
An Algebraic Analysis of Trivium Ciphers based

on the Boolean Satisfiability Problem

Cameron McDonald, Chris Charnes, and Josef Pieprzyk

Centre for Advanced Computing, Algorithms and Cryptography
Department of Computing, Macquarie University

{cmcdonal,charnes,josef}@ics.mq.edu.au

Abstract. Trivium is a stream cipher candidate of the eStream project.
It has successfully moved into phase three of the selection process un-
der the hardware category. No attacks faster than the exhaustive search
have so far been reported on Trivium. Bivium-A and Bivium-B are sim-
plified versions of Trivium that are built on the same design principles
but with two registers. The simplified design is useful in investigating
Trivium type ciphers with a reduced complexity and provides insight
into effective attacks which could be extended to Trivium. This paper
focuses on an algebraic analysis which uses the boolean satisfiability
problem in propositional logic. For reduced variants of the cipher, this
analysis recovers the internal state with a minimal amount of keystream
observations.

Key words:Algebraic Analysis, Boolean Satisfiability, Trivium, eStream

1 Introduction

The eStream project [7] was established with the aim of finding a cryptographic
primitive for a stream cipher. There are two main categories in the call - software
encryption and hardware encryption. The two main goals stated in the specifi-
cation criteria are that the cipher should be secure and fast. Of the 34 proposals
received, some have successfully passed the introductory phase and continued to
the second phase.

One such proposal by Cannière and Preneel [5] is Trivium - a design which
was optimized for hardware encryption. The design of Trivium is simple and
elegant. Although this design has attracted much interest from cryptanalysts it
remains unbroken. The structure of Trivium can be directly expressed as a sys-
tem of sparse quadratic equations over F2. However, solving systems of quadratic
equations - known as the MQ problem, is in general a NP-hard problem.

In this paper we consider the problem of solving a system of non-linear equa-
tions over F2 as a corresponding SAT-problem of propositional logic (see Section
4). That is, we convert the algebraic equations describing the cipher into a propo-
sitional formula in conjunctive normal form (CNF). We use a SAT-solver to solve
the resulting SAT-problem, which allows us under certain conditions to recover
the key.



We need to guess a subset of the state variables in order to reduce the com-
plexity of the system, before it can be solved by a SAT-solver. The solution
returned by the SAT-solver is the remaining unknown state variables. Once the
entire state is known, the cipher is clocked backwards to recover the key. The
characteristic feature of this type of attack is that only minimal amounts of
observed keystream are required in order to recover the key.

2 Previous results

Raddum [6] introduced a new method of solving systems of sparse quadratic
equations and applied it to the cryptanalysis of Trivium. The complexity of this
attack on Trivium is O(2162), which is much worse than an exhaustive key search.

Raddum introduced two simplified versions of Trivium: Bivium-A and Bivium-
B. The first version was broken ‘in about one day’, and the second version re-
quired approximately 256 seconds.

Maximov and Biryukov [3] used a different approach to solve the system of
algebraic equations describing Trivium by ‘guessing’ the value of specific state
bits (or the products of state bits). In certain cases guessing reduces the system
of quadratic equations to a system of linear equations that can be solved (for
example by Gaussian elimination). The complexity of this attack is O(c · 283.5)
for Trivium and O(c ·236.1) for Bivium. The constant c is the time taken to solve
a system of sparse equations. Maximov and Biryukov do not give a complexity
estimate of the constant c in [3]; in [4] the constant for Bivium was stated as
O(216.2).

3 MQ Problem

Let F2 denote the Galois Field of order two and P = F2[x1, x2, . . . , xn] denote
the polynomial ring over F2 in n variables. Let N be the number of monomials
in P . Let f ∈ P , the algebraic normal form (ANF) of f is defined as:

f(x1, x2, . . . , xn) =

N
∑

i=1

ci · x
e1

1 xe2

2 · · ·x
en

n = 0,

where the coefficients ci ∈ F2. Let c = (c1, ..., cN ) be the coefficient vector of f .
We define the density of f as the number of non-zero terms in the ANF (the
Hamming weight of c). A system of equations S = {f1, f2, . . . , fm}, where fi ∈ P

defines an instance of the MQ problem (the “problem” is to find a solution for
S - a set of values that evaluates to 0 for each fi).

Solving an instance of the MQ problem is regarded as a difficult problem
which has motivated ongoing research in Gröbner basis methods. We compared
these methods with the SAT approach (Section 4) by conducting a number of
experiments with the F4 algorithm implemented in Magma [2]. The outcomes
of these experiments are summarised in Table 9.



4 SAT Problem

The SAT-problem in propositional logic is represented by n propositional vari-
ables x1, x2, . . . , xn which are assigned the values 1 or 0, representing true or false
respectively. A literal is a propositional variable or the negation of a proposi-
tional variable. A propositional formula is an expression combining propositional
variables and the logical operators: AND, OR, NEGATION. A clause is a dis-
junction (OR) of literals and a CNF formula is conjunction (AND) of clauses.
The problem of determining if all the propositional variables in a propositional
formula can be assigned values so that the formula evaluates to true is known
as the SAT-problem. If the propositional variables can be assigned such values,
the formula is satisfied. In which case all the clauses in the formula are satisfied.

A SAT solver is employed to solve the SAT problem. If there is no solution to
the problem, the solver returns UNSATISFIABLE. If a solution exists, the solver
returns SATISFIABLE along with the solution. Depending on the formula, there
may be more than one solution. In our experiments we compare three different
solvers: MiniSat [10], RSat [11] and PicoSat [12]. These solvers have been chosen
because of their performance at the last international SAT competition in 2007
[13] and SAT-Race 2006 [14]. The input to these solvers is in the DIMACS format
[9].

5 Converting MQ to SAT

The conversion process is explained in [1]. There are two main steps:

1. Convert the polynomial system to a linear system. This involves the substi-
tution of non-linear monomials by new variables.

2. Convert the linear system to an expression in CNF. The CNF includes clauses
representing the substitutions made in step 1.

A linear equation with α variables (α monomials), converts to a CNF con-
taining 2(α−1) clauses: in the resulting form each clause contains an odd number
of negated literals. In a nonlinear equation each unique quadratic monomial in-
troduces one new variable. This substitution creates 3 extra clauses in the CNF.
In general, an ANF equation with α variables and β monomials (γ of which are
quadratic) converts to a CNF with 2(β−1) + 3 · γ clauses and α + γ literals. The
total number of clauses in the CNF is determined by:

– Number of variables.
– Density of equations.
– Number of unique quadratic monomials.

Example: To convert the quadratic equation x1 + x2 + x1x2 = 0, to CNF.
First replace the quadratic monomial (x1x2) by a new variable (x3), resulting
in:

x1 + x2 + x1x2 = 0⇔

{

x1 + x2 + x3 = 0

x1x2 = x3



The first equation converts to a CNF containing four clauses. Three of the
clauses arise from combinations of the three literals with one of the literals
negated. The remaining clause contains the negation of all three literals. That,
is

x1 + x2 + x3 = 0⇔ (x1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3)

∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3)

The quadratic equation converts to the following CNF containing three clauses.
This equivalence is easily established by constructing a truth table.

x1x2 = x3 ⇔ (x1 ∨ x̄3) ∧ (x2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3)

To solve a CNF using the SAT solvers listed it is required that the CNF
be in the DIMACS graph format. Writing the above CNF in DIMACS format
produces:

p cnf 5 9

1 0

-2 0

-3 4 5 0

3 -4 5 0

3 4 -5 0

-3 -4 -5 0

-5 3 0

-5 4 0

5 -3 -4 0

In the appendix we present an example of this method as it applies to Bivium-
A Section 8. This cipher can be described by a system of 396 equations in 396
variables. Of these we included 6 representative equations, the first three from
the linear filter function and the second three from the non-linear feedback shift
register. We also give the CNF for these six equations in DIMACS form. These
equations should provide the reader with enough detail to recreate our results.

6 Attack Description

Our attack involves the following steps.

1. Construct a system of ANF equations describing the cipher.
2. Convert the system of ANF equations to CNF and express in DIMACS

format.
3. Use a SAT solver to find a solution to the problem (if it exists).

A system of ANF equations describing the cipher is obtained by translating
each component of the algorithm into an algebraic form over a chosen field (eg.
F2 or F28).



6.1 Solving the SAT problem

Typically some factors which influence the running time of a SAT solver are:
the total number of literals; the total number of clauses; and the number of
literals in each clause. The number of clauses depends on the density of the
ANF equations. Cutting [1] and taking linear combinations of equations are two
methods which alter the densities of the equations and hence the number of
clauses in the resulting CNF.

In certain situations, the time required to find a satisfiable instance to the
SAT problem can be optimised by assigning values to a subset of the CNF
variables prior to invoking the solver. We refer to this assignment of variables
as a guess. The SAT solver returns SAT or UNSAT depending on whether the
guess was correct or not. If no solution was found, the guess was incorrect and
another guess is tried.

This “guess and determine” component is summarised by the following algo-
rithm:

guess = 0

Do

instance = Substitute(guess, system)

result = MINISAT(instance)

if result is SATISFIABLE

return guess

else

guess = guess + 1

While guess < 2m

If a guess involves an assignment of m literals and the SAT solver requires on
average time T to return, the overall running time to find a solution is T · 2m−1.

In our experiments we achieved a significant improvement in the performance
of the SAT solver when an assignment was made to subsets of literals which
occurred with the highest frequency in the CNF.

7 Description of Trivium

Let xt
i ∈ F2 denote the value of the variable xi at clock time t. Trivium consists of

a non-linear feedback shift register (NLFSR) coupled with a linear filter function
(LF). The NLFSR operates on a 288-bit state, denoted by (st

1, . . . , s
t
288), which

is divided into three registers. The LF produces the keystream by taking a linear
combination of the state. At each clock the cipher updates three bits of the state

and outputs one bit of keystream, denoted by z
(t)
i . The cipher continues to run

until the required number of keystream bits are produced.



The following algorithm is a full description of the keystream generation:

for i = 1 to N do

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

The ANF equations follow directly from this description where each clock
introduces three new variables and four new equations (three from the NLFSR
and one from the LF).

Trivium incorporates a Key and IV setup stage, where the cipher is clocked 4·
288 times to initialise the state. Our analysis does not depend on the initialisation
process and will not be discussed further.

8 Reduced Variants

8.1 Bivium

Bivium-A and Bivium-B are two reduced variants of Trivium with only two
registers and a total state size of 177 bits. The complete description is given
in [6]. Each clock of these ciphers introduces two new variables and three new
equations.

8.2 Trivium-n

We introduce Trivium-n, a reduced version of Trivium to a state length of n bits.
In constructing these reduced variants we take the following considerations into
account.

– The tap bits used from each register should be separated by the same propor-
tions as the original Trivium. In addition, the tap bits should be separated
by at least one bit.

– One tap bit in each register that contributes to the LF is the last bit in the
register.

– The tap bits in each register that contribute to the AND in the NLFSR are
the two adjacent bits preceeding the last bit in the register.



Trivium incorporates many design principles which do not affect our analysis,
hence the above conditions are sufficient for our purposes.

An example of a 177-bit state version of Trivium is:

for i = 1 to N do

t1 ← s39 + s58

t2 ← s98 + s109

t3 ← s148 + s177

zi ← t1 + t2 + t3

t1 ← t1 + s56 · s57 + s104

t2 ← t2 + s107 · s108 + s161

t3 ← t3 + s175 · s176 + s42

(s1, s2, . . . , s58)← (t3, s1, . . . , s58)

(s59, s60, . . . , s109)← (t1, s59, . . . , s108)

(s110, s111, . . . , s177)← (t2, s110, . . . , s176)

end for

9 Results

We ran multiple experiments with the SAT-solvers on each of the ciphers de-
scribed in Section 8. Our test machine is an Intel Core2 1.86GHz with 1Gb RAM.
The attack times for each variant is listed in the following table.

ANF CNF Time (seconds)

Cipher Keystream Variables Equations Literals Clauses MiniSat RSat PicoSati F4

Bivium-A 177 396 396 617 4517 24.4 28.9 25.9 224

Bivium-B 177 396 396 617 5579 242.7 246.6 245.9 268

Trivium-98 98 331 331 566 7565 245.3 245.9 244.9 267

Trivium-177 177 590 590 1005 13513 298.2 2101.9 2101.8 2119

Trivium-288 288 951 951 1616 21815 2159.9 2161.9 2161.6 2189

10 Summary

Due to the unpredictable behaviour and complexity of the SAT-solvers, the re-
sults obtained in this paper are derived from experiments.

Both attacks on Bivium require only 177 bits of keystream. The average
attack time on Bivium-A is 21 seconds. The average complexity of the attack
on Bivium-B is 242.7 seconds. Both of these attack are faster than an exhaustive
key search.

The attack complexity on Trivium is worse than an exhaustive search.



References

1. G. Bard, N. Courtois and C. Jefferson. Efficient Methods for Conversion and Solu-

tion of Sparse Systems of Low-Degree Multivariate Polynomials over F2 via SAT-

Solvers. Cryptology ePrint Archive, Report 2007/024, 2007.

2. University of Sydney Computational Algebra Group The Magma Computational

Algebra System, 2004 http://magma.maths.usyd.edu.au/magma/

3. A. Maximov and A. Biryukov. Two Trivial Attacks on Trivium. Cryptology ePrint
Archive, Report 2007/021, 2007.

4. A. Maximov. private communication 14/3/07.

5. C. De Cannière and B. Preneel. TRIVIUM - a stream cipher construction inspired

by block cipher design principles. eStream, ECRYPT Stream Cipher Project, Re-
port 2005/030, 2005. http://www.ecrypt.eu.org/stream/trivium.html

6. H. Raddum. Cryptanalytic results on TRIVIUM. eStream, ECRYPT Stream Ci-
pher Project, Report 2006/039, 2006. http://www.ecrypt.eu.org/stream

7. eStream: ECRYPT Stream Cipher Project http://www.ecrypt.eu.org/stream/

8. C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal 28, 1949.

9. DIMACS http://www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/satformat.ps

10. MiniSat 2.0 http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html

11. RSat http://reasoning.cs.ucla.edu/rsat/

12. PicoSat http://fmv.jku.at/picosat/

13. The international SAT competition. http://www.satcompetition.org/

14. SAT-Race 2006 http://fmv.jku.at/sat-race-2006/

11 Appendix

The following system of equations are a subset of the 396 ANF equations that
describe Bivium-A. The internal state of Bivium-A consists of two registers (a
and b). The first three equations describe the relationship between the internal
state and the keystream (zi). This follows from the description of the LF. The
next three equations arise from the NLFSR.

a_66 + a_93 + z_1,

a_65 + a_92 + z_2,

a_64 + a_91 + z_3,

a_94 + a_69 + b_69 + b_82*b_83 + b_84,

a_95 + a_68 + b_68 + b_81*b_82 + b_83,

a_96 + a_67 + b_67 + b_80*b_81 + b_82



The corresponding CNF of the above equations, displayed in DIMACS form is:

p cnf 28 71

1 0

-2 0

-3 4 5 0

3 -4 5 0

3 4 -5 0

-3 -4 -5 0

-6 7 8 0

6 -7 8 0

6 7 -8 0

-6 -7 -8 0

-9 10 11 0

9 -10 11 0

9 10 -11 0

-9 -10 -11 0

-12 13 14 15 18 0

12 -13 14 15 18 0

12 13 -14 15 18 0

-12 -13 -14 15 18 0

12 13 14 -15 18 0

-12 -13 14 -15 18 0

-12 13 -14 -15 18 0

12 -13 -14 -15 18 0

12 13 14 15 -18 0

-12 -13 14 15 -18 0

-12 13 -14 15 -18 0

12 -13 -14 15 -18 0

-12 13 14 -15 -18 0

12 -13 14 -15 -18 0

12 13 -14 -15 -18 0

-12 -13 -14 -15 -18 0

-19 20 21 22 17 0

19 -20 21 22 17 0

19 20 -21 22 17 0

-19 -20 -21 22 17 0

19 20 21 -22 17 0

-19 -20 21 -22 17 0

-19 20 -21 -22 17 0

19 -20 -21 -22 17 0

19 20 21 22 -17 0

-19 -20 21 22 -17 0

-19 20 -21 22 -17 0

19 -20 -21 22 -17 0

-19 20 21 -22 -17 0

19 -20 21 -22 -17 0

19 20 -21 -22 -17 0

-19 -20 -21 -22 -17 0

-24 25 26 27 16 0

24 -25 26 27 16 0

24 25 -26 27 16 0

-24 -25 -26 27 16 0

24 25 26 -27 16 0

-24 -25 26 -27 16 0

-24 25 -26 -27 16 0

24 -25 -26 -27 16 0

24 25 26 27 -16 0

-24 -25 26 27 -16 0

-24 25 -26 27 -16 0

24 -25 -26 27 -16 0

-24 25 26 -27 -16 0

24 -25 26 -27 -16 0

24 25 -26 -27 -16 0

-24 -25 -26 -27 -16 0

-15 16 0

-15 17 0

15 -16 -17 0

-22 23 0

-22 16 0

22 -23 -16 0

-27 28 0

-27 23 0

27 -28 -23 0


