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Abstract

We present a new mechanized prover for showing cor-
respondence assertions for cryptographic protocols in the
computational model. Correspondence assertions are use-
ful in particular for establishing authentication. Our tech-
nique produces proofs by sequences of games, as standard
in cryptography. These proofs are valid for a number of ses-
sions polynomial in the security parameter, in the presence
of an active adversary. Our technique can handle a wide
variety of cryptographic primitives, including shared- and
public-key encryption, signatures, message authentication
codes, and hash functions. It has been implemented in the
tool CryptoVerif and successfully tested on examples from
the literature.

1. Introduction

Correspondence assertions on cryptographic protocols
are properties of the form “if some events have been exe-
cuted, then some other events have been executed”, where
each event corresponds to a certain point in the protocol,
possibly with arguments. An event can be formalized by
a special instructionevent e(M1, . . . ,Mm), which sim-
ply records that the evente(M1, . . . ,Mm) has been exe-
cuted. Woo and Lam [63] introduced correspondence as-
sertions to express the authentication properties of cryp-
tographic protocols, such as “ifB terminates a run of
the protocol, apparently withA, thenA has started a run
of the protocol, apparently withB.” This property can
be written more formally “ifevent Bterminates(A) has
been executed, thenevent Astarts(B) has been executed”,
where event Bterminates(X) occurs at the point where
B terminates a run and he thinks he talks toX, and
event Astarts(Y ) occurs at the point whereA starts a run
with Y . Correspondence assertions have become a standard
tool for reasoning on cryptographic protocols.

The main novelty of our work lies in the model in which
we prove correspondence assertions. Indeed, there are two
main models for cryptographic protocols. In the compu-

tational model, cryptographic primitives are functions on
bitstrings and the adversary is a polynomial-time proba-
bilistic Turing machine. In this realistic model, proofs are
usually manual. In the formal, Dolev-Yao model, crypto-
graphic primitives are considered as perfect blackboxes rep-
resented by function symbols, and the adversary is restricted
to compute with these blackboxes. There already exist sev-
eral techniques for proving correspondence assertions au-
tomatically in this abstract model, e.g. [18, 36]. However,
in general, these proofs are not sound with respect to the
computational model.

Since the seminal paper by Abadi and Rogaway [6],
there has been much interest in relating both models [4,
11, 14, 30, 31, 38, 39, 50, 51], to show the soundness of the
Dolev-Yao model with respect to the computational model,
and thus obtain automatic proofs of protocols in the com-
putational model. However, this approach has limitations:
since the computational and Dolev-Yao models do not cor-
respond exactly, additional hypotheses are necessary in or-
der to guarantee soundness. (For example, for symmetric
encryption, key cycles have to be excluded, or a specific
security definition of encryption is needed [8].)

In this paper, we adopt a different approach: our
tool proves correspondences directly in the computational
model. In order to achieve such proofs, we extend our pre-
vious approach for secrecy [20, 21]. We produce proofs by
sequences of games, as used by cryptographers [17, 57–59]:
the initial game represents the protocol, for which we want
to prove that the probability of breaking a certain correspon-
dence is negligible; intermediate games are obtained each
from the previous one by transformations such that the dif-
ference of probability between consecutive games is neg-
ligible; the final game is such that the desired probability
can directly be shown to be negligible from the form of the
game. The desired probability is then negligible in the ini-
tial game.

In order to extend our approach to correspondence asser-
tions, we slightly extend the calculus that we use to repre-
sent games, so that it can specify events. The game trans-
formations that we used for secrecy can also be used for
correspondences, without change. However, we still need
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to check that the correspondence holds on the final game.
So, we introduce a rich language of correspondence asser-
tions, and show how to check them automatically. This
language allows one to specify both injective correspon-
dences (if some event has been executedn times, then some
other events have been executed at leastn times) and non-
injective correspondences (if some events have been exe-
cuted, then some other events have been executed at least
once), as well as properties of the form “if some events have
been executed, then some formula holds”.

Moreover, we also show how to use correspondences in
order to prove mutual authentication and authenticated key
exchange. Mutual authentication is an immediate conse-
quence of correspondences. The situation is more subtle for
authenticated key exchange: intuitively, we need to prove
the secrecy of the key. Since the key is shared between two
participants of the protocol, the secrecy of the key is not
simply the secrecy of a single variable, as we could prove
in [20, 21]. However, we show that by combining corre-
spondences with the secrecy of the variable that contains
the key for one of the participants of the protocol, we can
prove the standard notion of authenticated key exchange.

The prover succeeds in a fully automatic way for many
examples. For delicate cases, our prover allows the user to
indicate the main game transformations to perform, such as
applying the security of a certain cryptographic primitive
for a certain secret key. Importantly, the prover is always
sound, whatever indications the user gives.

The verification of correspondences has been imple-
mented in our prover CryptoVerif (19200 lines of Ocaml for
version 1.06 of CryptoVerif), available athttp://www.
di.ens.fr/ ˜ blanchet/cryptoc-eng.html .

Related Work Results that show the soundness of the
Dolev-Yao model with respect to the computational model,
e.g. [31, 39, 51], make it possible to use Dolev-Yao provers
in order to prove correspondences in the computational
model. In particular, a tool [29] has been built based on [31]
in order to make computational proofs using the Dolev-Yao
prover AVISPA, for protocols that use public-key encryp-
tion and signatures. However, computational soundness
results have limitations, in particular in terms of allowed
cryptographic primitives (they must satisfy strong security
properties so that they correspond to Dolev-Yao style primi-
tives), and they require some restrictions on protocols (such
as the absence of key cycles).

Several frameworks exist for formalizing proofs of pro-
tocols in the computational model. Backes, Pfitzmann,
and Waidner [10–12] have designed an abstract crypto-
graphic library including symmetric and public-key encryp-
tion, message authentication codes, signatures, and nonces
and shown its soundness with respect to computational
primitives, under arbitrary active attacks. This framework

shares some limitations with the computational soundness
results, for instance the exclusion of key cycles and the fact
that symmetric encryption has to be authenticated. It re-
lates the computational model to a non-standard version of
the Dolev-Yao model, in which the length of messages is
still present. It has been used for a computationally-sound
machine-checked proof of the Needham-Schroeder-Lowe
protocol [60].

Canetti and Herzog [26] show how a Dolev-Yao-style
symbolic analysis can be used to prove security properties
of protocols (including authentication) within the frame-
work of universal composability [24], for a restricted class
of protocols using public-key encryption as only crypto-
graphic primitive. Then, they use the automatic Dolev-Yao
verification tool ProVerif [19] for verifying protocols in this
framework.

Canetti et al. [25] use the framework of time-
bounded task-PIOAs (Probabilistic Input/Output Automata)
for proving cryptographic protocols in the computational
model. This framework allows them to combine probabilis-
tic and non-deterministic behaviors.

Lincoln et al. [46, 47, 49, 52, 56] developed a probabilis-
tic polynomial-time calculus for the analysis of security
protocols. This calculus comes with a notion of process
equivalence, used in particular to prove authentication prop-
erties in [47]. This calculus resembles ours in that both are
probabilistic polynomial-time variants of the pi calculus.
(The restriction chooses a fresh random number. The repli-
cation is polynomially bounded.) However, it differs from
our calculus since it uses an explicit probabilistic sched-
uler while, in our calculus, the adversary schedules the pro-
cesses. Our calculus also adds arrays in order to store all
values of variables, which is key to our proofs, as we shall
see in the following of the paper.

Datta et al. [32, 33] have designed a computationally
sound logic that enables them to prove computational se-
curity properties using a logical deduction system.

Corin and Hartog [28] use a probabilistic Hoare-style
logic for formalizing game-based cryptographic proofs.

All these frameworks can be used to prove security prop-
erties of protocols in the computational sense, but except
for [26] which relies on a Dolev-Yao prover and for the
machine-checked proofs of [60], they have not been mech-
anized up to now, as far as we know.

Other works provide proofs in the computational model,
but only for secrecy. Laud [43] designed an automatic anal-
ysis for protocols using shared-key encryption, with pas-
sive adversaries. He extended it to active adversaries, but
with only one session of the protocol [44]. The type sys-
tem of [9, 45] handles shared-key and public-key encryp-
tion, with an unbounded number of sessions. This system
relies on the Backes-Pfitzmann-Waidner library.

Barthe, Cerderquist, and Tarento [13, 61] have formal-
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ized the generic model and the random oracle model in
the interactive theorem prover Coq, and proved signature
schemes in this framework. In contrast to our specialized
prover, proofs in generic interactive theorem provers require
a lot of human effort, to build a detailed enough proof for
the theorem prover to check it.

Halevi [37] explains that implementing an automatic
prover based on sequences of games would be useful, and
suggests ideas in this direction, but does not actually imple-
ment one.

Outline The next section recalls the process calculus that
we use to represent games and extends it with events. Sec-
tion 3 defines the correspondence assertions that we prove.
Section 4 recalls the definition of observational equivalence
and extends it with events. Section 5 illustrates on an exam-
ple the game transformations used in our proofs. Section 6
details how we prove correspondences. Section 7 shows
how to prove standard notions of authentication and authen-
ticated key exchange using correspondences. Finally, Sec-
tion 8 summarizes our experimental results and Section 9
concludes. The appendix contains details on the semantics
of the calculus, the proof engine we use for reasoning on
games, the proofs of our results, and our experiments.

2. A Calculus for Games

In this section, we review the process calculus defined
in [20, 21] in order to model games used in computational
security proofs. This calculus has been carefully designed
to make the automatic proof of cryptographic protocols eas-
ier. We extend this calculus with parametric events, which
serve in the definition of correspondences.

We illustrate this calculus on the following example, in-
spired by the corrected Woo-Lam public key protocol [64]:

B → A : (N,B)

A → B : {pkA, B,N}skA

This protocol is a simple nonce challenge:B sends toA
a fresh nonceN and its identity.A replies by signing the
nonceN , B’s identity, andA’s public key (which we use
here instead ofA’s identity for simplicity: this avoids hav-
ing to relate identities and keys; the prover can obviously
also handle the version withA’s identity). The signatures
are assumed to be (existentially) unforgeable under chosen
message attacks (UF-CMA) [35], so, whenB receives the
signature,B is convinced thatA is present. The signature
cannot be a replay because the nonceN is signed.

In our calculus, this protocol is encoded by the following
processG0, explained below:

G0 = c0(); new rkA : keyseed ; let pkA = pkgen(rkA) in

let skA = skgen(rkA) in c1〈pkA〉; (QA | QB)

QA = !iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB , xN ); new r : seed ;

c3[iA]〈sign(concat(pkA, xB , xN ), skA, r)〉

QB = !iB≤nc4[iB ](xpkA
: pkey); new N : nonce;

c5[iB ]〈N,B〉; c6[iB ](s : signature);

if verify(concat(xpkA
, B,N), xpkA

, s) then

if xpkA
= pkA then event eB(xpkA

, B,N)

The processG0 is assumed to run in interaction with an
adversary, which also models the network.G0 first re-
ceives an empty message on channelc0, sent by the ad-
versary. Then, it chooses randomly with uniform proba-
bility a bitstring rkA in the typekeyseed , by the construct
new rkA : keyseed . A type T , such askeyseed , aims at
denoting a set of bitstrings. However, the considered set of
bitstrings depends on the security parameterη, which de-
termines the length of keys. So, more precisely, a typeT
corresponds for each value ofη to a set of bitstrings de-
noted byIη(T ). Then,G0 generates the public keypkA

corresponding to the coinsrkA, by calling the public-key
generation algorithmpkgen. Similarly, G0 generates the
secret keyskA by calling skgen. It outputs the public key
pkA on channelc1, so that the adversary has this public key.

After outputting this message, the control passes to the
receiving process, which is part of the adversary. Several
processes are then made available, which represent the roles
of A andB in the protocol: the processQA | QB is the par-
allel composition ofQA andQB ; it makes simultaneously
available the processes defined inQA andQB . Let Q′

A and
Q′

B be such thatQA = !iA≤nQ′
A andQB = !iB≤nQ′

B .
The replication!iA≤nQ′

A representsn copies of the process
Q′

A, indexed by the replication indexiA. (The symboln
corresponds to an integerIη(n) for each value of the se-
curity parameterη; Iη(n) is required to be a polynomially
bounded function ofη.) The processQ′

A begins with an
input on channelc2[iA]; the channel is indexed withiA so
that the adversary can choose which copy of the processQ′

A

receives the message by sending it on channelc2[iA] for the
appropriate value ofiA. The situation is similar forQ′

B ,
which expects a message on channelc4[iB ]. The adversary
can then run each copy ofQ′

A or Q′
B simply by sending a

message on the appropriate channelc2[iA] or c4[iB ].
The processQ′

B first expects on channelc4[iB ] a mes-
sagexpkA

in the typepkey of public keys. This message is
not really part of the protocol. It serves for starting a new
session of the protocol, in whichB interacts with the par-
ticipant of public keyxpkA

. For starting a session between
A andB, this message should bepkA. Then,Q′

B chooses
randomly with uniform probability a nonceN in the type
nonce. The typenonce is large: a typeT is largewhen the
inverse of its cardinal 1

|Iη(T )| is negligible, so that collisions
between independent random numbers chosen uniformly in
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a large type have negligible probability. (The probability
f(η) is negligiblewhen for all polynomialsq, there exists
ηo ∈ N such that for allη > η0, f(η) ≤ 1

q(η) . The prob-
ability f(η) is overwhelmingwhen1 − f(η) is negligible.)
Q′

B sends the message(N,B) on channelc5[iB ]. The con-
trol then passes to the receiving process, included in the ad-
versary. This process is expected to forward this message
(N,B) on channelc2[iA], but may proceed differently in
order to mount an attack against the protocol.

Upon receiving a message(xN , xB) on channelc2[iA],
where the bitstringxN is in the typenonce andxB in the
typehost , the processQ′

A executes the eventeA(pkA, xB ,
xN ). This event does not change the state of the system.
Events just record that a certain program point has been
reached, with certain values of the arguments of the event.
Then,Q′

A chooses randomly with uniform probability a bit-
stringr in the typeseed ; this random bitstring is next used
as coins for the signature algorithm. Finally,Q′

A outputs the
signed message{pkA, xB , xN}skA

. (The functionconcat
concatenates its arguments, with information on the length
of these arguments, so that the arguments can be recovered
from the concatenation.) The control then passes to the
receiving process, which should forward this message on
channelc6[iB ] if it wishes to run the protocol correctly.

Upon receiving a messages on c6[iB ], Q′
B verifies that

the signatures is correct and, ifxpkA
= pkA, that is, ifB

runs a session withA, it executes the eventeB(xpkA
, B,N).

Our goal is to prove that, if eventeB is executed, then event
eA has also been executed. However, whenB runs a session
with a participant other thanA, it is perfectly correct that
B terminates without eventeA being executed; that is why
eventeB is executed only whenB runs a session withA.

In our calculus, all variables defined under a replication
are implicitly arrays. For example, the variablexN defined
under!iA≤n is implicitly an array indexed by the replication
indexiA: xN is an abbreviation forxN [iA]. Similarly,xB is
an abbreviation forxB[iA], r for r[iA], xpkA

for xpkA
[iB ],

N for N [iB ], ands for s[iB ]. Using arrays allows us to
remember the values of the variables in each copy of the
processes, so that the whole state of the system is available.
In our calculus, arrays replace lists often used by cryptog-
raphers in their proofs. For example, during the proof, all
messages signed underskA would be stored in a list, and
by the unforgeability of signatures, when the verification of
the signature of a message succeeds, we would be sure that
this message occurs in the list. In our calculus, we will store
messages in arrays instead. Arrays come with a lookup con-
struct:find u1 ≤ n1, . . . , um ≤ nm suchthat defined(M1,
. . . ,Ml) ∧ M then P else P ′ looks for indicesu1, . . . , um

such thatM1, . . . ,Ml are defined andM is true. When
such indices are found, it executesP ; otherwise, it executes
P ′. When several values of indices are possible, each possi-
ble value is chosen with the same probability. For example,

find u ≤ n suchthat defined(xN [u]) ∧ xN [u] = N then P
looks for an indexu such thatxN [u] is defined and equal
to N . Here, thefind construct does not occur in the initial
game, but will be introduced by game transformations.

As detailed in [20, 21], we require somewell-formedness
invariantsto guarantee that bitstrings are of their expected
type and that arrays are used properly (that each cell of an
array is assigned at most once during execution and that
variables are accessed only after being initialized).

All processes of our calculus run in probabilistic poly-
nomial time. The semantics of the calculus is defined by
a probabilistic reduction relation on semantic configura-
tions C. We denote byinitConfig(Q) the initial config-
uration associated to processQ. We refer the reader to
Appendix A and [20] for additional details on this cal-
culus and its semantics. Given a mappingρ from vari-
able names to bitstrings, we writeρ,M ⇓ a when the
term M (built from function symbols and variables, with-
out array accesses) evaluates to bitstringa. We denote by
Pr[Q Ã c〈a〉] the probability thatQ outputs the bitstring
a on channelc after some reductions. We denote byE a
sequence of events of the forme(a1, . . . , an), wheree is
an event symbol anda1, . . . , an are bitstrings. We denote

by Pr[∃(C, E), initConfig(Q)
E
−→ C ∧ φ(C, E)] the prob-

ability that there exists a sequence of eventsE and a se-
mantic configurationC such thatQ reduces toC, executing
eventsE on the trace, and the logical formulaφ(C, E) holds.

We denote byPr[Q Ã E ] = Pr[∃C, initConfig(Q)
E
−→

C ∧ C does not reduce] the probability that the processQ
executes exactly the sequence of eventsE , in the order ofE .
These probabilities depend on the security parameterη; we
omit it to lighten notations.

We use anevaluation contextC to represent the adver-
sary. An evaluation context is a process with a hole, of
one of the following forms: a hole[ ], a process in par-
allel with an evaluation contextQ | C, or a restriction
newChannel c;C, which limits the scope of the channelc
to the contextC. We denote byC[Q] the process obtained
by replacing the hole ofC with Q. WhenV is a set of vari-
ables defined inQ, an evaluation contextC is said to beac-
ceptablefor (Q,V ) if and only ifC does not contain events,
the common variables ofC andQ are inV , andC[Q] satis-
fies the well-formedness invariants. The setV contains the
variables the context is allowed to access (usingfind).

WhenP is under replications!i1≤n1 . . . !im≤nm , we say
that thereplication indices atP arei1, . . . , im. We denote
by ĩ a sequence of replication indicesi1, . . . , im, and byM̃
a sequence of termsM1, . . . ,Mm. We denote byfc(P ) the
set of free channels ofP , and byvar(P ) the set of variables
that occur inP . We also use the notationvar(·) for contexts,
terms, and formulas.
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3. Definition of Correspondences

In this section, we define non-injective and injective cor-
respondences.

3.1. Non-injective Correspondences

A non-injective correspondence is a property of the form
“if some events have been executed, then some other events
have been executed at least once”. Here, we generalize
these correspondences to implications between logical for-
mulaeψ ⇒ φ, which may contain events. We use the fol-
lowing logical formulae:

φ ::= formula
M term
event(e(M1, . . . ,Mm)) event
φ1 ∧ φ2 conjunction
φ1 ∨ φ2 disjunction

TermsM,M1, . . . ,Mm in formulae must not contain ar-
ray accesses, and their variables are assumed to be distinct
from variables of processes. The formulaM holds when
M evaluates totrue. The formulaevent(e(M1, . . . ,Mn))
holds when the evente(M1, . . . ,Mn) has been executed.
The conjunction and disjunction are defined as usual. More
formally, we writeρ, E ⊢ φ when the sequence of events
E satisfies the formulaφ, in the environmentρ that maps
variables to bitstrings. We defineρ, E ⊢ φ as follows:

ρ, E ⊢ M if and only if ρ,M ⇓ true
ρ, E ⊢ event(e(M1, . . . ,Mm)) if and only if

for all j ≤ m, ρ,Mj ⇓ aj ande(a1, . . . , am) ∈ E
ρ, E ⊢ φ1 ∧ φ2 if and only if ρ, E ⊢ φ1 andρ, E ⊢ φ2

ρ, E ⊢ φ1 ∨ φ2 if and only if ρ, E ⊢ φ1 or ρ, E ⊢ φ2

Formulae denoted byψ are conjunctions of events.

Definition 1 The sequence of eventsE satisfies the corre-
spondenceψ ⇒ φ, written E ⊢ ψ ⇒ φ, if and only if for
all ρ defined onvar(ψ) such thatρ, E ⊢ ψ, there exists an
extensionρ′ of ρ to var(φ) such thatρ′, E ⊢ φ.

Intuitively, a sequence of eventsE satisfiesψ ⇒ φ when,
if E satisfiesψ, thenE satisfiesφ. The variables ofψ are
universally quantified; those ofφ that do not occur inψ are
existentially quantified.

Definition 2 The processQ satisfies the correspondence
ψ ⇒ φ with public variablesV if and only if for all
evaluation contextsC acceptable for(Q,V ), Pr[∃(C, E),

initConfig(C[Q])
E
−→ C ∧ E 6⊢ ψ ⇒ φ] is negligible.

A process satisfiesψ ⇒ φ when the probability that it
generates a sequence of eventsE that does not satisfyψ ⇒
φ is negligible, in the presence of an adversary represented
by the contextC.

Example 1 Referring to the exampleG0 of Section 2, the
correspondence

event(eB(x, y, z)) ⇒ event(eA(x, y, z)) (1)

means that, with overwhelming probability, for allx, y, z,
if eB(x, y, z) has been executed, theneA(x, y, z) has been
executed.

The correspondence

event(e1(x)) ∧ event(e2(x)) ⇒

event(e3(x)) ∨ (event(e4(x, y)) ∧ event(e5(y, z)))

means that, with overwhelming probability, for allx, if
e1(x) ande2(x) have been executed, thene3(x) has been
executed or there existsy such that bothe4(x, y) and
e5(x, y) have been executed.

3.2. Injective Correspondences

Injective correspondences are properties of the form
“if some event has been executedn times, then some
other events have been executed at leastn times”. In
order to model them in our logical formulae, we ex-
tend the grammar of formulaeφ with injective events
inj-event(e(M1, . . . ,Mm)). The formulaψ is a conjunc-
tion of (injective or non-injective) events. The conditions
on the number of executions of events apply only to injec-
tive events.

The definition of formula satisfaction is also extended:
we indicate at which step each injective event has been exe-
cuted, by a “pseudo-formula”φτ obtained from the formula
φ by replacing terms and non-injective events with⊥ and
injective events with the stepτ at which they have been ex-
ecuted (that is, their indexτ in the sequence of eventsE) or
⊥ when their execution is not required. For example, ifφ =
inj-event(e1(x)) ∧ (inj-event(e2(x)) ∨ inj-event(e3(x))),
thenφτ is of the formτ1 ∧ (τ2 ∨ τ3) whereτ1 is the ex-
ecution step ofe1(x) and eitherτ2 is the execution step of
e2(x) or τ3 is the execution step ofe3(x). (One of the steps
τ2 andτ3 may be⊥, but not both.) We define formula sat-
isfactionρ, E ⊢φτ

φ as follows:

ρ, E ⊢⊥ M if and only if ρ,M ⇓ true
ρ, E ⊢⊥ event(e(M1, . . . ,Mm)) if and only if

for all j ≤ m, ρ,Mj ⇓ aj ande(a1, . . . , am) ∈ E
ρ, E ⊢τ inj-event(e(M1, . . . ,Mm)) if and only if τ 6= ⊥,

for all j ≤ m, ρ,Mj ⇓ aj , ande(a1, . . . , am) = E(τ)
ρ, E ⊢φτ

1
∧φτ

2 φ1 ∧ φ2 if and only if
ρ, E ⊢φτ

1 φ1 andρ, E ⊢φτ
2 φ2

ρ, E ⊢φτ
1
∨φτ

2 φ1 ∨ φ2 if and only if
ρ, E ⊢φτ

1 φ1 or ρ, E ⊢φτ
2 φ2

This definition differs from the case of non-injective cor-
respondences in that we propagate the pseudo-formulaφτ
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and, in the case of injective events, we make sure that the
event has been executed at stepτ by requiring thatτ 6= ⊥
ande(a1, . . . , am) = E(τ).

Given a functionF that mapsψτ to φτ , theprojectionf
of F to the leaf at occurrenceo of φ is such thatf(ψτ ) is the
leaf at occurrenceo of F(ψτ ). For example, ifF mapsψτ to
φτ of the formτ1 ∧ (τ2 ∨ τ3), thenF has three projections,
which mapψτ to τ1, τ2, andτ3 respectively. We say thatF
is component-wise injectivewhen each projectionf of F is
such thatf(ψτ

1 ) = f(ψτ
2 ) 6= ⊥ impliesψτ

1 = ψτ
2 . (Ignoring

the result⊥, f is injective.)

Definition 3 The sequence of eventsE satisfies the corre-
spondenceψ ⇒ φ, writtenE ⊢ ψ ⇒ φ, if and only if there
exists a component-wise injectiveF such that for allρ de-
fined onvar(ψ), for all ψτ such thatρ, E ⊢ψτ

ψ, there exists
an extensionρ′ of ρ to var(φ) such thatρ′, E ⊢F(ψτ ) φ.

Intuitively, a sequence of eventsE satisfiesψ ⇒ φ when, if
E satisfiesψ with execution steps defined byψτ , thenE sat-
isfiesφ with execution steps defined byF(ψτ ). The injec-
tivity is guaranteed becauseF is component-wise injective.
Definition 2 is unchanged for injective correspondences.

Example 2 Referring to the exampleG0 of Section 2, the
correspondence

inj-event(eB(x, y, z)) ⇒ inj-event(eA(x, y, z)) (2)

means that, with overwhelming probability, each execu-
tion of eB(x, y, z) corresponds to a distinct execution of
eA(x, y, z). In this case,ψτ is simply the execution step of
eB(x, y, z) andφτ the execution step ofeA(x, y, z). The
function F is an injective function that maps the execu-
tion step ofeB(x, y, z) to the execution step ofeA(x, y, z).
(This step is never⊥.)

The correspondence

event(e1(x)) ∧ inj-event(e2(x)) ⇒ inj-event(e3(x)) ∨

(inj-event(e4(x, y)) ∧ inj-event(e5(x, y)))

means that, with overwhelming probability, for allx, if
e1(x) has been executed, then each execution ofe2(x) cor-
responds to distinct executions ofe3(x) or to distinct execu-
tions ofe4(x, y) ande5(x, y). The functionF maps⊥ ∧ τ2

to τ3 ∨ (τ4 ∧ τ5), whereτ2, τ3, τ4, τ5 are the execution steps
of e2(x), e3(x), e4(x, y), e5(x, y) respectively (eitherτ3 or
τ4 andτ5 may be⊥). The projections ofF map⊥ ∧ τ2 to
τ3, τ4, andτ5 respectively.

When no injective event occurs inψ ⇒ φ, Definition 3
reduces to the definition of non-injective correspondences.

3.3. Property

The next lemma is straightforward. It shows that corre-
spondences are preserved by adding a context.

Lemma 1 If Q satisfies a correspondencec with public
variablesV andC is an evaluation context acceptable for
(Q,V ), then for allV ′ ⊆ V ∪ (var(C) \ var(Q)), C[Q]
satisfiesc with public variablesV ′.

4. Observational Equivalence

The notion of observational equivalence is key to proofs
by sequences of games. It can be seen as an adaptation
to the computational model of the notion of observational
equivalence used in the spi calculus [3] in the Dolev-Yao
model. We review the definition observational equivalence
and its properties, adapting them to the presence of events.

In the next definition, we use an evaluation contextC to
represent an algorithm that tries to distinguishQ from Q′.

Definition 4 (Observational equivalence)Let Q and Q′

be two processes that satisfy the well-formedness invari-
ants. LetV be a set of variables defined inQ andQ′, with
the same types.

We say thatQ and Q′ are observationally equivalent
with public variablesV , written Q ≈V Q′, when for all
evaluation contextsC acceptable for(Q,V ) and (Q′, V ),
for all channelsc and bitstringsa, |Pr[C[Q] Ã c〈a〉] −
Pr[C[Q′] Ã c〈a〉]| is negligible and

∑
E |Pr[C[Q] Ã

E ] − Pr[C[Q′] Ã E ]| is negligible.

This definition formalizes that the probability that an al-
gorithmC distinguishes the gamesQ andQ′ is negligible.
The contextC is allowed to access directly the variables in
V (usingfind). WhenV is empty, we writeQ ≈ Q′.

This definition makes events observable, so that observa-
tionally equivalent processes execute the same events with
overwhelming probability.

The following lemma is straightforward:

Lemma 2 1. ≈V is reflexive, symmetric, and transitive.

2. If Q ≈V Q′ and C is an evaluation context ac-
ceptable for(Q,V ) and (Q′, V ), then for all V ′ ⊆
V ∪ (var(C)\ (var(Q)∪var(Q′))), C[Q] ≈V ′

C[Q′].

3. If Q ≈V Q′ andQ satisfies a correspondencec with
public variablesV , then so doesQ′.

The transitivity of≈V and Property 3 of Lemma 2 are key
to performing proofs by sequences of games. Indeed, our
prover starts from a gameG0 corresponding to the real pro-
tocol, and builds a sequence of observationally equivalent
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gamesG0 ≈V G1 ≈V . . . ≈V Gm. By transitivity, we
conclude thatG0 ≈V Gm. By Property 3, ifGm satisfies
a certain correspondence with public variablesV , then so
doesG0. The sequenceG0 ≈V G1 ≈V . . . ≈V Gm is
built by game transformations. Some of these transforma-
tions rely on security assumptions of cryptographic primi-
tives; others are syntactic transformations used to simplify
games. Since these transformations are the same for corre-
spondences as for secrecy, we do not detail them here, and
refer the reader to [20, 21]. (These transformations leave
events unchanged.) Next, we illustrate them on an example.

5. A Proof by a Sequence of Games

In this section, we explain the transformations performed
on the processG0 of Section 2. By the unforgeability of sig-
natures, the signature verification withpkA succeeds only
for signatures generated withskA. So, when we verify that
the signature is correct, we can furthermore check that it has
been generated usingskA. So, after game transformations
explained below, we obtain the following final game:

G1 = c0(); new rkA : keyseed ;

let pkA = pkgen′(rkA) in c1〈pkA〉; (Q1A | Q1B)

Q1A = !iA≤nc2[iA](xN : nonce, xB : host);

event eA(pkA, xB , xN );

let m = concat(pkA, xB , xN ) in

new r : seed ; c3[iA]〈sign′(m, skgen′(rkA), r)〉

Q1B = !iB≤nc4[iB ](xpkA
: pkey); new N : nonce;

c5[iB ]〈N,B〉; c6[iB ](s : signature);

find u ≤ n suchthat defined(m[u], xB [u], xN [u])

∧ (xpkA
= pkA) ∧ (B = xB[u]) ∧ (N = xN [u])

∧ verify′(concat(xpkA
, B,N), xpkA

, s) then

event eB(xpkA
, B,N))

The assignmentskA = skgen(rkA) has been removed
and skgen(rkA) has been substituted forskA, in order to
make the termsign(m, skgen(rkA), r) appear. This term is
needed for the security of the signature scheme to apply.

In Q1A, the signed message is stored in variablem, and
this variable is used when computing the signature.

Finally, using the unforgeability of signatures, the
signature verification has been replaced with an array
lookup: the signature verification can succeed only when
concat(xpkA

, B,N) has been signed withskA, so we look
for the messageconcat(xpkA

, B,N) in the arraym and
the eventeB is executed only when this message is found.
In other words, we look for an indexu ≤ n such that
m[u] is defined andm[u] = concat(xpkA

, B,N). By def-
inition of m, m[u] = concat(pkA, xB [u], xN [u]), so the

equalitym[u] = concat(xpkA
, B,N) can be replaced with

(xpkA
= pkA)∧ (B = xB[u])∧ (N = xN [u]). (Recall that

the result of theconcat function contains enough informa-
tion to recover its arguments.) This transformation replaces
the function symbolspkgen, skgen, sign, andverify with
primed function symbolspkgen′, skgen′, sign′, andverify′

respectively, to avoid repeated applications of the unforge-
ability of signatures with the same key. (The unforgeability
of signatures is applied only to unprimed symbols.)

The soundness of the game transformations shows that
G0 ≈ G1. We will prove thatG1 satisfies the corre-
spondences (1) and (2) with any public variablesV , in
particular with V = ∅. By Lemma 2, Property 3,G0

also satisfies these correspondences with public variables
V = ∅. Let us sketch how the proof of correspondence (1)
for the gameG1 will proceed. LetQ′

1A and Q′
1B such

that Q1A = !iA≤nQ′
1A andQ1B = !iB≤nQ′

1B . Assume
that eventeB is executed in the copy ofQ′

1B of index iB ,
that is, eB(xpkA

[iB ], B,N [iB ]) is executed. (Recall that
the variablesxpkA

, N , u, . . . are implicitly arrays.) Then
the condition of thefind aboveeB holds, that is,m[u[iB ]],
xB [u[iB ]], and xN [u[iB ]] are defined,xpkA

[iB ] = pkA,
B = xB [u[iB ]], andN [iB ] = xN [u[iB ]]. Moreover, since
m[u[iB ]] is defined, the assignment that definesm has been
executed in the copy ofQ′

1A of index iA = u[iB ]. Then
the eventeA(pkA, xB , xN ), located above the definition
of m, must have been executed in that copy ofQ′

1A, that
is, eA(pkA, xB [u[iB ]], xN [u[iB ]]) has been executed. The
equalities in the condition of thefind imply that this event is
alsoeA(xpkA

[iB ], B,N [iB ]). To sum up, ifeB(xpkA
[iB ],

B,N [iB ]) has been executed, theneA(xpkA
[iB ], B,N [iB ])

has been executed, so we have the correspondence (1). This
reasoning is typical of the way the prover shows correspon-
dences. In particular, the conditions of array lookups are
key in these proofs, because they allow us to relate values
in processes that run in parallel (here, the processes that
representA andB), and interesting correspondences relate
events that occur in such processes. In the next section, we
detail and formalize this reasoning, both for non-injective
and injective correspondences.

6. Proving Correspondences

In this section, we explain how our prover shows that a
game satisfies a correspondence. We first sketch the tech-
nique we use for collecting properties of games, then we
handle the simpler case of non-injective correspondences,
before generalizing to injective correspondences.

6.1. Reasoning on Games

The proof of correspondences relies on two techniques
for reasoning on games. These techniques were already
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used for simplifying games, so we summarize them briefly
and refer the reader to [20] or to Appendix B for details.

First, we collect facts that hold at each program point
in the game. We use the following facts: the termM
means thatM is true, defined(M) means thatM is de-
fined, andevent(e(M1, . . . ,Mm)) means that the event
e(M1, . . . ,Mm) has been executed. The set of true facts
collected at program pointP is denoted byFP . We collect
these facts as follows:

• We take into account facts that come from assign-
ments and tests aboveP . For example, in the process
if M then P , we haveM ∈ FP , sinceM is true when
P is executed.

In our running exampleG1, at the program pointP
just after the eventeB ,FP containsdefined(m[u[iB ]]),
defined(xB [u[iB ]]), defined(xN [u[iB ]]), xpkA

[iB ] =
pkA, B = xB [u[iB ]], andN [iB ] = xN [u[iB ]], be-
cause the condition offind holds whenP is executed.
(FP also contains other facts, which are useless for
proving the desired correspondences, so we do not list
them.)

• When we already know thatx[M̃ ] is defined atP (that
is, defined(M) ∈ FP andx[M̃ ] is a subterm ofM ),
some definition ofx[̃i] must have been executed, with
ĩ = M̃ , so the factsF that hold at all definitions ofx
also hold atP , for ĩ = M̃ : F{M̃/̃i} ∈ FP .

In the exampleG1, we havedefined(m[u[iB ]]) ∈
FP , and, whenm[iA] is defined, event(eA(pkA,
xB[iA], xN [iA])) holds, so event(eA(pkA, xB [iA],
xN [iA])){u[iB ]/iA} ∈ FP , that is, event(eA(pkA,
xB[u[iB ]], xN [u[iB ]])) ∈ FP . In order words, since
m is defined at indexu[iB ], eventeA has been exe-
cuted in the copy ofQ′

1A of indexu[iB ].

Second, we use an equational prover, inspired by the
Knuth-Bendix completion algorithm [41]. From a set of
factsF , it generates rewrite rules by orienting equalities
of F , and uses these rewrite rules to infer new facts from
the elements ofF . It also takes into account that collisions
between uniformly distributed random elements of a large
type have negligible probability, so it transforms an equal-
ity x[M̃ ] = x[M̃ ′] into M̃ = M̃ ′ whenx is defined only by
restrictionsnew x : T andT is a large type. (If the indices
were different, the considered cells ofx would contain in-
dependent random numbers chosen uniformly in the large
typeT , so the probability of equality would be negligible.)

We say thatF yields a contradictionwhen the equational
prover can derivefalse from F (for example, whenF con-
tains an inequalityM1 6= M2, rewritten by the rewrite rules
into M 6= M , which is then rewritten intofalse).

6.2. Non-injective Correspondences

Intuitively, in order to prove that a processQ0 satisfies
a non-injective correspondenceψ ⇒ φ, we collect all facts
that hold at events inψ and show that these facts implyφ
using the equational prover.

We collect facts that hold when the eventF has been
executed, as follows.

Definition 5 (P follows F , FF,P ) WhenF = event(e(M1,
. . . ,Mm)) and P is such thatevent e(M ′

1, . . . ,M
′
m);P

occurs inQ0, we say thatP follows F , and we define
FF,P = θ′FP ∪ {θ′M ′

j = Mj | j ≤ m} where the sub-
stitutionθ′ is a renaming of the replication indices atP to
distinct fresh replication indices.

Intuitively, when the eventF has been executed, it has been
executed by some subprocess ofQ0, so there exists a sub-
processevent e(M ′

1, . . . ,M
′
m);P in Q0 such that, for some

replication indices defined byθ′, the evente(M ′
1, . . . ,M

′
m)

has been executed and it is equal to the eventF , hence
θ′M ′

j = Mj holds forj ≤ m and, since the program point
P , which followsF , has been reached,θ′FP holds, soFF,P

holds.
Let θ be a substitution equal to the identity on the vari-

ables ofψ. This substitution gives values to existentially
quantified variables ofφ. We say thatF |=⇒θ φ when we can
show thatF impliesθφ. Formally, we define:

F |=⇒θ M if and only ifF ∪ {¬θM} yields a contradiction

F |=⇒θ event(e(M1, . . . ,Mm)) if and only if there exist
M ′

1, . . . ,M
′
m such thatevent(e(M ′

1, . . . ,M
′
m)) ∈ F

andF ∪ {
∨m

j=1 θMj 6= M ′
j} yields a contradiction

F |=⇒θ φ1 ∧ φ2 if and only ifF |=⇒θ φ1 andF |=⇒θ φ2

F |=⇒θ φ1 ∨ φ2 if and only ifF |=⇒θ φ1 orF |=⇒θ φ2

TermsθM are proved by contradiction, using the equational
prover. EventsθF are proved by looking for some eventF ′

in F and showing by contradiction thatθF = F ′, using the
equational prover.

Non-injective correspondences are proved as follows.

Proposition 1 Let ψ ⇒ φ be a non-injective correspon-
dence, withψ = F1 ∧ . . .∧Fm. If for everyP1 that follows
F1, . . . , for everyPm that followsFm, there exists a substi-
tutionθ equal to the identity on the variables ofψ and such
thatFF1,P1

∪ . . .∪FFm,Pm
|=⇒θ φ, thenQ0 satisfiesψ ⇒ φ

with any public variablesV .

Intuitively, when ψ = F1 ∧ . . . ∧ Fm holds, FF1,P1
∪

. . . ∪ FFm,Pm
hold. For someθ equal to the identity on

ψ, FF1,P1
∪ . . . ∪ FFm,Pm

impliesθφ, soθφ holds. Hence
the correspondence is satisfied. This result is proved in Ap-
pendix C.1.
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Example 3 Let us prove that the exampleG1 satisfies (1).
For ψ = F = event(eB(x, y, z)), the only processP that
followsF is the process afterevent eB(xpkA

, B,N), so this
event has been executed in some copy ofQ′

1B of index i′B ,
with xpkA

[i′B ] = x,B = y,N [i′B ] = z. Then, whenψ
holds, the factsFF,P = FP {i

′
B/iB}∪{xpkA

[i′B ] = x,B =
y,N [i′B ] = z} hold for some value ofi′B , whereFP has
been studied in Section 6.1 andθ′ = {i′B/iB}.

Furthermore, the substitutionθ is the identity since
all variables ofφ also occur inψ. Then we just have
to show thatFF,P implies φ = event(eA(x, y, z)), that
is, FF,P |=⇒θ event(eA(x, y, z)). Since event(eA(pkA,
xB [u[iB ]], xN [u[iB ]])) ∈ FP , we haveevent(eA(pkA,
xB [u[i′B ]], xN [u[i′B ]])) ∈ FF,P , so the equational prover
just has to prove by contradiction thateA(pkA, xB [u[i′B ]],
xN [u[i′B ]]) = eA(x, y, z), that is,pkA = x, xB [u[i′B ]] = y,
andxN [u[i′B ]] = z. The proof succeeds using the follow-
ing equalities ofFF,P : xpkA

[i′B ] = x, B = y, N [i′B ] = z,
xpkA

[iB ] = pkA, B = xB[u[i′B ]], andN [i′B ] = xN [u[i′B ]].
Hence, G1 satisfies (1) with any public variablesV :

if ψ = event(eB(x, y, z)) has been executed, thenφ =
event(eA(x, y, z)) has been executed.

In the implementation, the substitutionθ is initially de-
fined as the identity onvar(ψ). It is defined on other vari-
ables when checkingF |=⇒θ M by trying to find θ such
that θM ∈ F , and when checkingF |=⇒θ event(e(M1,
. . . ,Mm)) by trying to findθ such thatθevent(e(M1, . . . ,
Mm)) ∈ F . When we do not manage to find the image
by θ of all variables ofM , resp. M1, . . . ,Mm, the check
fails. When there are several suitable factsθM ∈ F or
θevent(e(M1, . . . ,Mm)) ∈ F , the system tries all possibil-
ities.

6.3. Injective Correspondences

Injective correspondences are more difficult to check
than non-injective ones, because they require distinguishing
between several executions of the same event. We achieve
that as follows.

We require that in the initial game of the sequence, which
represents the real protocol, if the evente is used as injec-
tive event in a correspondence, then two occurrences ofe al-
ways occur in different branches offind or if. This property
is preserved by the game transformations, so the gameQ0

on which we test the correspondences satisfies this property.
This property guarantees that for each value of the replica-
tion indices, each injective event is executed at most once.

We add as first argument of every event inQ0 the tu-
ple (i1, . . . , im) of replication indices at the program point
at which the event is executed. We add as first argument
of every event inψ ⇒ φ a fresh variable. Then the ini-
tial process satisfies the initial correspondence if and only if
the modified process satisfies the modified correspondence.

The addition of replication indices to events allows us to
distinguish executions of the same injective event: these ex-
ecutions always have distinct replication indices by the re-
quirement of the previous paragraph.

We extend Definition 5 to injective events, with exactly
the same definition as for non-injective events. We letIP

be the image byθ′ of the tuple of replication indices atP ,
whereθ′ is the renaming defined in Definition 5.

The proof of injective correspondences extends that for
non-injective correspondences: for a correspondenceψ ⇒
φ, we additionally prove that distinct executions of the in-
jective events ofψ correspond to distinct executions of each
injective event ofφ, that is, if the injective events ofψ have
different replication indices, then each injective event of φ
has different replication indices. In order to achieve this
proof, we collect information on the replication indices of
events, for each injective event ofφ:

• the set of factsF that are known to hold, which will be
used to reason on replication indices of events;

• the replication indices of the considered injective event
of φ, stored in a tupleM0; these indices are computed
when we prove that this event is executed;

• the replication indices of the injective events ofψ,
stored as a mappingI = {j 7→ IPj

| Fj is an in-
jective event}, whereψ = F1 ∧ . . .∧Fm andPj is the
process that executesFj , for j ≤ m;

• the setV containing the replication indices inF and
the variables ofψ; these variables will be renamed to
fresh variables in order to avoid conflicts of variable
names between different events.

This information is stored in a setS, which contains quadru-
ples (F ,M0, I,V). We will show that, if the replication
indices of two executions of the injective events ofψ are
different, then the replication indices of the correspond-
ing executions of the considered injective event ofφ are
also different. Formally, we consider(F ,M0, I,V) and
(F ′,M ′

0, I
′,V ′) in S. We rename the variablesV ′ of the

second element to fresh variables by a substitutionθ′′ and
show that, ifI 6= θ′′I ′, thenM0 6= θ′′M ′

0 (knowingF and
θ′′F ′). This property implies injectivity.

Since this reasoning is done for each injective event in
φ, we collect the associated setsS in a pseudo-formulaC,
obtained by replacing each injective event ofφ with a setS
and all other leaves ofφ with ⊥.

We say that⊢ C when for all non-bottom leavesS of C,
for all (F ,M0, I,V), (F ′,M ′

0, I
′,V ′) in S, F ∪ θ′′F ′ ∪

{
∨

j∈Dom(I) I(j) 6= θ′′I ′(j),M0 = θ′′M ′
0} yields a con-

tradiction where the substitutionθ′′ is a renaming of vari-
ables inV ′ to distinct fresh variables. As explained above,
the condition⊢ C guarantees injectivity.
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We extend the definition ofF |=⇒θ φ used for non-
injective correspondences toF |=⇒I,V,C

θ φ, which means
that F implies θφ and C correctly collects the tuples
(F ,M0, I,V) associated to this proof. Formally, we define:

F |=⇒I,V,⊥
θ M if and only if
F ∪ {¬θM} yields a contradiction

F |=⇒I,V,⊥
θ event(e(i,M1, . . . ,Mm)) if and only if
there existM ′

0,M
′
1, . . . ,M

′
m such that

event(e(M ′
0,M

′
1, . . . ,M

′
m)) ∈ F andF ∪

{θi 6= M ′
0 ∨

∨m
j=1 θMj 6= M ′

j} yields a contradiction

F |=⇒I,V,S
θ inj-event(e(i,M1, . . . ,Mm)) if and only if
there existM ′

0,M
′
1, . . . ,M

′
m such that

event(e(M ′
0,M

′
1, . . . ,M

′
m)) ∈ F ,

F ∪ {θi 6= M ′
0 ∨

∨m
j=1 θMj 6= M ′

j} yields a
contradiction, and(F ,M ′

0, I,V) ∈ S.

F |=⇒I,V,C1∧C2

θ φ1 ∧ φ2 if and only if
F |=⇒I,V,C1

θ φ1 andF |=⇒I,V,C2

θ φ2

F |=⇒I,V,C1∨C2

θ φ1 ∨ φ2 if and only if
F |=⇒I,V,C1

θ φ1 orF |=⇒I,V,C2

θ φ2

These formulae differ from the non-injective case in that
we propagateI, V, C and, in the case of injective events,
we make sure that quadruples(F ,M ′

0, I,V) are collected
correctly by requiring that(F ,M ′

0, I,V) ∈ S.
Injective correspondences are proved as follows.

Proposition 2 Let ψ ⇒ φ be a correspondence, withψ =
F1 ∧ . . . ∧ Fm.

Assume that, for all eventse used as injective events in
ψ ⇒ φ, two occurrences of the evente always occur in
different branches offind or if in Q0.

Assume that there existsC such that⊢ C and for ev-
ery P1 that followsF1, . . . , for everyPm that followsFm,
there exists a substitutionθ equal to the identity on the vari-
ables ofψ and such thatFF1,P1

∪ . . . ∪ FFm,Pm
|=⇒I,V,C

θ φ
whereI = {j 7→ IPj

| Fj is an injective event} and
V = var(IP1

) ∪ . . . ∪ var(IPm
) ∪ var(ψ).

ThenQ0 satisfiesψ ⇒ φ with any public variablesV .

This result is proved in Appendix C.2. In the implementa-
tion, the value ofC is computed by adding(F ,M ′

0, I,V)
to S when handling injective events during the checking of
FF1,P1

∪ . . . ∪ FFm,Pm
|=⇒I,V,C

θ φ.

Example 4 Let us prove that the exampleG1 satisfies (2).
After adding replication indices to events, the process con-
tains eventseA(iA, pkA, xB , xN ) andeB(iB , xpkA

, B,N),
and we prove the correspondenceψ ⇒ φ = inj-event(eB(i,
x, y, z)) ⇒ inj-event(eA(i′, x, y, z)). As in Section 6.1,
we compute the setFP of facts that hold at the program
point P just after eventeB . However,m is defined at in-
dex iA = u[iB ] now implies thatevent(eA(u[iB ], pkA,

xB [u[iB ]], xN [u[iB ]])) ∈ FP . The processP follows
F = event(eB(i, x, y, z)) andF = FF,P = FP {i

′
B/iB} ∪

{i′B = i, xpkA
[i′B ] = x,B = y,N [i′B ] = z}.

Similarly to the proof ofF |=⇒θ event(eA(x, y, z)) in Ex-
ample 3, we can show thatF |=⇒I,V,C

θ event(eA(i′, x, y, z))
where I = {1 7→ i′B} encodes the replication indices
of the events ofψ, V = {i′B , i, x, y, z} contains the
replication indices ofF and the variables ofψ, C =
S = {(F , u[i′B ], I,V)}. (C = S because the formula
ψ is reduced to a single event;M ′

0 = u[iB ] contains
the replication indices of the eventeA contained inF :
event(eA(u[i′B ], pkA, xB [u[i′B ]], xN [u[i′B ]])) ∈ F .)

In order to prove injectivity, it remains to show that⊢
C. Let θ′′ = {i′′B/i′B , i′′/i, x′′/x, y′′/y, z′′/z}. We need to
show thatF ∪ θ′′F ∪ {i′B 6= i′′B , u[i′B ] = u[i′′B ]} yields a
contradiction, that is, if the replication indices of the event
eB in ψ are distinct (i′B 6= i′′B), then the replication indices
of the eventeA in φ are also distinct (u[i′B ] 6= u[i′′B ]).

F contains N [i′B ] = xN [u[i′B ]], so θ′′F contains
N [i′′B ] = xN [u[i′′B ]]. These two equalities combined
with u[i′B ] = u[i′′B ] imply that N [i′B ] = xN [u[i′B ]] =
xN [u[i′′B ]] = N [i′′B ]. SinceN is defined by restrictions of
the large typenonce, N [i′B ] = N [i′′B ] implies i′B = i′′B
with overwhelming probability, by eliminating collisions.
This equality contradictsi′B 6= i′′B , so we obtain the desired
injectivity andG1 satisfies (2) with any public variablesV .

7. Authentication and Key Exchange

In this section, we show how correspondences can be
used to prove mutual authentication and authenticated key
exchange, as formalized in cryptography following the sem-
inal paper by Bellare and Rogaway [16] and more recent
formalizations [7, 27]. Additional discussion and compar-
isons between these models can be found in Appendix D.

7.1. Mutual Authentication

For simplicity, we consider a protocol that includes two
roles, initiator and responder, played by two participantsA
andB, respectively. Other participants are included in the
adversary. The protocol consists of a sequence of messages
exchanged alternatively from the initiator to the responder
and from the responder to the initiator. Such a configuration
can be represented by a process of the form

Q0 = Init ; (!iA≤nQA | !iB≤nQB | QS)

whereInit is an initialization process (creating keys ofA
andB for instance),QA andQB represent respectively the
initiator A and the responderB, andQS represents a pro-
cess that allows the adversary to register keys of other (pos-
sibly dishonest) participants, so that they can take part in
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sessions of the protocol withA andB. The processesQA

andQB do not contain replications.
We assume that the protocol contains an odd number of

roundsr, so that the first and last messages of the protocol
are both from the initiator to the responder. (The other case
can be handled similarly.) We assume that the processQA

stores the messages of the protocol in variablesx1, . . . , xr

and thatQB stores them in variablesy1, . . . , yr. The ini-
tiator processQA starts by receiving a message that is not
really part of the protocol, and which contains the identity
Y of the responder with whichA is supposed to run a ses-
sion. The last (r-th) message sent by processQA is assumed
to be a pair containing, in addition to the last message of
the protocolxr, eitheracceptA(Y ), when the protocol ran
as expected, orreject, when the protocol failed. The pro-
cessQB is assumed to send a(r + 1)-th message contain-
ing eitheracceptB(X) or reject just afterB received and
checked the last message of the protocol, whereX is the
identity of its expected partner (inferred byB from the pro-
tocol messages). We designate byQi

A the copy ofQA of
index iA = i and byQi

B the copy ofQB of index iB = i.
We say thatQi

A accepts withB when it sendsacceptA(B)
as second component of its last message;Qi

B accepts with
A when it sendsacceptB(A) as(r + 1)-th message.

A session identifieris a functionsid of the protocol mes-
sages;sid(x1, . . . , xr) is typically a subsequence of the
messagesx1, . . . , xr, often the whole sequence. We also
define a partial session identifiersid′(x1, . . . , xr−1), useful
since ther-th message is not available toB whenA accepts.
We require thatsid(x1, . . . , xr) = sid(y1, . . . , yr) implies
sid′(x1, . . . , xr−1) = sid′(y1, . . . , yr−1). We say thatQi

A

andQi′

B are (real) partners when they have the same session
identifier: sid(x1[i], . . . , xr[i]) = sid(y1[i

′], . . . , yr[i
′]).

Definition 6 We say thatQ0 is asecure mutual authentica-
tion protocolwith session identifierssid andsid′ if:

1. if the adversary just sendsB to Qi
A as first message

and relays messages faithfully betweenQi
A andQi′

B ,
thenQi

A accepts withB andQi′

B accepts withA;

2. with overwhelming probability, there exists an in-
jective function that maps each indexi of a pro-
cess Qi

A that accepts withB to the index i′ of
a processQi′

B with expected partnerA such that
sid′(x1[i], . . . , xr−1[i]) = sid′(y1[i

′], . . . , yr−1[i
′]);

3. with overwhelming probability, there exists an injec-
tive function that maps each indexi′ of a processQi′

B

that accepts withA to the indexi of a processQi
A

that accepts withB such thatsid(x1[i], . . . , xr[i]) =
sid(y1[i

′], . . . , yr[i
′]).

In item 2,Qi′

B has not accepted yet whenQi
A accepts, so

we cannot require thatQi′

B accepts withA; we only require

thatQi′

B has expected partnerA (so that, if it accepts later, it
accepts withA). The first condition is easy to check manu-
ally, as already noticed in [16]: it expresses that the protocol
works whenA andB interact without adversary. The last
two conditions mean that each session ofA corresponds to
a distinct session ofB, and conversely, with overwhelming
probability. They can be verified using correspondences, as
shown by the following proposition.

Proposition 3 LetQ′
0 be obtained fromQ0 by adding

• event partA(Y, sid′(x1, . . . , xr−1)); event fullA(Y,
sid(x1, . . . , xr)) just beforeA sendsxr, acceptA(Y );

• event fullB(X, sid(y1, . . . , yr)) just beforeB sends
acceptB(X);

• event partB(X, sid′(y1, . . . , yr−1)) just before B
sendsyr−1.

If Q0 satisfies the first condition of Definition 6 andQ′
0 sat-

isfies the correspondences

inj-event(partA(B, x)) ⇒ inj-event(partB(A, x)) (3)

inj-event(fullB(A, x)) ⇒ inj-event(fullA(B, x)) (4)

with public variablesV = ∅, thenQ0 is a secure mutual
authentication protocol with session identifierssid andsid′.

The proof of this proposition is straightforward from the
definitions. Obviously, many other versions of authentica-
tion can be verified using correspondences, for example by
requiring non-injective properties instead of injective ones
or by requiring authentication in one direction only instead
of mutual authentication.

7.2. Authenticated Key Exchange

We adopt the same hypotheses as for mutual authenti-
cation. Furthermore, we assume thatQA sends or receives
the j-th message of the protocol on channelcAj [iA], and
similarly QB on channelcBj [iB ]. The channelscAj [iA]
and cBj [iB ] are not used for other purposes. We assume
that, just beforeQA ends accepting, it stores the established
key in variablekA of typeT , and sendsxr, acceptA(Y ) on
channelcAr[iA]. We assume that, just beforeQB ends ac-
cepting, it stores the established key in variablekB of type
T and sendsacceptB(X) on channelcBr+1[iB ].

We consider here the Real-Or-Random model [7]: the
adversary is allowed to ask several test queries, which either
all return the session key (real) or all return a random key
(random). Our goal is to show that the adversary has a negli-
gible probability of distinguishing these two situations.As
shown in [7], the Real-Or-Random model is stronger than
the Find-Then-Guess model of [16]. When the test queries
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return the real session key, they are defined by the process
QT = QTA | QTB , where

QTA = !i≤nT testA[i](uA);

if defined(kA[uA]) then testA[i]〈kA[uA]〉

andQTB is defined symmetrically. When the test queries
return a random key, they are defined by the processQ′

T =
Q′

TA | Q′
TB , where

Q′
TA = !i≤nT testA[i](uA);

if defined(kA[uA], Y [uA]) then

if Y [uA] 6= B then testA[i]〈kA[uA]〉 else

find u ≤ nT suchthat defined(uA[u], rA[u]) ∧

uA[u] = uA then testA[i]〈rA[u]〉 else

find u ≤ nT suchthat defined(uB [u], rB [u],

x1[uA], . . . , xr[uA], y1[uB [u]], . . . , yr[uB [u]]) ∧

sid(x1[uA], . . . , xr[uA]) = sid(y1[uB [u]], . . . ,

yr[uB [u]]) then testA[i]〈rB [u]〉 else

new rA : T ; testA[i]〈rA〉

andQ′
TB is defined symmetrically. When the expected part-

ner of A is not B, the session is executed with a dishon-
est participant; then, the test queryQ′

TA returns the real
key. When the test queryQ′

TA has already been asked
to the same copy ofQA (of index uA[u] = uA), or to
a copy ofQB with the same session identifier (of index
uB [u] such thatsid(x1[uA], . . . , xr[uA]) = sid(y1[uB [u]],
. . . , yr[uB [u]])), Q′

TA returns the same result as in the pre-
vious test query. Otherwise,Q′

TA returns a fresh random
key rA.

Definition 7 We say thatQ0 is asecure authenticated key
exchangeoverT with session identifierssid andsid′ if Q0 is
a secure mutual authentication protocol with session identi-
fierssid andsid′ and the following are true:

1. if the adversary just sendsB to Qi
A as first mes-

sage and relays messages faithfully betweenQi
A and

Qi′

B , then Qi
A accepts withB, Qi′

B accepts withA,
kA[i] = kB [i′], and this random variable is uniformly
distributed inT ;

2. Q0 | QT ≈ Q0 | Q′
T .

The first point of this definition means that the protocol
works correctly whenA andB interact without adversary.
The second point expresses the indistinguishability when
the real key (returned byQT ) and a random key (returned
by Q′

T ).
As shown in [20, 21], our prover can prove the secrecy

of a variablex, defined as follows:

Definition 8 (Secrecy) Assumex of typeT is defined inQ
under a single replication!i≤n. Let Q′ be obtained fromQ
by removing events. The processQ preserves the secrecy
of x whenQ′ | Rx ≈ Q′ | R′

x, where

Rx = !i≤n′

c[i](u : [1, n]); if defined(x[u]) then c[i]〈x[u]〉

R′
x = !i≤n′

c[i](u : [1, n]); if defined(x[u]) then

find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧ u[u′] = u

then c[i]〈y[u′]〉 else new y : T ; c[i]〈y〉

c /∈ fc(Q′), andu, u′, y /∈ var(Q′).

Intuitively, this definition means that the adversary can-
not distinguish the arrayx from an array of uniformly dis-
tributed random values by performing several test queries
represented byRx andR′

x, with non-negligible probability.

Proposition 4 Let Q′
0 be obtained fromQ0 by replacing

cAr[iA]〈xr, acceptA(Y )〉 with

event partA(Y, sid′(x1, . . . , xr−1));

event fullA(Y, kA, sid(x1, . . . , xr));

if Y = B then

let k′
A = kA in cAr[iA]〈xr, acceptA(Y )〉

else

cAr[iA]〈xr, acceptA(Y )〉; cAK [iA](); cAK [iA]〈kA〉

andcBr+1[iB ]〈acceptB(X)〉 with

event fullB(X, kB , sid(y1, . . . , yr));

if X = A then

cBr+1[iB ]〈acceptB(X)〉

else

cBr+1[iB ]〈acceptB(X)〉; cBK [iB ](); cBK [iB ]〈kB〉

and addingevent partB(X, sid′(y1, . . . , yr−1)) just before
QB sendsyr−1.

If Q0 satisfies the first condition of Definition 7,Q′
0 pre-

serves the secrecy ofk′
A, and Q′

0 satisfies the correspon-
dences

inj-event(partA(B, x)) ⇒ inj-event(partB(A, x)) (5)

inj-event(fullB(A, k, x))⇒ inj-event(fullA(B, k, x)) (6)

event(fullB(A, k, x)) ∧ event(fullA(B, k′, x)) ⇒ k = k′

(7)

with public variables{k′
A}, thenQ0 is a secure authenti-

cated key exchange with session identifierssid andsid′.

This result is proved in Appendix C.3. The processQ′
0

adds events as for mutual authentication, except that the ex-
changed key is added to the eventsfullA and fullB . Fur-
thermore, whenA runs a session withB, it stores the key
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in the variablek′
A. WhenA runs a session withY 6= B, it

allows the adversary to obtain the exchanged key, by send-
ing a message oncAK , and symmetrically whenB runs a
session withX 6= A. (The test queries also allow the ad-
versary to get the key in this case.) As for Proposition 3,
the first condition of Definition 7 is easy to check manually.
The first two correspondences imply mutual authentication.
The equivalenceQ0 | QT ≈ Q0 | Q′

T is obtained by com-
bining the last two correspondences with the secrecy ofk′

A.
Intuitively, the correspondences allow us to show that each
element ofkB in a session withA is in fact also an ele-
ment ofk′

A (which we can find by looking for the same ses-
sion identifier), so showing thatk′

A cannot be distinguished
from an array of independent random numbers is sufficient
to show the secrecy of the key. The correspondences must
be true with public variables{k′

A}, so that the context is al-
lowed to accessk′

A: in the proof, the processQ′
0 is put in a

context that implements the test queries by calling the pro-
cessesRk′

A
or R′

k′

A
of Definition 8, which directly access

k′
A.

8. Experimental Results

We have successfully tested our prover on examples of
protocols of the literature: Yahalom [23] with and with-
out key confirmation, Otway-Rees [55], and the original
and corrected versions of Woo-Lam shared-key [36] and
public-key [62, 64], Needham-Schroeder public-key [48,
53], Denning-Sacco public-key [5, 34], and Needham-
Schroeder shared-key [53, 54] with and without key confir-
mation. For each protocol, we have tried to prove one-way
or mutual authentication or authenticated key exchange, de-
pending on the goal of the protocol. Our prover obviously
does not prove properties that do not hold. It succeeds
in proving properties that hold, in all cases except one: it
cannot show (4) for the original version of the Needham-
Schroeder shared-key protocol, because it fails to prove that
NB [i] 6= NB [i′] − 1 with overwhelming probability, where
NB is a nonce.

Our prover can make subtle distinctions, which are typ-
ically not made by Dolev-Yao provers. For instance, it can
model two notions of security for signatures: one in which
the adversary is allowed to forge a new signature for an al-
ready signed message; the other in which the adversary can-
not forge any signature. With the latter definition, for the
corrected Woo-Lam public key protocol [64], it can show
that the signature is authenticated (both participants have
exactly the same signature), while it cannot with the former
definition, because the two participants may have different
signatures for the same message.

The total runtime for all these tests is 29 s on a Pentium
M 1.8 GHz. Appendix E details these results.

9. Conclusion

We have presented the first tool for proving correspon-
dences by sequences of games, in the computational model.
This tool works with no or very little help from the user,
handles a wide variety of cryptographic primitives, and pro-
duces proofs valid for a polynomial number of sessions in
the presence of an active adversary.

Although this tool can prove complex correspondences,
with conjunctions and disjunctions, our examples use rather
simple ones. Complex correspondences proved useful in
case studies [1, 2] in the Dolev-Yao model; we plan to use
them in similar situations in the computational model. Our
tool can also be used to analyze protocols or combinations
of primitives that are outside the scope of the Dolev-Yao
model. For example, in [22], in collaboration with David
Pointcheval, we have used it to prove the Full Domain Hash
signature scheme. We plan to consider other such examples
in the future.
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Appendix

Appendices A, B, and C should be read in this order, be-
cause Appendices A and B introduce notations and results
used in the proofs in Appendix C.

A. Additional Information on the Calculus

The full syntax of our calculus is given in Figure 1. This
calculus distinguishes two categories of processes: input
processes wait for a message on a channel; output processes
execute some internal computations and output the result on
a channel. Most constructs have already been explained in
Section 2. We complement these explanations here. The nil
process0 does nothing. Thefind construct may have several
branches:find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P
tries to find a branchj in [1,m] such that there are val-
ues ofuj1, . . . , ujmj

for which Mj1, . . . ,Mjlj are defined
andMj is true. In case of success, it executesPj . (If there
are several successful choices ofj, uj1, . . . , ujmj

, one of
them is chosen randomly with uniform probability.) In case
of failure for all branches, it executesP . The conditional
if defined(M1, . . . ,Ml) ∧ M then P else P ′ is defined as
syntactic sugar forfind suchthat defined(M1, . . . ,Ml)∧M
then P else P ′. The conjunctdefined(M1, . . . ,Ml) can
be omitted whenl = 0 andM can be omitted when it is
true. An else branch offind or if may be omitted when it
is else yield〈〉; 0. (Note that “else 0” would not be syntacti-
cally correct.) A trailing 0 after an output may be omitted.

The semantics of the calculus is formally defined as
a probabilistic reduction relation on semantic configura-
tions C. A semantic configurationC is a quadruple
E, (σ, P ),Q, C, where

• E is an environment that maps array cells to bitstrings
or⊥,

• P is the output process currently scheduled andσ is a
mapping of the replication indices atP to integers,
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M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q | Q′ parallel composition
!i≤nQ replicationn times
newChannel c;Q channel restriction
c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P

input

P ::= output process
c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q output
new x[̃i] : T ;P random number
let x[̃i] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧ M then P else P ′

conditional
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj)
else P array lookup

event e(M1, . . . ,Mm);P event

Figure 1. Syntax of the process calculus

• Q is a multiset of pairs(σ′, Q) where theQ’s are input
processes currently waiting for messages andσ′ is a
mapping of the replication indices atQ to integers,

• C is the set of channels already created.

The semantics is defined by reduction rules of the form

E, (σ, P ),Q, C
[e]
−→p,t E′, (σ′, P ′),Q′, C′ meaning that

E, (σ, P ),Q, C reduces toE′, (σ′, P ′),Q′, C′ with proba-
bility p. The label [e] is empty for all reductions, ex-
cept events, in which case it records the executed event
e(a1, . . . , am). The tagt just serves in distinguishing re-
ductions that yield the same configuration with the same
probability in different ways, so that the probability of a
certain reduction can be computed correctly. (Although the
semantics depends on the security parameterη, its value is
omitted to lighten the notation.)

The semantics uses the relationE, σ,M ⇓ a, which
means that the termM evaluates to the bitstringa in the en-
vironmentsE (which gives values of arrays) andσ (which
gives values of replication indices).

The semantic rule for events is the following:

∀j ≤ m,E, σ,Mj ⇓ aj

E, (σ, event e(M1, . . . ,Mm);P ),Q, C
e(a1,...,am)
−−−−−−−→1,Ev E, (σ, P ),Q, C

(Event)

The process evaluates the termsM1, . . . ,Mm to bitstrings
a1, . . . , am, and executes the evente(a1, . . . , am). This ex-
ecution is recorded on the label of the transition, and the
event instruction disappears from the process. The proba-
bility of this transition is 1 and its tag isEv .

The other semantic rules are the ones of [20], except
for minor changes of notations. ([20] used

p
−→η,t instead of

[e]
−→p,t because there was no event. The processes were di-
rectly instantiated with the values of the replication indices,
so that the semantics of [20] usedσP where this paper uses
(σ, P ).)

The initial configuration for running processQ0 is
initConfig(Q0) = ∅, (σ0, start〈〉), {(σ0, Q0)}, fc(Q0)
whereσ0 is the function defined nowhere. Hence, the pro-
cess begins with sending an empty message on channel
start. The processQ0 should wait for a message on that
channel.

We denote a trace ofQ0 by initConfig(Q0)
E
−→p,T

E, (σ, P ),Q, C wherep > 0 is the probability of this trace
andT is a sequence of tags that determine the transitions
(one tag per transition).

The following two properties are easy to prove from the
definition of the semantics:

Proposition 5 If initConfig(Q0)
E
−→p,T E, (σ, P ),Q, C,

thenP is a subprocess ofQ0 or of start〈〉.0.

Proposition 6 If E, (σ, P ),Q, C
E
−→p,T E′, (σ′, P ′),Q′,

C′, thenE′ is an extension ofE.

B. Proof Engine

In this section, we define the proof engine that our tool
uses for reasoning on games. This engine is used both for
simplifying games and for proving correspondences. The
version presented here is slightly simplified; the full version
can be found in [20]. Our proof engine uses both equations
given by the user, that come in particular from algebraic
properties of cryptographic primitives, and facts that hold
at certain points in the game due to the form of the game.
The engine uses this information in order to infer equalities
using a Knuth-Bendix-like equational prover.

B.1. User-defined Rewrite Rules

The user can give properties of the form∀x1 : T1, . . . ,
∀xm : Tm,M which mean that, for all environmentsρ
that map variables to bitstrings, if for allj ≤ m, ρ(xj) ∈
Iη(Tj), thenρ,M ⇓ true.

These properties are translated into rewrite rules as fol-
lows:
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• If M is of the form M1 = M2 and var(M2) ⊆
var(M1), we generate the rewrite rule∀x1 : T1, . . . ,
∀xm : Tm,M1 → M2.

• If M is of the formM1 6= M2, we generate the rewrite
rules∀x1 : T1, . . . ,∀xm : Tm, (M1 = M2) → false,
∀x1 : T1, . . . ,∀xm : Tm, (M1 6= M2) → true. (Such
rules are used for instance to express that different con-
stants are different.)

• Otherwise, we generate the rewrite rule∀x1 : T1, . . . ,
∀xm : Tm,M → true.

The termM reduces intoM ′ by the rewrite rule∀x1 : T1,
. . . ,∀xm : Tm,M1 → M2 if and only if M = C[θM1],
M ′ = C[θM2], whereC is a term context andθ is a substi-
tution that mapsxj to any term of typeTj for all j ≤ m.

The prover has built-in rewrite rules for defining boolean
functions:

¬true → false ¬false → true

∀x : bool ,¬(¬x) → x

∀x : T,∀y : T,¬(x = y) → x 6= y

∀x : T,∀y : T,¬(x 6= y) → x = y

∀x : T, x = x → true ∀x : T, x 6= x → false

∀x : bool ,∀y : bool ,¬(x ∧ y) → (¬x) ∨ (¬y)

∀x : bool ,∀y : bool ,¬(x ∨ y) → (¬x) ∧ (¬y)

∀x : bool , x ∧ true → x ∀x : bool , x ∧ false → false

∀x : bool , x ∨ true → true ∀x : bool , x ∨ false → x

The prover also has support for commutative function
symbols. For such symbols, all equality and matching tests
are performed modulo commutativity. The functions∧, ∨,
=, and 6= are commutative. So, for instance, the last four
rewrite rules above may also be used to rewritetrue ∧ M
into M , false∧M into false, true∨M into true, andfalse∨
M into M .

B.2. Collecting True Facts from a Game

The function collectFacts collects factsdefined(M),
event(e(M1, . . . ,Mm)), and termsM that hold at each pro-
gram point of the game. More precisely, for each occur-
renceP of a subprocess of the game, it computes a setFP

of facts that hold at that occurrence. (It is important that
P is an occurrence and not a process: processes at several
occurrences may be equal, and must be distinguished from
one another here.) The functioncollectFacts also computes
a setD containing pairs(x[̃i], P ) wherex[̃i] has been de-
fined just above processP . (If there are several definitions
of x, there is one such pair for each definition ofx.) Fi-
nally, for output processesP , collectFacts(P ) returns a set
of facts that will hold when the next output is executed, and

stores this set inFFut
P . (The superscriptFut stands forfu-

ture, since these facts do not hold yet atP , but will hold in
the future.)

The functioncollectFacts is defined in Figure 2. It
is initially called by collectFacts(Q0). It takes into ac-
count thatx[̃i] may be defined by an input, a restriction,
a let, or a find, and updatesD accordingly. Furthermore,
when we executelet x[̃i] : T = M in P ′, x[̃i] = M

holds in P ′ and x[̃i] is defined inP ′. When we execute
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P ′, Mj holds

in Pj , Mj1, . . . ,Mjlj , uj1 [̃i], . . . , ujmj
[̃i] are defined inPj ,

and¬Mj holds inP ′ whenmj = lj = 0. When we execute
event e(M1, . . . ,Mn), that execution is recorded by a fact
event(e(M1, . . . ,Mn)).

After calling collectFacts(Q0), we complete the com-
puted setsFP (whereP may be an input or output process)
by adding facts that come from processes aboveP :

FP ← FP ∪ FP ′ if P is immediately underP ′

We also add facts that we can deduce from facts
defined(M). Precisely, ifdefined(M) ∈ FP , andx[M1,
. . . ,Mm] is a subterm ofM , we take into account facts that
are known to be true at the definitions ofx by adding them
toFP as follows:

FP ← FP ∪



⋂

(x[i1,...,im],P ′)∈D





σ(FP ′ ∪ (FFut
P ′ ∩ FP ))

if P is underP ′

σ(FP ′ ∪ FFut
P ′ ) otherwise




where σ = {M1/i1, . . . ,Mm/im}. Indeed, if
defined(M) ∈ FP , andx[M1, . . . ,Mm] is a subterm ofM ,
thenx[M1, . . . ,Mm] is defined atP , so some definition of
x[M1, . . . ,Mm], just above the processP ′, must have been
executed before reachingP , so the facts that hold atP ′ also
hold atP , with a suitable substitution of indices: we have
σFP ′ , that is,FP ′{M1/i1, . . . ,Mm/im}. Moreover, if the
occurrenceP is not syntactically under the occurrenceP ′,
then the code ofP ′ must have been executed until the next
output before executing some other code and reachingP ,
so in factσ(FP ′ ∪ FFut

P ′ ) hold. If P is syntactically under
P ′, it is possible that the code ofP ′ has been executed until
reachingP instead of until reaching the next output, so we
have onlyσ(FP ′∪(FFut

P ′ ∩FP )). If there are several defini-
tions ofx, we do not know which one has been executed, so
we only add toFP the facts that hold in all cases, by taking
the intersection on all definitions ofx.

This operation may add newdefined facts toFP , so it is
executed until a fixpoint is reached, except that, in order to
avoid infinite loops, we do not execute this step for defini-
tionsdefined(M) in which M contains nested occurrences
of the same symbol (such asx[. . . x[. . .] . . .]).
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collectFacts(Q) =

if Q = Q1 | Q2 then collectFacts(Q1); collectFacts(Q2)

if Q = !i≤nQ′ then collectFacts(Q′)

if Q = newChannel c;Q′ then collectFacts(Q′)

if Q = c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P then

FP = {defined(xj [̃i]) | j ≤ k};

FFut
P = collectFacts(P )

D = D ∪ {(xj [̃i], P ) | j ≤ k}

collectFacts(P ) =

if P = c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q then

collectFacts(Q); return ∅

if P = new x[̃i] : T ;P ′ then

FP ′ = {defined(x[̃i])};FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = let x[̃i] : T = M in P ′ then

FP ′ = {defined(x[̃i]), x[̃i] = M}

FFut
P ′ = collectFacts(P ′)

D = D ∪ {(x[̃i], P ′)}; return FP ′ ∪ FFut
P ′

if P = find (
⊕m

j=1
uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P ′

then

for eachj ≤ m,

FPj
= {defined(uj1[ĩ′]), . . . , defined(ujmj

[ĩ′]),

defined(Mj1), . . . , defined(Mjlj ),Mj}

FFut
Pj

= collectFacts(Pj);

D = D ∪ {(uj1[ĩ′], Pj), . . . , (ujmj
[ĩ′], Pj)}

FP ′ = {¬Mj | mj = lj = 0};

FFut
P ′ = collectFacts(P ′)

return (FP ′ ∪ FFut
P ′ ) ∩

m⋂

j=1

(FPj
∪ FFut

Pj
)

if P = event e(M1, . . . ,Mn);P ′ then

FP ′ = {event(e(M1, . . . ,Mn))}

collectFacts(P ′)

Figure 2. The function collectFacts

We formally define the semantics of facts as follows:
E, σ, E ⊢ F when the factF holds in the environments
E andσ for the sequence of eventsE .

E, σ, E ⊢ M if and only if E, σ,M ⇓ true
E, σ, E ⊢ defined(M) if and only if

E, σ,M ⇓ a for somea
E, σ, E ⊢ event(e(M1, . . . ,Mm)) if and only if

there exista1, . . . , am such that for allj ≤ m,
E, σ,Mj ⇓ aj ande(a1, . . . , am) ∈ E

We extend this definition to formulae built from facts by
conjunctions and disjunctions:

E, ρ, E ⊢ φ1 ∧ φ2 if and only if
E, ρ, E ⊢ φ1 andE, ρ, E ⊢ φ2

E, ρ, E ⊢ φ1 ∨ φ2 if and only if
E, ρ, E ⊢ φ1 or E, ρ, E ⊢ φ2

We also extend it naturally to sets of facts and formulae:
E, σ, E ⊢ F if and only if for all F ∈ F , E, σ, E ⊢ F .

The following proposition expresses the correctness of
the collection of true facts. A detailed proof of this result
for the full algorithm used in the implementation, but for the
version without events, can be found in [20]. The extension
to events is straightforward.

Proposition 7 If initConfig(C[Q0])
E
−→p,T E, (σ, P ),Q,

C, thenE, σ, E ⊢ FP .

B.3. Equational Prover

We use an algorithm inspired by the Knuth-Bendix com-
pletion algorithm [41], with differences detailed below.

The prover manipulates pairsF ,R whereF is a set of
facts (M , defined(M), or event(e(M1, . . . ,Mn))) andR
is a set of rewrite rulesM1 → M2. We say thatM re-
duces intoM ′ by M1 → M2 when M = C[M1] and
M ′ = C[M2] for some term contextC. (That is, all vari-
ables in rewrite rules ofR are considered as constants.)
The prover starts with a certain set of factsF andR = ∅.
Then the prover transforms the pairs(F ,R) by the follow-
ing rules (the rule F,R

F ′,R′
means thatF ,R is transformed

intoF ′,R′):

F ∪ {F},R

F ∪ {F ′},R

if F reduces intoF ′ by a rule of
R or a user-defined rewrite rule

(8)

F ∪ {M1 ∧ M2},R

F ∪ {M1,M2},R
(9)

F ∪ {x[M1, . . . ,Mm] = x[M ′
1, . . . ,M

′
m]},R

F ∪ {M1 = M ′
1, . . . ,Mm = M ′

m},R

whenx is defined only by restrictions
new x : T andT is a large type

(10)

18



F ∪ {M = M ′},R

F ,R∪ {M → M ′}
if M > M ′ (11)

F ,R∪ {M1 → M2}

F ∪ {M1 = M ′
2},R

if M2 reduces intoM ′
2 by

a rule ofR or a
user-defined rewrite rule

(12)

F ,R∪ {M1 → M2}

F ∪ {M ′
1 = M2},R

if M1 reduces intoM ′
1 by

a rule ofR
(13)

We also use the symmetric of Rule (11) obtained by swap-
ping the two sides of the equality.

Rule (8) simplifies facts using rewrite rules. Rule (9)
decomposes conjunctions of facts. Rule (10) exploits the
elimination of collisions between random values. It takes
into account that, whenx is defined by a restriction of a
large type, two different cells ofx have a negligible prob-
ability of containing the same value. So when two cells of
x contain the same value, we can conclude up to negligible
probability that they are the same cell.

Rule (11) is applied only when Rules (8) to (10) can-
not be applied. Rule (11) transforms equations into rewrite
rules by orienting them. We say thatM > M ′ when ei-
therM is the formx[M̃ ], x does not occur inM ′, andx is
not defined only by restrictions, orM = x[M1, . . . ,Mm],
M ′ = x[M ′

1, . . . ,M
′
m], and for allj ≤ m, Mj > M ′

j . Intu-
itively, our goal is to replaceM with M ′ whenM ′ defines
the content of the variableM . (Notice that this is not an or-
dering; the Knuth-Bendix algorithm normally uses a reduc-
tion ordering to orient equations. However, we tried some
reduction orderings, namely the lexicographic path ordering
and the Knuth-Bendix ordering, and obtained disappointing
results: the prover fails to prove many equalities because
too many equations are left unoriented. The simple heuristic
given above succeeds more often, at the expense of a greater
risk of non-termination, but that does not cause problems in
practice on our examples. We believe that this comes from
the particular structure of equations, which come fromlet

definitions and from conditions offind or if, and tend to
define variables from other variables without creating de-
pendency cycles.)

Rules (12) and (13) are systematically applied to sim-
plify all rewrite rules ofR after a new rewrite rule has been
added by Rule (11). Since all terms in rewrite rules ofR are
considered as constants, Rule (13) in fact includes the de-
duction of equations from critical pairs done by the standard
Knuth-Bendix completion algorithm.

We say thatF yields a contradictionwhen the prover
starting from(F , ∅) derives(F ′,R′) with false ∈ F ′.

We write E, ρ, E ⊢ F ,R when E, ρ, E ⊢ F and for
all M1 → M2 ∈ R, E, ρ, E ⊢ M1 = M2. A variant of
the following result is proved in [20]. This result shows
the soundness of the transformation ofF ,R intoF ′,R′ for
each rule F,R

F ′,R′
of the equational prover.

Proposition 8 If F,R
F ′,R′

, then Pr[∃(E, σ, P,Q, C, ρ, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C ∧ E, ρ, E ⊢ F ,R ∧

¬E, ρ, E ⊢ F ′,R′] is negligible.

We denote by Pr[C[Q0] Ã F ] the probability
that C[Q0] reduces into a configuration in whichF
holds: Pr[C[Q0] Ã F ] = Pr[∃(E, σ, P,Q, C, ρ, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C ∧ E, ρ, E ⊢ F ].

Proposition 9 If F yields a contradiction, then
Pr[C[Q0] Ã F ] is negligible.

Proof This is an easy consequence of Proposition 8.
Since F yields a contradiction, the prover transforms
(F ,R) = (F , ∅) into (F ′,R′) that containsfalse, so
E, ρ, E ⊢ F implies E, ρ, E ⊢ F ,R, and ¬E, ρ, E ⊢
F ′,R′. By Proposition 8 applied as many times
as there are transformation steps between(F ,R) and

(F ′,R′), Pr[∃(E, σ, P,Q, C, ρ, E), initConfig(C[Q0])
E
−→

E, (σ, P ),Q, C ∧ E, ρ, E ⊢ F ,R ∧ ¬E, ρ, E ⊢ F ′,R′] is
negligible, which implies thatPr[C[Q0] Ã F ] is negligi-
ble. ¤

C. Proofs

C.1. Non-injective Correspondences

The following lemma shows the correctness ofF |=⇒θ φ,
that is, if F |=⇒θ φ, thenF implies θφ with overwhelming
probability.

Lemma 3 If F |=⇒θ φ, thenPr[C[Q0] Ã F ∪ {¬θφ}] is
negligible.

Proof The proof proceeds by induction onφ.

• Caseφ = M . If F ∪ {¬θM} yields a contradiction,
then, by Proposition 9,Pr[C[Q0] Ã F ∪ {¬θφ}] is
negligible.

• Caseφ = event(e(M1, . . . ,Mm)). There are terms
M ′

1, . . . ,M
′
m such thatevent(e(M ′

1, . . . ,M
′
m)) ∈ F

andF∪{
∨m

j=1 θMj 6= M ′
j} yields a contradiction. By

Proposition 9,Pr[C[Q0] Ã F ∪ {
∨m

j=1 θMj 6= M ′
j}]

is negligible. Moreover, ifE, ρ, E ⊢ F ∪ {¬θφ}, then
E, ρ, E ⊢ event(e(M ′

1, . . . ,M
′
m)) and ¬E, ρ, E ⊢

event(e(θM1, . . . , θMm)), so there existsj ≤ m
such thatE, ρ, E ⊢ θMj 6= M ′

j , henceE, ρ, E ⊢

F ∪ {
∨m

j=1 θMj 6= M ′
j}. Therefore,Pr[C[Q0] Ã

F∪{¬θφ}] ≤ Pr[C[Q0] Ã F∪{
∨m

j=1 θMj 6= M ′
j}].

Hence,Pr[C[Q0] Ã F ∪ {¬θφ}] is negligible.
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• Caseφ = φ1 ∧ φ2. We haveF |=⇒θ φ1 andF |=⇒θ φ2.
By induction hypothesis,Pr[C[Q0] Ã F ∪ {¬θφ1}]
and Pr[C[Q0] Ã F ∪ {¬θφ2}] are negligible. If
E, ρ, E ⊢ F ∪ {¬θ(φ1 ∧ φ2)}, then eitherE, ρ, E ⊢
F∪{¬θφ1} or E, ρ, E ⊢ F∪{¬θφ2}, soPr[C[Q0] Ã

F ∪ {¬θ(φ1 ∧ φ2)}] ≤ Pr[C[Q0] Ã F ∪ {¬θφ1}] +
Pr[C[Q0] Ã F ∪ {¬θφ2}], so Pr[C[Q0] Ã F ∪
{¬θ(φ1 ∧ φ2)}] is negligible.

• Caseφ = φ1 ∨ φ2. We have eitherF |=⇒θ φ1 or
F |=⇒θ φ2. In the first case, by induction hypothesis,
Pr[C[Q0] Ã F ∪ {¬θφ1}] is negligible. IfE, ρ, E ⊢
F ∪ {¬θ(φ1 ∨ φ2)}, thenE, ρ, E ⊢ F ∪ {¬θφ1}, so
Pr[C[Q0] Ã F∪{¬θ(φ1∨φ2)}] ≤ Pr[C[Q0] Ã F∪
{¬θφ1}]. Therefore,Pr[C[Q0] Ã F∪{¬θ(φ1∨φ2)}]
is negligible. The second case follows by symmetry.¤

Proof of Proposition 1 By hypothesis, ifP1 follows F1,
. . . , andPm follows Fm, then there exists a substitutionθ
equal to the identity on the variables ofψ and such that
FF1,P1

∪ . . .∪FFm,Pm
|=⇒θ φ. We letθ(P1, . . . Pm) be such

a substitution and we defineF(P1, . . . , Pm) = FF1,P1
∪

. . . ∪ FFm,Pm
∪ {¬θφ} whereθ = θ(P1, . . . , Pm).

Let C be an evaluation context acceptable for(Q0, V ).

Below, we show that if initConfig(C[Q0])
E
−→p,T

E, (σ, P ),Q, C andE 6⊢ ψ ⇒ φ, then there existP1 that
follows F1, . . . , Pm that follows Fm, and ρ′ such that
E, ρ′, E ⊢ F(P1, . . . , Pm). Therefore,

Pr

[
∃(E, σ, P,Q, C, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C ∧ E 6⊢ ψ ⇒ φ

]

≤
∑

P1,...,Pm that

follow F1,...,Fm respectively

Pr



∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C

∧ E, ρ′, E ⊢ F(P1, . . . , Pm)




≤
∑

P1,...,Pm that followF1,...,Fm respectively

Pr [C[Q0] Ã F(P1, . . . , Pm)]

By Lemma 3, sinceFF1,P1
∪ . . . ∪ FFm,Pm

|=⇒θ φ for θ =
θ(P1, . . . , Pm), the probabilityPr[C[Q0] Ã FF1,P1

∪ . . .∪
FFm,Pm

∪{¬θφ}] = Pr[C[Q0] Ã F(P1, . . . , Pm)] is neg-
ligible, so the sum is negligible since the number of pro-
cessesP1, . . . , Pm is independent of the security parameter.
Hence,Q0 satisfies the correspondenceψ ⇒ φ with public
variablesV .

Assume thatinitConfig(C[Q0])
E
−→p,T E, (σ, P ),Q, C

and for everyP1 that follows F1, . . . , for every Pm

that follows Fm, for every ρ′, we have¬E, ρ′, E ⊢
F(P1, . . . , Pm). We show thatE ⊢ ψ ⇒ φ. This result
will conclude the proof.

Assume thatρ, E ⊢ ψ, where ρ is defined on
var(ψ). For each eventF = event(e(M1, . . . ,Mm′))

in ψ, ρ, E ⊢ event(e(M1, . . . ,Mm′)), so for all
j ≤ m′, ρ,Mj ⇓ aj and e(a1, . . . , am′) ∈
E . Since the only transition that produces a label

e(a1, . . . , am′) is (Event), the traceinitConfig(Q0)
E
−→p,T

E, (σ, P ),Q, C contains a transition of the formE′,

(σ′, event e(M ′
1, . . . ,M

′
m′);P ′),Q′, C′ e(a1,...,am′ )

−−−−−−−−→1,Ev

E′, (σ′, P ′),Q′, C′ with E′, σ′,M ′
j ⇓ aj for all j ≤ m′. By

Proposition 5,event e(M ′
1, . . . ,M

′
m′);P ′ is a subprocess

of C[Q0] or of start〈〉; 0. SinceC does not contain events,
event e(M ′

1, . . . ,M
′
m′);P ′ is a subprocess ofQ0, soP ′ fol-

lowsF . By Proposition 7,E′, σ′, E ′ ⊢ FP ′ , whereE ′ is the
prefix of E until and including the considered occurrence
of the evente(a1, . . . , am′). By Proposition 6,E is an ex-
tension ofE′, soE, σ′, E ⊢ FP ′ . Let θ′ be the substitution
that renames replication indices atP ′ to fresh replication in-
dices, such thatFF,P ′ = θ′FP ∪ {θ′M ′

j = Mj | j ≤ m′}.
Let σ′′ be such thatσ′ = σ′′θ′. ThenE, σ′′, E ⊢ θ′FP ′ . For
all j ≤ m′, sinceE′, σ′,M ′

j ⇓ aj , we haveE, σ′′, θ′M ′
j ⇓

aj . We haveρ,Mj ⇓ aj . HenceE, σ′′ ⊕ ρ, E ⊢ θ′M ′
j =

Mj , whereσ′′⊕ρ denotes the function that mapsx toσ′′(x)
whenx ∈ Dom(σ′′) andi to ρ(i) wheni ∈ Dom(ρ). This
function is well defined, sinceDom(σ′′) andDom(ρ) are
disjoint. SoE, σ′′ ⊕ ρ, E ⊢ FF,P ′ .

Therefore, for eachFj in ψ, there existσ′′
j , ρ, and a pro-

cessPj that followsFj such thatE, σ′′
j ⊕ ρ, E ⊢ FFj ,Pj

.
Since the environmentsσ′′

j andρ have disjoint domains, we
can define an environmentρ′ = σ′′

1 ⊕ . . . ⊕ σ′′
m ⊕ ρ. Then

E, ρ′, E ⊢ FF1,P1
∪ . . . ∪ FFm,Pm

.
Let θ = θ(P1, . . . , Pm). SinceE, ρ′, E ⊢ FF1,P1

∪
. . . ∪ FFm,Pm

and¬E, ρ′, E ⊢ F(P1, . . . , Pm), we have
E, ρ′, E ⊢ θφ. We extendρ to all x ∈ var(φ) \ var(ψ),
in such a way thatE, ρ′, θ(x) ⇓ ρ(x). Moreover, if
x ∈ var(ψ), then ρ(x) = ρ(θ(x)) = ρ′(θ(x)) since
θx = x, so E, ρ′, θ(x) ⇓ ρ(x). So, for allx ∈ var(φ),
E, ρ′, θ(x) ⇓ ρ(x). SinceE, ρ′, E ⊢ θφ, we haveρ, E ⊢ φ,
soE satisfies the correspondenceψ ⇒ φ. ¤

C.2. Injective Correspondences

We defineformula(F |=⇒I,V,C
θ φ) as follows:

formula(F |=⇒I,V,⊥
θ M) = θM

formula(F |=⇒I,V,⊥
θ event(e(M0, . . . ,Mm))) =

θevent(e(M0, . . . ,Mm))

formula(F |=⇒I,V,S
θ inj-event(e(M0, . . . ,Mm))) =

∨

event(e(M ′

0
,...,M ′

m))∈F∧(F,M ′

0
,I,V)∈S

(∧m
j=0 θMj = M ′

j

)

formula(F |=⇒I,V,C1∧C2

θ φ1 ∧ φ2) =

formula(F |=⇒I,V,C1

θ φ1) ∧ formula(F |=⇒I,V,C2

θ φ2)
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formula(F |=⇒I,V,C1∨C2

θ φ1 ∨ φ2) =

formula(F |=⇒I,V,C1

θ φ1) ∨ formula(F |=⇒I,V,C2

θ φ2)

whereM0 is a fresh variable added as first argument of
events. The formulaformula(F |=⇒I,V,C

θ φ) generalizesθφ
to the case of injective events.

The next lemma shows that, ifF |=⇒I,V,C
θ φ, thenF im-

plies formula(F |=⇒I,V,C
θ φ) with overwhelming probabil-

ity.

Lemma 4 If F |=⇒I,V,C
θ φ, then Pr[C[Q0] Ã F ∪

{¬formula(F |=⇒I,V,C
θ φ)}] is negligible.

Proof The proof is similar to that of Lemma 3, and pro-
ceeds by induction onφ. The only new case is the one of
injective events.

• Case φ = inj-event(e(M0, . . . ,Mm)), C =
S. There are termsM ′

0, . . . ,M
′
m such that

event(e(M ′
0, . . . ,M

′
m)) ∈ F ,F∪{

∨m
j=0 θMj 6= M ′

j}
yields a contradiction, and(F ,M ′

0, I,V) ∈ S. By
Proposition 9,Pr[C[Q0] Ã F ∪ {θ

∨m
j=0 θMj 6=

M ′
j}] is negligible. Moreover, ifE, ρ, E ⊢ F ∪

{¬formula(F |=⇒I,V,S
θ φ)}, thenE, ρ, E ⊢ F and for

all M ′
0, . . . ,M

′
m such thatevent(e(M ′

0, . . . ,M
′
m)) ∈

F and(F ,M ′
0, I,V) ∈ S, in particular for the terms

M ′
0, . . . ,M

′
m above, we haveE, ρ, E ⊢

∨m
j=0 θMj 6=

M ′
j , so E, ρ, E ⊢ F ∪ {

∨m
j=0 θMj 6= M ′

j}. There-

fore,Pr[C[Q0] Ã F ∪ {¬formula(F |=⇒I,V,S
θ φ)}] ≤

Pr[C[Q0] Ã F ∪ {
∨m

j=0 θMj 6= M ′
j}]. Hence,

Pr[C[Q0] Ã F ∪{¬formula(F |=⇒I,V,S
θ φ)}] is negli-

gible. ¤

The next lemma details the meaning of
formula(F |=⇒I,V,C

θ φ). Essentially, this formula im-
plies θφ, so, if we store inρ(x) the value ofθ(x) by
E, ρ′, θ(x) ⇓ ρ(x), we haveρ, E ⊢φτ

φ. Furthermore, for
injective events,formula(F |=⇒I,V,C

θ φ) guarantees that the
quadruples(F ,M ′

0, I,V) are correctly collected inC.

Lemma 5 If E, ρ′, E ⊢ F , for all x ∈ var(φ), E, ρ′, θ(x) ⇓

ρ(x), and E, ρ′, E ⊢ formula(F |=⇒I,V,C
θ φ), then there

exists φτ such that ρ, E ⊢φτ

φ and, if τ is a non-
bottom leaf ofφτ and S the corresponding leaf ofC,
thenE, ρ′, E ⊢ E(τ) = event(e(M ′

0, . . . ,M
′
m)) for some

event(e(M ′
0, . . . ,M

′
m)) ∈ F and(F ,M ′

0, I,V) ∈ S.

Proof The proof proceeds by induction onφ.

• Caseφ = M . We haveformula(F |=⇒I,V,C
θ φ) = θM ,

soE, ρ′, E ⊢ θM , soρ,M ⇓ true, soρ, E ⊢⊥ M . The
result holds withφτ = ⊥.

• Case φ = event(e(M0, . . . ,Mm)). We have
formula(F |=⇒I,V,C

θ φ) = θevent(e(M0, . . . ,Mm)),
so E, ρ′, E ⊢ θevent(e(M0, . . . ,Mm)), so ρ, E ⊢⊥

event(e(M0, . . . ,Mm)). The result holds withφτ =
⊥.

• Case φ = inj-event(e(M0, . . . ,Mm)).
We have formula(F |=⇒I,V,S

θ φ) =∨
event(e(M ′

0
,...,M ′

m))∈F∧(F,M ′

0
,I,V)∈S

( ∧m
j=0 θMj =

M ′
j

)
. So there exist M ′

0, . . . ,M
′
m such that

event(e(M ′
0, . . . ,M

′
m)) ∈ F , (F ,M ′

0, I,V) ∈ S,
and E, ρ′, E ⊢

∧m
j=0 θMj = M ′

j . We have
E, ρ′, E ⊢ F , soE, ρ′, E ⊢ event(e(M ′

0, . . . ,M
′
m)),

so E, ρ′, E ⊢ θevent(e(M0, . . . ,Mm)), so there
exists τ such thatE(τ) = event(e(a0, . . . , am))
with for all j ≤ m, E, ρ′, θMj ⇓ aj , so for all
j ≤ m, E, ρ,Mj ⇓ aj , so ρ, E ⊢τ event(M0, . . . ,
Mm)). Moreover,E, ρ′, E ⊢ E(τ) = event(e(a0, . . . ,
am)) = θevent(e(M0, . . . ,Mm)) = event(e(M ′

0,
. . . ,M ′

m)). As already noticed, we haveevent(e(M ′
0,

. . . ,M ′
m)) ∈ F and(F ,M ′

0, I,V) ∈ S, so the result
holds withφτ = τ .

• Case φ = φ1 ∧ φ2. We have E, ρ′, E ⊢
formula(F |=⇒I,V,C1∧C2

θ φ1 ∧ φ2), so E, ρ′, E ⊢

formula(F |=⇒I,V,C1

θ φ1) and E, ρ′, E ⊢

formula(F |=⇒I,V,C2

θ φ2). The induction hypoth-
esis yieldsφτ

1 and φτ
2 , and the result holds with

φτ = φτ
1 ∧ φτ

2 .

• Case φ = φ1 ∨ φ2. We have E, ρ′, E ⊢
formula(F |=⇒I,V,C1∨C2

θ φ1 ∨ φ2), so E, ρ′, E ⊢

formula(F |=⇒I,V,C1

θ φ1) or E, ρ′, E ⊢

formula(F |=⇒I,V,C2

θ φ2). In the first case, the in-
duction hypothesis yieldsφτ

1 , and the result holds with
φτ = φτ

1 ∨ φ⊥
2 , whereφ⊥

2 is the formulaφ2 in which
all terms and events have been replaced with⊥. The
second case follows by symmetry. ¤

The next lemma shows that, for eventse used as injec-
tive events, two distinct executions of evente have distinct
replication indices. This is a consequence of the require-
ment that two occurrences of the same evente be in differ-
ent branches offind or if in Q0.

When the termM contains no array accesses, we define
σ(M) by E, σ,M ⇓ σ(M) for any environmentE, since
the evaluation ofM does not depend onE.

Lemma 6 Assume that the evente is used as injective
event in the correspondenceψ ⇒ φ. If the trace

initConfig(C[Q0])
E
−→p,T C contains two distinct reduc-
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tions

E, (σ, event e(M0, . . . ,Mm);P ),Q, C

e(a0,...,am)
−−−−−−−→1,Ev E, (σ, P ),Q, C

andE′, (σ′, event e(M ′
0, . . . ,M

′
m);P ′),Q′, C′

e(a′

0
,...,a′

m)
−−−−−−−→1,Ev E′, (σ′, P ′),Q′, C′

thena0 6= a′
0.

Proof Let us fix the event symbole. We de-

fine Events(initConfig(C[Q0])
E
−→p,T C) as the

multiset that contains a0 for each reduction E,

(σ, event e(M0, . . . ,Mm);P ),Q, C
e(a0,...,am)
−−−−−−−→1,Ev E,

(σ, P ),Q, C in the trace initConfig(C[Q0])
E
−→p,T C.

Multisets S are represented by functions that map each
elementx of S to the number of occurrences ofx in S.
WhenS1 andS2 are multisets, the multisetmax(S1, S2)
is defined bymax(S1, S2)(x) = max(S1(x), S2(x)). We
define the multisetsEvents(σ, P ) andEvents(σ,Q) by

Events(σ, 0) = ∅

Events(σ,Q1 | Q2) = Events(σ,Q1) ⊎ Events(σ,Q2)

Events(σ, !i≤nQ) =
⊎

a∈[1,Iη(n)]

Events(σ[i 7→ a], Q)

Events(σ, newChannel c;Q) = Events(σ,Q)

Events(σ, c[M1, . . . ,Ml](x1 [̃i] : T1, . . . , xk [̃i] : Tk);P ) =

Events(σ, P )

Events(σ, c[M1, . . . ,Ml]〈N1, . . . , Nk〉;Q) =

Events(σ,Q)

Events(σ, new x[̃i] : T ;P ) = Events(σ, P )

Events(σ, let x[̃i] : T = M in P ) = Events(σ, P )

Events(σ, event e′(M0, . . . ,Mm);P ) =

Events(σ, P ) if e′ 6= e

Events(σ, event e(M0, . . . ,Mm);P ) =

{σ(M0)} ⊎ Events(σ, P )

Events(σ, find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧ Mj then Pj) else P ) =

max(
m

max
j=1

Events(σ, Pj),Events(σ, P ))

We define the multisetEvents(E, (σ, P ),Q, C) =
Events(σ, P ) ⊎

⊎
(σ′,Q′)∈Q Events(σ′, Q′). This multiset

contains all bitstringsa0 for eventse(. . .) that may be exe-
cuted in a trace that begins withE, (σ, P ),Q, C.

The multisetEvents(initConfig(C[Q0])) contains no
duplicates, since two occurrences of the same event
e must be in different branches offind or if in Q0

and C does not contain events. Moreover, for the
empty trace ǫ, Events(ǫ) = ∅, so Events(ǫ) ⊎
Events(initConfig(C[Q0])) contains no duplicates.

We show that, ifinitConfig(C[Q0])
E
−→p,T C

[e]
−→p′,t′

C
′, thenEvents(initConfig(C[Q0])

E
−→p,T

[e]
−→p′,t′ C

′) ⊎

Events(C′) ⊆ Events(initConfig(C[Q0])
E
−→p,T C) ⊎

Events(C).

Thus, if initConfig(C[Q0])
E
−→p,T C, then

Events(initConfig(C[Q0])
E
−→p,T C) ⊎ Events(C)

⊆ Events(ǫ) ⊎ Events(initConfig(C[Q0]))

These multisets contain no duplicates, so in particular,

Events(initConfig(C[Q0])
E
−→p,T C)

contains no duplicates. This property implies the desired
result. ¤

Proof of Proposition 2 By hypothesis, ifP1 follows
F1, . . . , andPm follows Fm, then there exists a substi-
tution θ equal to the identity on the variables ofψ and
such thatF |=⇒I,V,C

θ φ whereF = FF1,P1
∪ . . . ∪ FFm,Pm

,
I = {j 7→ IPj

| Fj is an injective event}, andV =
var(IP1

) ∪ . . . ∪ var(IPm
) ∪ var(ψ). We letθ(P1, . . . Pm)

be such a substitution and we defineF(P1, . . . , Pm) =

F ∪ {¬formula(F |=⇒I,V,C
θ φ)} whereθ = θ(P1, . . . , Pm).

Let C be an evaluation context acceptable for

(Q0, V ). Next, we show that ifinitConfig(C[Q0])
E
−→p,T

E, (σ, P ),Q, C andE 6⊢ ψ ⇒ φ, then

• there existP1 that followsF1, . . . ,Pm that followsFm,
andρ′ such thatE, ρ′, E ⊢ F(P1, . . . , Pm),

• or there exist a non-bottom leafS of C, (F ,M0, I,V)
and(F ′,M ′

0, I
′,V ′) in S, andρ′ such thatE, ρ′, E ⊢

F ∪ F ′ ∪ {
∨

j∈Dom(I) I(j) 6= θ′′I ′(j)} ∪ {θ′′M ′
0 =

M0}, where the substitutionθ′′ is a renaming of the
variables inV ′ to distinct fresh variables.

Therefore,

Pr

[
∃(E, σ, P,Q, C, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C ∧ E 6⊢ ψ ⇒ φ

]

≤
∑

P1,...,Pm that

follow F1,...,Fm respectively

Pr



∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C

∧ E, ρ′, E ⊢ F(P1, . . . , Pm)




+
∑

S leaf ofC,S6=⊥,

(F,M0,I,V)∈S,

(F ′,M ′

0
,I′,V′)∈S

Pr




∃(E, σ, P,Q, C, ρ′, E),

initConfig(C[Q0])
E
−→ E, (σ, P ),Q, C

∧ E, ρ′, E ⊢ F ∪ F ′ ∪ {M0 = θ′′M ′
0}

∪ {
∨

j∈Dom(I) I(j) 6= θ′′I ′(j)}



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≤
∑

P1,...,Pm that followF1,...,Fm respectively

Pr [C[Q0] Ã F(P1, . . . , Pm)]

+
∑

S leaf ofC,S6=⊥,

(F,M0,I,V)∈S,(F ′,M ′

0
,I′,V′)∈S

Pr

[
C[Q0] Ã F ∪ F ′ ∪ {M0 = θ′′M ′

0}
∪ {

∨
j∈Dom(I) I(j) 6= θ′′I ′(j)}

]

By Lemma 4, since F |=⇒I,V,C
θ φ, the probability

Pr[C[Q0] Ã F ∪ {¬formula(F |=⇒I,V,C
θ φ)}] is

negligible, that is, Pr [C[Q0] Ã F(P1, . . . , Pm)] is
negligible. Since⊢ C, for all non-bottom leavesS
of C, for all (F ,M0, I,V), (F ′,M ′

0, I
′,V ′) in S,

F ∪ θ′′F ′ ∪ {
∨

j∈Dom(I) I(j) 6= θ′′I ′(j),M0 = θ′′M ′
0}

yields a contradiction. By Proposition 9,Pr[C[Q0] Ã

F ∪F ′ ∪ {M0 = θ′′M ′
0} ∪ {

∨
j∈Dom(I) I(j) 6= θ′′I ′(j)}]

is negligible. Hence the sum is negligible, soQ0 satisfies
the correspondenceψ ⇒ φ with public variablesV .

Assume that

• initConfig(C[Q0])
E
−→p,T E, (σ, P ),Q, C,

• for every P1 that follows F1, . . . , for every Pm

that follows Fm, for everyρ′, we have¬E, ρ′, E ⊢
F(P1, . . . , Pm),

• and for every non-bottom leafS of C, for every
(F ,M0, I,V) and(F ′,M ′

0, I
′,V ′) in S, for everyρ′,

we have¬E, ρ′, E ⊢ F ∪ F ′ ∪ {
∨

j∈Dom(I) I(j) 6=

θ′′I ′(j)} ∪ {M0 = θ′′M ′
0}, where the substitutionθ′′

is a renaming of the variables inV ′ to distinct fresh
variables.

We show thatE ⊢ ψ ⇒ φ.
Assume thatρ, E ⊢ψτ

ψ, where ρ is defined on
var(ψ), ψ = F1 ∧ . . . ∧ Fm, ψτ = τ1 ∧ . . . ∧
τm, and for all j ≤ m, τj is either a step or⊥.
For each eventFj = event(ej(Mj0, . . . ,Mjmj

)) or
Fj = inj-event(ej(Mj0, . . . ,Mjmj

)) in ψ, we have
ρ, E ⊢τj event(ej(Mj0, . . . ,Mjmj

)), so ρ,Mjk ⇓ ajk

for all k ≤ mj and ej(aj0, . . . , ajmj
) ∈ E . More-

over, if Fj = inj-event(ej(Mj0, . . . ,Mjmj
)), then

ej(aj0, . . . , ajmj
) = E(τj). Since the only transition that

produces a labelej(aj0, . . . , ajmj
) is (Event), the trace

initConfig(Q0)
E
−→p,T E, (σ, P ),Q, C contains a transi-

tion of the form Ej , (σj , event ej(M
′
j0, . . . ,M

′
jmj

);Pj),

Qj , Cj

ej(aj0,...,ajmj
)

−−−−−−−−−−→1,Ev Ej , (σj , Pj),Qj , Cj with
Ej , σj ,M

′
jk ⇓ ajk for all k ≤ mj . By Proposi-

tion 5, event ej(M
′
j0, . . . ,M

′
jmj

);Pj is a subprocess of
C[Q0] or of start〈〉; 0. SinceC does not contain events,
event ej(M

′
j0, . . . ,M

′
jmj

);Pj is a subprocess ofQ0, soPj

follows Fj . By Proposition 7,Ej , σj , Ej ⊢ FPj
, whereEj

is the prefix ofE until and including the considered occur-
rence of the eventej(aj0, . . . , ajmj

). By Proposition 6,E

is an extension ofEj , so E, σj , E ⊢ FPj
. Let θ′j be the

substitution that renames replication indices atPj to fresh
replication indices, such thatFFj ,Pj

= θ′jFPj
∪ {θ′jM

′
jk =

Mjk | k ≤ mj} andIPj
= θ′jM

′
j0 since the tuple of replica-

tion indices atPj is added as first argumentM ′
j0 of events

in Q0. Let σ′
j be such thatσj = σ′

jθ
′
j . ThenE, σ′

j , E ⊢
θjFPj

. For all k ≤ mj , sinceEj , σj ,M
′
jk ⇓ ajk, we

haveE, σ′
j , θ

′
jM

′
jk ⇓ ajk. We haveρ,Mjk ⇓ ajk. Hence

E, σ′
j ⊕ ρ, E ⊢ θ′jM

′
jk = Mjk, whereσ′

j ⊕ ρ denotes the
function that mapsx to σ′

j(x) whenx ∈ Dom(σ′
j) andi to

ρ(i) wheni ∈ Dom(ρ). SoE, σ′
j ⊕ ρ, E ⊢ FFj ,Pj

.
Therefore, for eachj ≤ m, there exists a processPj that

follows Fj such that

• for all j ≤ m, there is a reduction

Ej , (σj , event ej(M
′
j0, . . . ,M

′
jmj

);Pj),Qj , Cj

ej(aj0,...,ajmj
)

−−−−−−−−−−→1,Ev Ej , (σj , Pj),Qj , Cj

in the traceinitConfig(C[Q0])
E
−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τj 6= ⊥ and
E(τj) = ej(aj0, . . . , ajmj

);

• letting ρ′ = σ′
1 ⊕ . . . ⊕ σ′

m ⊕ ρ, we haveDom(ρ′) =
var(IP1

)∪. . .∪var(IPm
)∪var(ψ), E, ρ′, E ⊢ FF1,P1

∪
. . .∪FFm,Pm

and for allj ≤ m, ρ′(IPj
) = σ′

j(IPj
) =

σj(M
′
j0) = aj0.

Let θ = θ(P1, . . . , Pm). LetF = FF1,P1
∪ . . . ∪ FFm,Pm

,
I = {j 7→ IPj

| Fj is an injective event}, andV =
var(IP1

) ∪ . . . ∪ var(IPm
) ∪ var(ψ). SinceE, ρ′, E ⊢

FF1,P1
∪. . .∪FFm,Pm

and¬E, ρ′, E ⊢ F(P1, . . . , Pm), we
haveE, ρ′, E ⊢ formula(F |=⇒I,V,C

θ φ). We extendρ to all
x ∈ var(φ) \ var(ψ) in such a way thatE, ρ′, θ(x) ⇓ ρ(x).
Then, for allx ∈ var(φ) ∪ var(ψ), E, ρ′, θ(x) ⇓ ρ(x). By
Lemma 5, there existsφτ such thatρ, E ⊢φτ

φ and, if τ is
a non-bottom leaf ofφτ andS the corresponding leaf ofC,
thenE, ρ′, E ⊢ E(τ) = event(e(M ′′

0 , . . . ,M ′′
m)) for some

event(e(M ′′
0 , . . . ,M ′′

m)) ∈ F and(F ,M ′′
0 , I,V) ∈ S.

We defineF as the function that mapsψτ to φτ build as
above. It suffices to show thatF is component-wise injec-
tive. Let f be a projection ofF to a leaf ofφ, andS the
corresponding leaf ofC. Assume thatf(ψτ

1 ) = f(ψτ
2 ) =

τ 6= ⊥. Let us show thatψτ
1 = ψτ

2 .
Assume thatψτ

1 = τ11 ∧ . . .∧ τ1m andψτ
2 = τ21 ∧ . . .∧

τ2m. By construction ofF, we have

• for all j ≤ m, there is a reduction

E1j , (σ1j , event ej(M
′
1j0, . . . ,M

′
1jmj

);P1j),Q1j , C1j

ej(a1j0,...,a1jmj
)

−−−−−−−−−−−→1,Ev E1j , (σ1j , P1j),Q1j , C1j

in the traceinitConfig(C[Q0])
E
−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τ1j 6= ⊥
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and E(τ1j) = ej(a1j0, . . . , a1jmj
); E, ρ′1, E ⊢

F1, for all j ≤ m, ρ′1(IP1j
) = a1j0, I1 =

{j 7→ IP1j
| Fj is an injective event}, E, ρ′1, E ⊢

E(τ) = event(e(M ′′
1 , . . .)), (F1,M

′′
1 , I1,V1) ∈ S,

andDom(ρ′1) = V1;

• for all j ≤ m, there is a reduction

E2j , (σ2j , event ej(M
′
2j0, . . . ,M

′
2jmj

);P2j),Q2j , C2j

ej(a2j0,...,a2jmj
)

−−−−−−−−−−−→1,Ev E2j , (σ2j , P2j),Q2j , C2j

in the traceinitConfig(C[Q0])
E
−→p,T E, (σ, P ),Q, C,

and if Fj = inj-event(ej(. . .)), then τ2j 6= ⊥
and E(τ2j) = ej(a2j0, . . . , a2jmj

); E, ρ′2, E ⊢
F2, for all j ≤ m, ρ′2(IP2j

) = a2j0, I2 =
{j 7→ IP2j

| Fj is an injective event}, E, ρ′2, E ⊢
E(τ) = event(e(M ′′

2 , . . .)), (F2,M
′′
2 , I2,V2) ∈ S,

andDom(ρ′2) = V2.

Let θ′′ be a renaming that maps variables ofV2 to distinct
fresh variables. Letρ′ be defined byρ′(x) = ρ′1(x) if x ∈

V1 andρ′(x) = ρ′2(θ
′′−1

(x)) if x ∈ θ′′(V2).
Then E, ρ′, E ⊢ F1, E, ρ′, E ⊢ θ′′F2, E, ρ′, E ⊢

event(e(M ′′
1 , . . .)) = E(τ) = θ′′event(e(M ′′

2 , . . .)), so
E, ρ′, E ⊢ M ′′

1 = θ′′M ′′
2 . Hence by hypothesis,E, ρ′, E ⊢∧

j∈Dom(I1)
I1(j) = θ′′I2(j), so for all j ∈ Dom(I1),

ρ′(I1(j)) = ρ′(θ′′I2(j)), that is,ρ′1(IP1j
) = ρ′2(IP2j

), so
a1j0 = a2j0. By Lemma 6, for allj ∈ Dom(I1), that is,
for all j such thatFj is an injective event, there is a single
reduction in the trace with a label of the formej(a1j0, . . .),
soτ1j = τ2j . Furthermore, for allj such thatFj is a non-
injective event,τ1j = τ2j = ⊥. Soψτ

1 = ψτ
2 .

HenceF is component-wise injective, soE ⊢ ψ ⇒ φ.
This concludes the proof. ¤

C.3. Authenticated Key Exchange

Proof of Proposition 4 We first show thatQ0 is a secure
mutual authentication protocol. The first condition of Def-
inition 7 holds by hypothesis, and it implies the first condi-
tion of Definition 6. The last two conditions of Definition 6
come from (5) and (6), as in Proposition 3.

Next, we show the second condition of Definition 7.
We define a processQ1 obtained fromQ0 by adding
event partA(Y, sid′(x1, . . . , xr−1)); event fullA(Y, kA,
sid(x1, . . . , xr)) just before cAr[iA]〈xr, acceptA(Y )〉,
event partB(X, sid′(y1, . . . , yr−1)) just before
cBr−1[iB ]〈yr−1〉, and event fullB(X, kB , sid(y1, . . . ,
yr)) just beforecBr+1[iB ]〈acceptB(X)〉. Let Q2 be the
process obtained fromQ′

0 by deleting events.
We define

Qk′

A
= !i≤n′

c(uS : [1, n]); if defined(k′
A[uS ]) then

c〈k′
A[uS ]〉

Q′
k′

A
= !i≤n′

c(uS : [1, n]); if defined(k′
A[uS ]) then

find u′ ≤ n′ suchthat defined(y[u′], uS [u′]) ∧

uS [u′] = uS then c〈y[u′]〉 else new y : T ; c〈y〉

SinceQ′
0 preserves the secrecy ofk′

A, we haveQ2 | Qk′

A
≈

Q2 | Q′
k′

A
.

Below, we define a processQST that simulates the test
queries ofQT by calling the processQ′

0 | Qk′

A
and the test

queries ofQ′
T by callingQ′

0 | Q′
k′

A
, so that

Q1 | QT ≈ newChannel c̃′; ((Q′
0 | Qk′

A
){c̃′/c̃} | QST )

Q1 | Q′
T ≈ newChannel c̃′; ((Q′

0 | Q′
k′

A
){c̃′/c̃} | QST )

wherec̃ = (cA0, . . . , cAr, cAK , cB1, . . . , cBr, cBK , c) and
c̃′ consists of fresh names such thatc̃′ = (c′A0, . . . , c

′
Ar,

c′AK , c′B1, . . . , c
′
Br, c

′
BK , c′). By deleting events, we have

Q0 | QT ≈ newChannel c̃′; ((Q2 | Qk′

A
){c̃′/c̃} | QST )

Q0 | Q′
T ≈ newChannel c̃′; ((Q2 | Q′

k′

A
){c̃′/c̃} | QST )

Since Q2 | Qk′

A
≈ Q2 | Q′

k′

A
, we have by renaming

(Q2 | Qk′

A
){c̃′/c̃} ≈ (Q2 | Q′

k′

A
){c̃′/c̃}. Moreover,

QST does not use the variables ofQ2, Qk′

A
, Q′

k′

A
, so by

Lemma 2, Property 2,newChannel c̃′; ((Q2 | Qk′

A
){c̃′/c̃} |

QST ) ≈ newChannel c̃′; ((Q2 | Q′
k′

A
){c̃′/c̃} | QST ).

ThenQ0 | QT ≈ newChannel c̃′; ((Q2 | Qk′

A
){c̃′/c̃} |

QST ) ≈ newChannel c̃′; ((Q2 | Q′
k′

A
){c̃′/c̃} | QST ) ≈

Q0 | Q′
T , so by transitivityQ0 | QT ≈ Q0 | Q′

T , which
proves the desired result.

We now define the processQST ; we explain this def-
inition below. We definex̃[M ] as an abbreviation for
x1[M ], . . . , xr[M ] and we definẽx′[M ], ỹ[M ], andỹ′[M ]
similarly. We letQST = QSTA | QSTB | QRA | QRB

where

QSTA = !i≤nT testA[i](uA);

if defined(x′
r+1[uA]) ∧ x′

r+1[uA] 6= reject then

if x′
r+1[uA] 6= acceptA(B) then

c′AK [uA]〈〉; c′AK [uA](k); testA[i]〈k〉

else

find u ≤ nT suchthat defined(uA[u], rA[u]) ∧

uA[u] = uA then testA[i]〈rA[u]〉 else

find u ≤ nT suchthat defined(uB [u], rB [u],

x̃′[uA], ỹ′[uB [u]]) ∧ sid(x̃′[uA]) = sid(ỹ′[uB [u]])

then testA[i]〈rB [u]〉 else

c′[i]〈uA〉; c
′[i](rA); testA[i]〈rA〉
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QSTB = !i≤nT testB[i](uB);

if defined(y′
r+1[uB ]) ∧ y′

r+1[uB ] 6= reject then

if y′
r+1[uB ] 6= acceptB(A) then

c′BK [uB ]〈〉; c′BK [uB ](k); testB [i]〈k〉

else

find u ≤ nT suchthat defined(uB [u], rB [u]) ∧

uB [u] = uB then testB [i]〈rB [u]〉 else

find u ≤ nT suchthat defined(uA[u], rA[u],

x̃′[uA[u]], ỹ′[uB ]) ∧ sid(x̃′[uA[u]]) = sid(ỹ′[uB ])

then testB [i]〈rA[u]〉 else

find u′
A ≤ n suchthat defined(x̃′[u′

A], ỹ′[uB ],

x′
r+1[u

′
A]) ∧ sid(x̃′[u′

A]) = sid(ỹ′[uB ]) ∧

x′
r+1[u

′
A] = acceptA(B) then

c′[i + nT ]〈u′
A〉; c

′[i + nT ](rB); testB [i]〈rB〉

QRA = !i≤ncA0[i](Y
′); c′A0[i]〈Y

′〉;

c′A1[i](x
′
1); cA1[i]〈x

′
1〉; cA2[i](x

′
2); c

′
A2[i]〈x

′
2〉;

. . . ; c′Ar[i](x
′
r, x

′
r+1); cAr[i]〈x

′
r, x

′
r+1〉

QRB = !i≤ncB1[i](y
′
1); c

′
B1[i]〈y

′
1〉;

c′B2[i](y
′
2); cB2[i]〈y

′
2〉; . . . ; cBr[i](y

′
r); c

′
Br[i]〈y

′
r〉;

c′Br+1[i](y
′
r+1); cBr+1[i]〈y

′
r+1〉

whereIη(n′) = 2× Iη(nT ) (n′ is the number of queries al-
lowed inQk′

A
andQ′

k′

A
) and all variables in these processes

are fresh. (The variablesY ′, x′
j , y

′
j play the same role as

Y, xj , yj in Q′
0; they have been renamed to avoid confusion

with the variables ofQ′
0.) The processesQRA andQRB re-

lay the requests from channelscAj andcBj to channelsc′Aj

andc′Bj . These relay processes are useful in order to store
the messages inx′

1, . . . , x
′
r+1, y

′
1, . . . , y

′
r+1, to have access

to them without reading the variables ofQ′
0.

The processesQSTA andSTB simulate the test queries.
They first check that the queried copy ofQA or QB has ac-
cepted (first test ofQSTA andQSTB). Then, if the queried
session is not betweenA andB, they callQ′

0 to return the
session key. Otherwise, they callQk′

A
to return the key of

sessions betweenA andB, orQ′
k′

A
to return a fresh random

number for each session betweenA andB. Before calling
Qk′

A
or Q′

k′

A
, they first check if the same test query (or a test

query to the partner) has already been called, and if it has,
they return the previously returned value. (These checks
are not strictly necessary, becauseQ′

k′

A
already checks if

the same query has already been called. However, they
slightly simplify the proof by making the structure ofQSTA

andQSTB closer to the structureQ′
TA andQ′

TB .) After
these checks,QSTA callsQk′

A
or Q′

k′

A
directly (last line of

QSTA) while QSTB first uses afind to find the copy ofQA,

partner of the considered session and callsQk′

A
or Q′

k′

A
for

that partner (lastfind of QSTB).
To show an equivalenceL ≈ R, we show that, after ex-

cluding a set of traces of negligible probability, each trace of
L can be simulated by a trace ofR of the same probability,
and conversely.

For the equivalence

Q1 | QT ≈ newChannel c̃′; ((Q′
0 | Qk′

A
){c̃′/c̃} | QST )

the proof is done by considering only the traces in
which the correspondences (5)–(7) hold. The other
traces have negligible probability since the correspon-
dences (5)–(7) are satisfied byQ′

0 with public vari-
ables {k′

A}, so by Lemma 1, they are also satisfied
by newChannel c̃′; ((Q′

0 | Qk′

A
){c̃′/c̃} | QST ) and

newChannel c̃′; ((Q′
0 | Q′

k′

A
){c̃′/c̃} | QST ). We estab-

lish the correspondence between traces by induction on the
length of the trace:

• WhenQ1 | QT receives a message on channelcAj [iA]
with j < r − 1, Q1 stores the received message in
xj [iA], answers by returning the next message of the
protocolxj+1[iA] on cAj+1[iA]. Correspondingly, in
((Q′

0 | Qk′

A
){c̃′/c̃} | QST ), QRA stores the received

message inx′
j [iA] (or Y ′[iA] if j = 0), forwards it

on c′Aj [iA]; Q′
0{c̃

′/c̃} answers to it likeQ1 except
that the next messagexj+1[iA] is sent onc′Aj+1[iA];
QRA then stores this message inx′

j+1[iA] and for-
wards it oncAj+1[iA]. Whenj = r − 1, the situa-
tion is similar, except that the returned message is a
pair xr[iA], acceptA(Y [iA]) or xr[iA], reject, stored
by QRA in x′

r[iA], x′
r+1[iA]. When j = r − 1

and the protocol accepts, both sides definekA[iA],
executeevent fullA(Y [iA], kA[iA], sid(x̃[iA])), and
sendxr[iA], acceptA(Y [iA]), so in the right-hand side
x′

r+1[iA] = acceptA(Y [iA]). When furthermore
Y [iA] = B, Q′

0 additionally definesk′
A[iA] = kA[iA].

Whenj = r− 1 and the protocol rejects,kA[iA] is not
defined and both sides sendxr[iA], reject, so in the
right-hand sidex′

r+1[iA] = reject.

So,kA[iA] is defined in the left-hand side if and only
if x′

r+1[iA] is defined and different fromreject in the
right-hand side, and in this case,Y [iA], x̃[iA], and
kA[iA] have the same value in both sides of the equiv-
alence and, in the right-hand side,Y ′[iA] = Y [iA],
x̃′[iA] = x̃[iA], k′

A[iA] = kA[iA] if Y [iA] = B,
k′

A[iA] is not defined ifY [iA] 6= B, andx′
r+1[iA] =

acceptA(Y [iA]).

• Similarly, the messages oncBj [iB ] are answered in the
same way by both sides of the equivalence, thanks to
the forwarding byQRB in the right-hand side.
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So,kB [iB ] is defined in the left-hand side if and only
if y′

r+1[iB ] is defined and different fromreject in the
right-hand side, and in this case,X[iB ], ỹ[iB ], and
kB [iB ] have the same value in both sides of the equiv-
alence and, in the right-hand side,X ′[iB ] = X[iB ],
ỹ′[iB ] = ỹ[iB ], andy′

r+1[iB ] = acceptB(X[iB ]).

• WhenQ1 | QT receives a messagetestA[i](uA), QTA

returnskA[uA] if it is defined. Correspondingly, in
the right-hand side,QSTA first tests ifx′

r+1[uA] is de-
fined and different fromreject, which is equivalent to
kA[uA] defined, as mentioned above.

If x′
r+1[uA] 6= acceptA(B), thenY [uA] 6= B. In

this case,QSTA sends an empty message onc′AK [uA].
Q′

0 receives it, and sendskA[uA] on c′AK [uA]. QSTA

then receives this message, stores it ink, and sends
k = kA[uA] on testA[i], as in the left-hand side.

Otherwise,x′
r+1[uA] = acceptA(B) andY [uA] = B.

Then QSTA checks if the same test query has been
asked before (test query numberu such thatuA[u] and
rA[u] are defined, anduA[u] = uA). Below, we show
that, whenrA[i] is defined,kA[uA[i]] andY [uA[i]] are
defined,rA[i] = kA[uA[i]], andY [uA[i]] = B. So
rA[u] = kA[uA[u]] = kA[uA], andkA[uA] is sent on
testA[i], as in the left-hand side.

Next, QSTA checks if a test query has been asked
to the partner ofQuA

A (test query numberu such
that uB [u], rB [u], x̃′[uA], and ỹ′[uB [u]] are defined
andsid(x̃′[uA]) = sid(ỹ′[uB [u]])). Below, we show
that, whenrB [i] is defined,kB [uB [i]] and X[uB [i]]
are defined,rB [i] = kB [uB [i]], and X[uB [i]] =
A. So rB [u] = kB [uB [u]]. Since kB [uB [u]]
and x′

r[uA] are defined, the eventsfullB(X[uB [u]],
kB [uB [u]], sid(ỹ[uB [u]])) and fullA(Y [uA], kA[uA],
sid(x̃[uA])) have been executed. Sincesid(x̃[uA]) =

sid(x̃′[uA]) = sid(ỹ′[uB [u]]) = sid(ỹ[uB [u]]),
X[uB [u]] = A, and Y [uA] = B, these events
are fullB(A, kB [uB [u]], sid(x̃[uA])) and fullA(B,
kA[uA], sid(x̃[uA])). So by the correspondence (7),
kB [uB [u]] = kA[uA], hencerB [u] = kB [uB [u]] =
kA[uA] is sent ontestA[i], as in the left-hand side.

Finally, if both finds fail, thenQSTA sendsuA on
c′[i]. Qk′

A
{c̃′/c̃} receives this message and replies

by sendingk′
A[uA] = kA[uA] on c′[i]. QSTA stores

the reply inrA, so rA = kA[uA], and sendskA[uA]
on testA[i], as in the left-hand side. Moreover, we
haveY [uA] = B so, spelling out all array indices,
rA[i] = kA[uA[i]] andY [uA[i]] = B.

• When Q1 | QT receives a messagetestB[i](uB),
the situation is almost symmetric of the previ-
ous case. We just detail the case in which

y′
r+1[uB ] = acceptB(A) and the first twofinds of

QSTB fail. We haveX[uB ] = A. Then the event
fullB(A, kB [uB ], sid(ỹ[uB ])) has been executed. By
the correspondence (6), the eventfullA(B, kB [uB ],
sid(ỹ[uB ])) has been executed. So there existsu′′

A

such thatY ′[u′′
A] = Y [u′′

A] = B, kA[u′′
A] = kB [uB ],

sid(x̃′[u′′
A]) = sid(x̃[u′′

A]) = sid(ỹ[uB ]), x′
r+1[u

′′
A] =

acceptA(B). So the lastfind of QSTB succeeds
for some value ofu′

A. Moreover, sincex′
r[u

′
A] is

defined, the eventfullA(Y [u′
A], kA[u′

A], sid(x̃[u′
A]))

has been executed. Sincex′
r+1[u

′
A] = acceptA(B),

Y [u′
A] = Y ′[u′

A] = B and sid(x̃[u′
A]) =

sid(x̃′[u′
A]) = sid(ỹ′[uB ]) = sid(ỹ[uB ]), this event

is fullA(B, kA[u′
A], sid(ỹ[uB ])). By the correspon-

dence (7),kA[u′
A] = kB [uB ]. The processQSTB

sendsu′
A on channelc′[i + nT ]. This message

is received byQk′

A
. Moreover, k′

A[u′
A] is defined

and k′
A[u′

A] = kA[u′
A], sincex′

r[u
′
A] is defined and

Y [u′
A] = B. ThenQk′

A
replies by sendingk′

A[u′
A] on

channelc′[i + nT ]. ThenrB = k′
A[u′

A] = kA[u′
A] =

kB [uB ], andkB [uB ] is sent ontestB[i], as in the left-
hand side.

For the equivalence

Q1 | Q′
T ≈ newChannel c̃′; ((Q′

0 | Q′
k′

A
){c̃′/c̃} | QST )

we exclude not only the traces that do not satisfy the cor-
respondences (5)–(7), but also the traces in whichk′

A[u] =
k′

A[u′] for someu 6= u′. These traces have negligible prob-
ability, because otherwise that would contradict the secrecy
of k′

A: the adversary could distinguishQ′
0 | Qk′

A
from

Q′
0 | Q′

k′

A
with non-negligible probability, by detecting the

former when he obtains the same answer to queriesc′[i]〈u〉
and c′[i]〈u′〉 for someu 6= u′. For this equivalence, the
cases of protocol messages are similar to the previous equiv-
alence, so we only detail the cases of test queries.

• WhenQ1 | Q′
T receives a messagetestA[i](uA), Q′

TA

first tests ifkA[uA] and Y [uA] are defined. Corre-
spondingly, in the right-hand side,QSTA first tests if
x′

r+1[uA] is defined and different fromreject, which
is equivalent tokA[uA] andY [uA] defined.

Next, if Y [uA] 6= B, thenQ1 | Q′
T sendskA[uA]

on testA[i]. Correspondingly, in the right hand-side,
if y′

r+1[uA] 6= acceptA(B), that is, Y [uA] 6= B,
then QSTA sends a message onc′AK [uA]. Q′

0 re-
ceives it, and replies by sendingkA[uA] on c′AK [uA].
QSTA receives this message, and sendsk = kA[uA]
on testA[i], as in the left-hand side.

Otherwise, both sides execute twofinds that yield the
same result becausẽx[uA] = x̃′[uA], ỹ[uB ] = ỹ′[uB ],
and as we shall see belowrA[u] and rB [u] have the
same value in both sides of the equivalence.
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Finally, when bothfinds fail, in the left-hand side,
Q′

TA sends a fresh random number uniformly dis-
tributed inIη(T ) on testA[i]. Correspondingly, in the
right-hand side,QSTA sendsuA onc′[i]. Q′

k′

A
receives

this message. It checks thatk′
A[uA] is defined, which is

true becausekA[uA] is defined andY [uA] = B. Next,
it looks for a previous query with the sameuA; there is
no such query, because otherwise one of the previous
finds would have succeeded:

– If uA was previously sent onc′[i′] byQSTA, then
there would be anu (u = i′) such thatuA[u] and
rA[u] are defined anduA[u] = uA, so the first
find would have succeeded.

– If uA was previously sent onc′[i′+nT ] byQSTB ,
then there would be anu (u = i′) such that
u′

A[u] = uA, sid(x̃′[u′
A[u]]) = sid(ỹ′[uB [u]]),

and these values are defined, so the secondfind

would have succeeded.

SoQ′
k′

A
replies by sending a fresh random number uni-

formly distributed inIη(T ) on c′[i]. QSTA receives it,
stores it inrA[i], and sends it ontestA[i], as in the
left-hand side.

• WhenQ1 | QT receives a messagetestB [i](uB), the
situation is almost symmetric of the previous case. We
only detail the case in whichy′

r+1[uB ] = acceptB(A)
and the first twofinds of Q′

TB andQSTB fail. In this
case, in the left-hand side,Q′

TB sends a fresh random
number uniformly distributed inIη(T ) on testB [i].
In the right-hand side, as in the proof of the pre-
vious equivalence, the lastfind of QSTB succeeds,
sid(x̃′[u′

A]) = sid(ỹ′[uB ]), x′
r+1[u

′
A] = acceptA(B),

kA[u′
A] is defined, andY [u′

A] = B. SoQSTB sends
u′

A onc′[i+nT ]. Q′
k′

A
receives this message. It checks

thatk′
A[u′

A] is defined, which is true becausekA[u′
A] is

defined andY [u′
A] = B. Next, it looks for a previous

query with the sameu′
A; there is no such query, be-

cause otherwise one of the previousfinds would have
succeeded:

– If u′
A was previously sent onc′[i′+nT ] byQSTB ,

then there would be anu (u = i′) such that
u′

A[u] and rB [u] are defined andu′
A[u] = u′

A.
Then uB[u] is also defined,sid(x̃′[u′

A[u]]) =

sid(ỹ′[uB [u]]), x′
r+1[u

′
A[u]] = acceptA(B).

So sid(ỹ[uB [u]]) = sid(ỹ′[uB [u]]) =

sid(x̃′[u′
A[u]]) = sid(x̃′[u′

A]) = sid(ỹ′[uB ]) =
sid(ỹ[uB ]). In order to obtain a contradiction,
assume thatuB[u] 6= uB . The eventfullB(A,
kB [uB [u]], sid(ỹ[uB ])) has been executed in
copy numberuB [u] of QB andfullB(A, kB [uB ],

sid(ỹ[uB ])) has been executed in copy number
uB of QB . Since the correspondence (6) is in-
jective, two distinct eventsfullA(B, kB [uB [u]],
sid(ỹ[uB ])) and fullA(B, kB [uB ], sid(ỹ[uB ]))
have been executed. SokB [uB [u]] = kA[uA1]
andkB [uB ] = kA[uA2] with uA1 6= uA2. More-
over, by the correspondence (7), since the events
fullB(A, kB [uB [u]], sid(ỹ[uB ])) and fullA(B,
kB [uB ], sid(ỹ[uB ])) have been executed,
kB [uB [u]] = kB [uB ], so kA[uA1] = kA[uA2]
with uA1 6= uA2. This contradicts the exclusion
of traces withkA[u] = kA[u′] for someu 6= u′.
So uB [u] = uB .1 So the firstfind would have
succeeded.

– If u′
A was previously sent onc′[i′] byQSTA, then

there would be anu (u = i′) such thatuA[u]
and rA[u] are defined anduA[u] = u′

A. Since
the lastfind of QSTB succeeds,sid(x̃′[u′

A]) =

sid(ỹ′[uB ]), sosid(x̃′[uA[u]]) = sid(ỹ′[uB ]), so
the secondfind would have succeeded.

SoQ′
k′

A
replies by sending a fresh random number uni-

formly distributed inIη(T ) on c′[i + nT ]. QSTB re-
ceives it, stores it inrB [i], and sends it ontestB[i], as
in the left-hand side. ¤

D. Discussion on Authentication and Key Ex-
change

We discuss here some choices made in our modeling of
authentication and key exchange.

• We have assumed thatA plays only the role of the ini-
tiator andB plays only the role of the responder. We
could also model a situation in whichA andB play
both roles, by including a processQ′

A for A playing
the responder role and a processQ′

B for B playing the
initiator role. Which model is more appropriate de-
pends on the protocol and its intended usage: the for-
mer model is appropriate for protocols that use distinct
keys for the initiator and responder roles, such as SSH
for instance.

• We could also extend the framework to protocols that
use a trusted server, by including it intoQS .

• For simplicity, we have assumed that the participants
terminate immediately after accepting; we could ob-
viously extend the framework to allow them to accept
before the end of the protocol.

1More generally, ifsid(ey[u′

B
]) = sid(ey[uB ]), thenu

′

B
= uB . So

two sessions can have the same session identifiers only with negligible
probability.

27



• [16] uses the notion of matching conversations in-
stead of sessions identifiers. Matching conversations
correspond to session identifiers whensid(x1, . . . ,
xr) = (x1, . . . , xr) and sid′(x1, . . . , xr−1) = (x1,
. . . , xr−1) with the additional requirement that the
messages fromA to B are received byB after they are
sent byA and symmetrically. We do not consider this
requirement here, because it would complicate the ver-
ification considerably. We partly compensate for this
weaker definition by checking an injective correspon-
dence, while [16] infers injectivity from the correct or-
dering of messages—see [16, Appendix C]. More re-
cent formalizations [7, 15, 27, 40, 42] use session iden-
tifiers as we do.

• It is often required that, with overwhelming probabil-
ity, distinct sessions have distinct session identifiers.
Here, we only require thatn sessions ofA with the
same identifier correspond ton sessions ofB with
that identifier. For authenticated key exchange, the se-
crecy of the key combined with the correspondence (7)
(which means that two sessions with same identifier
have the same key) implies that, with overwhelming
probability, distinct sessions have distinct session iden-
tifiers.

E. Detailed Experimental Results

In our tests, all protocols are in a configuration in which
the honest participants are willing to run sessions with
the adversary. Shared-key encryption is implemented as
encrypt-then-MAC, where the encryption is IND-CPA (in-
distinguishability under chosen plaintext attacks) and the
MAC is UF-CMA (unforgeability under chosen message at-
tacks); public-key encryption is assumed to be IND-CCA2
(indistinguishability under adaptive chosen ciphertext at-
tacks); signatures are assumed to be UF-CMA.

The session identifier is chosen to contain all messages
of the protocol, except messages that are sent to or received
from a server (that is, messages that are not betweenA
and B), messages that are just forwarded without check-
ing (those can be changed by the adversary), and signatures
when the security definition of signatures allows an adver-
sary to forge a new signature for a message that has already
been signed.

For the public key protocols, the prover needs to be given
the main proof steps. We detail them below. For shared-key
protocols, the proof is fully automatic.

Woo-Lam shared-key [36] This protocol is a one-way
authentication protocol, so we prove only the correspon-
dence (4). Our prover cannot prove this correspondence for

the original version of the protocol, as there is a known at-
tack against it, but proves it for the corrected version [36].

Woo-Lam public-key [62] The situation is similar to the
Woo-Lam shared key protocol. Our prover cannot prove the
correspondence (4) for the original version of the protocol,
as there is an attack against it, but proves it for the corrected
version [64].

In this protocol, the third message is a signature. The
proof fails when the signature is included in the session
identifier and the security definition of signatures allows an
adversary to forge a new signature for a message that has
already been signed. Indeed, the signature is not authenti-
cated in this case. The proof succeeds both when the sig-
nature is not included in the session identifier and when the
security definition of signatures prevents forgeries even for
already signed messages.

For both versions of this protocol, we give the following
proof steps to prover:

SArename Rkey
crypto sign rkS
crypto sign rkA
success

The variableRkey defines a table of public keys, and is as-
signed at three places, corresponding to principalsA andB,
and to other principals defined by the adversary. The trans-
formation SArename Rkey renames the variableRkey
to three different namesRkey 1, Rkey 2, andRkey 3, one
for each assignment toRkey , and thus allows us to dis-
tinguish these three cases. The instructioncrypto sign
rkS means that the prover should apply the definition of
security of signatures (primitivesign ), for the key gener-
ated from random numberrkS . The instructionsuccess
means that prover should check whether the desired security
properties are proved.

Needham-Schroeder public-key [53] This protocol is a
mutual authentication protocol. Our prover shows the cor-
respondence (3) but the proof fails for (4); indeed, there
is a well-known attack against it [48]. The prover proves
both (3) and (4) for the corrected version [48].

For both versions of this protocol, we give the following
proof steps to the prover:

SArename Rkey
crypto sign rkS
crypto enc rkA
crypto enc rkB
SArename Nb_29
simplify
SArename Na_21
simplify
success
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Denning-Sacco public-key [34] This protocol is a key
exchange protocol, so we try to prove the hypothesis of
Proposition 4. Since there is no message fromB to A in
this protocol,B is not authenticated toA, so (5) clearly
does not hold. (There is in fact no good place for putting
the eventpartB .) For both the original and the corrected
version of [5], this protocol is also subject to an obvious
replay attack, so unsurprisingly our prover cannot show
the injective correspondence (6). Our prover shows (7)
for both the original and the corrected version. It shows
the secrecy ofk′

A and the non-injective correspondence
event(fullB(A, k, x)) ⇒ event(fullA(B, k, x)) only for
the corrected version. (There is a well-known attack [5]
against them in the original version.)

For both versions of this protocol, we give the following
proof steps to the prover:

success
SArename Rkey
SArename SRkey
crypto enc rkB
crypto sign rkS
crypto sign rkA
success

The first success instruction is useful in order to
prove (7): this correspondence is obvious on the initial
game, because the keyk or k′ is computed from the pro-
tocol messages contained in the session identifierx. The
relation between the keyk and the session identifierx is
hidden by the subsequent game transformations.

Needham-Schroeder shared-key [53] The proof of se-
crecy of the key fails for both the original and the corrected
version [54]: the protocol contains a key confirmation round
B → A : {NB}K , A → B : {NB − 1}K and these mes-
sages may reveal information on the keyK. However, the
prover shows (3) but fails to show (4) for the original ver-
sion of the protocol. This failure comes from a limitation of
our prover: it fails to prove thatNB [i] 6= NB [i′] − 1 with
overwhelming probability, whereNB is a nonce. (Prov-
ing this property requires distinguishing two cases: when
i = i′, we haveNB [i] 6= NB [i] − 1; when i 6= i′, both
sides are independent random numbers, which have a negli-
gible probability of being equal.) The prover shows both (3)
and (4) for the corrected version. When the key confirma-
tion round is removed, the prover proves the secrecy of the
key k′

A, but fails to prove the authentication (which is in-
deed wrong).

Yahalom [23] The situation is similar to the Needham-
Schroeder shared-key protocol: the proof of secrecy of the
key fails because of a key confirmation message{NB}K .

The prover still shows (3) and (4). When the key confirma-
tion message is removed, the prover shows (3) but fails to
show (4) (which is indeed wrong).

Otway-Rees [55] The prover shows the secrecy ofk′
A,

but does not show the correspondence properties (5), (6),
and (7). These correspondences are indeed wrong: as no-
ticed in [23], each participant may accept while the other
participant fails to get the key, so (6) is wrong. The corre-
spondences (5) and (7) are wrong due to replay attacks.
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