Computationally Sound Mechanized Proofs of Correspondence Assertions

Bruno Blanchet
CNRS,Ecole Normale Sugrieure, Paris
blanchet@di.ens.fr

Abstract tational model, cryptographic primitives are functions on
bitstrings and the adversary is a polynomial-time proba-
We present a new mechanized prover for showing cor-bilistic Turing machine. In this realistic model, proofsear
respondence assertions for cryptographic protocols in the usually manual. In the formal, Dolev-Yao model, crypto-
computational model. Correspondence assertions are use-graphic primitives are considered as perfect blackboxes re
ful in particular for establishing authentication. Our tec resented by function symbols, and the adversary is resdrict
nigue produces proofs by sequences of games, as standartb compute with these blackboxes. There already exist sev-
in cryptography. These proofs are valid for a number of ses- eral techniques for proving correspondence assertions au-
sions polynomial in the security parameter, in the presencetomatically in this abstract model, e.g. [18, 36]. However,
of an active adversary. Our technique can handle a wide in general, these proofs are not sound with respect to the
variety of cryptographic primitives, including shared-can computational model.
public-key encryption, signatures, message authentioati Since the seminal paper by Abadi and Rogaway [6],
codes, and hash functions. It has been implemented in thehere has been much interest in relating both models [4,
tool CryptoVerif and successfully tested on examples from11, 14, 30, 31, 38, 39, 50, 51], to show the soundness of the
the literature. Dolev-Yao model with respect to the computational model,
and thus obtain automatic proofs of protocols in the com-
putational model. However, this approach has limitations:
1. Introduction since the computational and Dolev-Yao models do not cor-
respond exactly, additional hypotheses are necessary in or

Correspondence assertions on cryptographic protocolsder to guarantee soundness. (For example, for symmetric
are properties of the form “if some events have been exe-encryption, key cycles have to be excluded, or a specific
cuted, then some other events have been executed”, whergecurity definition of encryption is needed [8].)
each event corresponds to a certain point in the protocol, In this paper, we adopt a different approach: our
possibly with arguments. An event can be formalized by tool proves correspondences directly in the computational
a special instructiorevent e(M, ..., M,,), which sim- model. In order to achieve such proofs, we extend our pre-
ply records that the event M, ..., M,,) has been exe- Vious approach for secrecy [20, 21]. We produce proofs by
cuted. Woo and Lam [63] introduced correspondence as-sequences of games, as used by cryptographers [17,57-59]:
sertions to express the authentication properties of cryp-the initial game represents the protocol, for which we want
tographic protocols, such as “iB terminates a run of to prove thatthe probability of breaking a certain correspo
the protocol, apparently with, then A has started a run dence is negligible; intermediate games are obtained each
of the protocol, apparently wittB.” This property can from the previous one by transformations such that the dif-
be written more formally “ifevent Bterminates(A) has ference of probability between consecutive games is neg-
been executed, thewent Astarts(B) has been executed”, ligible; the final game is such that the desired probability
whereevent Bterminates(X) occurs at the point where can directly be shown to be negligible from the form of the
B terminates a run and he thinks he talks Xg and game. The desired probability is then negligible in the ini-
event Astarts(Y') occurs at the point wheré starts arun tial game.
with Y. Correspondence assertions have become a standard In order to extend our approach to correspondence asser-
tool for reasoning on cryptographic protocols. tions, we slightly extend the calculus that we use to repre-

The main novelty of our work lies in the model in which sent games, so that it can specify events. The game trans-
we prove correspondence assertions. Indeed, there are twibrmations that we used for secrecy can also be used for
main models for cryptographic protocols. In the compu- correspondences, without change. However, we still need

to check that the correspondence holds on the final gameshares some limitations with the computational soundness
So, we introduce a rich language of correspondence asserresults, for instance the exclusion of key cycles and the fac
tions, and show how to check them automatically. This that symmetric encryption has to be authenticated. It re-
language allows one to specify both injective correspon- lates the computational model to a non-standard version of
dences (if some event has been executéthes, then some the Dolev-Yao model, in which the length of messages is
other events have been executed at leasnes) and non- still present. It has been used for a computationally-sound
injective correspondences (if some events have been exemachine-checked proof of the Needham-Schroeder-Lowe
cuted, then some other events have been executed at leaprotocol [60].
once), as well as properties of the form “if some events have Canetti and Herzog [26] show how a Dolev-Yao-style
been executed, then some formula holds”. symbolic analysis can be used to prove security properties
Moreover, we also show how to use correspondences inof protocols (including authentication) within the frame-
order to prove mutual authentication and authenticated keywork of universal composability [24], for a restricted clas
exchange. Mutual authentication is an immediate conse-of protocols using public-key encryption as only crypto-
guence of correspondences. The situation is more subtle fographic primitive. Then, they use the automatic Dolev-Yao
authenticated key exchange: intuitively, we need to prove verification tool ProVerif [19] for verifying protocols irhts
the secrecy of the key. Since the key is shared between twdramework.
participants of the protocol, the secrecy of the key is not Canetti et al. [25] use the framework of time-
simply the secrecy of a single variable, as we could prove hounded task-PIOAs (Probabilistic Input/Output Autorjata
in [20,21]. However, we show that by combining corre- for proving cryptographic protocols in the computational
spondences with the secrecy of the variable that containsmodel. This framework allows them to combine probabilis-
the key for one of the participants of the protocol, we can tic and non-deterministic behaviors.
prove the standard notion of authenticated key exchange. Lincoln et al. [46, 47, 49, 52, 56] developed a probabilis-
The prover succeeds in a fully automatic way for many tic polynomial-time calculus for the analysis of security
examples. For delicate cases, our prover allows the user tgrotocols. This calculus comes with a notion of process
indicate the main game transformations to perform, such asequivalence, used in particular to prove authenticatioppr
applying the security of a certain cryptographic primitive erties in [47]. This calculus resembles ours in that both are
for a certain secret key. Importantly, the prover is always probabilistic polynomial-time variants of the pi calculus
sound, whatever indications the user gives. (The restriction chooses a fresh random number. The repli-
The verification of correspondences has been imple-cation is polynomially bounded.) However, it differs from
mented in our prover CryptoVerif (19200 lines of Ocaml for our calculus since it uses an explicit probabilistic sched-
version 1.06 of CryptoVerif), available &ttp://www. uler while, in our calculus, the adversary schedules the pro
di.ens.fr/ ~ blanchet/cryptoc-eng.html . cesses. Our calculus also adds arrays in order to store all
values of variables, which is key to our proofs, as we shall

Related Work Results that show the soundness of the S€€ in the following of the paper. .
Dolev-Yao model with respect to the computational model, ~ Datta et al. [32,33] have designed a computationally
e.g. [31, 39, 51], make it possible to use Dolev-Yao provers Sound logic that enables them to prove computational se-
in order to prove correspondences in the computationalCUrity properties using a logical deduction system.
model. In particular, a tool [29] has been built based on [31] ~ Corin and Hartog [28] use a probabilistic Hoare-style
in order to make computational proofs using the Dolev-Yao logic for formalizing game-based cryptographic proofs.
prover AVISPA, for protocols that use public-key encryp- Al these frameworks can be used to prove security prop-
tion and signatures. However, computational soundnesserties of protocols in the computational sense, but except
results have limitations, in particular in terms of allowed for [26] which relies on a Dolev-Yao prover and for the
cryptographic primitives (they must satisfy strong seiguri machine-checked proofs of [60], they have not been mech-
properties so that they correspond to Dolev-Yao style primi anized up to now, as far as we know.
tives), and they require some restrictions on protocolsh(su Other works provide proofs in the computational model,
as the absence of key cycles). but only for secrecy. Laud [43] designed an automatic anal-
Several frameworks exist for formalizing proofs of pro- ysis for protocols using shared-key encryption, with pas-
tocols in the computational model. Backes, Pfitzmann, Sive adversaries. He extended it to active adversaries, but
and Waidner [10-12] have designed an abstract crypto-with only one session of the protocol [44]. The type sys-
graphic library including symmetric and public-key encryp tem of [9, 45] handles shared-key and public-key encryp-
tion, message authentication codes, signatures, and sioncdion, with an unbounded number of sessions. This system
and shown its soundness with respect to computationalrelies on the Backes-Pfitzmann-Waidner library.
primitives, under arbitrary active attacks. This framekvor Barthe, Cerderquist, and Tarento [13, 61] have formal-

ized the generic model and the random oracle model in Q4 = 1"4="cy[ia](zx : nonce, xp : host);

the intera(.:tive.theorem prover Coq, and proved signa}ture event e (pka,zp, 2y);new 1 : seed;
schemes in this framework. In contrast to our specialized -
prover, proofs in generic interactive theorem proversirequ calial(sign(concat(pka, xp, Tn), ska, 7))

a lot of human effort, to build a detailed enough proof for Qg = !’333’%4[2'3](33,,“ : pkey); new N : nonce;
the theorem prover to check it. e [iB](N, BY; colin](s : signature);
Halevi [37] explains that implementing an automatic SIBIE, B ColtBIls - 519 :

prover based on sequences of games would be useful, and if verify (concat(zpk, , B, N), Tpk, , s) then
suggests ideas in this direction, but does not actuallyempl if pi, = pka then event eg(zpi,, B, N)
ment one.

The processr is assumed to run in interaction with an

_ _ adversary, which also models the networkz, first re-
Outline The next section recalls the process calculus that .oies an empty message on changglsent by the ad-

we use to represent games and extends it with events. Sec\?ersary. Then, it chooses randomly with uniform proba-
tion 3 defines the correspondence assertions that we PrOVeyility a bitstring rk 4 in the typekeyseed, by the construct
Section 4 recalls the definition of observational equiveten - rka : keyseed. A typeT, such askeyseed, aims at
and extends it with events. Section 5 illustrates on an eXaM-genoting a set of bitstrings. However, the considered set of
ple the game transformations used in our proofs. Section 6bitstrings depends on the security parametewhich de-

details how we prove correspondences. Section 7 shoWsarmines the length of keys. So, more precisely, a jpe

how to prove standard notions of authentication and aUthe”'corresponds for each value gfto a set of bitstrings de-

t!cated key exghange using cprrespondences. Finally,_ Sectoted byZ,(T). Then,G, generates the public keyk
tion 8 summarizes our gxperlm_ental regults and SECt'On_gcorresponding to the coinsk4, by calling the public-key
concludes. The appendix cont_ams details on the Sema”t'cﬁeneration algorithnpkgen. Similarly, G, generates the
of the calculus, the proof engine we use for reasoning Onge . ret keyska by callingskgen. It outputs the public key
games, the proofs of our results, and our experiments. ;. o channet;, so that the adversary has this public key.
After outputting this message, the control passes to the
2. A Calculus for Games receiving process, which is part of the adversary. Several
processes are then made available, which represent tise role
In this section, we review the process calculus defined of A andB in the protocol: the proces3, | Qp is the par-
in [20, 21] in order to model games used in computational allel composition ofQ 4 andQ 5; it makes simultaneously
security proofs. This calculus has been carefully designedavailable the processes definedjn and@ . LetQ’, and
to make the automatic proof of cryptographic protocols eas-Q'; be such tha), = “45"Q’, andQp = '#="Q’s.
ier. We extend this calculus with parametric events, which The replication4<"()’, represents copies of the process
serve in the definition of correspondences. '+, indexed by the replication index. (The symboln
We illustrate this calculus on the following example, in- corresponds to an integdy(n) for each value of the se-
spired by the corrected Woo-Lam public key protocol [64]: curity parameter); I, (n) is required to be a polynomially
bounded function of;).) The process)’; begins with an

B— A:(N,B) input on channets[i4]; the channel is indexed withy so
A — B:{pka, B, N}, that the adversary can choose which copy of the pro@éss
This protocol is a simple nonce challengB: sends toA receives the message by sending it on chansil | for the

a fresh nonceV and its identity. A replies by signing the ~ @PPropriate value of 4. The situation is similar for)7;,
nonceN, B’s identity, andA’s public key (which we use ~ Which expects a message on channéls]. The adversary
here instead of!’s identity for simplicity: this avoids hav- ~ €&n then run each copy 6, or @, simply by sending a
ing to relate identities and keys; the prover can obviously MeSSage on the appropriate channgls] or ca[iz).

also handle the version witd’s identity). The signatures The procesg)’; first expects on channel[iz] a mes-
are assumed to be (existentially) unforgeable under choser$a9&yk., in the typepkey of public keys. This message is
message attacks (UF-CMA) [35], so, whBnreceives the MOt rgally part of the pro_tocol.. It serves for starting a new
signature,B is convinced that! is present. The signature Session of the protocol, in which interacts with the par-
cannot be a replay because the noAts signed. ticipant of public keyz,,. For starting a session between

In our calculus, this protocol is encoded by the following 4 @nd B, this message should & 4. Then,Q}; chooses

process7, explained below: randomly with uniform probability a noncd' in the type
nonce. The typenonce is large: a typeT’ is large when the
Go = co();new rk4 : keyseed; let pka = pkgen(rka) in inverse of its cardin% is negligible, so that collisions
let ska = skgen(rka) inci(pka); (Qa | @B) between independentnrandom numbers chosen uniformly in

a large type have negligible probability. (The probability
f(n) is negligiblewhen for all polynomials;, there exists

1o € N such that for all) > 7o, f(n) < ﬁn) The prob-
ability f(n) is overwhelmingvhenl — f(n) is negligible.)

@’z sends the messag@®/, B) on channets[ig]. The con-

trol then passes to the receiving process, included in the ad

find u < n suchthat defined(xy[u]) A zy[u] = N then P
looks for an index: such thatx y[u] is defined and equal
to N. Here, thefind construct does not occur in the initial
game, but will be introduced by game transformations.

As detailed in [20, 21], we require somell-formedness
invariantsto guarantee that bitstrings are of their expected

versary. This process is expected to forward this messagqype and that arrays are used properly (that each cell of an

(N, B) on channeksli4], but may proceed differently in
order to mount an attack against the protocol.

Upon receiving a messagde y,) on channeks[ia],
where the bitstring: i is in the typenonce andz g in the
type host, the process)’, executes the evenly (pka, zg,
xn). This event does not change the state of the system

array is assigned at most once during execution and that
variables are accessed only after being initialized).

All processes of our calculus run in probabilistic poly-
nomial time. The semantics of the calculus is defined by

a probabilistic reduction relation on semantic configura-

Events just record that a certain program point has beentions C. We denote byinitConfig(Q)) the initial config-

reached, with certain values of the arguments of the event
Then,@’, chooses randomly with uniform probability a bit-
stringr in the typeseed; this random bitstring is next used
as coins for the signature algorithm. Finally), outputs the
signed messagfpka, v, N }tsk, - (The functionconcat

uration associated to procegs We refer the reader to

Appendix A and [20] for additional details on this cal-
culus and its semantics. Given a mappindrom vari-
able names to bitstrings, we wrilg M | a when the
term M (built from function symbols and variables, with-

concatenates its arguments, with information on the lengthOUt array accesses) evaluates to bitstiingVe denote by
of these arguments, so that the arguments can be recoveret[@ ~ ¢(a)] the probability that) outputs the bitstring
from the concatenation.) The control then passes to the® ON channek: after some reductions. We denote &ya
receiving process, which should forward this message onSeduence of events of the forafa,, . .., a,), wheree is

channeksg[ip] if it wishes to run the protocol correctly.

Upon receiving a messageon cs[ip], Q5 verifies that
the signatures is correct and, ife,,, = pka, thatis, if B
runs a session with, it executes the eveng (2, , B, N).
Our goal is to prove that, if events is executed, then event
e has also been executed. However, wiisnns a session
with a participant other thad, it is perfectly correct that
B terminates without eventy being executed; that is why
eventep is executed only whem runs a session with.

In our calculus, all variables defined under a replication
are implicitly arrays. For example, the variahlg defined
under!’2 <" js implicitly an array indexed by the replication
indexi 4: xy is an abbreviation far x i 4]. Similarly,z 5 is
an abbreviation forg[i 4], r for r[ia], zpk, for zpk,[in],
N for N[ig], ands for s[ig]. Using arrays allows us to

remember the values of the variables in each copy of theto the contextC. We denote by
processes, so that the whole state of the system is availableOy replacing thé hole of' with Q

In our calculus, arrays replace lists often used by cryptog-
raphers in their proofs. For example, during the proof, all
messages signed undet, would be stored in a list, and
by the unforgeability of signatures, when the verificatién o
the signature of a message succeeds, we would be sure th
this message occurs in the list. In our calculus, we willestor

messages in arrays instead. Arrays come with a lookup con-

struct: find u; < nq,..., Uy, < N, suchthat defined (M7,

..., M;) A M then P else P’ looks for indicesu, . .., un,
such thatdfq, ..., M, are defined and/ is true. When
such indices are found, it executBsotherwise, it executes
P’. When several values of indices are possible, each possi
ble value is chosen with the same probability. For example,

an event symbol andy, ..., a, are bitstrings. We denote
by Pr[3(C, £), initConfig(Q) <> C A ¢(C,&)] the prob-
ability that there exists a sequence of evefitand a se-
mantic configuratioiC such that) reduces tdC, executing
eventst on the trace, and the logical formuiéC, £) holds.
We denote byPr[Q ~ €] = Pr[3C, initConfig(Q) >
C A C does not redudethe probability that the procesg
executes exactly the sequence of evéhia the order of.
These probabilities depend on the security paramgtee
omit it to lighten notations.

We use arevaluation context' to represent the adver-
sary. An evaluation context is a process with a hole, of
one of the following forms: a holé], a process in par-
allel with an evaluation contex) | C, or a restriction
newChannel ¢; C, which limits the scope of the channel
[@] the process obtained
WhenV is a set of vari-
ables defined iid), an evaluation context' is said to beac-
ceptabléfor (Q, V) if and only if C' does not contain events,
the common variables @f and@ are inV, andC'[Q)] satis-
fies the well-formedness invariants. The Betontains the

riables the context is allowed to access (using).

When P is under replication§1 <"1 ., lim<nm e say
that thereplication indices atP areiq, ..., i,. We denote
by i a sequence of replication indicés. . . , i, and by]\7
a sequence of term¥/, . .., M,,. We denote byc(P) the
set of free channels d?, and byvar(P) the set of variables
that occur inP. We also use the notatioar(-) for contexts,
terms, and formulas.

3. Definition of Correspondences

In this section, we define non-injective and injective cor-
respondences.

3.1. Non-injective Correspondences

A non-injective correspondence is a property of the form

“if some events have been executed, then some other events

Example 1 Referring to the exampl€&'y of Section 2, the
correspondence

1)

means that, with overwhelming probability, for ally, z,
if eg(z,vy, z) has been executed, then(z, y, z) has been
executed.

The correspondence

event(ep(z,y, z)) = event(ea(z,y, 2))

have been executed at least once”. Here, we generalize ¢ ent(e,(x)) A event(ez(z)) =

these correspondences to implications between logical for
mulaey = ¢, which may contain events. We use the fol-
lowing logical formulae:

¢ = formula
M term
event(e(My, ..., My,)) event
b1 N b2 conjunction
b1V o disjunction
Terms M, My, ..., M,, in formulae must not contain ar-

ray accesses, and their variables are assumed to be disting

from variables of processes. The formula holds when

M evaluates tarue. The formulaevent(e(My, ..., M,))
holds when the evert(My, ..., M,) has been executed.
The conjunction and disjunction are defined as usual. More
formally, we writep, £ + ¢ when the sequence of events
& satisfies the formula, in the environmenp that maps
variables to bitstrings. We defing& + ¢ as follows:

p, €+ M ifandonlyif p, M | true
p, & Fevent(e(My, ..., My,)) if and only if

forall j <m, p, M; | a; ande(a,...,am) € €
p,EE 1 N ifandonlyifp, £+ ¢ andp, £ F @9
p,EE 1V o ifandonlyifp, £+ ¢y orp, EF po

Formulae denoted by are conjunctions of events.

Definition 1 The sequence of evenfssatisfies the corre-
spondence) = ¢, written& + ¢ = ¢, if and only if for
all p defined onvar(¢) such thatp, € F 1, there exists an
extensiory’ of p to var(¢) such thap’, £ + ¢.

Intuitively, a sequence of evenfssatisfies) = ¢ when,
if £ satisfiesy, then& satisfiesp. The variables of) are
universally quantified; those gf that do not occur in) are
existentially quantified.

Definition 2 The processy satisfies the correspondence
1 = ¢ with public variablesV if and only if for all
evaluation context§’ acceptable fofQ, V'), Pr[3(C,),

initConfig(C[Q]) L.chae /¢ = ¢] is negligible.

A process satisfies = ¢ when the probability that it
generates a sequence of evehthat does not satisfy =

event(ez(x)) V (event(eq(z,y)) A event(es(y, 2)))

means that, with overwhelming probability, for al| if

e1(x) andex(z) have been executed, theg(z) has been
executed or there existg such that bothes(z,y) and
es(x,y) have been executed.

3.2. Injective Correspondences

Injective correspondences are properties of the form
t -
If some event has been executedtimes, then some
other events have been executed at leagtmes”. In
order to model them in our logical formulae, we ex-
tend the grammar of formulaé with injective events
inj-event(e(Ms, ..., M,,)). The formulay is a conjunc-
tion of (injective or non-injective) events. The conditioon
on the number of executions of events apply only to injec-
tive events.

The definition of formula satisfaction is also extended:
we indicate at which step each injective event has been exe-
cuted, by a “pseudo-formulal™ obtained from the formula
¢ by replacing terms and non-injective events withand
injective events with the stepat which they have been ex-
ecuted (that is, their indexin the sequence of everf$ or
1 when their execution is not required. For exampl@, i
inj-event(e1(x)) A (inj-event(ea(x)) V inj-event(es(z))),
then¢™ is of the formr; A (72 V 73) wherer is the ex-
ecution step ot (x) and eitherr, is the execution step of
e2(x) or 73 is the execution step @f(z). (One of the steps
o andrs3 may be., but not both.) We define formula sat-
isfactionp, £ F?" ¢ as follows:

p,EFL Mifandonlyif p, M | true
p,& F+ event(e(My, ..., M,,)) if and only if

forall j <m, p, M; | a; ande(ay,...,am) € E
p, € ET injrevent(e(My, ..., My,)) ifand only if 7 # L,
forall j <m, p,M; | a;, ande(as,...,amn) = E(T)

p,E FPINS 1 A ¢ if and only if
0, EF® ¢y andp, £ F2 ¢,

p,E FPIVOL ¢\ ¢, if and only if
0, E P ¢y orp, £ FPZ ¢y

¢ is negligible, in the presence of an adversary representedrhis definition differs from the case of non-injective cor-

by the contextC.

respondences in that we propagate the pseudo-forgiula

and, in the case of injective events, we make sure that the3.3. Property

event has been executed at stepy requiring that £ L
ande(ay,...,amn) = E(T).

Given a functionF that maps)™ to ¢7, theprojection f
of F to the leaf at occurrenceof ¢ is such thaff (¢7) is the
leaf at occurrence of F(¢ 7). For example, iff mapsy™ to
¢™ of the formr; A (72 V 73), thenF has three projections,
which mapy”™ to 7, 7o, andrs respectively. We say thét
is component-wise injectivghen each projectiorf of IF is
such thatf (¢7) = f(¢¥3) # L impliesy] = 3. (Ignoring
the resultL, f is injective.)

Definition 3 The sequence of evenfssatisfies the corre-
spondence) = ¢, written& + ¢ = ¢, if and only if there
exists a component-wise injectiesuch that for allp de-

fined onvar(y), for all™ such thap, £ F¥" v, there exists
an extension’ of p to var(¢) such thap’, £ FF(¥7) ¢,

Intuitively, a sequence of evenfssatisfies) = ¢ when, if
£ satisfieg) with execution steps defined by , then sat-
isfies¢ with execution steps defined (™). The injec-
tivity is guaranteed becaug&is component-wise injective.
Definition 2 is unchanged for injective correspondences.

Example 2 Referring to the examplé&, of Section 2, the
correspondence

@)

inj-event(ep(z,y, z)) = inj-event(ea(z,y, 2))

means that, with overwhelming probability, each execu-
tion of eg(z,y, z) corresponds to a distinct execution of

ea(z,y, z). In this casey™ is simply the execution step of
ep(x,y,z) and¢” the execution step af4(z,y,z). The

function I is an injective function that maps the execu-

tion step ofep(x, y, z) to the execution step @fy (z, y, 2).
(This step is nevet .)
The correspondence

event(ey(z)) A inj-event(ea(z)) = inj-event(es(z)) V
(inj-event(eq(z,y)) A inj-event(es(z,y)))

means that, with overwhelming probability, for all if
e1(z) has been executed, then each execution @f) cor-
responds to distinct executions«f{x) or to distinct execu-
tions ofey(x, y) andes(z,y). The functionF maps.L A 7
to7s V (14 AT5), Wwherers, 73, 74, 75 are the execution steps
of ea(x), es(x), es(z,y), es(x, y) respectively (eithers or
74 andrs may be). The projections oF map L A 7 to
T3, T4, aNdTs respectively.

When no injective event occurs i = ¢, Definition 3

The next lemma is straightforward. It shows that corre-
spondences are preserved by adding a context.

Lemma 1l If @ satisfies a correspondencewith public
variablesV and C is an evaluation context acceptable for
(Q,V), then for allV’ C V U (var(C) \ var(Q)), C[Q]
satisfies: with public variablesl”’.

4. Observational Equivalence

The notion of observational equivalence is key to proofs
by sequences of games. It can be seen as an adaptation
to the computational model of the notion of observational
equivalence used in the spi calculus [3] in the Dolev-Yao
model. We review the definition observational equivalence
and its properties, adapting them to the presence of events.

In the next definition, we use an evaluation contéxi
represent an algorithm that tries to distinguigtirom Q’.

Definition 4 (Observational equivalence)Let Q and @’

be two processes that satisfy the well-formedness invari-
ants. LetV be a set of variables defined@and@’, with

the same types.

We say thatQ) and @’ are observationally equivalent
with public variablesV/, written Q ~" Q’, when for all
evaluation context€' acceptable fo¥Q, V) and (Q’, V),
for all channelsc and bitstringsa, | Pr[C[Q] ~ ¢(a)] —
Pr[ClQ'] ~ ¢(a)]| is negligible and}_. |Pr[C[Q] ~
&l — Pr[C[Q'] ~ &]| is negligible.

This definition formalizes that the probability that an al-
gorithm C' distinguishes the gamé&3 andQ’ is negligible.

The contextC is allowed to access directly the variables in
V (usingfind). WhenV is empty, we writel) ~ Q’.

This definition makes events observable, so that observa-
tionally equivalent processes execute the same events with
overwhelming probability.

The following lemma is straightforward:

Lemma2 1.~V is reflexive, symmetric, and transitive.

2. 1f Q =Y Q' and C is an evaluation context ac-
ceptable for(Q,V) and (Q’, V), then for a}ll V' C
VU (var(C)\ (var(Q) Uvar(Q"))), C[Q] =¥ C[Q'].

3. If Q =Y Q' and Q satisfies a correspondencewith
public variablesV, then so doe§)’.

The transitivity of~" and Property 3 of Lemma 2 are key
to performing proofs by sequences of games. Indeed, our
prover starts from a gan@&, corresponding to the real pro-

reduces to the definition of non-injective correspondences tocol, and builds a sequence of observationally equivalent

gamesGy =~V G, =V ... &Y G,,. By transitivity, we
conclude that?y, ~" G,,. By Property 3, ifG,, satisfies
a certain correspondence with public variablésthen so
doesGy. The sequencé, =~V G, =V ... =Y G, is

equalitym[u] = concat(z,k,, B, N) can be replaced with
(Xpry =DPka) N (B =zglu]) A (N = zn]u]). (Recall that

the result of theconcat function contains enough informa-
tion to recover its arguments.) This transformation reggac

built by game transformations. Some of these transforma-the function symbolgkgen, skgen, sign, andverify with
tions rely on security assumptions of cryptographic primi- primed function symbolgkgen’, skgen’, sign’, andverify’

tives; others are syntactic transformations used to sfinpli

respectively, to avoid repeated applications of the urgorg

games. Since these transformations are the same for correability of signatures with the same key. (The unforgeapilit
spondences as for secrecy, we do not detail them here, andf signatures is applied only to unprimed symbols.)

refer the reader to [20,21]. (These transformations leave
events unchanged.) Next, we illustrate them on an exampleGy ~ G;.

5. A Proof by a Sequence of Games

In this section, we explain the transformations performed

on the proces§ of Section 2. By the unforgeability of sig-
natures, the signature verification witt 4, succeeds only
for signatures generated wittt 4. So, when we verify that

the signature is correct, we can furthermore check thasit ha

been generated using 4. So, after game transformations
explained below, we obtain the following final game:

G1 = co();new rk 4 : keyseed;
let pk4 = pkgen'(rka) in 1 (pka); (Q1a | Q1B)
Q14 = "45"¢yliz](xn @ nonce, g : host);
event e (pka,xp,TN);
let m = concat(pka,zp,xN) in

new 1 : seed; cslia](sign’(m,skgen’ (rka),r))
Q15 = ""25"cy[ip](wpr, : pkey);new N : nonce;
es[ip](N, B); cslig](s : signature);
find u < n suchthat defined(m[u], zp[u], z N [u])
A (@pra = pka) A (B = zplu]) AN (N = zy[u])
A verify’ (concat(@pk ,, B, N), Zpk 4, $) then
event eg(Tpk,, B, N))

The assignmentk s = skgen(rk4) has been removed
andskgen(rk4) has been substituted fek 4, in order to
make the termsign(m, skgen(rk4),r) appear. This term is
needed for the security of the signature scheme to apply.

In @14, the signed message is stored in variahleand
this variable is used when computing the signature.

The soundness of the game transformations shows that
We will prove thatG, satisfies the corre-
spondences (1) and (2) with any public variablés in
particular withV = (. By Lemma 2, Property 3G

also satisfies these correspondences with public variables
V = 0. Let us sketch how the proof of correspondence (1)
for the gameG; will proceed. LetQ), and Q] such

that Q14 = "4<"Q), andQip = !"#<"Q} 5. Assume
that eventep is executed in the copy @] 5 of indexig,

that is, ep(zpk, [iB], B, N[ig]) is executed. (Recall that
the variablesc,,,, N, u, ... are implicitly arrays.) Then

the condition of thefind aboveey holds, that isym[u[ig]],
zplulig]], andzy(ulip]] are definedx,i, [ig] = pka,

B = zp[ulig]], andN[ig] = zx[u[ip]]. Moreover, since
mlulig]] is defined, the assignment that definefias been
executed in the copy af} 4, of indexis = wulig]. Then

the evente(pka,xzp,zy), located above the definition

of m, must have been executed in that copyctf,, that

is, ea(pka,xplulip]],xn[u[ip]]) has been executed. The
equalities in the condition of thiénd imply that this event is
alsoea(zpr,[iB], B, N[ig]). To sum up, ifeg(zpk,[i5],

B, N[ig]) has been executed, theq(z,x , [iB], B, N[ig])

has been executed, so we have the correspondence (1). This
reasoning is typical of the way the prover shows correspon-
dences. In particular, the conditions of array lookups are
key in these proofs, because they allow us to relate values
in processes that run in parallel (here, the processes that
representd and B), and interesting correspondences relate
events that occur in such processes. In the next section, we
detail and formalize this reasoning, both for non-injeetiv
and injective correspondences.

6. Proving Correspondences

In this section, we explain how our prover shows that a

Finally, using the unforgeability of signatures, the game satisfies a correspondence. We first sketch the tech-
signature verification has been replaced with an arraynique we use for collecting properties of games, then we
lookup: the signature verification can succeed only when handle the simpler case of non-injective correspondences,
concat(x, ., B, N) has been signed witkk 4, So we look before generalizing to injective correspondences.
for the messageoncat(z,,, B, N) in the arraym and
the evente is executed only when this message is found. 6.1. Reasoning on Games
In other words, we look for an index < n such that
mu] is defined andn[u] = concat(zp, , B, N). By def-
inition of m, mfu] = concat(pka,zpu],xn(u]), SO the

The proof of correspondences relies on two techniques
for reasoning on games. These techniques were already

used for simplifying games, so we summarize them briefly 6.2. Non-injective Correspondences
and refer the reader to [20] or to Appendix B for details.

First, we collect facts that hold at each program point Intuitively, in order to prove that a proce&k satisfies
in the game. We use the following facts: the tefmh a non-injective correspondenge=- ¢, we collect all facts

means thatM is true, defined(M) means thatV/ is de- that hold at events iy and show that these facts impy
fined, andevent(e(M,...,M,,)) means that the event using the equational prover.
e(My, ..., M,,) has been executed. The set of true facts We collect facts that hold when the evefithas been

collected at program poirf? is denoted byFp. We collect executed, as follows.
these facts as follows: o
Definition 5 (P follows F', Fr p) WhenF' = event(e(Mq,
e We take into account facts that come from assign- ---»Mm)) and P is such thatevent e(Mj, ..., My,); P
ments and tests above For example, in the process ©0CCUrs inQo, we say thatP follows F', and we define

if M then P, we haveM € Fp, sinceM is truewhen ~ Frp = 0'Fp U{0'M; = M; | j < m} where the sub-
P is executed. stitution ¢’ is a renaming of the replication indices Atto

]] distinct fresh replication indices.
In our running examplé&>,, at the program poinP

just after the eventp, Fp containglefined(m[u[ig]]), Intuitively, when the evenf” has been executed, it has been
defined(zg[ulig]]), defined(zn(ulir]]), Tpralin] = executed by some subprocessidf, so there exists a sub-
pka, B = xplulip]], andN[ig] = zn[ulip]], be- procesgvent e(Mj, ..., M)); Pin Qg such that, for some
cause the condition dfnd holds whenP is executed. replication indices defined b/, the evene(M], ..., M],)

(Fp also contains other facts, which are useless for has been executed and it is equal to the evénhence
proving the desired correspondences, so we do not listd’ M = M; holds forj < m and, since the program point

them.) P, which follows F’, has been reachef,Fp holds, soF r p
holds.
e When we already know thai{M] is defined atP (that Let # be a substitution equal to the identity on the vari-
is, defined(M) € Fp and;v[]\?] is a subterm of\/), ables ofy. This substitution gives values to existentially

some definition of:[i] must have been executed, with guantified variables of. We say thatF |-, ¢ when we can
7 = M, so the facts that hold at all definitions of ~ ShOW that impliesf¢. Formally, we define:

also hold at?, fori = M: F{M/i} € Fp. Fls, M ifand only if £ U {~6M} yields a contradiction
In the exampleG,, we havedefined(m[u[ig]]) € F Ergevent(e(My, ..., My,)) if and only if there exist
Fp, and, whenmlis] is defined, event(e4(pka, M, ..., M/ suchthaevent(e(M;,..., M})) e F
xplial,zn[ia])) holds, soevent(ea(pka,xp[ial, andF U {\/_, 0M; # M;} yields a contradiction

JCN[Z'A])){U[Z'B}/’L'A} € Fp, that is, event(eA(pkA, i A if and only if £ and.F
zplufip]],znulip]])) € Fp. In order words, since o010 02 i and Iy i o P02
m is defined at index:[ig], evente4 has been exe- Frgd1Voaitandonlyif F iy o1 of 7=y é

cuted in the copy o) , of indexulip]. Terms# M are proved by contradiction, using the equational
prover. Event9 I are proved by looking for some eveht
in 7 and showing by contradiction th&f’ = F’, using the
equational prover.

Non-injective correspondences are proved as follows.

Second, we use an equational prover, inspired by the
Knuth-Bendix completion algorithm [41]. From a set of
facts F, it generates rewrite rules by orienting equalities
of F, and uses these rewrite rules to infer new facts from
the elements of-. It also takes into account that collisions
between uniformly distributed random elements of a large

type have negligible probability, so it transforms an egual F,, ... for everyP,, that followsF,,, there exists a substi-

ity 2[M] = «[M']into M = M’ whenz is defined only by ion g equal to the identity on the variablesofand such

restrictionsnew = : T'and7 is a large type. (If the indices that F U.. UF thenO. satisfies) —
were different, the considered cells:ofwould contain in- | . aﬁly)};lubl.ié-varigglgg} o ¢ @o %=9

dependent random numbers chosen uniformly in the large
typeT’, so the probability of equality would be negligible.) Intuitively, wheny = Fy A ... A F,, holds, Fr, p, U

Proposition 1 Let ¢y = ¢ be a non-injective correspon-
dence, with) = Fy A ... A F,,. If for every P; that follows

We say thatF yields a contradictionvhen the equational ... U Fg,, p,, hold. For some& equal to the identity on
prover can derivéalse from F (for example, wher# con- Y, Fry,p, U...UFE, p, impliesf¢, sof¢ holds. Hence
tains an inequalityM/; # Ms, rewritten by the rewrite rules the correspondence is satisfied. This result is proved in Ap-
into M # M, which is then rewritten intdalse). pendix C.1.

Example 3 Let us prove that the exampl&, satisfies (1).
For¢ = F = event(ep(x,y, 2)), the only proces® that
follows F' is the process aftevent eg(z,k, , B, N), so this
event has been executed in some copgbf; of indexi’g,
with 2,1, [i%5] = «,B = y,N[i’3] = z. Then, wheny
holds, the fact§-'p’p = fp{i/B/iB}U{xpkA [’L/B} =z, B=
y, Ni’s] = z} hold for some value of};, where Fp has
been studied in Section 6.1 afd= {i’;/ip}.

Furthermore, the substitutiofl is the identity since
all variables of¢ also occur iny. Then we just have
to show thatFr p implies ¢ = event(ea(z,y,2)), that
is, FrpEgyevent(ea(z,y,z2)). Since event(ea(pka,
zplulig]],xn[ulig]])) € Fp, we haveevent(ea(pka,
zplulih]], xn(uliB]])) € Frp, so the equational prover
just has to prove by contradiction thag (pk.a, z g [uli’z]],
zn(uliB]]) = ealx,y,), thatis,pka = z, xguliz]] = v,
andzy[uliz]] = z. The proof succeeds using the follow-
ing equalities ofF g p: xp, [i5] = =, B =y, N[iz] = 2,
Tok, lin] = pha, B = zplulif]], andNIily] = wn[ulif]]

Hence, GG; satisfies (1) with any public variables:
if v = event(ep(z,y,z)) has been executed, then =
event(ea(z,y, z)) has been executed.

In the implementation, the substitutiénis initially de-
fined as the identity omar(¢)). It is defined on other vari-
ables when checkingF =, M by trying to find # such
that)M € F, and when checkingF |, event(e(M,

.., M,,)) by trying to find® such thaevent(e(Mjy, ...,
M,,)) € F. When we do not manage to find the image
by 6 of all variables ofM, resp. M, ..., M,,, the check
fails. When there are several suitable fagfd € F or
Bevent(e(M, ..., My,)) € F, the system tries all possibil-
ities.

6.3. Injective Correspondences

The addition of replication indices to events allows us to
distinguish executions of the same injective event: these e
ecutions always have distinct replication indices by the re
qguirement of the previous paragraph.

We extend Definition 5 to injective events, with exactly
the same definition as for non-injective events. Wellet
be the image by’ of the tuple of replication indices dt,
where#’ is the renaming defined in Definition 5.

The proof of injective correspondences extends that for
non-injective correspondences: for a correspondenee
¢, we additionally prove that distinct executions of the in-
jective events of) correspond to distinct executions of each
injective event ofp, that is, if the injective events af have
different replication indices, then each injective eveino
has different replication indices. In order to achieve this
proof, we collect information on the replication indices of
events, for each injective event of

e the set of facts* that are known to hold, which will be
used to reason on replication indices of events;

¢ the replication indices of the considered injective event
of ¢, stored in a tuplé\/y; these indices are computed
when we prove that this event is executed;

¢ the replication indices of the injective events ©f
stored as a mapping = {j — Ip, | F;is anin-
jective even}, wherey = Fy A... A F,,, andP; is the
process that executég, for j < m;

e the setV containing the replication indices i and
the variables of); these variables will be renamed to
fresh variables in order to avoid conflicts of variable
names between different events.

This information is stored in a sé&t which contains quadru-
ples (F, My,Z,V). We will show that, if the replication

Injective correspondences are more difficult to check indices of two executions of the injective eventsyofare

than non-injective ones, because they require distingugsh

different, then the replication indices of the correspond-

between several executions of the same event. We achievéng executions of the considered injective eventgoére

that as follows.

also different. Formally, we considétF, My, Z,V) and

We require that in the initial game of the sequence, which (7', Mg, Z’,V") in S. We rename the variablég’ of the

represents the real protocol, if the evens used as injec-
tive eventin a correspondence, then two occurrencesisf
ways occur in different branchesffid or if. This property
is preserved by the game transformations, so the gage

second element to fresh variables by a substitufiéand
show that, ifZ # 0”7', thenM, # 6" M|, (knowing F and
6" F'). This property implies injectivity.

Since this reasoning is done for each injective event in

on which we test the correspondences satisfies this propertyp, we collect the associated sefsn a pseudo-formuld,
This property guarantees that for each value of the replica-obtained by replacing each injective eventyofith a setS

tion indices, each injective event is executed at most once.

We add as first argument of every event@y the tu-
ple (i1, ...,4m,) Of replication indices at the program point

and all other leaves af with L.
We say that- C when for all non-bottom leavesS of C,
for all (F, My, Z,V), (F',M{,Z,V")in S, FUO'F' U

at which the event is executed. We add as first argument{\/;cpom(z) Z(J) # 6"Z'(j), Mo = 0" Mg} yields a con-

of every event i) = ¢ a fresh variable. Then the ini-
tial process satisfies the initial correspondence if ang ibnl

tradiction where the substitutiafi’ is a renaming of vari-
ables in)”’ to distinct fresh variables. As explained above,

the modified process satisfies the modified correspondencethe condition C guarantees injectivity.

We extend the definition ofF =, ¢ used for non-
injective correspondences t& =2V ¢, which means
that 7 implies 8¢ and C correctly collects the tuples
(F, My, Z,V) associated to this proof. Formally, we define:

Flo¥" M ifand only if
F U {—-6M} yields a contradiction

F oV event(e(i, My, ..., My,)) if and only if
there existM{), M7, ..., M/, such that
event(e(M{, M{,...,M),)) € FandF U
{0i # My v /i, 0M; # M} yields a contradiction

F VS inj-event(e(i, My, . . ., M,,)) if and only if
there existM{), M1, ..., M, such that

event(e(M{, M{,...,M],)) € F,

FU{li# MyVv L 0M; # M} yields a

contradiction, andF, M{,Z,V) € S.

FlIVeinCs g A g, ifand only if
FeiVo ¢ andF V% ¢

FIVave o v g, ifand only if
Fey oo Fleg” ¢y

These formulae differ from the non-injective case in that
we propagate, V, C and, in the case of injective events,
we make sure that quadruplé®, M(,Z,V) are collected
correctly by requiring that#, Mj,Z,V) € S.

Injective correspondences are proved as follows.

Proposition 2 Letvy = ¢ be a correspondence, with =
Fin...NF,,.

Assume that, for all eventsused as injective events in
¥ = ¢, two occurrences of the eveatalways occur in
different branches dind or if in Q.

Assume that there exists such that C and for ev-
ery P; that followsFi, ..., for everyP,, that followsF,,,
there exists a substitutighequal to the identity on the vari-
ables ofy and such thatFp, p, U...U FF, p,. bg’v’c o
whereZ = {j — Ip, | F} is an injective eventand
V =var(Ip,)U...Uvar(Ip,) Uvar(y).

ThenQ, satisfies) = ¢ with any public variabled’.

This result is proved in Appendix C.2. In the implementa-
tion, the value ofC is computed by adding*, M/, Z,V)

to S when handling injective events during the checking of
Frop,U...U meme bg’v"c o.

Example 4 Let us prove that the exampl&; satisfies (2).
After adding replication indices to events, the process con
tains event® 4 (ia, pka, xp,zn) andeg(ip, Tpk,, B, N),
and we prove the correspondentes ¢ = inj-event(ep(i,
x,y,z)) = inj-event(ea(i',z,y,2)). As in Section 6.1,
we compute the sefp of facts that hold at the program
point P just after eveneg. However,m is defined at in-
dexis = ufig] now implies thatevent(e(ulig], pka,

10

xzglulig]],xn[uliB]])) € Fp. The processP follows
F = event(eg(i,z,y, 2)) andF = Fpp = Fp{ig/ip} U
{ily = i,2ph, i) = 2, B = y, Nlify] = 2}.

Similarly to the proof ofF |, event(e(z,y, 2)) in Ex-
ample 3, we can show that =" € event(e(i', 2, y, 2))
whereZ = {1 — iz} encodes the replication indices
of the events ofy, V = {ig,i,z,y,2} contains the
replication indices ofF and the variables of), C =
S = {(F,uli%],Z,V)}. (C = S because the formula
¥ is reduced to a single event}/, = u[ig] contains
the replication indices of the evemrty contained inF:
event(ea (ulig], pka, zplulip]], en(ulik]])) € F.)

In order to prove injectivity, it remains to show that
C. Let0” = {i} Jils,i" Ji,2" [x,y" |y, 2" /z}. We need to
show thatF U 0" F U {ilz # i}, uli’s] = u[i’s]} yields a
contradiction, that is, if the replication indices of theeat
ep in ¢ are distinct {5 # 5), then the replication indices
of the eventk 4 in ¢ are also distincty[i’s] # u[i%]).

F contains N[i’z] = xn[ulis]], so 8”F contains
N[¥5] = =xn[u[i}]]. These two equalities combined
with w[i’z] = w[Z’f] imply that N[iz] = zn[u[ik]] =
zn[ulis]] = N[i%]. SinceN is defined by restrictions of
the large typenonce, N[iz] = N[i'}] impliesiy = %
with overwhelming probability, by eliminating collisions
This equality contradicts; # /5, so we obtain the desired
injectivity andG, satisfies (2) with any public variablés.

7. Authentication and Key Exchange

In this section, we show how correspondences can be
used to prove mutual authentication and authenticated key
exchange, as formalized in cryptography following the sem-
inal paper by Bellare and Rogaway [16] and more recent
formalizations [7,27]. Additional discussion and compar-
isons between these models can be found in Appendix D.

7.1. Mutual Authentication

For simplicity, we consider a protocol that includes two
roles, initiator and responder, played by two participatts
and B, respectively. Other participants are included in the
adversary. The protocol consists of a sequence of messages
exchanged alternatively from the initiator to the respande
and from the responder to the initiator. Such a configuration
can be represented by a process of the form

Qo = Init; ('4="Q4 | 1'7="Qp | Qs)

where Init is an initialization process (creating keys 4f
and B for instance)Q 4 and@ 5 represent respectively the
initiator A and the respondeB, andQ g represents a pro-
cess that allows the adversary to register keys of other (pos
sibly dishonest) participants, so that they can take part in

sessions of the protocol with and B. The processe§ 4
and@p do not contain replications.

thath has expected partnér(so that, if it accepts later, it
accepts with4). The first condition is easy to check manu-

We assume that the protocol contains an odd number ofally, as already noticed in [16]: it expresses that the maito
roundsr, so that the first and last messages of the protocolworks whenA and B interact without adversary. The last
are both from the initiator to the responder. (The other casetwo conditions mean that each sessiordoforresponds to

can be handled similarly.) We assume that the proess
stores the messages of the protocol in variables. . , x,
and that@Q g stores them in variableg, ..., y.. The ini-
tiator process) 4 starts by receiving a message that is not
really part of the protocol, and which contains the identity
Y of the responder with whichl is supposed to run a ses-
sion. The lastf{-th) message sent by proc&gs is assumed

to be a pair containing, in addition to the last message of

the protocolz,., eitheraccept 4(Y'), when the protocol ran
as expected, oreject, when the protocol failed. The pro-
cess@kp is assumed to send(a + 1)-th message contain-
ing eitheraccept 5 (X) or reject just after B received and
checked the last message of the protocol, whéres the
identity of its expected partner (inferred Byfrom the pro-
tocol messages). We designate @ the copy ofQ 4 of
indexi, = i and byQ%, the copy ofQp of indexip = i.
We say that)?, accepts withB when it sends.ccept 4 (B)
as second component of its last messagfg;accepts with
A when it sendsccept 5(A) as(r + 1)-th message.

A session identifieis a functionsid of the protocol mes-
sages;sid(x1,...,x,) is typically a subsequence of the
messages, ..., z,, often the whole sequence. We also
define a partial session identifigtl’ (1, ..., z,_1), useful
since the-th message is not available Bowhen A accepts.
We require thatid(z1, ..., z,) = sid(yi,...,y,) implies
sid (z1,...,20—1) = sid'(y1, ..., yr—1). We say tha)?,

anng are (real) partners when they have the same sessio

identifier: sid(z1[4], . . ., z,[¢]) = sid(y1 [¢'], - . ., yr[¢'])-

Definition 6 We say that), is asecure mutual authentica-
tion protocolwith session identifiersid andsid’ if:

1. if the adversary just sends to QY as first message
and relays messages faithfully betwe@h and Q%;,
thenQ?, accepts withB anin,; accepts with4;

. with overwhelming probability, there exists an in-
jective function that maps each indexof a pro-
cess QY that accepts withB to the indexi’ of
a processQiB’, with expected partnerd such that
sid (z1[d], . . ., @po1[i]) = sid" (n1 7], . . ., yr1[i']);

. with overwhelming probability, there exists an injec-
tive function that maps each indéxof a proces&igjé
that accepts with4 to the index:i of a process)
that accepts withB such thatsid (x4 [i], ..., z,[i])
sid(ya[i], ..., yoli')-

In item Z,Qg has not accepted yet whé}i, accepts, so

we cannot require th&pg accepts with4; we only require

11

a distinct session aB, and conversely, with overwhelming
probability. They can be verified using correspondences, as
shown by the following proposition.

Proposition 3 Let @, be obtained fron®), by adding

e event part,(Y,sid' (z1,...,2,1));event full 4(Y,
sid(x1, ..., z,)) just beforeA sendse,., accept 4, (Y);

e event full 5(X,sid(yy,...
accept5(X);

,yr)) just before B sends

e event partg(X,sid (y1,...,y-—1)) just before B

sendsy, 1.

If Qo satisfies the first condition of Definition 6 af}j sat-
isfies the correspondences

3
(4)

with public variablesV = §, thenQ, is a secure mutual
authentication protocol with session identifiei§ andsid’.

inj-event(part 4 (B, x)) = inj-event(part 5 (A, z))
inj-event(full 5 (A, x)) = inj-event(full , (B, x))

The proof of this proposition is straightforward from the
definitions. Obviously, many other versions of authentica-
tion can be verified using correspondences, for example by
requiring non-injective properties instead of injectivees
™vr by requiring authentication in one direction only instea
of mutual authentication.

7.2. Authenticated Key Exchange

We adopt the same hypotheses as for mutual authenti-
cation. Furthermore, we assume tliat sends or receives
the j-th message of the protocol on channgl;[i4], and
similarly @z on channelg;[ig]. The channels:4;[ia]
andcp;[ip] are not used for other purposes. We assume
that, just before) 4 ends accepting, it stores the established
key in variablek 4 of typeT', and sends;,., accept 4(Y) on
channelc4,.[i4]. We assume that, just befofgs ends ac-
cepting, it stores the established key in variableof type
T and sendaccept 5(X) on channetp,.11[ig].

We consider here the Real-Or-Random model [7]: the
adversary is allowed to ask several test queries, whickeith
all return the session key (real) or all return a random key
(random). Our goal is to show that the adversary has a negli-
gible probability of distinguishing these two situatioss
shown in [7], the Real-Or-Random model is stronger than
the Find-Then-Guess model of [16]. When the test queries

return the real session key, they are defined by the proces®efinition 8 (Secrecy) Assumer of typeT is defined inQ

Qr = Qra | Qrp, Wwhere
Qra ="<"Ttest o[i](ua);
if defined(kalual) then testsli](kalual)

andQrp is defined symmetrically. When the test queries
return a random key, they are defined by the pro¢gss=

Q74 | Qrp, Where
Qlpa = ""="Ttest 4[i](un);

if defined(kafual,Y[ual) then

if Y{ua] # B then testa[i](ka[ua]) else

find u < np suchthat defined(ua[u], ralu]) A

ualu] = ua then test4[i](raul) else

find u < np suchthat defined(up|u], 5[],
z1[ual, .. xe[ualyifuslul], ..y fuslu]]) A
sid(z1[ual, ...,z [ual) = sid(y1 [us[u]], . .

yrlup[u]]) then test a[i](rp[u]) else

new r4 : T;testali]{ra)

andQ’- is defined symmetrically. When the expected part-
ner of A is not B, the session is executed with a dishon-
est participant; then, the test quef}., returns the real
key. When the test querg)/., has already been asked
to the same copy of)4 (of index ua[u] = wua), oOr to
a copy of @p with the same session identifier (of index
uplu] such thasid(xq[ual, ...,z [ua]) = sid(y1 [up[u]],

L yrluslu]]), @ 4 returns the same result as in the pre-
vious test query. Otherwis€)/., returns a fresh random
keyra.

Definition 7 We say that), is asecure authenticated key
exchangeverT with session identifiersid andsid’ if Qq is

a secure mutual authentication protocol with session ident
fierssid andsid’ and the following are true:

1. if the adversary just sendB to Q% as first mes-
sage and relays messages faithfully betwéénand
i, then Q’, accepts withB, Qi accepts withA,
kali] = kgli’], and this random variable is uniformly
distributed inT";

2. Qo | Qr = Qo | Q7.

The first point of this definition means that the protocol
works correctly whemd and B interact without adversary.

The second point expresses the indistinguishability when

the real key (returned b§,) and a random key (returned
by Q7).

under a single replicatioh=". Let Q' be obtained fron)
by removing events. The proce§spreserves the secrecy
of z when@’ | R, = Q' | R, where
Ry = =" ¢[i](u : [1,n]);if defined(z[u]) then c[i](x[u])
R = V=""¢[i](u : [1,n]);if defined(z[u]) then
find v’ < n' suchthat defined(y[u'], u[u']) A ufu'] = u
then m@[') else new y : T} c[i {(y)
¢ ¢ fc(Q'), andu, v,y ¢ var(Q’).

Intuitively, this definition means that the adversary can-
not distinguish the array from an array of uniformly dis-
tributed random values by performing several test queries
represented by, and R.,, with non-negligible probability.

Proposition 4 Let @, be obtained fromy), by replacing
Carlia) (., accept 4(Y)) with

7557‘71));
event full , (Y, ka,sid(x1,...,2.));
if Y = B then

event part (Y, sid’ (xy, ...

let ¥’y = ka in caylia](z,, accept 4 (Y))
else

carlial(zr, accept 4 (Y)); cax[ia](); caxial(ka)
X)) with
2 Yr));

andcp,41]ig]{accept g(

event full (X, kp,sid(y1, . . .
if X = A then

cpr+1lipl{accept (X))
else

cpr1lip)(accept p(X)); eaxlil(); cexlinl(kB)

and addingevent part 5 (X, sid’ (y1, . ..
Qp sendsy; 1.

If Qo satisfies the first condition of Definition @y, pre-
serves the secrecy éf,, and @ satisfies the correspon-
dences

,Yr—1)) just before

inj-event(part 4, (B, x)) = inj-event(part 5(A,z)) (5)
inj-event(full 5 (A, k, x)) = inj-event(full , (B, k,x)) (6)
event(full g(A, k,z)) A event(full , (B, k', x)) = k = k'
Q)
with public variables{k’,}, then@Q, is a secure authenti-
cated key exchange with session identifigdsandsid’.

This result is proved in Appendix C.3. The procéxs
adds events as for mutual authentication, except that the ex

As shown in [20, 21], our prover can prove the secrecy changed key is added to the evefitd , and full ;. Fur-

of a variabler, defined as follows:

12

thermore, whem runs a session witli, it stores the key

in the variablek’;. When A runs a session with™ # B, it 9. Conclusion
allows the adversary to obtain the exchanged key, by send-

ing a message ok, and symmetrically whed? runs a We have presented the first tool for proving correspon-
session withX' # A. (The test queries also allow the ad- dences by sequences of games, in the computational model.
versary to get the key in this case.) As for Proposition 3, Thijs tool works with no or very little help from the user,
the first condition of Definition 7 is easy to check manua”y. handles a wide Variety of Cryptographic primitivesl and pro
The first two correspondences imply mutual authentication. qyces proofs valid for a polynomial number of sessions in
The equivalenc€), | Qr ~ Qo | Q7 is obtained by com- the presence of an active adversary.
bining the last two correspondences with the secreay,of Although this tool can prove complex correspondences,
Intuitively, the correspondences allow us to show that eachyith conjunctions and disjunctions, our examples use rathe
element ofk in a session withA is in fact also an ele- simple ones. Complex correspondences proved useful in
ment ofk, (which we can find by looking for the same ses- ¢ase studies [1, 2] in the Dolev-Yao model; we plan to use
sion identifier), so showing that, cannot be distinguished them in similar situations in the computational model. Our
from an array of independent random numbers is sufficienttog| can also be used to analyze protocols or combinations
to show the secrecy of the key. The correspondences musgf primitives that are outside the scope of the Dolev-Yao
be true with public variable$k’, }, so that the contextis al- model. For example, in [22], in collaboration with David
lowed to access’,: in the proof, the procesg; is putina pointcheval, we have used it to prove the Full Domain Hash
context that implements the test queries by calling the pro-signature scheme. We plan to consider other such examples
cesses, or RZ-'A of Definition 8, which directly access in the future.
K.
Acknowledgments We thank David Pointcheval for very
8. Experimental Results helpful discussions on _this paper. This work was partly sup-
ported by the ANR project ARA SSIA Formacrypt.

We have successfully tested our prover on examples of
protocols of the literature: Yahalom [23] with and with-
out key confirmation, Otway-Rees [55], and the original) _ -
and corrected versions of Woo-Lam shared-key [36] and [1] M. Abadi and B. Blanchet. Computer-assisted verification

: : f a protocol for certified emailScience of Computer Pro-
ublic-key [62,64], Needham-Schroeder public-key [48, 0 X . ;
23] DenyniLg_Sagco sublio-key [5, 34] ;’n g Neeé’hgm_ gramming 58(1—2):3-27, Oct. 2005. Special issue SAS'03.

L] ’) [2]

. . . M. Abadi, B. Blanchet, and C. Fournet. Just fast keying
Schroeder shared-key [53, 54] with and without key confir- in the pi calculus. ACM Transactions on Information and

mation. For eaCh_pr0F000|: we haV(_? tried to prove one-way System Securityfo appear. An extended abstract appears in
or mutual authentication or authenticated key exchange, de ESOP'04.

pending on the goal of the protocol. Our prover obviously [3] M. Abadi and A. D. Gordon. A calculus for cryptographic
does not prove properties that do not hold. It succeeds protocols: The spi calculudnformation and Computatign

References

in proving properties that hold, in all cases except one: it 148(1):1-70, Jan. 1999. An extended version appeared as
cannot show (4) for the original version of the Needham- Digital Equipment Corporation Systems Research Center re-
Schroeder shared-key protocol, because it fails to praate th port No. 149, January 1998.

Nrli N=li'l — 1 with overwhelmina or ilitv. wher [4] M. Abadi and J. drjens. Formal eavesdropping and its
BM 7 B[Z] th ove € g probability, ere computational interpretation. RACS’01 volume 2215 of

Np Is anonce. S _ LNCS pages 82-94. Springer, Oct. 2001.

Our prover can make subtle distinctions, which are typ- [5] M. Abadi and R. Needham. Prudent engineering practice
ically not made by Dolev-Yao provers. For instance, it can for cryptographic protocoldEEE Transactions on Software
model two notions of security for signatures: one in which Engineering 22(1):6-15, Jan. 1996.
the adversary is allowed to forge a new signature for an al- [6] M. Abadi and P. Rogaway. Reconciling two views of cryp-
ready signed message; the other in which the adversary can- tography (the computational soundness of formal encryp-
not forge any signature. With the latter definition, for the tion). Journal of Cryptology15(2):103-127, 2002.
corrected Woo-Lam public key protocol [64], it can show [7]1 M. Abdalla, P.-_A. Fouque, and D. P_omtcheval. Passworq-
that the signature is authenticated (both participant® hav based authenticated key exchange in the three-party setting.
exactly the same signature), while it cannot with the former IEE Proceedings Information Securig53(1):27-39, Mar.

I . . 2006.
d_efmltlon, because the two participants may have different 8] P. Addo, G. Bana, J. Herzog, and A. Scedrov. Soundness
signatures for the same message.

of formal encryption in the presence of key-cycles.H8-
The total runtime for all these tests is 29 s on a Pentium ORICS’05 volume 3679 of NCS pages 374-396. Springer,
M 1.8 GHz. Appendix E details these results. Sept. 2005.

13

[9] M. Backes and P. Laud. Computationally sound secrecy [25] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Linch,

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

proofs by mechanized flow analysis.@TS’06 pages 370—
379. ACM, Nov. 2006.

M. Backes and B. Pfitzmann. Symmetric encryption in
a simulatable Dolev-Yao style cryptographic library. In
CSFW’'04 pages 204-218. |IEEE, June 2004.

M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. QCS’'03
pages 220-230. ACM, Oct. 2003.

M. Backes, B. Pfitzmann, and M. Waidner. Symmetric
authentication within a simulatable cryptographic library.
In ESORICS’03 volume 2808 ofLNCS pages 271-290.
Springer, Oct. 2003.

G. Barthe, J. Cederquist, and S. Tarento. A machine-checked

formalization of the generic model and the random oracle (28

model. InIJCAR’'04 volume 3097 ofLNCS pages 385—
399. Springer, July 2004.

M. Baudet, V. Cortier, and S. Kremer. Computationally
sound implementations of equational theories against pas-
sive adversaries. ICALP’05, volume 3580 of NCS pages
652-663. Springer, July 2005.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenti-
cated key exchange secure against dictionary attacks.
EUROCRYPT'0Qvolume 1807 ofLNCS pages 139-155.
Springer, 2000.

M. Bellare and P. Rogaway. Entity authentication and key
distribution. INnCRYPTO’93 volume 773 ofLNCS pages
232-249. Springer, Aug. 1993.

M. Bellare and P. Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In
EUROCRYPT'06volume 4004 ofLNCS pages 409-426.
Springer, May 2006. Extended version availablétip:
/leprint.iacr.org/2004/331

B. Blanchet. From secrecy to authenticity in security pro-
tocols. INnSAS’02 volume 2477 ofLNCS pages 342—359.
Springer, Sept. 2002.

B. Blanchet. Automatic proof of strong secrecy for secu-
rity protocols. INEEE Symposium on Security and Privacy
pages 86-100, May 2004.

B. Blanchet. A computationally sound mechanized prover
for security protocols. Cryptology ePrint Archive, Report
2005/401, Nov. 2005. Available dtttp://eprint.
iacr.org/2005/401

B. Blanchet. A computationally sound mechanized prover
for security protocols. INEEE Symposium on Security and
Privacy, pages 140-154, May 2006.

B. Blanchet and D. Pointcheval. Automated security proofs
with sequences of games. GRYPTO’06 volume 4117 of
LNCS pages 537-554. Springer, Aug. 2006.

M. Burrows, M. Abadi, and R. Needham. A logic of au-
thentication.Proceedings of the Royal Society of Londgn A
426:233-271, 1989.

R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. FOCS'0] pages
136-145. IEEE, Oct. 2001. An updated version is available
at Cryptology ePrint Archivehttp://eprint.iacr.

0rg/2000/067

In

14

(26]

(27]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

O. Pereira, and R. Segala. Time-bounded task-PIOAs: A
framework for analyzing security protocols. DBISC’'06
volume 4167 ofLNCS pages 238-253. Springer, Sept.
2006.

R. Canetti and J. Herzog. Universally composable sym-
bolic analysis of mutual authentication and key exchange
protocols. InTCC’06, volume 3876 ofLNCS pages 380—
403. Springer, Mar. 2006. Extended version available at
http://eprint.iacr.org/2004/334 .

R. Canetti and H. Krawczyk. Analysis of key-exchange pro-
tocols and their use for building secure channels.Eur
ROCRYPT 200Q1volume 2045 ofLNCS pages 453-474.
Springer, May 2001.

] R. Corin. A probabilistic Hoare-style logic for game-based

cryptographic proofs. IhCALP’06, volume 4052 o NCS
pages 252—-263. Springer, July 2006.

V. Cortier, H. Hordegen, and B. Warinschi. Explicit ran-
domness is not necessary when modeling probabilistic en-
cryption. InICS 2006 Sept. 2006. Proceedings to appear.
V. Cortier, S. Kremer, R. Ksters, and B. Warinschi. Com-
putationally sound symbolic secrecy in the presence of hash
functions. InFSTTCS’06 volume 4246 ofLNCS pages
176-187. Springer, Dec. 2006.

V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. ESOP’05 volume
3444 ofLNCS pages 157-171. Springer, Apr. 2005.

A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Tu-
ruani. Probabilistic polynomial-time semantics for a proto-
col security logic. InICALP’05, volume 3580 ofLNCS
pages 16-29. Springer, July 2005.

A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Com-
putationally sound compositional logic for key exchange
protocols. INnCSFW’06 pages 321-334. IEEE Computer
Society, July 2006.

D. E. Denning and G. M. Sacco. Timestamps in key dis-
tribution protocols. Commun. ACM24(8):533-536, Aug.
1981.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature
scheme secure against adaptative chosen-message attacks.
SIAM Journal of Computindl7(2):281-308, Apr. 1988.

A. Gordon and A. Jeffrey. Authenticity by typing for se-
curity protocols. INCSFW’'01 pages 145-159. IEEE Com-
puter Society, June 2001.

S. Halevi. A plausible approach to computer-aided cryp-
tographic proofs. Cryptology ePrint Archive, Report
2005/181, June 2005. Available http://eprint.
iacr.org/2005/181

J. Herzog. A computational interpretation of Dolev-Yao ad-
versaries. I'WITS’03 pages 146—155, Apr. 2003.

R. Janvier, Y. Lakhnech, and L. MazaiCompleting the pic-
ture: Soundness of formal encryption in the presence of ac-
tive adversaries. IESOP’05 volume 3444 oL NCS pages
172-185. Springer, Apr. 2005.

I. R. Jeong, J. Katz, and D. H. Lee. One-round protocols for
two-party authenticated key exchange.Applied Cryptog-
raphy and Network Securityolume 3089 olLNCS pages
220-232. Springer, June 2004.

[41] D. E. Knuth and P. B. Bendix. Simple word problems in
universal algebras. I€@omputational Problems in Abstract
Algebrg pages 263-297. Pergamon Press, 1970.

H. Krawczyk. HMQV: A high-performance secure Diffie-

Hellman protocol. INCRYPTO’05volume 3621 oLNCS

pages 546-566. Springer, Aug. 2005.

P. Laud. Handling encryption in an analysis for secure in-

formation flow. INESOP’03 volume 2618 oL.NCS pages

159-173. Springer, Apr. 2003.

P. Laud. Symmetric encryption in automatic analyses for

confidentiality against active adversaries. IEEE Sympo-

sium on Security and Privacpages 71-85, May 2004.

P. Laud. Secrecy types for a simulatable cryptographic li-

brary. INCCS’05 pages 26—35. ACM, Nov. 2005.

P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov.

A probabilistic poly-time framework for protocol analysis.

In CCS’9§ pages 112-121, Nov. 1998.

P. D. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov.

Probabilistic polynomial-time equivalence and security pro-

tocols. InFM'99, volume 1708 ofLNCS pages 776-793.

Springer, Sept. 1999.

G. Lowe. Breaking and fixing the Needham-Schroeder

public-key protocol using FDR. IRACAS’96 volume 1055

of LNCS pages 147-166. Springer, 1996.

P. Mateus, J. Mitchell, and A. Scedrov. Composition of

cryptographic protocols in a probabilistic polynomial-time

process calculus. IEONCUR’03 volume 2761 olLNCS

pages 327-349. Springer, Sept. 2003.

D. Micciancio and B. Warinschi. Completeness theorems for

the Abadi-Rogaway logic of encrypted expressialmirnal

of Computer Securifyl2(1):99-129, 2004.

[51] D. Micciancio and B. Warinschi. Soundness of formal en-

cryption in the presence of active adversariesTGC'04,

volume 2951 of NCS pages 133-151. Springer, Feb. 2004.

J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague.

A probabilistic polynomial-time calculus for the analysis

of cryptographic protocolsTheoretical Computer Science

353(1-3):118-164, Mar. 2006.

R. M. Needham and M. D. Schroeder. Using encryption for

authentication in large networks of computer€ommun.

ACM, 21(12):993-999, Dec. 1978.

R. M. Needham and M. D. Schroeder. Authentication revis-

ited. Operating Systems RevieiM (1):7, 1987.

D. Otway and O. Rees. Efficient and timely mutual authen-

tication. Operating Systems Revigi (1):8-10, 1987.

[56] A. Ramanathan, J. Mitchell, A. Scedrov, and V. Teague.
Probabilistic bisimulation and equivalence for security anal-
ysis of network protocols. IFOSSACS’04volume 2987 of
LNCS pages 468-483. Springer, Mar. 2004.

[57] V. Shoup. A proposal for an ISO standard for public-key
encryption, Dec. 2001. ISO/IEC JTC 1/SC27.

[58] V. Shoup. OAEP reconsideredJournal of Cryptology
15(4):223-249, Sept. 2002.

[59] V. Shoup. Sequences of games: a tool for taming com-

plexity in security proofs. Cryptology ePrint Archive, Re-

port 2004/332, Nov. 2004. Available lattp://eprint.

iacr.org/2004/332 .

C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and

M. Waidner. Cryptographically sound theorem proving. In

CSFW'06 pages 153-166. IEEE, July 2006.

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[52]

(53]

[54]

[55]

(60]

15

[61] S. Tarento. Machine-checked security proofs of crypto-
graphic signature schemes. BESORICS’'05volume 3679
of LNCS pages 140-158. Springer, Sept. 2005.

[62] T.Y.C.Woo and S. S. Lam. Authentication for distributed
systems Computer 25(1):39-52, Jan. 1992.

[63] T.Y.C.Woo and S. S. Lam. A semantic model for authen-
tication protocols. IProceedings IEEE Symposium on Re-
search in Security and Privacpages 178-194, May 1993.

[64] T.Y.C.Woo and S. S. Lam. Authentication for distributed

systems. Ininternet Besieged: Countering Cyberspace
Scofflawspages 319-355. ACM Press and Addison-Wesley,
Oct. 1997.

Appendix

Appendices A, B, and C should be read in this order, be-
cause Appendices A and B introduce notations and results
used in the proofs in Appendix C.

A. Additional Information on the Calculus

The full syntax of our calculus is given in Figure 1. This
calculus distinguishes two categories of processes: input
processes wait for a message on a channel; output processes
execute some internal computations and output the result on
a channel. Most constructs have already been explained in
Section 2. We complement these explanations here. The nil
process) does nothing. Thénd construct may have several
branches:find (@;”:1 wjii] < nj1y. i) < N,
suchthat defined(Mj1,..., Mj;;) A M; then P;) else P
tries to find a branchy in [1,m] such that there are val-
ues ofuji, ..., ujm; for which Mjy, ..., My, are defined
andM; is true. In case of success, it execukgs (If there
are several successful choicesjofu;1,. .., ujm,, one of
them is chosen randomly with uniform probability.) In case
of failure for all branches, it executd3. The conditional
if defined(Mj, ..., M;) A M then P else P’ is defined as
syntactic sugar fofind suchthat defined (M, ..., M{)AM
then P else P’. The conjunctdefined(My, ..., M;) can
be omitted wherl = 0 and M can be omitted when it is
true. An else branch offind or if may be omitted when it
is else yield(); 0. (Note that %lse 0” would not be syntacti-
cally correct.) A trailing O after an output may be omitted.

The semantics of the calculus is formally defined as
a probabilistic reduction relation on semantic configura-
tions C. A semantic configuratiorlC is a quadruple
E, (0, P),Q,C, where

e FE'is an environment that maps array cells to bitstrings
or 1,

e P is the output process currently scheduled and a
mapping of the replication indices & to integers,

M,N ::= terms The process evaluates the teris, . .., M,, to bitstrings
i replication index ai,...,an, and executes the everliay, . . . , a,,). This ex-
x[My, ..., Mpy] variable access ecution is recorded on the label of the transition, and the
f(My, ..., M) function application event instruction disappears from the process. The proba-

] bility of this transition is 1 and its tag i8v.

Q= Input process The other semantic rules are the ones of [20], except
OQ 1 g:';l\rallel composition f&r minor changes of notations. ([20] usgdn,t instead of
lisnQ replicationn times —p,+ because there was no event. The processes were di-
newChannel ¢; Q channel restriction rectly instantiated with the values of the replication oe,
M, ..., Mz](ﬂhﬁ] Ty, ... 7ka . T}); P so that the semantics of [20] used where this paper uses

input (0,P).)
The initial configuration for running proces§, is

P = output process mitConfig(Qo) = 0, (00, start()),{(co,Qo)}, fc(Qo)
mu\q’ ...,Nv);Q output whereoy is the function defined nowhere. Hence, the pro-
new z[i] : T; P random number cess begins with sending an empty message on channel
let 23] : T = M in P assignment start. The process), should wait for a message on that
if defined(M, ..., M;) A M then P else P’ channel. .

conditional We denote a trace of)y by initConfig(Qo) — .7
find (@, Uj1[l~'] <, ... ,ujm~[2~'] < Ny, E, (o, 1_3), 9,C wherep > 0is the probabil@ty of this trage_z
suchté;t defined_(Mjl, M]lj) /_Mj thjen P) and7 is a sequence of tags that determine the transitions
clse P array lookup (one tag per t.ransmon). .
event e(My, ..., My,); P event The following two prqpemes are easy to prove from the
definition of the semantics:
Figure 1. Syntax of the process calculus Proposition 5 If initConfig(Qo) LP’T E,(0,P),0,C,

then P is a subprocess @, or of start().0.

e Qis amultiset of pairgs’, Q) where the)'’s are input
processes currently waiting for messages ahis a Proposition 6 If E, (o, P), Q,C ipyT E' (o', P, Q,
mapping of the replication indices @to integers, C’, thenE’ is an extension of.

e (Cis the set of channels already created.)
B. Proof Engine
The semantics is defined by reduction rules of the form

E,(0,P),Q,C ﬂpyt E' (¢',P"),Q,C’ meaning that In this section, we define the proof engine that our tool

E, (o, P), Q,C reduces toF’, (o/, P’'), Q',C" with proba- uses for reasoning on games. This engine is used both for
bility p. The labelle] is empty for all reductions, ex- simplifying games and for proving correspondences. The
cept events, in which case it records the executed evenwersion presented here is slightly simplified; the full vens
e(ai,...,an). The tagt just serves in distinguishing re- can be found in [20]. Our proof engine uses both equations
ductions that yield the same configuration with the same given by the user, that come in particular from algebraic
probability in different ways, so that the probability of a properties of cryptographic primitives, and facts thatdhol
certain reduction can be computed correctly. (Although the at certain points in the game due to the form of the game.
semantics depends on the security paramgtés value is The engine uses this information in order to infer equdlitie
omitted to lighten the notation.) using a Knuth-Bendix-like equational prover.

The semantics uses the relati@h o, M | a, which
means that the terd/ evaluates to the bitstringintheen- B 1. User-defined Rewrite Rules
vironmentsE (which gives values of arrays) amd(which
gives values of replication indices).

The semantic rule for events is the following: The user can give properties of the fokf, : T3, ...,

Ve, : T,,M which mean that, for all environmenis
Vi <m,E,0,M, | a, that map variables to bitstrings, if for all < m, p(z;) €
= Event ,
E,(o,event e(My, ..., My): P),Q,C () I,(T;), thenp, M { true. _ _
e(@1,esam) These properties are translated into rewrite rules as fol-
- 1,Ewv E7 (0’, P), Q7C lows:

16

o If M is of the formM; = M, and var(Msy) C
var(M;), we generate the rewrite rutés; : 71, ...
YV, T, My — M.

)

e If M is of the formA/; # M-, we generate the rewrite
rulesvVay : Th,...,Vay, : T, (M = Ms) — false,
Vay : T, ..., Ve, : T, (My # M) — true. (Such

stores this set iFL"t. (The superscripFut stands forfu-
ture, since these facts do not hold yetatbut will hold in
the future.)

The functioncollectFacts is defined in Figure 2. It
is initially called by collectFacts(Qp). It takes into ac-

count thatz[:] may be defined by an input, a restriction,
a let, or a find, and updaté® accordingly. Furthermore,

rules are used for instance to express that different con- o

stants are different.)

e Otherwise, we generate the rewrite ritte; : 71, . ..,
Vo, : Ty, M — true.

The termM reduces intdV/’ by the rewrite rulevz; : Ty,
ces YV 2 Ty My — My if and only if M = C[0M4],
M’ = C[0My], whereC'is a term context and is a substi-
tution that maps:; to any term of typd; for all j < m.

The prover has built-in rewrite rules for defining boolean
functions:

—true — false —false — true
Vo :
Vo :
Vo :
Vo :
Vo :
Vr .
YV :

Vo :

bool, =(—x) — x

T\Wy:T,~(x=y) —x#y

T,y :T,~(x#y) —z=y

T,xr =x — true Vo :T,x # x — false
bool, Yy : bool, —(x Ny) — (—z) V (—y)
bool, Yy : bool, ~(x V y) — (—x) A (—y)
bool, x A true — x Yz : bool, z N false — false

bool, x V true — true Vz : bool,z V false — x

The prover also has support for commutative function
symbols. For such symbols, all equality and matching testswhere o

are performed modulo commutativity. The functionsyv,

=, and# are commutative. So, for instance, the last four thenz[M,,.

rewrite rules above may also be used to rewtite: A M
into M, false A M into false, trueVV M into true, andfalse
M into M.

B.2. Collecting True Facts from a Game

The function collectFacts collects factsdefined(M),
event(e(My, ..., My,)), and terms\/ that hold at each pro-

gram point of the game. More precisely, for each occur-

renceP of a subprocess of the game, it computes ar5et

when we executdet z[i]: T = M in P/, a[i] = M
holds in P’ and z[1] is defined inP’. When we execute
find (@;’;1 ujlm < Mgy .- 7ujm]-m < Tjm, suchthat
defined(Mj1, ..., Mj;;) A M; then P;) else P’, M; holds
in Pj, Mﬂ? ey Mjlj,ujlm, ey Ujmy m are defined ier,
and-M; holds inP’ whenm; = [; = 0. When we execute
event e(My, ..., M,), that execution is recorded by a fact
event(e(My, ..., My,)).

After calling collectFacts(Qg), we complete the com-
puted setsFp (whereP may be an input or output process)

by adding facts that come from processes ahBve
Fp «— Fp U Fp: if Pisimmediately undef’

We also add facts that we can deduce from facts
defined(M). Precisely, ifdefined(M) € Fp, andz[M;,

.., M,,] is a subterm of\/, we take into account facts that
are known to be true at the definitions:oby adding them
to Fp as follows:

Fp«— FpU
o(Fp U (FEE N Fp))
ﬂ if Pis underP’
(zlir,im], PIED | o(Fpr U FEI) otherwise

{Mi/ir,..., Mp/im}. Indeed, if
defined(M) € Fp, andz[M, ..., M,,] is a subterm of\/,

.., M,,] is defined atP, so some definition of
xz[Ma, ..., M,,], just above the proced®, must have been
executed before reachir, so the facts that hold &’ also
hold at P, with a suitable substitution of indices: we have
oFp:, thatis,Fp {M/i1,..., My /inm}. Moreover, if the
occurrenceP is not syntactically under the occurrenbg,
then the code of’ must have been executed until the next
output before executing some other code and reacking
so in facte(Fp: U FE) hold. If P is syntactically under
P, itis possible that the code & has been executed until
reachingP instead of until reaching the next output, so we

of facts that hold at that occurrence. (It is important that have onlyo (Fp/ U(FE¥NFp)). If there are several defini-
P is an occurrence and not a process: processes at sever#ibns ofz, we do not know which one has been executed, so
occurrences may be equal, and must be distinguished fromwe only add taFp the facts that hold in all cases, by taking

one another here.) The functioollectFacts also computes
a setD containing pairgx[i], P) wherez[i] has been de-
fined just above procesB. (If there are several definitions
of z, there is one such pair for each definitiona0j Fi-

nally, for output processeB, collectFacts(P) returns a set

the intersection on all definitions of

This operation may add nedefined facts toFp, so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for defini-

tionsdefined(M) in which M contains nested occurrences

of facts that will hold when the next output is executed, and of the same symbol (such a§ .. z[...]...]).

17

collectFacts(Q)
if @ = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)
if Q = !"="Q' then collectFacts(Q’)
if @ = newChannel ¢; Q' then collectFacts(Q")

if Q = C[Ml,...,Ml](Ilm :Tl,...,ka : Tk); P then
Fp = {defined(a; i) | j < k}:
FE" = collectFacts(P)
D =DuU{(a,[il,P)|j <k}
collectFacts(P) =
if P=c[Mj,..., Mj](Ny,...,Ng);Q then

collectFacts(Q); return ()
if P =new z[i] : T; P’ then
Fpr = {defined(z[i])}; FE'* = collectFacts(P’)

D = DU {(z[i], P')}; return Fp, U Foyt
if P=letz[i] : T = M in P’ then

Fpr = {defined(z[i]), z[i] = M}

FEu — collectFacts(P’)

D = DU {(z[i], P")}; return Fp, U Foit
if P = find (@;n . uﬂ[i) <nji,.. ,ujm].[ﬂ < Ny,
suchthat defined(Mjy, ..., Mj;,) A M; then P;) else P’
then

for eachj < m,
Fp, = {defined (u;1[i']), .. .,
defined(Mj1), . . . , defined(
F E;_lt = collectFacts(P;);
D =D U{(upld], Py), -, (um, 7],)}
Fpr ={=Mj[m; =1; =0}
FEM = collectFacts(P’)

defined (1, [i')),
Mjl]‘)7 M]}

m
return (Fpr U FE) N ﬂ Fp, UF, Fhut)
j=1

if P =evente(My,..
Fpr = {event(e(Ml, e
collectFacts(P")

, M,); P’ then
, M)}

Figure 2. The function collectFacts

18

We formally define the semantics of facts as follows:
E,0,€ B F when the factF’ holds in the environments
E ando for the sequence of evenfs

E 0, Mifandonlyif E,0, M | true

E, 0, & defined(M) if and only if
E,o0,M | afor somea

E,0,& Fevent(e(My, ..., M,,)) ifand only if
there existuy, . . . , a,, such that for allj < m,
FE, o, Mj U a; ande(al, . ;am) €€

We extend this definition to formulae built from facts by
conjunctions and disjunctions:

E, p,EF o1 A ¢ ifand only if
E,p,EF ¢1andE, p,E+ P

E p,EF ¢1V ¢ if and only if
Eapagkd)l OrEvpagFQSQ

We also extend it naturally to sets of facts and formulae:
E 0, Fifandonlyifforal I € F, E,0,E - F.

The following proposition expresses the correctness of
the collection of true facts. A detailed proof of this result
for the full algorithm used in the implementation, but foeth
version without events, can be found in [20]. The extension
to events is straightforward.

Proposition 7 If initConfig(C[Qo])
C,thenE,o0,& - Fp.

L1 E(0,P),Q,

B.3. Equational Prover

We use an algorithm inspired by the Knuth-Bendix com-
pletion algorithm [41], with differences detailed below.

The prover manipulates pairs, R whereF is a set of
facts (M, defined(M), or event(e(My, ..., M,))) andR
is a set of rewrite rules/; — M,. We say thatM re-
duces intoM’ by M; — M, when M = C[M;] and
M’ = C[Ms,] for some term context’. (That is, all vari-
ables in rewrite rules ofR are considered as constants.)
The prover starts with a certain set of fadtsand R =).
Then the prover transforms the paftg, R) by the follow-
ing rules (the ruleW means thatF, R is transformed
into 7/, R'):

w if F reduces intd®’ by a rule of ®)
FU{F'},R R orauser-defined rewrite rule
FU{M; AN M3}, R)
FU{M, Mz}, R
FU{z[My,...,.Mp] =z[M{,...,M]]},R
FU{M, =Mj,...,M,, = M/,},R (10)

whenz is defined only by restrictions
new x : T'andT is a large type

;%{34;,]\4,]}\’/[? i 0~ 0 (11) Proposition 8 If]f;% then Pr[3(E,o, P, Q,C,p, &),
RU{M — M} initConfig(C[Qo]) = E, (0,P),Q,C AE,p,E - F,RA

FRU(My = My} | TSRS ABDY 1 oE.p.£ b F R is negligible.

— arule ofR ora
FUM =M} R yser-defined rewrite rule We denote byPr[C[Q)] ~» JF] the probability
F,RU{M; — M} if M, reduces intad\/] by that C[Qo] reduces into a configuration in whictF
FU{M =M}, R aruleofR A3) " holds: Pr{C[Qo] ~ F] = Pr[3(E,0,P,Q,C,p,E),

initConfig(C . E,(0,P),Q,CNE, p,EF F.
We also use the symmetric of Rule (11) obtained by swap-lnl onfig(ClQo]) = E, (0, P), @ r]

ping the two sides of the equality.

Rule (8) simplifies facts using rewrite rules. Rule (9
decomposes conjunctions of facts. Rule (10) exploits the
elimination of collisions between random values. It takes
into account that, when is defined by a restriction of a Proof This is an easy consequence of Proposition 8.
large type, two different cells of have a negligible prob- Since F yields a contradiction, the prover transforms
ability of containing the same value. So when two cells of (F;R) = (F,0) into (¥',R’) that containsfalse, so
= contain the same value, we can conclude up to negligibleE.p,€ = F implies E,p.& = F,R, and=E,p,& +
probability that they are the same cell. F',R'. By Propositon 8 applied as many times

Rule (11) is applied only when Rules (8) to (10) can- @S there are transformation steps betwd#nR) and
not be applied. Rule (11) transforms equations into rewrite (¥', R'), Pr[3(E, 0, P, Q,C, p, E), initConfig(C[Qo]) £,
rules by orienting them. We say thaf > M’ when ei- E, (0,P),Q,CANE,p,E F F,RA-E, p,E F F Ris
ther M is the formz[M], = does not occur id/’, andz is negligible, which implies thaPr[C[Qq] ~ F] is negligi-
not defined only by restrictions, oW = x[My, ..., M,,], ble. g
M'" = z[Mj,..., M,], andforallj <m, M; > M;. Intu-
itively, our goal is to replacé/ with M’ when M’ defines C. Proofs
the content of the variabl&/. (Notice that this is not an or-
dering; the Knuth-Bendix algorithm normally uses a reduc- L.
tion ordering to orient equations. However, we tried some C-1. Non-injective Correspondences
reduction orderings, namely the lexicographic path ordgri
and the Knuth-Bendix ordering, and obtained disappointing The following lemma shows the correctnessil, ¢,
results: the prover fails to prove many equalities becausethat is, if 7 =, ¢, thenF implies 6¢ with overwhelming
too many equations are left unoriented. The simple hearisti probability.
given above succeeds more often, at the expense of a greater
risk of non-termination, but that does not cause problems in|_ emma 3 If F ¢, thenPr[C[Qo] ~ F U {-0¢}] is
practice on our examples. We believe that this comes frompegjigiple.
the particular structure of equations, which come friem
definitions and from conditions dind or if, and tend to
define variables from other variables without creating de-

) Proposition 9 If F vyields a contradiction, then
Pr[C[Qo] ~» F] is negligible.

Proof The proof proceeds by induction gn

pendency cycles.) e Casep = M. If FU {-0M} yields a contradiction,
Rules (12) and (13) are systematically applied to sim- then, by Proposition 9r[C[Qo] ~ F U {-604}] is
plify all rewrite rules ofR after a new rewrite rule has been negligible.
added by Rule (11). Since all terms in rewrite rule$odire
considered as constants, Rule (13) in fact includes the de- e Case¢ = event(e(M;,...,M,,)). There are terms
duction of equations from critical pairs done by the staddar Mi,..., M/ such thatevent(e(Mj,...,M].)) € F
Knuth-Bendix completion algorithm. andFU{\/]_, 0M; # M;} yields a contradiction. By
We say thatF yields a contradictionwhen the prover Proposition 9Pr[C[Qo] ~ F U {\/;’ll OM; # M}H
starting from(F, () derives(F’, R’) with false € F. is negligible. Moreover, itF, p, £ = F U {=0¢}, then
We write £, p,& - F,R whenE p,& F F and for E p,& F event(e(M{,...,M!)) and =E,p, & +
al My — My € R, E,p,E = My = M,. A variant of event(e(OMj,...,0M,,)), so there existy < m
the following result is proved in [20]. This result shows such thatE, p,& + OM; +# MJ’-- henceFE, p, & F
the soundgess of the transformationfR into ', R’ for FU{V7, 0M; # M}. Therefore,Pr[C[Qo] ~
each rulez77 of the equational prover. FU{=06}] < Pr[C[Qo] ~ FU{\VT, 0M; # M}}].

Hence Pr[C[Qo] ~ F U {—0¢}] is negligible.

19

e Casep = ¢ A ¢2. We haveF =, ¢ andF =, ¢o.
By induction hypothesisPr[C[Qo] ~~ F U {—=0¢1}]
and Pr[C[Qo] ~» F U {—f¢,}]| are negligible. If
E,p,E F FU{=0(p1 A ¢2)}, then eitherE, p,E -
FU{=0¢,1} orE, p,E F FU{—6¢2}, sSoPr[C[Qo] ~
FU{=0(¢1 A ¢2)}] < Pr(ClQo] ~> F U {=0¢1}] +
Pr[C[|Qo] ~ F U {=0¢2}], soPr[C[Qo] ~» F U
{=6(¢1 A ¢2)}] is negligible.

e Casep = ¢ V ¢o. We have eitherF =, ¢, or
F B, ¢2. In the first case, by induction hypothesis,
Pr[C[Qo] ~ F U {—-0¢1}] is negligible. IfE p,E +

FU{-0(¢1V ¢o)}, thenE, p, € = F U {=0¢1}, so
Pr[C[Qo] ~ FU{=0(¢1V ¢2)}] < Pr[C[Qo] ~ FU
{—=0¢1}]. ThereforePr[C[Qo] ~» FU{=0(p1V ¢2)}]
is negligible. The second case follows by symmeity.

Proof of Proposition 1 By hypothesis, ifP; follows F7,
., andP,, follows F;,,, then there exists a substitutién
equal to the identity on the variables ¢f and such that

Fr,pU...UFr, p, By ¢ Weletd(Py,... P,) be such
a substitution and we defin€(P,...,P,) = Fp.p, U
.UZFr,, p, U{-0¢} whered = 0(Py,...,Py,).

Let C' be an evaluation context acceptable (@, V).

Below, we show that if initConfig(C[Qo]) p.7
E, (0,P),0Q,C andé‘ ¥ ¢ = ¢, then there exisP; that
follows Fy, ..., P, that follows F,,, and p’ such that
E,p,EF]—"(Pl,... P,,). Therefore,

E'(E,O', P7 Qac7€)7
: initConfig(C[Qo]) £

E,(0,P),Q.C\E vw:«b}

3(E7 o” P? Q7C7 pl7 g),
< Z Pr initConfig(C[Qo)]) £, E,(0,P),Q,C
PrPothat LAE O EEF(PL, ..., Py

follow F,..., F,, respectively

D

P,, that follow F,...,

<
Py,

Pr [C[Qo] ~ F(Pi, ...

F,,, respectively

» P

By Lemma 3, sinceFg, p, U...UFp, p, By forf =
O(P,...,Pp), the probabilityPr[C[Qo] ~ Fr, . p,U...U
Fr,, p, U{—0¢}] = Pr[C[Qo] ~ F(P1,..., Py)]is neg-
ligible, so the sum is negligible since the number of pro-
cessed’, ..., P, isindependent of the security parameter.
Hence,Q, satisfies the correspondenge=- ¢ with public
variablesV'.

Assume thainitConfig(C [QO]) 1 E,(0,P),0Q,C
and for every P; that follows Fi, ..., for every P,
that follows F,,, for every p/, we have-FE,p & +
F(Pr,...,Py,). We show that + ¢y = ¢. This result
will conclude the proof.

Assume thatp,& + 4, where p is defined on
var(¢). For each event = event(e(My,..., M)

20

in ¥, p,& + event(e(My,...,My)), so for all
i < m, p,M; | a; and e(ay,...,an) €
£. Since the only transition that produces a label
e(ay,...,an) is (Event), the tracantConﬁg(Qo) =T
E, (o,) Q,C contains a transition of the fornE’,

e(ai,...,a,,r)
—_—

(o', event e(Mj,...,M!);P"),Q,C’ 1,Bv
E' (o', P"), Q' ,C" with E', o', M} |} a; forall j < m'. By
Proposition 5event e(Mj,..., M/ ,); P' is a subprocess
of C[Qo] or of start(); 0. SinceC does not contain events,
evente(M;,..., M), ,); P'isasubprocess @}, soP’ fol-
lows F'. By Proposmon TE' 0’ ,&" + Fp:, wheref' is the
prefix of £ until and including the considered occurrence
of the event(ay, ..., a,). By Proposition 6,F is an ex-
tension ofE’, soE, o', £ + Fp:. Letd be the substitution
that renames replication indicesrtto fresh replication in-
dices, such thafp pr = ' Fp U {H’M/ =M;|j<m'}.
Leto” be such that’ = ¢”¢’. ThenE, a” £ l— 0’ Fp:. For
all j < m', sinceE’, o', M} | a;, we haveE,a”,e’M]’ [}
aj. We havep, M; | a;. HenceE,o" @ p,& = 0'M; =
M, wheres” & p denotes the function that mapso o ()
whenz € Dom(o”) ands to p(i) wheni € Dom(p). This
function is well defined, sinc®om(cs”) andDom(p) are
disjoint. SOE, 0" @& p, &+ Fr p.

Therefore, for eaclt; in 1, there exist, p, and a pro-
cessP; that follows F; such thatt, o/ @ p,E F Fr, P,
Since the envwonments’ andp have d|510|nt domams we
can define an environmept =0/ ®...® 0, ®p. Then
E,pl,gl—fphpl L UFFE, P

Let 0 = 9(P1,... Pm). SinceE,p € + Fp, p, U
u}‘Fm,pm and—-E,p & + F(Py,...,Pn), we have
E 0, E F 0¢. We extendp to all 2 € var(¢) \ var(y),
in such a way thatf, p’,0(x) | p(z). Moreover, if
x € var(¢y), thenp(x) = p(0(x)) p'(0(x)) since
Or = z, SOE,p,0(x) | p(z). So, for allz € var(¢),
E,p,0(x) || p(x). SinceE, p', £ F 0¢, we havep, & - ¢,
so¢ satisfies the correspondenge= ¢. O

C.2. Injective Correspondences

We defineformula(F bg,v,e ¢) as follows:

formula(F }:ﬁ"“ M) =0M
formula(F g event(e(Mo. ..., M) =
Bevent(e(My, ..., M,))
formula(F =2V inj-event(e(Mo, . . ., My,))) =
Voo (Ao =)

event(e(M,...,M
formula(F |:>I VIEGRCa g A y) =
formula(F k5" ¢1) A formula(F 5% ¢o)

M/) EFANF,M},T v)es

formula(F bg’v’clv@ o1V p2) =
formula(F '@g,v,cl ¢1) V formula(F bg’V’CQ ¢2)

where M, is a fresh variable added as first argument of
events. The formuléormula(F |:>I V€ %) generalize®¢
to the case of injective events.

The next lemma shows that, & 7€ ¢, then F im-
plies formula(F 2" ¢) with overwhelming probabil-
ity.

Lemma 4 If .’szvc ¢, then Pr[C[Q¢] ~ F U

{~formula(F =2V¢ $)}] is negligible.

Proof The proof is similar to that of Lemma 3, and pro-
ceeds by induction op. The only new case is the one of
injective events.

e Case ¢ inj-event(e(Mo, ..., My)), C
S. There are termsM|,...,M/ such that
event(e(My, ..., M},)) € F, FU{\V/]_, 0M; # M}
yields a contradiction, an@F, Mj,Z,V) € S. By
Proposition 9,Pr[C[Qo] ~ F U {0\, 0M; #
M;}] is negligible. Moreover, ifE, p,& = F U
{—~formula(F ’:)?’V’S @)}, thenE, p, & + F and for
all My, ..., M/ such thatevent(e(M{,...,M],)) €
F and(F, M}, Z,V) € S, in particular for the terms
My}, ..., M! above, we havéZ, p, € \/;ﬁ:O OM; +#
M}, soE,p,& = FU{\V]L,0M; # M;}. There-
fore,Pr[[Qo] ~ F U {—formula(F %>I b P} <

Pr[C[Qo] ~ F U {\/j 00M; # M;}]. Hence,

Pr[C[Qo] ~ F U {~formula(F 3" ¢)}] is negli-
gible. O

The next lemma details the meaning of
formula(F =2V¢ ¢). Essentially, this formula im-
plies 8¢, so, if we store inp(x) the value off(x) by
E,p,0(x) | p(z), we havep, £ H*" ¢. Furthermore, for
injective eventsformula(F 5" ¢ ¢) guarantees that the
quadruplegF, M}, Z,V) are correctly collected i@.

Lemma5 If E, p/, &+ F,forall x € var(¢), E, p’,6(x) |
p(x), and E,p', € + formula(}"‘:}?’v’c ¢), then there
exists ¢ such thatp,& +*° ¢ and, if 7 is a non-
bottom leaf of¢p™ and S the corresponding leaf of,
thenE,p' & b E(1) = event(e(M),..., M))) for some
event(e(My, ..., M),)) € Fand(F, M), ZI,V) € S.

Proof The proof proceeds by induction @n

e Casep = M. We haveformula(F ;"¢ ¢) = M,
SOE, p',E - OM,sop, M || true, sop,E -+ M. The
result holds withp™ = L

21

We have
Mm))y

e Case ¢ event(e(Mo, . ..
formula(}' |:>I Vi€)

s M),
Bevent(e(My, . .

SO E,p & F 0event(e(M0,.. , M), SOp,E -t
event(e(My, ..., M,,)). The result holds withp™ =
1.

e Case ¢ = inj-event(e(My, ..., My,)).
We have formula(F):)g,v,s ®) =

Vevent(e(a,...a1 NeraF gz vyes (Njmo 0Mj =
Mj). So there existMg,...,M], such that
event(e(My,..., M})) € F, (F,M,,I,V) € S,
and E,p,& F N[, 0M, Mj. We have
E, o, & F,s0E,p & F event(e (M(),...7M,’n)),
so E,p',& + Oevent(e(My,...,M,)), so there
exists 7 such that€(r) = event(e(ag,...,am))
with for all j < m, E,p,6M; | a;, so for all
j <m, E,p,M; || a;, S0p,& 7 event(Mp,...,
M,,)). Moreover,E, o' € F E(T) = event(e(ay, . ..,
am)) = Bevent(e(My,..., My)) event(e(M,

., M!)). As already noticed, we hawsent(e(M],

LML) € Fand(F, M|, Z,V) € S, so the result
holds with¢™ = 7.

e Case¢p = ¢1 A P2 We haveEpé‘ F
formula(F |:>IVC1ACZ¢ A ¢2), so E,p & F
formula(F |:>I V) and E,p,E F

fommla(}"|:>§’V’C2 ¢2). The induction hypoth-
esis yields¢] and ¢7, and the result holds with

T = PT NP5

e Casep = ¢1 V ¢2. We haveEpé‘ +
formula(F |:>IVCIVC2¢ Vo ¢2), so E,p,E F
formula(F |:>I V) or Ep.¢E F

formula(F =1V ¢,). In the first case, the in-
duction hypothesis yields], and the result holds with
¢" = ¢T V ¢35, Wheregs is the formulag, in which
all terms and events have been replaced withThe
second case follows by symmetry. O

The next lemma shows that, for evemtsised as injec-
tive events, two distinct executions of everthave distinct
replication indices. This is a consequence of the require-
ment that two occurrences of the same evene in differ-
ent branches dind or if in Q.

When the term\/ contains no array accesses, we define
o(M) by E,o,M |} o(M) for any environment, since
the evaluation of\/ does not depend oA.

Lemma 6 Assume that the evemtis used as injective
event in the correspondenoﬁ = ¢. If the trace

initConfig(C [QO]) »,r C contains two distinct reduc-

tions and C does not contain events. Moreover, for the

empty tracee, FEuvents(e) = (), so Events(e) W
E, (0,event e(Mo, ..., Mp); P),Q,C Events(initConfig(C[Qo])) contains no duplicates
Aeotm), B (0, P), Q,C We show that, ifinitConfig(C [QO]) o1 C A
andE’, (o', event e(M},..., M].); P'), Q' ,C’ C’, then Events(initConfig(C[Qo]) =, TQ v C)w
e(aly...,al,) L B (0 P), Q. C FEvents(C') C Ewents(initConfig(C[Qo]) pT C)w
Events(C).
thenag # aj). Thus, ifinitConfig(C [QO]) ».7 C, then
Proof Let us fix the event symbok. We de- Events(initConfig(C [Qo]) —p.1 C) W Events(C)
fine Events(initConfig(C[Qo]) ipj C) as the C Events(e) W Events(initConfig(C[Qo]))

multiset that containsay, for each reduction E,

e(ag,...,am)

These multisets contain no duplicates, so in particular,
(0’, event €(M0, ey Mm), P), Q,C —,>1,Ev E,

(0, P),Q,C in the traceinitConfig(C[Qo]) S,z C. Bvents(initConfig(C[Qo]) <,.7 C)
Multisets 5 are represented by functions that map each contains no duplicates. This property implies the desired
elementz of S to the number of occurrences ofin S. result. 0

When S; and S, are multisets, the multisehax(S1, S2) - o
is defined bymax(Sy, S2)(z) = max(S(x), S2(z)). We Proof of Proposition 2 By hypothesis, ifP; follows

define the multiset®vents (o, P) and Events(o, Q) by Fy, ..., andP,, follows F,,, then there exists a substi-
tution 6 equal to the identity on the variables ¢f and
Events(c,0) = 0 such thatF =2"V¢ ¢ whereF = Fp, p, U...UFr, p,,,
Events(0, Q1 | Q2) = Events(o, Q1) & Bvents(a, Qs) T = {j = Ip, | Fjis an injective eveljl; andV =
<n . var(Ip,)U... U Var(lpm) Uvar(y). We letd(Py, ... Pp,)
Events(0,V'<"Q) = |4 Events(oli — a],Q) be such a substitution and we defifdPy,..., Py) =
€1, In(n)] F U {~formula(F):)g,v,c ¢)} wheref = 0(Py, ..., Pp,).
Events(o, newChannel ¢; Q) = Events(c, Q) Let C be an evaluation context acceptable for
Events(o, c[My, ..., M) (z1[i] : Ty, ..., xxfi] : Ty); P) = (Qo, V). Next, we show that ifnitConfig(C [QOD ».T
E,(0,P),Q,Candf t/ ¢ = ¢, then

Events(c, P)
Events(o,c[M,..., Mj](Ny, ...

Events(c, Q)
Events(o,new z[i] : T; P) = Events(c, P)

N Q) = o there existP; thatfollowsF, ..., P, that followsF,,,
R andp’ suchthatt, o/, & = F(Py,. .., Pp),

e or there exist a non-bottom le&fof C, (F, My, Z,V)
and(F', Mj,7',V") in S, andp’ such thatF, p', € +

Events(o,let zi] : T = M in P) = Events(c, P) FUF ULV epom(z) L) # 0"T'(j)} U {0" My =
Events(o,event €' (M, ..., My,); P) = My}, where the substitutiodd” is a renaming of the

Events(o, P)if ¢ # ¢ variables inV’ to distinct fresh variables.
Events(o,event e(My, ..., My,); P) = Therefore,

{o(My)} W Events(o, P) A(E,o0, P, Q,C,¢E),
Events(o, find (G};n,1 {[j[ﬂ < n; suchthat g initConfig(C[Qo]) LN E (0,P),QCNEF Y= ¢

defined(Mj1, ..., Mj;;) A M; then P;) else P) = [3(E,o0,P,Q,C,p, &),
<) Pr|initConfig(C[Qu]) & E, (e, P), Q,C

max(max Events(a, P;), Events(a, P)))
7=l Pq,...,P,, that _/\Eap/,gl_f(le"aPm

We define the muItisetEvents(E (0,P),0,C) = follow Fy,..., Fim, respectively
Events(o, P) & U(U Neo Events(o’,Q’). This multiset r3(E,0,P,0,C, 0, &),
contaips all bltstrlngao fqr eve;ntSe(.) that may be exe- N Z - initConfig(C[Qo]) £, E,(0,P),0,C
cuted in atrf_:lce that begins with, (o, P), Q, C. _ NE,p € FUF UM, =0"M)}

The multiset Events(initConfig(C[Qo])) contains no SleafofC,S#L, U T(7) £ 0" T (i

. . L {\/jeDom 7) (]) 7& (])}

duplicates, since two occurrences of the same event (r u,,7,v)es,
e must be in different branches dind or if in Qg (F',M},T' V')eS

22

< Z PI‘[C[QO]W}-(PhaPm)]

Pi,...,P,, that follow F ,..., F,, respectively
3 B ClQo] ~ FUF' U{M, = 9:11\{6}
UV, epomiz Z0U) # 0T/ ()}
Sleafof C,S#.L,

(F, Mo, I, V)ES(F', My, T’ V')eS

+

By Lemma 4, since Fi=2VC¢, the probability
PrlC[Qo] ~ F U {~formula(F =V e)}] is
negligible, that is, Pr[C[Qo] ~ F(Py,...,Py)] Is
negligible. Sincel- (C, for all non-bottom leavesS
of ¢, for all (F,My,Z,V), (F,M,,1I,V') in S,
FUO'F U {\/]GDom I)I(J) 7é H/II/<j)7MO = HNM(S}
yields a contradiction. By Proposition ®r[C[Qo] ~
FUF U{My=0"M}}U {\/JeDom @ L) # 0"Z'(5)}]
is negligible. Hence the sum is negligible, g satisfies
the correspondenag = ¢ with public variables/.
Assume that

e initConfig(C [QO]) —p1 E,(0,P),Q,C,

e for every P, that follows £y, ..., for every P,
that follows F,,, for everyp’, we have—-FE,p, & +
F(Py,...,Py),

e and for every non-bottom leaf of C, for every
(F, My, Z,V) and(F', M}, 7', V") in S, for everyy',
we have-FE, p',& & F U F" U{V,cpomz) L) #
0"T'(4)} U{My = 6" M|}, where the substitutio\’
is a renaming of the variables W to distinct fresh
variables.

We show that + ¢ = ¢.
Assume thatp,£ +¥" 1, where p is defined on

var(¢), v = Fy A ... AN Fp, 97 = 11 A LA
Tm, and for all j < m, 7; is either a step orl.
For each eventl; = event(e;(Mjo,..., Mjy,,)) or
F; = inj-event(e;(Mjo, ..., Mj,;)) in ¢, we have
p,g F7i event(ej(Mjo,...,Mjm],)), SO pank [} ajk
for all & < m; ande;(ajo,...,a;m;) € £. More-
over, if F; = inj-event(e;(Mjo,..., Mjy,,)), then
ej(ajo, - -, ajm;) = £(7;). Since the only transition that
produces a Iabe«lz j(ajo, ... aj5m;) is (Event), the trace

initConfig(Qo) pT E, (0, P),Q,C contains a transi-
tion of the form E; (aJ,event ej(M;O,...,M;mJ_);Pj),

9;,C; (o) vev Ej (05, P;),Q;,C; with
Ej o5, Mj, I aje for all & < m;. By Proposi-
tion 5, event ej(MJ’-O,...,MJ’-mj);Pj is a subprocess of
ClQo] or of start();0. SinceC does not contain events,
event e; (Mo, . .. ,MJ’-mJ_); P; is a subprocess @, S0P,
follows F;. By Proposition 7.£;,0;,&; = Fp,, where&;

is the prefix of€ until and including the considered occur-

rence of the event;(ajo,...,ajm;). By Proposition 6,F

23

is an extension oft;, so £, 0;,& = Fp,. Letf be the
substitution that renames replication indicesPatto fresh
replication indices, such thafp, p, = 0;Fp, U {0; M}, =
Mjy | k <mj}andlp, = HQMJ’-O since the tuple of replica-
tion indices atP; is added as first argument;, of events
in Qo. Leto’; be such that; = o0’ ThenE7a],5 [
0;Fp;. Forallk < mj, sinceE; aj,Mjk I aji, we
haveE,o],Q;M’k U ajrp. We havep, ik I ajk. Hence
E,0; @ p, & 0;Mj; = M;x, whereo’, © p denotes the
funct|on that mapsr to oi(x)whem € Dom(c’) andi to
p(i) wheni € Dom(p). SOE, o’ © p, € = Fr; p;
Therefore, for each < m, there exists a proce§$ that

follows F; such that
e for all j < m, there is a reduction
Ej, (U]-7event ej(MJ’-O, ce 7Mj/'mj); Pj), Qj,CJ

€ (a0, sjm ;)

- 1,Ev E77(U]’) Q??

in the tracenitConfig(C [Qo]) —p1 E,(0,P),Q,C,
and if F; = inj-event(e;(...)), thent; # L and
E(5) = e5(az0,-- - Ay,);

e lettingp’ =01 ®...® 0., ®p, we haveDom(p') =
Var(Ipl)U Uvar(Ip,)Uvar(y), E, p', €+ Fr, p U
..UFF, p, andforallj <m, o' (Ip,) = oj(Ip,) =

ms

0j (MJO) = @jo0-

Letd = 0(Py,...,P,). LetF = Frop,U...UFE, P,
T = {j — Ip, | Fjis an injective everjt andV =
var(Ip,) U ... U var(lpm) U Var(w). SinceE,p',& +
Fr,pU.. Ufp Py, and—-FE, o', 5".7:(P1,...,Pm),we
haveE, o/, € F formula(F |:>I V€). We extendp to all
x € var(¢) \ var(¢) in such away thak, o', 0(x) | p(z).
Then, for allz € var(¢) Uvar(v), E, p',0(z) | p(z). By
Lemma 5, there existg” such thaip, £ +*" ¢ and, ifr is
a non-bottom leaf 0f” andS the corresponding leaf @f,
thenE, o', € - E(1) = event(e(M{,..., M]))) for some
event(e(M{,..., M]')) € Fand(F,My,Z,V) € S.

We defineF as the function that maps™ to ¢™ build as
above. It suffices to show thiitis component-wise injec-
tive. Let f be a projection off to a leaf ofp, andS the
corresponding leaf of. Assume thatf (¢v7) = f(¥3) =
7 # L. Letus show that)] = 7.

Assume that)] = 1 A ... ATy @andy = o1 AL A
Tom. BY construction off', we have

e for all j < m, there is a reduction

! /
Eyj, (015, event e (Mg, ..., Mi;p,)i P1j), @y, Cij

ej(alj();nu,aljmj)

1,80 Evj, (015, P1j), Q15,C1j

in the tracenitConfig(C [QO]) —p1 E,(0,P),Q,C,
and if F; = inj-event(e;(...)), thenr,; # L

E,p,€ F
a1;0, Il

&
c

and 5(7’1]') = ej(aljo,...,aljmj);
Fi, for all j < m, pi(Ip;)
{j = Ip, | F;is an injective event E, p},
E(1) = event(e (M{’,)) (Fi, M{,Ty,V)
andDom(p}) = Vi;

l_
Sy
e forall j < m, there is a reduction

! /
Egj7 (0’2]‘, event ej(MZjO’ ey M2jmj); ng), QQj,ng

e](a2J07"'7a2]7TL)
1,50 Eaj, (025, Psj), Q25,Ca;

in the tracenitConfig(C[Qo]) £p.7 E, (0, P), Q,C,
and if F} inj-event(e;(...)), then m; # L
and 5(7'2]) Ej(agjo,...,agjmj); E,pé,(‘: -
Fo, for all j < m, py(Ip,;) = azjo, Iz
{j = Ip,, | Fj;is an injective event E,p,&
E(1) = event(e (Mé’,...)) (Fa, MY 15, Vs) €
andDom(p5) = V.

Let ” be a renaming that maps variables)gfto distinct
fresh variables. Lep’ be defined by'(x) = p/(z) if z €
V, andp/(z) = pg(e"‘l(x)) if 2 €0”"(Vy).

Then E,p/.€ + Fi, E,p,E + 0"Fs, E,p,E

',
Sv

event(e(M{,...)) = &E(r) = 6"event(e(MY,...)), so
E 0o, &+ M = 60"MJ. Hence by hypothesidy, o', € +
Njepom(z) T1(7) = 0"I2(j), so for all j € Dom(Zy),

P(T1(7) = p/(0"T2(7)), thatis,p) (Ip,,) = ph(Ip,,), SO
aijo = asjo. By Lemma 6, for allj € Dom(Z,), that is,
for all j such thatF; is an injective event, there is a single
reduction in the trace with a label of the fory(a, o, . . .),
soT; = T2;. Furthermore, for alj such thatF; is a non-
injective eventyy; = 7o = L. Soy] = 3.

HenceF is component-wise injective, B - ¢ = ¢.
This concludes the proof. |

C.3. Authenticated Key Exchange

Proof of Proposition 4 We first show that), is a secure
mutual authentication protocol. The first condition of Def-
inition 7 holds by hypothesis, and it implies the first condi-
tion of Definition 6. The last two conditions of Definition 6
come from (5) and (6), as in Proposition 3.

Next, we show the second condition of Definition 7.
We define a proces§); obtained from@Q, by adding
event part 4(Y,sid (x1,...,2,_1));event full ,(Y, ka,
sid(zy,...,2,)) just before ca,[ia](z,,accept (Y)),
event partg(X,sid (y1,...,y-—1)) just before
CBr—1 [ZB] <y7“71>1 and event fu”B(Xv ka Sid(yla R
yr)) just beforecp,11]ig]{accept 5(X)). Let Q2 be the
process obtained fro®;, by deleting events.

We define

Qu, = ""c(ug : [1,

e(kalus])

n));if defined (ks [us]) then

24

Q, = """ c(us : [1,n));if defined(k'y [us]) then
find v’ < n' suchthat defined(y[u'], us[u']) A
us|u'] = ug then &(y[u']) else new y : T';¢(y)

SinceQ); preserves the secrecy o, we haveQ); | Qp,, ~
Q2 | Q-

Below, we define a proce%3sr that simulates the test
queries ofQr by calling the procesgy | Qi and the test
queries ofQ/- by calling @y | Q;C/A, so that

Q1 | Qr ~ newChannel ¢; (Q) | Qu,){¢'/¢} | Qsr)
Q1 | @ ~ newChannel ¢; ((Q) | Q4){¢/¢} | Qsr)

\/thereE = (CAQ; -+ -5 CAr, CAK , CB1, .-+, CBry CBK, ¢) and
¢’ consists of fresh names such that= (c,...,c4,,

s a1y s e, €'). By deleting events, we have

Qo | Qr ~ newChannel ¢; ((Q2 | Qi){c'/e} | Qsr)
Qo | Q' ~ newChannel ¢; ((Q2 | Q4){¢/¢} | Qsr)

Since Q2 | Qr, ~ Q2 | Q%,A, we have by renaming

(@2 | Qu){d/et ~ (Qa | Q’/A){CN’/E}. Moreover,

Qs does not use the variables QXQ,Q%,Q;;‘, so by

Lemma 2, Property ZyewChannel ¢/; ((Q2 | Qi){c'/c} |

Qsr) ~ newChannel ¢; ((Q: | Q'/A){g//g} | QsT)-
ThenQo | Qr ~ newChannel ¢; ((Q2 | Qu,){c/} |

Qsr) ~ newChannel ¢; (Q2 | Qy,){c'/e} | Qst) ~
Qo | Q% so by transitivityQo | Qr = Qo | Q%, which
proves the desired result.

We now define the proce<3sr; we explain this def-
inition below. We definez[M] as an abbreviation for
z1[M],...,z,[M] and we definer'[M], §[M], andy’[M]
similarly. We letQsr = Qsra | Qstn | Qra | QrB
where

~
~

)

Qsra ="<"Ttestali](ua);

if defined(z]., 1 [ual) A 2] [ua] # reject then
if 2. 1[ua] # accept 4 (B) then
i [wal(); Care[ual (k); test ai] (k)
else
find u < nr suchthat defined(u[u], 7 a[u]) A

ualu] = ua then test[i](rau]) else
find u < np suchthat defined(ug[ul], r5lu],
@ [ual,y'[upul]) A sid(@ [ua)) = sid(y'[up[u]])

then test 4 [i](rp[u]) else

il{ua); [i)(ra); testali](ra)

Qsrp = "="Ttestp[i](up);

if defined(y..,;[uB]) Ay, [up] # reject then

if y,.,1[up] # acceptg(A) then
prc[uBl(); cprclus](k); test p[i] (k)

else

find u < nr suchthat defined(up[ul], r[u]) A
upu] = up then testg[i](rpu]) else

find u < np suchthat defined(w [u], 7 a[u],
@ [ualu), y'[up]) Asid(@ [ualul]) = sid(y [uz])
then testg[i] (1 a[u]) else

find v’y < n suchthat defined(2’[u/4], ¥ [uB],

@)y [Wa]) A sid(a[uly]) = sid (' [ug]) A
;. [u'y] = accept 4 (B) then
fi+nrl(uly); ¢li + nol(rp); testglil(rp)
Qra ="="caoi](Y"); g i(Y");
anlil(@h); car [il(@)); canli) (25); ¢y il (25);
cos il () $;+1)§m<$;7 $/r+1>
Qrp = "="elil(¥1); [(y1);
Cpali)(5); emalil(ya)s - -5 e i) (0r); i, [(0));

Epri [Wri1); cBra1[i]{Yry1)

wherel, (n') = 2 x I, (nr) (n’ is the number of queries al

lowed inQ,, and@’,) and all variables in these processes
A k'y

are fresh. (The variableg’, 2,

with the variables o€);,.) The processe9r4 andQrp re-
lay the requests from channels; andcg; to channel&’Aj

andc’Bj. These relay processes are useful in order to store
,Yr41, t0 have access

the messages int}, ..., .1, 41,
to them without reading the variables@f,.

y; play the same role as
Y, z;,y; in Qy; they have been renamed to avoid confusion

The processeQsr4 andsrp simulate the test queries.

They first check that the queried copy®@f; or Qg has ac-
cepted (first test of)s74 and@Qsr). Then, if the queried
session is not betweet and B, they callQ), to return the
session key. Otherwise, they cél}, to return the key of

sessions betweef and3, or @, to return a fresh random
A

number for each session betwedrand B. Before calling

Qy, OF Q! X they first check if the same test query (or a test
query to the partner) has already been called, and if it has,
they return the previously returned value. (These checks

are not strictly necessary, becaL@g,A already checks if

the same query has already been called. However, they

slightly simplify the proof by making the structure @fs 4
and Qsrp closer to the structur€/’., and Q%-5.) After
these checks)sr 4 callsQy, or QZ'A directly (last line of

Qst4) While Qs first uses dind to find the copy of 4,

25

partner of the considered session and a@iis or Q! 2 for
that partner (lasfind of Qs75).

To show an equivalenck ~ R, we show that, after ex-
cluding a set of traces of negligible probability, eachérat
L can be simulated by a trace Bfof the same probability,
and conversely.

For the equivalence

Q1 | Qr ~ newChannel ¢; ((Qf | Qi){¢'/e} | Qsr)

the proof is done by considering only the traces in
which the correspondences (5)—(7) hold. The other
traces have negligible probability since the correspon-
dences (5)—(7) are satisfied b®{ with public vari-
ables {k/,}, so by Lemma 1, they are also satisfied
by newChannel &;((Qy | Qu,){¢/¢} | Qsr) and

newChannel ¢; (Q) | @},){¢/&} | Qsr). We estab-
lish the correspondence between traces by induction on the

length of the trace:

e When@); | Qr receives a message on channgl[i 4]
with j < r — 1, @), stores the received message in
x;[ia], answers by returning the next message of the
protocolz;1[ia] oncaji1[ial. Correspondingly, in
(@ | Qu){c/E} | Qst), Qra stores the received
message in[ia] (or Y'[ia] if j = 0), forwards it
on cy;[ial; Q,{c'/¢} answers to it likeQ; except
that the next message;+1[i4] is sent oncly; . ;[ial;
Qra then stores this message ify,[ia] and for-
wards it onca;41[ia]. Whenj = r — 1, the situa-
tion is similar, except that the returned message is a
pair x,.[i 4], accept 4, (Y[ia]) OF x,.[ia], reject, stored
by Qra In .”L';,[Z'A],J};,Jrl[iA]. Whenj; = r — 1
and the protocol accepts, both sides defingi],
executeevent full ,(Y[ial, kalial,sid(Z[ia])), and
sendz,.[i4], accept 4 (Y[ia]), so in the right-hand side
x,. 1[ia] = accepty(Y[ia]). When furthermore
Y[ia] = B, Q additionally defines’,[ia] = kalial.
Whenj = r — 1 and the protocol reject&[i 4] is not
defined and both sides send[i 4], reject, so in the
right-hand sider;. , [i4] = reject.

So,kalia] is defined in the left-hand side if and only
if z;.,,[ia] is defined and different fromeject in the
right-hand side, and in this cas¥[i4], Z[i4], and
kalia] have the same value in both sides of the equiv-
alence and, in the right-hand sidg/[is] = YTia],
CC'[iA] = 5[1.14}, qu['LA] = kA[iA] if Y[’LA] B,
K'4[ia] is not defined ifY [i4] # B, andx; [ia] =
accept 4 (Y[ial).

Similarly, the messages ef;[i 5] are answered in the
same way by both sides of the equivalence, thanks to
the forwarding byQ r 5 in the right-hand side.

So,kglig] is defined in the left-hand side if and only
if v, ,[ip] is defined and different fromeject in the
right-hand side, and in this cas&[iz], y[ig], and
kglig] have the same value in both sides of the equiv-
alence and, in the right-hand sid¥/[ig] = X[ig],

y'li] = ylin], andy;.,, [ip] = accept 5 (X[ip]).

WhenQ; | Qr receives a messagest [i](ua), Qra
returnskafua] if it is defined. Correspondingly, in
the right-hand sideQ) s7 4 first tests ifz;. , [u4] is de-
fined and different fromeject, which is equivalent to
kalua) defined, as mentioned above.

If 2. [ua]l # accept,(B), thenY[u,s] # B. In
this case@ sr4 sends an empty messagedady), [u4].
Q; receives it, and sends; [u4] on i [ual. Qsra
then receives this message, stores ikjrand sends
k = kalua] ontest 4[i], as in the left-hand side.

Otherwisex,. | [ua] = accept 4(B) andY [us] = B.
Then Qsr4 checks if the same test query has been
asked before (test query numhesuch thatu 4 [u] and
r4[u] are defined, and 4[u] = u4). Below, we show
that, whenr 4 [¢] is definedf 4 [u[i]] andY [u4[:]] are
defined,r4[i] = kaluali]], andY[uali]] = B. So
rafu] = kalualu]] = kalual, andk4[ua] is sent on
test 4[i], as in the left-hand side.

Next, @QsT4 checks if a test query has been asked
to the partner ofQ%* (test query number such
that up[u], 75[u], 2'[ua], andy'[up[u]] are defined
andsid(z'[u4]) = sid(y'[ug[u]])). Below, we show
that, whenrg[i] is defined,kg[upi]] and X[ug[i]]
are defined,rgli] = kplugli]], and X[ug[i]] =

A. Sorglul = kplug[u]]l. Since kplup|ul]
and z/.[u] are defined, the eveni≪ (X [up[u]]
kplup(u]l, sid(ylup[u]])) and full 4 (Yual, kafual
sid(Z[u4])) have been executed. Singd(Z[ua]) =
sid(a[ua]) = sid(y'[uplul]) = sid(yluslu]]),
X[uplu]] = A, andY[usa] = B, these events
are fullg(A, kpluglu)],sid(Z[ua])) and full 4(B,
kalual,sid(Zlual)). So by the correspondence (7),
kB[uB[u]] = k‘A[uA], henCG’I“B[U] = kB[uB[u]] =
kalua] is sent ortest 4[i], as in the left-hand side.

)
)

Finally, if both finds fail, thenQsr4 sendsu4 on
c[i]. Qu {c'/c} receives this message and replies
by sendingk’,[ua] = kafua] Onc'[i]. Qsra Stores
the reply inr4, sora = kalual, and sends 4[u 4]

on test4li], as in the left-hand side. Moreover, we
haveY[us] = B so, spelling out all array indices,
TA[i] = kA[uA[z]] andY[uA[z‘]] = B.

When Q; | Qr receives a messagestgli](ug),
the situation is almost symmetric of the previ-
ous case. We just detail the case in which

26

Yr41lup] = acceptz(A) and the first twofinds of
Qsrp fail. We haveX[up] = A. Then the event
fullg(A, kplug],sid(gug])) has been executed. By
the correspondence (6), the eveitl 4 (B, kplugp],
sid(y[up])) has been executed. So there exists
such thatt”[v/}] = Y[u4] = B, kaluy] = kglug],
sid(a/[uy]) = sid(Z[u]) = sid(Glup]),), [uh] =
accept 4,(B). So the lastfind of Qsrp succeeds
for some value ofu’,. Moreover, sincez,[u/;] iS
defined, the evenfull ,(Y[u'y], kalu'y], sid(Z[u'4]))
has been executed. Singg, [uy] = accept 4(B),
Y[y] = Y[, = B andsid@[u,]) =
sid(z/[uv,]) = sid(y'[up]) = sid(F[up]), this event
is full 4(B, kaluy],sid(y[up])). By the correspon-
dence (7),ka[v)y] = kplup]. The proces)srp
sendsv/y on channeld[i + nyp]. This message
is received byQy, . Moreover, k;[u/,] is defined
and &y [u/y] = kaluy], sincez,[u/4] is defined and
Y[uy] = B. ThenQy, replies by sending’,[v/y] on
channeld'[i + nr]. Thenrp = ky[u/y] = ka[u/y] =
kplug], andkg[up] is sent ontestz[i], as in the left-
hand side.

For the equivalence

Q1 | Q7 ~ newChannel ¢; ((Qf | @},){¢'/e} | Qsr)

we exclude not only the traces that do not satisfy the cor-
respondences (5)—(7), but also the traces in which] =

k', [«'] for someu # u'. These traces have negligible prob-
ability, because otherwise that would contradict the sgcre
of k;: the adversary could distinguisy | Q, from
QL@ ' with non-negligible probability, by detecting the

former when he obtains the same answer to quefjgsu)

and ¢'[i]{u’) for someu # w'. For this equivalence, the
cases of protocol messages are similar to the previous-equiv
alence, so we only detail the cases of test queries.

e WhenQ: | Q/ receives amessagest 4[i](va), Q4
first tests ifka[ua] and Y]uy4] are defined. Corre-
spondingly, in the right-hand sid€) s 4 first tests if
x,.1[ua] is defined and different fromeject, which
is equivalent tdk 4 [u4] andY [u 4] defined.

Next, if Y{ua] # B, thenQq | QF sendsk4[ua4]
ontest4[i]. Correspondingly, in the right hand-side,
if y,.,1[ua] # accepty(B), thatis,Y[ua] # B,
then Qsr4 sends a message af) . [ua]. Q re-
ceives it, and replies by sendirig, [u4] on ¢/, ; [ua].
Qs receives this message, and sekds k4 [u4]
ontest 4[i], as in the left-hand side.

Otherwise, both sides execute tfinds that yield the
same result becausgu 4] = @'[ual, glup] = v'[us],
and as we shall see below [u] andrg[u] have the
same value in both sides of the equivalence.

Finally, when bothfinds fail, in the left-hand side,
Q4 sends a fresh random number uniformly dis-
tributed inZ,,(T") ontest 4[i]. Correspondingly, in the
right-hand side@)s14 sendsu4 onc'[i]. ;C,A receives

this message. It checks thid}[u 4] is defined, which is
true becausé 4 [u 4] is defined and”[u4] = B. Next,

it looks for a previous query with the samg; there is

no such query, because otherwise one of the previous
finds would have succeeded:

— If uy was previously sent o#i[i'] by Qsr4, then
there would be am (u = ¢’) such thatu 4 [u] and
ralu] are defined an@ 4[u] = w4, so the first
find would have succeeded.

— If u was previously sent ofi[i’ +nr] by Qs35,
then there would be an (v = ') such that
wyfu] = ua, sid(2[uy[ul]) = sid(y'[up[ul)),
and these values are defined, so the sedmiad
would have succeeded.

Sijﬁ,A replies by sending a fresh random number uni-
formly distributed inZ,,(T") on¢’[i]. Qs74 receives it,
stores it inr4[i], and sends it onest4[i], as in the
left-hand side.

When@; | Qr receives a messagdestg[i|(up), the
situation is almost symmetric of the previous case. We
only detail the case in whicll., | [up] = acceptz(A)

and the first twdinds of Q7. ; andQ s fail. In this
case, in the left-hand sid&/.; sends a fresh random
number uniformly distributed in,,(T") on testg[i].

sid(g[ug])) has been executed in copy number
up of @p. Since the correspondence (6) is in-
jective, two distinct eventgull , (B, kp[up[u]],
sid(7lup]) and full o(B, kplup),sid(jluz))
have been executed. Fg[upu]] = kaluai]
andkplup] = kaluas] With ugy # was. More-
over, by the correspondence (7), since the events
fullg(A, kpluplu]],sid(ylup])) and full 4(B,
kplup],sid(ylup])) have been executed,
kB[uB[uH = kB[uB], SOkA[uAl] = kA[uAQ}
with w1 # wao. This contradicts the exclusion
of traces withk 4[u] = k4[u'] for someu # u'.
Souglu] = ug.l So the firstfind would have
succeeded.

— If u/, was previously sent oi[i'] by Qs7.4, then
there would be an (u = ') such thatu[u]
andr[u] are defined and 4[u] = «/,. Since

the lastfind of Qsrp succeedssid(z/[u)y]) =
sid(y'[ug]), sosid(a/[ua[u]]) = sid(y'[up]), SO
the secondind would have succeeded.

SoQ;C;\ replies by sending a fresh random number uni-
formly distributed inZ,(T") on ¢'[i + nr]. Qsrp re-
ceives it, stores it im[i], and sends it otestp[i], as
in the left-hand side. O

D. Discussion on Authentication and Key Ex-

change

We discuss here some choices made in our modeling of

In the right-hand side, as in the proof of the pre- authentication and key exchange.

vious equivalence, the lasind of Qsrp succeeds,
sid(a/[u/y]) = sid(y'[u]), x7.41[wy] = accepta(B),
kalu'y] is defined, and’[u/y] = B. SoQgsrp sends
u’y ond[i+ng). ;C,A receives this message. It checks
thatk’, [v/,] is defined, which is true becaukg (v,] is
defined and’[v/4] = B. Next, it looks for a previous
guery with the same/,; there is no such query, be-
cause otherwise one of the previdigls would have
succeeded:

— If ', was previously sent o [i' +nr] by Qsr5,
then there would be am (v = ') such that
u;[u] andrp[u] are defined and/,[u] = u/,.
Then up[u] is also definedsid(z/[u/4[u]]) =
sid(y'fuplull), @) [Wy[u]] = accepta(B).
So sid(jlupl]) = sid(y/fupld) =
sid(z'[u)y [ul]) = sid(a'[uly]) = sid(y'[up]) =
sid(glup]). In order to obtain a contradiction,

e We have assumed thdtplays only the role of the ini-

tiator andB plays only the role of the responder. We
could also model a situation in which and B play
both roles, by including a procesg, for A playing

the responder role and a procégs for B playing the
initiator role. Which model is more appropriate de-
pends on the protocol and its intended usage: the for-
mer model is appropriate for protocols that use distinct
keys for the initiator and responder roles, such as SSH
for instance.

We could also extend the framework to protocols that
use a trusted server, by including it indy.

For simplicity, we have assumed that the participants
terminate immediately after accepting; we could ob-
viously extend the framework to allow them to accept
before the end of the protocol.

assume thatp[u] # up. The eventfullg(A,
kpluplul],sid(glug])) has been executed in
copy numbew g [u] of Qg andfull 5 (A, kplug],

27

IMore generally, ifsid(ylu'z]) = sid(7up]), thenuy; = up. So
two sessions can have the same session identifiers only wifigitde
probability.

e [16] uses the notion of matching conversations in- the original version of the protocol, as there is a known at-
stead of sessions identifiers. Matching conversationstack against it, but proves it for the corrected version [36]
correspond to session identifiers wheidl(z, ...,

x;) = (x1,...,%,) andsid'(z1,...,2,—1) = (21, Woo-Lam public-key [62] The situation is similar to the
...,zy—1) with the additional requirement that the \Woo-Lam shared key protocol. Our prover cannot prove the
messages from to B are received by3 after they are correspondence (4) for the original version of the protpcol
sent byA and symmetrically. We do not consider this as there is an attack against it, but proves it for the coecect
requirement here, because it would complicate the ver-version [64].
ification considerably. We partly compensate for this |n this protocol, the third message is a signature. The
weaker definition by checking an injective correspon- proof fails when the signature is included in the session
dence, while [16] infers injectivity from the correct or- identifier and the security definition of signatures allows a
dering of messages—see [16, Appendix C]. More re- adversary to forge a new signature for a message that has
cent formalizations [7, 15, 27, 40, 42] use session iden- glready been signed. Indeed, the signature is not authenti-
tifiers as we do. cated in this case. The proof succeeds both when the sig-
nature is not included in the session identifier and when the

e Itis often required that, with overwhelming probabil- - security definition of signatures prevents forgeries even f
ity, distinct sessions have distinct session identifiers. already signed messages.

Here, we only require that sessions ofA with the For both versions of this protocol, we give the following
same identifier correspond t® sessions ofB with proof steps to prover:

that identifier. For authenticated key exchange, the se-

crecy of the key combined with the correspondence (7) SArename Rkey

(which means that two sessions with same identifier crypto sign rkS

have the same key) implies that, with overwhelming C'YPIO Sign rkA

probability, distinct sessions have distinct sessioniden SUCC€SS

tifiers. The variableRkey defines a table of public keys, and is as-

signed at three places, corresponding to princigadsd B,

and to other principals defined by the adversary. The trans-

formation SArename Rkey renames the variablRkey

to three different nameRkey, Rkey,, andRkey 3, one
In our tests, all protocols are in a configuration in which for each assignment tBkey, and thus allows us to dis-

the honest participants are willing to run sessions with tinguish these three cases. The instructigypto sign

the adversary. Shared-key encryption is implemented askS means that the prover should apply the definition of

encrypt-then-MAC, where the encryption is IND-CPA (in- security of signatures (primitiveign), for the key gener-

distinguishability under chosen plaintext attacks) anel th ated from random numbekS . The instructiorsuccess

MAC is UF-CMA (unforgeability under chosen message at- means that prover should check whether the desired security
tacks); public-key encryption is assumed to be IND-CCA2 properties are proved.
(indistinguishability under adaptive chosen ciphertetxt a

tacks); signatures are assumed to be UF-CMA. Needham-Schroeder public-key [53] This protocol is a
The session identifier is chosen to contain all messagesnytual authentication protocol. Our prover shows the cor-

of the protocol, except messages that are sent to or recelveqzlespondence (3) but the proof fails for (4); indeed, there

from a server (that is, messages that are not between s g well-known attack against it [48]. The prover proves

and B), messages that are just forwarded without check- poth (3) and (4) for the corrected version [48].

ing (those can be changed by the adversary), and signatures For hoth versions of this protocol, we give the following

when the security definition of signatures allows an adver- proof steps to the prover:

sary to forge a new signature for a message that has alreadg
been signed. Arename Rkey

crypto sign rkS
crypto enc rkA
crypto enc rkB
SArename Nb_29
simplify

Woo-Lam shared-key [36] This protocol is a one-way = SArename Na_21
authentication protocol, so we prove only the correspon- simplify

dence (4). Our prover cannot prove this correspondence forsuccess

E. Detailed Experimental Results

For the public key protocols, the prover needs to be given
the main proof steps. We detail them below. For shared-key
protocols, the proof is fully automatic.

28

Denning-Sacco public-key [34] This protocol is a key The prover still shows (3) and (4). When the key confirma-
exchange protocol, so we try to prove the hypothesis of tion message is removed, the prover shows (3) but fails to
Proposition 4. Since there is no message frBrto A in show (4) (which is indeed wrong).

this protocol, B is not authenticated tal, so (5) clearly

does not hold. (There is in fact no good place for putting Otway-Rees [55] The prover shows the secrecy Bf,,

the eventpart;.) For both the original and the corrected pyt does not show the correspondence properties (5), (6),
version of [5], this protocol is also subject to an obvious and (7). These correspondences are indeed wrong: as no-
replay attack, so unsurprisingly our prover cannot show ticed in [23], each participant may accept while the other
the injective correspondence (6). Our prover shows (7) participant fails to get the key, so (6) is wrong. The corre-

fOI‘ bOth the Ol’iginal and the Corrected Version. It ShOWS Spondences (5) and (7) are Wrong due to rep'ay attacksl
the secrecy oft/, and the non-injective correspondence

event(full (A, k,x)) = event(full ,(B,k,z)) only for
the corrected version. (There is a well-known attack [5]
against them in the original version.)

For both versions of this protocol, we give the following
proof steps to the prover:

success
SArename Rkey
SArename SRkey
crypto enc rkB
crypto sign rkS
crypto sign rkA
success

The first success instruction is useful in order to
prove (7): this correspondence is obvious on the initial
game, because the keéyor k' is computed from the pro-
tocol messages contained in the session identifielhe
relation between the kel and the session identifier is
hidden by the subsequent game transformations.

Needham-Schroeder shared-key [53] The proof of se-
crecy of the key fails for both the original and the corrected
version [54]: the protocol contains a key confirmation round
B — A:{Np}k, A — B:{Np— 1}k and these mes-
sages may reveal information on the kiEy However, the
prover shows (3) but fails to show (4) for the original ver-
sion of the protocol. This failure comes from a limitation of
our prover: it fails to prove thalg[i] # Ng[i'] — 1 with
overwhelming probability, wheré&Vg is a nonce. (Prov-
ing this property requires distinguishing two cases: when
i = 4/, we haveNp[i] # Ng[i] — 1; wheni # ¢/, both
sides are independent random numbers, which have a negli-
gible probability of being equal.) The prover shows both (3)
and (4) for the corrected version. When the key confirma-
tion round is removed, the prover proves the secrecy of the
key k/,, but fails to prove the authentication (which is in-
deed wrong).

Yahalom [23] The situation is similar to the Needham-
Schroeder shared-key protocol: the proof of secrecy of the
key fails because of a key confirmation mess&g&; } i .

29

