q > N elements, and let s ∈ GF (q)
be the secret to be shared. The dealer picks a polynomial f(x) of degree at most
d− 1, where the constant term of f(x) is s and all other coefficients aj are selected
from GF (q), uniformly and independently, at random. That is, f(x) has the form
f(x) = s +

∑d−1
j=1 ajx

j.
Every player Ri is publicly and uniquely associated to a field element αi. The

dealer privately sends to player Ri his share si = f(αi), for i = 1, . . . , N .
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Now, players in a set A ⊂ P such that |A| ≥ d can recover the secret s = f(0),
by using Lagrange interpolation. Actually, players in A can compute the value of
the polynomial f(x) evaluated on any point αj , with the formula:

f(αj) =
∑

Ri∈A

λA
ijf(αi) =

∑

Ri∈A

λA
ijsi,

where

λA
ij =

∏

Rℓ∈A,ℓ 6=i

αj − αℓ

αi − αℓ
.

On the other hand, it can be proved that players in a subset B ⊂ P such that
|B| < d do not obtain any information about the polynomial f(x), apart from their
shares {f(αk)}Rk∈B, of course.

2.2 Bilinear Pairings and Assumptions

Given an additive group G1 = 〈P 〉 and a multiplicative group G2, both with prime
order q, we say that they admit a bilinear pairing if there exists a map e : G1×G1 →
G2 satisfying the following properties:

1. it is bilinear: e(aP, bP ) = e(P,P )ab = e(bP, aP ), for all a, b ∈ Zq;

2. it can be efficiently computed for any possible input pair;

3. it is non-degenerate, which means that e(P,P ) 6= 1.

Bilinear pairings like the Tate or Weil pairings can be constructed over groups
defined on elliptic curves. In the last years, bilinear pairings have been widely used in
cryptography, for example in the design of identity-based cryptographic protocols.
Identity-based cryptography was introduced by Shamir [13] as an alternative to
traditional PKI-based cryptography, to avoid the efficiency problems related to the
management of digital certificates which link a user with his public key. In identity-
based cryptography, the public key of each user can be directly and publicly obtained
from his identity, so an external link is not necessary. The negative point is that the
secret keys of the users must be computed by a totally trusted (master) entity.

The security of these cryptographic schemes employing bilinear pairings is based
on the assumption that some problems are hard to solve. These problems are adap-
tations to the bilinear pairing setting of more studied and standard computational
problems, like the Decisional Diffie-Hellman (DDH) problem. The security of the
schemes that we propose in this paper is based on the hardness of the following
problem.

Definition 1. (Decisional Bilinear Diffie-Hellman problem.) We say that an algo-
rithm S is a ε′-solver of the DBDH problem if it distinguishes with probability at
least 1/2 + ε′ between the two following probability distributions:
DBDH = (P, aP, bP, cP, e(P,P )abc), where a, b, c are chosen uniformly and inde-

pendently in Zq,
Drand = (P, aP, bP, cP, T ), where a, b, c are chosen uniformly and independently

in Zq and T is chosen uniformly and independently in G2.
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In other words, a challenger chooses at random a bit d ∈ {0, 1}. If d = 1, a tuple
taken at random from DBDH is given to S. If d = 0, a tuple taken at random from
Drand is given to S. The goal of S is to guess the bit d with better probability than
at random. The Decisional Bilinear Diffie Hellman Assumption states that there
does not exist any ε′-solver of the DBDH problem for non-negligible values of ε′.

2.3 One-Time Signatures

A one-time signature scheme Σ = (Σ.KG,Σ.Sign,Σ.Verify) consists of the three
typical protocols of a digital signature scheme. Σ.KG(1k) → (SK,V K) is the key
generation protocol, which outputs a secret signing key SK and a public verification
key V K. The signing protocol Σ.Sign(SK,M) → σ takes as input the signing key
and a message M , and outputs a signature σ. Finally, the verification protocol
Σ.Verify(V K,M, σ) → 1 or 0 takes as input the verification key, a message and a
signature, and outputs 1 if the signature is valid, or 0 otherwise.

Regarding security, we consider an adversary who first receives a verification
key V K obtained from Σ.KG(1k) → (SK,V K). He can make at most one sig-
nature query for a message M of his choice, obtaining as answer a valid signature
Σ.Sign(SK,M)→ σ, and finally outputs a pair (M ′, σ′). We say that the adversary
succeeds if (M ′, σ′) 6= (M,σ) and Σ.Verify(V K,M ′, σ′)→ 1.

A one-time signature scheme Σ is εΣ-secure if any polynomial-time adversary
against Σ has a success probability bounded by εΣ.

3 Threshold Broadcast Encryption

Roughly speaking, the operations of a threshold broadcast encryption scheme work
as follows: the sender chooses a set of receivers and a threshold t, and then encrypts a
message by using the public keys of these receivers. Given the resulting ciphertext,
the original message can be recovered by any set of at least t of the designated
receivers: they use their secret keys to compute partial decryptions which are then
combined to obtain the message.

More formally, a threshold broadcast encryption scheme TBE= (TBE.Setup,
TBE.KG,TBE.Enc,TBE.PartDec,TBE.Dec) consists of five algorithms:

• The randomized setup algorithm TBE.Setup takes as input a security param-
eter k and outputs some public parameters params, which will be common to
all the users of the system. We write params← TBE.Setup(1k).

• The randomized key generation algorithm TBE.KG is run by each user Ri. It
takes as input some public parameters params and returns a pair (PKi, SKi)
consisting of a public key and a matching secret key; we denote an execution
of this protocol as (PKi, SKi)← TBE.KG(params).

• The randomized encryption algorithm TBE.Enc takes as input a set of public
keys {PKi}Ri∈P corresponding to a set P of n receivers, a threshold t satisfying
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1 ≤ t ≤ n, and a message m. The output is a ciphertext C, which contains
the description of P and t; we write C ← TBE.Enc(P, {PKi}Ri∈P , t,m).

• The (possibly randomized) partial decryption algorithm TBE.PartDec takes
as input a ciphertext C for the pair (P, t) and a secret key SKi of a receiver
Ri ∈ P. The output is a partial decryption value κi or a special symbol ⊥.
We denote with κi ← TBE.PartDec(C,SKi) an execution of this protocol.

• The deterministic final decryption algorithm TBE.Dec takes as input a cipher-
text C for the pair (P, t) and t partial decryptions {κi}Ri∈A corresponding to
receivers in some subset A ⊂ P. The output is a message m or a special
symbol ⊥. We write m̃← TBE.Dec(C, {κi}Ri∈A, A).

An important parameter of such schemes is the length of the ciphertext C. When
measuring this length, we will not consider the description of the set P: in some
cases, the description can consist of the list of all the public keys, which already has
length O(n). In some other cases, the description can be much simpler, for example
if the set of receivers is formed by the workers of a company. For the previous TBE
schemes in the literature [11, 9], the length of the ciphertexts is O(n). In this paper
we will propose new schemes where the length of the ciphertexts is O(n− t).

3.1 Security of Threshold Broadcast Encryption Schemes

When formalizing security of standard public key encryption schemes, one usually
considers a single challenged public key. This is because it has been shown [1] that
security in this model is equivalent to security in a model which considers many
public keys.

In threshold broadcast encryption schemes, however, we must consider many
public keys when we formalize security, because each encryption and decryption
in the system involves many public/secret keys. An attacker can corrupt different
users, in two possible ways: registering new public keys for such users, or obtaining
the secret key matching with the public key of some previously honest users. The
final goal of the attacker is to obtain some information about a message which has
been encrypted for a pair (P∗, t∗) such that the number of corrupted players in P∗

is less than t∗.
For simplicity, we will not consider the first kind of user corruption, where the

adversary registers new public keys. The reason is that, in the real world, certifi-
cation authorities (should) require users to prove the knowledge of the secret key
which matches with the public key they are registering. This can be done by means
of a Proof of Knowledge [2]. In the game which models the security of threshold
broadcast encryption schemes, the attacker is required to perform such a Proof of
Knowledge of the secret keys which match with the new public keys he wants to
register. Because of the ‘proof of knowledge’ property of the employed Proof of
Knowledge system [2], this is equivalent to requiring the adversary to supply the
matching secret key, each time he registers a public key. Therefore, registering new
public keys does not give any useful information to the adversary.
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Taking all this into consideration, indistinguishability for threshold broadcast
encryption schemes is defined by considering the following game that an attacker
Aatk plays against a challenger:

U = ∅
params← TBE.Setup(1k)
Each time Aatk requires the creation of a new user Ri,
(PKi, SKi)← TBE.KG(params) is executed and Ri is added to U

(St,P∗, t∗,m0,m1)← A
Corr,O1(·)
atk (find, params, {PKi}Ri∈U )

β ← {0, 1} at random; C∗ ← TBE.Enc(P∗, {pki}Ri∈P∗ , t∗,mβ)

β′ ← A
Corr,O2(·)
atk (guess, C∗, St).

In both phases of the attack, Aatk has access to a corruption oracle Corr: Aatk

submits to the oracle a user Ri ∈ U , and must receive as answer his secret key SKi.
Let U ′ ⊂ U be the subset of users that Aatk has corrupted during the attack. In
order to consider meaningful and successful such an attack, we require |P∗∩U ′| < t∗.
Otherwise, Aatk knows the secret key of at least t∗ players in P∗ and can decrypt
C∗ by himself, obtaining mβ.

Depending on the considered kind of attacks, Aatk can also have access to a
decryption oracle for ciphertexts C of his choice. As answer, Aatk receives all the
information that would be broadcast in a complete decryption process for this tuple;
this includes all the partial decryption values and the resulting plaintext. If atk is
a chosen plaintext attack (CPA), then there is no access at all, i.e. O1 = O2 = ǫ.
If atk is a partial chosen ciphertext attack (CCA1), then O1 = TBE.PartDec(·) ∪
TBE.Dec(·) and O2 = ǫ. Finally, if atk is a full chosen ciphertext attack (CCA2),
then O1 = O2 = TBE.PartDec(·) ∪ TBE.Dec(·). In this last case, ACCA2 is not
allowed to query the oracle O2 with the challenge ciphertext C∗.

The advantage of such an adversary Aatk is defined as

Adv(Aatk) = Pr[β′ = β]−
1

2
.

A threshold broadcast encryption scheme is said to be ε-indistinguishable under
atk attacks if Adv(Aatk) < ε for any attacker Aatk which runs in polynomial time.

Note that the definitions in this section (with slight changes) are valid also for
identity-based scenarios: params will include a master public key, whereas the cor-
responding master secret key is used to compute secret keys for the users (identi-
ties) in a Key Extraction protocol. The sets of receivers will be sets of identities
P = {ID1, . . . , IDn}. In the security game, the adversary is allowed to make key
extraction (i.e. corruption) queries in order to obtain the secret keys for identities
of his choice; this is reflected by the oracle Corr in the game above.

4 A PKI-Based Threshold Broadcast Encryption Scheme

with |C| = O(n− t)

The idea behind the design of our scheme is to combine some threshold secret sharing
techniques with the Canetti et al. [8] generic transformation, applied to the first
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selective-ID secure identity-based encryption scheme proposed by Boneh and Boyen
in [4]. Note that the same idea has been used to construct a standard threshold
encryption scheme (with fixed threshold and set of receivers) in [5]. The resulting
schemes (ours and the one in [5]) enjoy two very good properties: security can be
proved in the standard model and no interaction is needed among the receivers at
the time of decryption.

The public parameters of our TBE scheme will be the public parameters of the
scheme in [4] along with part (all but one element) of the master public key. The
remaining element of the master public key will be computed ad-hoc by the sender
of the message, from the public keys of the n receivers, in such a way that the
corresponding ad-hoc master secret key is distributed into the secret keys of the
receivers, by means of a (n,N)-threshold secret sharing scheme, where N = 2n− t.

Then, the sender generates a fresh pair of keys (SK,V K) for a one-time signa-
ture scheme, and encrypts the desired message by using the resulting identity-based
public parameters and the identity ID = V K. Intuitively, n shares of the master
secret key would be necessary to compute the secret key for the identity ID = V K
and therefore decrypt the ciphertext. The sender creates a subset of n − t dummy
users, out of the set of receivers, and adds to the ciphertext the secret decryp-
tion information that these users would provide. As a result, only t other partial
decryption values, coming from the designated set of receivers, will be necessary
to correctly perform decryption. Following the techniques in [8], the ciphertext is
signed with SK. The resulting signature and the verification key V K are appended
to the ciphertext.

In the two following sections, we detail the protocols of the proposed schemes,
as well as the security proof.

4.1 The Scheme

Let Σ = (Σ.KG,Σ.Sign,Σ.Verify) be a secure one-time signature scheme. The five
algorithms of the new TBE scheme work as follows.

Setup. Given a security parameter k, it generates a prime number q with k bits,
and groups G1 = 〈P 〉, G2 with order q which admit a bilinear pairing e : G1 ×
G1 → G2, as described in Section 2.2. A hash function h : {0, 1}∗ → Zq is chosen,
along with two random elements P1 and Q from G1. The output of the protocol
is params = (q, G1, G2, P, e, h, P1, Q). Any user Ri of the scheme will be publicly
associated to a different element αi ∈ Zq (for the secret sharing scheme). This can
be done by defining αi = g(Ri) for some public and collision-resistant hash function
g : {0, 1}∗ → Zq.

Key Generation. Each player (potential receiver) Ri chooses at random a value
γi ∈ Z

∗
q. The public key is PKi = γiP , whereas the secret key is SKi = γiP1.

Encryption. The goal is to encrypt a message m ∈ G2 addressed to some set
P = {R1, . . . , Rn} of n receivers, with threshold t for the decryption. Let λP

i0 be
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the Lagrange coefficients defined in Section 2.1, useful to compute the value of a
polynomial in the point α0 = 0 from the value of the polynomial in the points
{αi}Ri∈P . The sender must act as follows.

1. Run Σ.KG(1k)→ (SK,V K).

2. Define P2 =
∑

Ri∈P

λP
i0PKi.

3. Choose a set P̃ of n−t (dummy) players, such that P̃∩P = ∅. For each Rj ∈ P̃,
consider the corresponding αj ∈ Zq and then define PKj =

∑

Ri∈P

λP
ijPKi.

4. Choose at random s ∈ Z
∗
q and compute C1 = sP .

5. Compute C2 = m · e(P1, P2)
s.

6. Compute C3 = s [h(V K)P1 + Q].

7. For each Rj ∈ P̃ , choose rj ∈ Zq at random and compute κj =
e(C3,rjP )

e(PKj ,sP1)·e(C1,rj [h(V K)P1+Q]) .

8. Define C ′ = (P, t, P̃ , C1, C2, C3, {κj}Rj∈P̃
).

9. Run Σ.Sign(SK,C ′)→ σ.

10. Define the final ciphertext as C = (V K,C ′, σ).

Note that, excluding the description of the sets P and P̃, which can have different
lengths depending on the case, a ciphertext C contains O(n− t) elements.

Partial Decryption, EG TBE.PartDec. Given a ciphertext C = (V K,C ′, σ),
any receiver Ri ∈ P first runs Σ.Verify(V K,C ′, σ). If the result is 0 (invalid ci-
phertext), then the special symbol ⊥ is output. Otherwise (valid ciphertext) let
C ′ = (P, t, P̃ , C1, C2, C3, {κj}Rj∈P̃

). Receiver Ri chooses ri ∈ Zq at random; the

partial decryption that is broadcast by Ri is

κi =
e(C3, riP )

e(C1, SKi + ri[h(V K)P1 + Q])
.

Final Decryption, EG TBE.Dec. Given a valid ciphertext C = (V K,C ′, σ),
with C ′ = (P, t, P̃ , C1, C2, C3, {κj}Rj∈P̃

), and a set of t partial decryptions κi, corre-

sponding to a subset A ⊂ P with |A| = t, a combiner algorithm considers the whole
set of partial decryptions in B = A ∪ P̃ and then computes

κ =
∏

Ri∈B

κ
λB

i0

i =
e(C3, P )

P

Ri∈B

λB
i0ri

e(P1,
∑

Ri∈B

λB
i0PKi)s · e(C1, h(V K)P1 + Q)

P

Ri∈B

λB
i0ri

=
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=
e(h(V K)P1 + Q,P )

s
P

Ri∈B

λB
i0ri

e(P1, P2)s · e(P, h(V K)P1 + Q)
s

P

Ri∈B

λB
i0ri

=
1

e(P1, P2)s
.

The plaintext m is recovered by computing m = C2 · κ.

4.2 Security Analysis

Theorem 1. Suppose Σ is εΣ-secure, which means that any polynomial-time forger
against Σ has a success probability bounded by εΣ.

If there exists a CCA2 attack A against the proposed TBE scheme, with advan-
tage ε and corrupting at most qc users, then the Decisional Bilinear Diffie-Hellman
(DBDH) problem can be solved with advantage ε′ ≥ ε(1−εΣ)

6(qc+1) .

Proof. Let D = (P, aP, bP, cP, T ) be an instance of the DBDH problem (which
includes the description of G1 = 〈P 〉, G2, e). The goal of a solver S is to decide if
D ∈ DBDH (that is, if T = e(P,P )abc), or if D ∈ Drand (that is, if T is a random
value in G2). In the first case, the output of a solver is the bit d = 1, whereas in the
second case, the output is the bit d = 0. We are going to construct such a solver S for
this problem. S first runs Σ.KG(1k) → (SK∗, V K∗). S chooses two suitable hash
functions h, g : {0, 1}∗ → Zq. The solver chooses at random η ∈ Zq and defines P1 =
aP and Q = −h(V K∗)P1 +ηP . At this point, S initializes the hypothetical attacker
A against the TBE scheme, with input params = (q, G1, G2, P, e, h, g, P1 , Q).

Each time A asks for the creation of a new user Ri, the solver S chooses at
random γi ∈ Z

∗
q. Let µ ∈ (0, 1) be a real number to be determined later. With

probability µ, the value ci = 0 is chosen, and then S defines PKi = γiP (in this
case, SKi = γiP1 is known to S). On the other hand, with probability 1 − µ, the
value ci = 1 is chosen, and S defines PKi = γi(bP ) (in this case, S does not know
the value of SKi). The public key PKi is sent back to A. These values are stored
in a table.
A is allowed to corrupt some users. If A sends a corruption query for user Ri,

the solver S looks for ci in the table. If ci = 0, then the value SKi = γiP1 is sent to
A. Otherwise, if ci = 1, the solver S aborts and outputs a random bit d ∈ {0, 1}. If
the number of corruption queries from A is qc, then the probability that S does not
abort in this phase is µqc.

The CCA2 attacker A can make decryption queries for ciphertexts C = (V K,C ′, σ)
of his choice. The solver S acts as follows:

• If V K = V K∗, then S runs Σ.Verify(V K,C ′, σ). If the output is 0, S replies
with ⊥. If the output is 1 (valid signature), then S aborts and outputs a
random bit d ∈ {0, 1}.

• If V K 6= V K∗ and Σ.Verify(V K,C ′, σ) outputs 0, then S replies with ⊥.

• If V K 6= V K∗ and Σ.Verify(V K,C ′, σ) outputs 1, then we have C ′ = (P, t, P̃ ,
C1, C2, C3, {κj}Rj∈P̃

) and h(V K) 6= h(V K∗) (otherwise, A would have found

a collision on the hash function h, which is considered to be computationally
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infeasible). The solver S must simulate the partial decryption values κi for
Ri ∈ P. If ci = 0, then S knows SKi and κi can be computed as in the
description of the protocol. Otherwise, S chooses ri ∈ Zq at random and
computes

κi =
e
(

C3, riP −
γi

h(V K)−h(V K∗)(bP )
)

e
(

C1,
−γiη

h(V K)−h(V K∗)(bP ) + ri[(h(V K)− h(V K∗))P1 + ηP ]
) .

It is not difficult to see that this value κi is a correct partial decryption value
for Ri, computed with the implicit random value r̃i = ri −

bγi

h(V K)−h(V K∗) .

When all the values κi are computed, S can recover κ and the plaintext m =
C2 · κ. The solver S sends m and {κi}Ri∈P to A.

At some point, A broadcasts a set P = {R1, . . . , Rn}, a threshold t such that
1 ≤ t ≤ n, and two messages m0,m1 ∈ G2, such that the number of corrupted users
in P is less than t. This means that at least one user Ru ∈ P has not been corrupted
by A. With probability 1 − µ, we have cu = 1 and so PKu = γu(bP ). In general,
we define P0 = {Ri ∈ P : ci = 0} and P1 = {Rℓ ∈ P : cℓ = 1}. As we have just said,
P1 is not empty with probability at least 1−µ. If this is not the case, S aborts and
outputs a random bit d ∈ {0, 1}.

For the challenge ciphertext to be given to A, the solver S defines C1 = cP (note
that c is unknown to S) and takes V K∗ for the verification key. Note that, because
of the way in which Q is defined, we have C3 = ηC1. To compute C2, the value
e(P1, P2)

c must be multiplied with the plaintext. If we define P2 =
∑

Ri∈P

λP
i0PKi,

and recalling that P1 = aP , we have

e(P1, P2)
c = e

(

aP,
∑

Ri∈P0

λP
i0γiP

)c
· e
(

aP,
∑

Rℓ∈P1

λP
ℓ0γℓ(bP )

)c
=

= e(aP, cP )

P

Ri∈P0

λP
i0γi

· e(P,P )
abc

P

Rℓ∈P1

λP
ℓ0

γℓ

.

S chooses a set P̃ of n− t dummy users such that P ∩ P̃ = ∅. Analogously, defining
PKj =

∑

Ri∈P

λP
ijPKi for these users, we have

e(PKj , cP1) = e(cP, aP )

P

Ri∈P0

λP
ijγi

· e(P,P )
abc

P

Rℓ∈P1

λP
ℓj

γℓ

.

S chooses a random bit β ∈ {0, 1} and defines

C2 = mβ ·

(

e(aP, cP )

P

Ri∈P0

λP
i0γi

· T

P

Rℓ∈P1

λP
ℓ0

γℓ

)

.

And, for every dummy user Rj ∈ P̃ , S chooses rj ∈ Zq at random and defines

κj =
e(C3, rjP )

e(cP, aP )

P

Ri∈P0

λP
ijγi

· T

P

Rℓ∈P1

λP
ℓj

γℓ

· e(C1, rj [h(V K∗)P1 + Q])

.
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Note that the resulting C ′∗ = (P, t, P̃ , C1, C2, C3, {κj}Rj∈P̃
) is consistent if and

only if T = e(P,P )abc. After that, S runs Σ.Sign(SK∗, C ′∗) → σ∗. The final
challenge ciphertext that is sent to A is C∗ = (V K∗, C ′∗, σ∗).

At this point, A is allowed to make new decryption queries, which are replied
by S exactly in the same way as before. After that, A outputs its guess β′. If
β′ = β, then S outputs d = 1 (meaning that it believes that T = e(P,P )abc and so
D ∈ DBDH). If β′ 6= β, then S outputs d = 0 (meaning that it believes that T is a
random value in G2 and so D ∈ Drand).

Let us compute the success probability of S. We assume that in the input of the
DBDH problem, D ∈ DBDH with probability 1/2. Let us denote as ρ the probability
that S does not abort in any phase. We have

Pr[S succeeds] =
1

2
Pr[S succeeds / D ∈ DBDH ] +

1

2
Pr[S succeeds / D ∈ Drand] ≥

≥
1

2

[

Pr[S does not abort] · (
1

2
+ ε) + Pr[S aborts] ·

1

2

]

+
1

2
·
1

2
≥

≥
1

4
ρ +

1

2
ρε +

1

4
(1− ρ) +

1

4
=

1

2
+

ρε

2
.

Let us denote as δ the probability that A makes a decryption query for a valid
ciphertext C = (V K∗, C ′, σ) such that (C ′, σ) 6= (C ′∗, σ∗).

Claim 1. δ ≤ εΣ.

Proof. We are going to prove that a CCA2 attacker A which makes a valid query
C = (V K∗, C ′, σ) to the decryption oracle, such that (C ′, σ) 6= (C ′∗, σ∗), with
probability δ, can be used to construct a forger F against the one-time signature
scheme Σ, with success probability δ.

When F receives V K∗ as input, he generates params and initializes A. Each
time A asks for the creation of a new user Ri, the forger F generates the secret
key and public key (SKi, PKi) for Ri. Later, F can answer all the corruption
and decryption queries made by A, because F knows all the secret keys. For the
challenge ciphertext, F chooses V K∗ as the verification key, and uses his only query
to his signing oracle to obtain Σ.Sign(SK∗, C ′∗)→ σ∗.

If at some pointAmakes a decryption query for a valid ciphertext C = (V K∗, C ′, σ)
verifying (C ′, σ) 6= (C ′∗, σ∗), then F aborts and outputs (C ′, σ) as his valid forgery.

The probability that S does not abort at any point is ρ ≥ µqc(1−µ)(1−δ). This
value is maximized when µ = qc

qc+1 , which leads to

ρ ≥

(

1

1 + 1
qc

)qc

·
1

qc + 1
· (1− δ) ≥

1

e
·

1− δ

qc + 1
.

Therefore, the advantage of S in solving the DBDH problem is

ε′ ≥
ρε

2
≥

ε(1− δ)

2(qc + 1)e
≥

ε(1− δ)

6(qc + 1)
≥

ε(1− εΣ)

6(qc + 1)
.
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5 The Identity-Based Case

The generic transformation of Canetti, Halevi and Katz [8], that we have used as
building tool for the construction of our TBE scheme in the previous section, works
also to obtain CCA2 secure identity-based cryptosystem from a 2-level hierarchical
identity-based cryptosystem with chosen plaintext selective-ID security. Therefore,
we should in principle be able to construct an identity-based TBE scheme with
maximum security in the standard model, by starting from the 2-level hierarchical
scheme in [4]. However, this particular scheme does not seem to properly adapt to
the scenario of threshold broadcast encryption.

Nevertheless, it is possible to construct a secure identity-based TBE scheme by
following the same idea, but applied to a different scheme. Intuitively, what we need
is the Boneh-Franklin identity-based scheme [6] for the first level of identities (i.e.
the identities of the receivers) and the Boneh-Boyen identity-based scheme [4] for the
second level of identities (corresponding to the verification key V K). A consequence
of using the Boneh-Franklin scheme is that our scheme will achieve provable CCA2
security in the random oracle model.

Actually, our proposal of identity-based TBE scheme, which results from apply-
ing this combination, is very similar to the PKI scheme described and analyzed in
Section 4. For this reason, we only sketch the main differences between them:

• The Setup phase is now run by the master entity. It is the same as in the PKI
scheme, but now the element P1 is computed as P1 = γP for some random
γ ∈ Zq that the master entity keeps secret. An additional hash function
H : {0, 1} → G1 is chosen and made public.

• The Key Generation phase of the PKI scheme is replaced with a Key Extrac-
tion protocol, run by the master entity each time a user with identity IDi

asks for his secret key. The public key of IDi is easily (and publicly) com-
putable as PKi = H(IDi), whereas the corresponding secret key SKi = γPKi

is computed and delivered by the master entity. Note that in both (PKI and
identity-based) schemes the tuples (P,P1, PKi, SKi) are Diffie-Hellman tuples.
In particular, in the identity-based scheme, a user can verify that the obtained
secret key is consistent, by checking if e(P, SKi) = e(P1, PKi).

• In the security proof, the part of the proof of Theorem 1 where the pairs of
keys (PKi, SKi) are generated is now the part of the proof where the solver
S answers the queries that the attacker A makes to the random oracle for H.
But the result is the same: for some users (ci = 0) the solver S will define
H(IDi) = PKi = γiP and so S will know the corresponding SKi, whereas for
other users (ci = 1) the solver S will define H(IDi) = PKi = γi(bP ).

As a result, we obtain an identity-based TBE scheme which is CCA2 secure in
the random oracle model, under the Decisional Bilinear Diffie-Hellman Assumption.
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6 Conclusion

Threshold broadcast encryption (TBE) schemes differ from traditional threshold
public key encryption schemes [14, 7, 5] because the group of receivers and the
threshold for decryption are not decided from the beginning, but chosen (ad-hoc)
by the entity who encrypts each message. This difference makes TBE schemes more
suitable for some applications in real life.

In this work we have designed TBE schemes with shorter ciphertexts than previ-
ous proposals, for both PKI-based and identity-based scenarios. The schemes achieve
the highest possible level of security (against chosen-ciphertext attacks) assuming
that the Decisional Bilinear Diffie-Hellman problem is hard.

Many problems remain open in this area. For example, to design TBE schemes
with ciphertexts’ length shorter than O(n) (for PKI or identity-based scenarios)
which do not employ bilinear pairings; or to design an identity-based TBE scheme,
also with ciphertexts’ length shorter than O(n), which achieves the maximum secu-
rity in the standard model. Another interesting question to be answered is whether
the bound O(n− t) for the ciphertexts’ length can be lowered, for fully secure TBE
schemes.
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