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Abstract 

Anonymity(key-privacy) as well as security(data-privacy) are all important features in public-key encryption 

applications. In this paper two new and general concepts, named “relevant anonymity” and “relevant security”, are 

defined. Based-upon these concepts some general results on anonymity in public-key encryption are proved, which 

fall in three categories. The first results are two general relationships between anonymity and security; the second 

are a sufficient and necessary condition for chosen-plaintext anonymity in Fujisaki-Okamoto hybrid construction 

and a sufficient condition for its chosen-ciphertext anonymity; the third is a sufficient condition for 

chosen-ciphertext anonymity in Okamoto-Pointcheval hybrid construction (REACT). All these conditions are also 

easy-to-use criteria in practice. By examples such general consequences are applied to some specific schemes and  

as a result anonymity of some well-known schemes are re-established in a simpler way. Furthermore, NISSIE 

scheme PSEC-/1/2/3’s chosen-ciphertext anonymity are proved. 

Key words:  Computational Cryptography; Public-Key Anonymity; Provable Security; Hybrid-Scheme; 

Key-Privacy 
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1  Introduction 

Anonymity as well as security are both widely-desired features in practical public-key 
encryption schemes, although the former comes to get a systematic theoretical 
treatment much later [3]. Intuitively, anonymity(key-privacy) guarantees that 
ciphertext can effectively hide public-key under which it is produced while 
security(data-privacy) guarantees that ciphertext can effectively hide the plaintext 
from which it is enciphered. In addition to key-privacy per se, anonymity is also an 
approach to some high level and complicated security objectives[1,2,10]. In general, 
security and anonymity are orthogonal each other and a scheme with both features are 
quite useful. 

Although anonymity is a very general concept in all public-key cryptographic 
systems and its importance has been surfacing increasingly, it gets much fewer 
research than security. For example, we still have little knowledge on many 
well-known public-key encryption scheme’s anonymity, although their security have 
been concretely established. Furthermore, because of wide requirements on both 
security and anonymity and difficulty of constructing efficient and provably secure 
public-key encryption schemes, it makes sense to investigate existed provably secure 
schemes’ anonymity other than construct new ones from scratch. 
   Among existed public-key encryption constructions, hybrid schemes constructed 
from asymmetric and symmetric component encryption schemes are widely used in 
practice[8,10,11,12,15]. Not only better efficiency but also stronger security can be 
obtained by this construction, enhancing component encryption schemes which have 
only weak security to the strongest one. For instance, Fujisaki-Okamoto hybrid 
scheme[8] can provide provably adaptive chosen-ciphertext security (in random 
oracle) as long as its asymmetric and symmetric encryption components have 
comparatively very weak security features(one-way secure, γ-consistent and 
passive-attack-resistant), and a few other hybrid schemes also have such nice 
properties[10,11,12,15]. However, despite of practical importance and good 
understanding in hybrid schemes’ security, so far there’s few knowledge about their 
anonymity, e.g., whether a hybrid scheme can also enhance its component’s weak 
anonymity to strong one, just like it does in security? If yes, to which degree can this 
enhancement reach? Answers to such questions are no doubt valuable in applications  
   In this paper we make a step in answering these questions, particularly with 
respect to two well-used hybrid constructions, i.e., Fujisaki-Okamoto and 
Okamoto-Pointcheval schemes[8,11]. A sequence of very general results are provably 
established with applications to some important examples, including some new 
specific anonymity results which are obtained for the first time with our knowledge.  
     
1.1  Our Contributions    
 
In this paper our contributions fall in three categories. Firstly, we present two new and 
generic concepts, named relevant anonymity and relevant security, and prove some 
general relationships between these new concepts and already well-established 

 2



concepts of anonymity and security(theorem 3.1 and 3.2). Relevant 
anonymity/security are very weak and easy-to-verify properties in practice, however, 
by means of them some complicated security/anonymity proofs can be significantly 
simplified, as shown in examples 3.1-3.5. In these examples we re-establish some 
well-known anonymity consequences about specific schemes but in a easier way. In 
addition, some new and interesting results are also proved in these examples. 

The concept of relevant anonymity was first introduced by Abdalla et al. in [1] in 
case of IBE (only the version against chosen-plaintext attacks was formally 
established in their innovative paper). Our definition 3.1 can be regarded as a 
transplant to traditional public-key encryption and our theorem 3.1 can be thought of 
as a counterpart to lemma 4.3 in [1]. However, the (conjugate) concept of relevant 
security and its relationship with anonymity are new and we believe all these are 
valuable tools in practice, just as we use in our works. 
   Secondly, based-on the concept of relevant anonymity we establish the strongest 
anonymity for two well-known hybrid encryption constructions: Fujisaki-Okamoto 
scheme and Okamoto-Pointcheval scheme(REACT hereafter). Both of them are used 
in PSEC-1/2/3 schemes proposed for NISSIE[9]. In case of Fujisaki-Okamoto 
scheme, we prove that the hybrid scheme is in the chosen-plaintext anonymity if and 
only if the component public-key encryption scheme is relevantly chosen-plaintext 
anonymous and one-way secure(theorem 4.1). Furthermore, if the component 
public-key scheme is relevantly strong anonymous( but not very strong as seen in 
examples) and one-way secure, the hybrid scheme can be in the strongest 
anonymity( against adaptive chosen-ciphertext attacks, theorem 4.2). In case of 
REACT, a similar consequence is proved(theorem 5.1). All consequences are 
established in style of concrete security. In combination with the original security 
results on these hybrid schemes, we can get quite weak and practical conditions to 
guarantee such schemes’ anonymity and security at the same time. 
   Thirdly, as applications of these general consequences, we prove the famous 
PESC-1/2/3 schemes’ anonymity against adaptive chosen-ciphertext attacks in oracle 
model(proposition 3.1,4.1 and 5.1). With our knowledge these are the first formal 
proofs about these schemes. 
 
1.2  Outline of the Paper 
 
After a brief overview of basic concepts, relevant anonymity/security concepts are 
defined and two general theorems are proved in section 3. Fujisaki-Okamoto hybrid 
scheme’s anonymity and REACT’s anonymity are investigated respectively in section 
4 and 5. Section 6 concludes the paper and discusses some further works. 

2  Preliminaries  

In this section some basic concepts are recalled, together with some commonly-used 
notations. Let X be a set, we use a←$X to denote that a is randomly selected(with 
uniform distribution) from X. All algorithms are presented in pseudo-C with some 
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comments in style of /*…*/. Given some specific value a*, such items as (a*, b) in a 
list of 2-tuples are simply denoted as (a*,.) (i.e., dot “.” means some value we don’t care), 
and similar notations are used for any list of n-tuples. For example, (a*,b*,.,.,.) 
denotes those items in a list of 5-tuples which first and second fields have the given 
specific values a* and b* respectively. A probabilistic polynomial-time algorithm is 
simply named P.P.T. algorithm.    
 
Definition 2.1(Public-Key Encryption Scheme) A public-key encryption scheme 
П=(KG,E,D) is composed of three P.P.T. algorithms KG, E and D. Let k be complexity 
parameter, KG is the key generator which takes k as input and outputs 
public-key/secret-key pair (pk, sk); E is the encryption algorithm which takes 
public-key pk and plaintext M as input and outputs a ciphertext y; D is the decryption 
algorithm which takes secret-key sk and ciphertext y as input and outputs a message 
M. Additionally, P[(pk, sk)←KG(k); y←E(pk, M): D(sk, y)=M]=1 for any k and M. 
 
Definition 2.2(Security) Let П=(KG,E,D) be a public-key encryption scheme, k be the 
complexity parameter, A=(A1,A2) be an P.P.T. adversary, ATK∈{CPA, CCA} and 
Oracle be oracle determined by ATK. Consider the following game: 

:)(_
, kExp ATKIND
Aπ                 

    (pk, sk)←KG(k);   
    (M0, M1, St)←A1

Oracle(pk);                
    b←${0,1};                             
    y*←E(pk, Mb);                         
    d←A2

 Oracle(y*, St);                            
    if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=D(sk, .) and A 
is disallowed to query its oracle-D(sk, .) on the challenge ciphertext y*. The adversary’s 

advantage  is defined as . П is said secure 

against adaptive chosen-plaintext(respectively, chosen-ciphertext) attacks if 

 (respectively, ) is a negligible function in k for any P.P.T. 

adversary A. Denote the adversary’s advantage , 

a function in k. Whenever the advantage is regarded as a function of computational 

time t and number of oracle queries q, we use the notation  instead 

of . Because we only concern about adaptive adversary hereafter, we 

will simply omit the adjective “adaptive” for brevity. 

ATKIND
AAdv _

,π |1]1)([2| _
, −=kExpP ATKIND
Aπ

CPAIND
AAdv _

,π
CCAIND

AAdv _
,π

)(max)( _
,...

_ kAdvkAdv ATKIND
ATPPA

ATKIND
ππ

∈
≡

),(_ qtAdv ATKIND
π

)(_ kAdv ATKIND
π

 
Definition 2.3(Anonymity)Let П=(KG,E,D) be a public-key encryption scheme, 
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A=(A1,A2) be an P.P.T. adversary, ATK∈ {CPA, CCA} and Oracle be oracle 
determined by ATK. Consider the following game: 

:)(_
, kExp ATKANO
Aπ                 

    (pk0, sk0), (pk1, sk1)←KG(k); /*run KG(k) two times independently*/   
    (M*, St)←A1

Oracle(pk0, pk1);                
    b←${0,1};                             
    y*←E(pkb, M*);                         
    d←A2

 Oracle(y*, St);                            
    if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sk0, .), 
D(sk1, .)) and A is disallowed to query anyone of D(sk0, .) and D(sk1, .) on y*. The 

adversary’s advantage  is defined as . П is 

said anonymous against adaptive chosen-plaintext(respectively, chosen-ciphertext) 

attacks if  (respectively, ) is a negligible function in k for any 

P.P.T. adversary A. Denote , a function in k. 

Whenever the advantage is regarded as a function of computational time t and number 

of oracle queries q, we use the notation  instead of , 

and we will simply omit the adjective “adaptive” for brevity. 

ATKANO
AAdv _

,π |1]1)([2| _
, −=kExpP ATKANO
Aπ

CPAANO
AAdv _

,π
CCAANO

AAdv _
,π

)(max)( _
,...

_ kAdvkAdv ATKANO
ATPPA

ATKANO
ππ

∈
≡

),(_ qtAdv ATKANO
π )(_ kAdv ATKANO

π

 

3  Relationships Between Anonymity and Security 

Abdalla et al presented the concept of relevant anonymity for identity-based 
encryption(IBE) scheme in [1] and used it as a sufficient condition for a secure IBE 
scheme to be anonymous1. Here we transplant this concept to traditional public-key 
schemes and prove a similar result. In addition to this, we also develop an conjugate 
concept, relevant security, and prove its sufficiency for a anonymous public-key 
encryption scheme to be secure. Relevant anonymity and relevant security are 
properties strictly weaker than their non-relevant counterparts but easy to check in 
practice. These results present some interesting and useful relationships between 
security and anonymity, which will be used as helpful tools frequently in our works. 

 

3.1  Relevant anonymity and its relationship with security 
 
Definition 3.1(Relevant Anonymity) Let П=(KG, E, D) be a public-key encryption 
scheme, A=(A1,A2) be a P.P.T. adversary, ATK∈{CPA, CCA} and Oracle be oracle 
                                                                 

1 [1] Only gives the concept in case of chosen-plaintext attacks which is adequate for their objectives.    
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determined by ATK. Consider the following game: 

:)(__
, kExp ATKANORE
Aπ                  

    (pk0, sk0), (pk1, sk1)←KG(k); /*run KG(k) two times independently*/  
    (M*, St)←A1

Oracle(pk0, pk1);                
    M←${0,1}|M*|; /*randomly generate a valid message M in the same size as M*.*/  
    b←${0,1};                             
    y*←E(pkb, M);                         
    d←A2

 Oracle(y*, St);                            
    if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sk0, .), 
D(sk1, .)). In contrast to the concept of (non-relevant) anonymity, A is allowed to 
query its oracles D(sk0, .) and D(sk1, .) on the challenge ciphertext y*. The adversary’s 

advantage  is defined as or equivalently 

|P[d=0|b=0]-P[d=0|b=1]|. We say that П is relevantly anonymous against 

chosen-plaintext(respectively, chosen-ciphertext) attacks if  

(respectively, ) is a negligible function in k for any P.P.T. adversary A. 

We denote  as . Whenever the advantage is 

regarded as a function of computational time t and number of oracle queries q, we use the 

notation  instead of , and we simply omit the 

adjective “adaptive” for brevity. 

ATKANORE
AAdv __

,π |1]1)([2| __
, −=kExpP ATKANORE
Aπ

CPAANORE
AAdv __

,π

CCAANORE
AAdv __

,π

ATKANORE
ATPPA

Adv __
,...

max π∈

ATKANOREAdv __
π

),(__ qtAdv ATKANORE
π )(__ kAdv ATKANORE

π

Its easy to prove that П’s anonymity implies its corresponding relevant anonymity, 
i.e., relevant anonymity is weaker than anonymity. On the other hand, relevant 
anonymity in combination with security can imply (strong) anonymity, which is 
exactly presented in the following theorem.  

 
Theorem  3.1. Let П=(KG, E, D) be a public-key encryption scheme which is secure 
against chosen-plaintext (respectively, chosen-ciphertext) attacks . If П is also 
relevant anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks, 
then П is anonymous against chosen-plaintext(respectively, chosen-ciphertext) 
attacks. Concretely, we have 

               )(2)()( ____ tAdvtAdvtAdv CPAINDCPAANORECPAANO
πππ +≤

)),((2),(),( ____ qqTOtAdvqtAdvqtAdv d
CCAINDCCAANORECCAANO ++≤ πππ  

where Td is computational time of decryption algorithm D.  
 
Proof. We only prove the case of chosen-ciphertext attack. The case of 
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chosen-plaintext attack can be done following almost exactly the same logic(but more 
easily). Suppose A=(A1,A2) is an P.P.T. adversary cracking П’s chosen-ciphertext 
anonymity. We construct an P.P.T adversary BA=(B1,B2) cracking П’s 
chosen-ciphertext security as the following. Consider the game: 

:)(_
, kExp CCAIND
Bπ  

    (pk0, sk0) ←KG(k);              
    (M0, M1,St)←B1

D(sk0, .)(pk0) where B1 is implemented as: 
  (pk1, sk1)←KG(k);    
  (M*, StA)←A1

D(sk0,.), D(sk1,.) (pk0, pk1);  
  M0←M*; M1←${0,1}|M*|; St←StA||pk1||sk1;  
  return(M0, M1,St);      

    b←${0,1};                             
    y*←E(pk0, Mb);                         
    d←B2

D(sk0, .)(y*, St) where B2 is implemented as: 
                parse St as StA||pk1||sk1;      
                d←A2

D(sk0,.), D(sk1,.) (y*, StA); 
                return(d). 
    if d=b then output 1 else output 0. 
 

In this game, B simulates oracle D(sk0, .) via its own oracle and simulates oracle 
D(sk1,.) via direct decipher computation based-on its possession of sk1. Such 
simulation is obviously perfect. 

 

It’s straightforward to verify that  in case of b=0 is just equivalent 

to  in case of b=0, and  in case of b=1 is equivalent 

to  in case of b=0. On the other hand, we can construct another 

P.P.T. adversary C

)(_
, kExp CCAIND
Bπ

)(_
, kExp CCAANO
Aπ )(_

, kExp CCAIND
Bπ

)(__
, kExp CCAANORE
Aπ

A=(C1,C2) cracking П’s chosen-ciphertext security in very similar 
way as that of BA, with the only difference that C1

D(sk0, .)(pk0) calls A1 in the way of 
A1

D(sk1,.), D(sk0,.) (pk1, pk0), i.e. exchanging the roles of pk0 and pk1. As a result, 

 in case of b=0 is equivalent to  in case of b=1 and 

 in case of b=1 is equivalent to  in case of b=1. 

Therefore: 

)(_
, kExp CCAIND
Cπ )(_

, kExp CCAANO
Aπ

)(_
, kExp CCAIND
Cπ )(__

, kExp CCAANORE
Aπ

      =| |   )(_
, kAdv CCAIND
Bπ −== ]0|1)([ _

, bkExpP CCAIND
Bπ ]1|1)([ _

, == bkExpP CCAIND
Bπ

     =| - | ]0|1)([ _
, == bkExpP CCAANO
Aπ ]0|1)([ __

, == bkExpP CCAANORE
Aπ

)(_
, kAdv CCAIND
Cπ =| | −== ]0|1)([ _

, bkExpP CCAIND
Cπ ]1|1)([ _

, == bkExpP CCAIND
Cπ
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     =| - | ]1|1)([ _
, == bkExpP CCAANO
Aπ ]1|1)([ __

, == bkExpP CCAANORE
Aπ

Then +  )(_
, kAdv CCAIND
Bπ )(_

, kAdv CCAIND
Cπ

≥| - | ]0|1)([ _
, == bkExpP CCAANO
Aπ ]0|1)([ __

, == bkExpP CCAANORE
Aπ

+| - | ]1|1)([ _
, == bkExpP CCAANO
Aπ ]1|1)([ __

, == bkExpP CCAANORE
Aπ

   ≥ - , namely,  )(_
, kAdv CCAANO
Aπ )(__

, kAdv CCAANORE
Aπ

    ≤ + +  )(_
, kAdv CCAANO
Aπ )(__

, kAdv CCAANORE
Aπ )(_

, kAdv CCAIND
Bπ )(_

, kAdv CCAIND
Cπ

The theorem’s inequality can be derived directly and the adversary’s time complexity 
can be easily verified.   □ 
 
In practice theorem 3.1 is an easy-to-check sufficient condition for a secure 
public-key encryption scheme to be anonymous, and can be used to simplify 
anonymity proofs based-upon already known security consequences.  
 
Example 3.1(ElGamal scheme’s anonymity against chosen-plaintext attacks) 
ElGamal scheme is provably secure against chosen-plaintext attacks under the 
assumption of decisional Diffie-Hellman problem’s hardness[7]. Furthermore, its 
anonymity can be derivedfrom its security and theorem 3.1. 
 

  
    

 
 
 
 
 
 

 

It

is prov
indepe
M an

schem
decisi
[3]. 

,AdvRE
π

 

key generator KG(q,g):  

 

x ←$Zq; 

X←gx;  

pk←(q,g,X);  

sk←(q,g,x);  

return(pk, sk) 
Figure 1: ElGamal Schem

’s straightforward to obse

ided with the challenge ciph
ndent of the message M* ou
d X1

rM have exactly th

=0. Applyin

e’s anonymity against
onal Diffie-Hellman prob

)(__ kCPAANO
A

Encryption algorithm E(pk, M), 

M∈G: 

     r←$Zq;  

Y←g r;  

T←X r;  

W←TM;  

return(Y, W) 
e. G is a prime-order(q) group

rve that for any adversary A

ertext (Y, W), where W=TM
tput by A1(pk0,pk1)(the only 

e same distribution from 

g theorem 3.1 to this o

 chosen-plaintext attacks
lem’s hardness. The same
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Decryption algorithm D(sk, (Y,W)):  

 

T←Y x; 

M←W/T;  

return(M) 

 

 with generator g. 

 in  when A)(__
, kExp CPAANORE
Aπ 2 

 and M is selected at random and 
relationship is that |M|=|M*|), X0

r 

A2’s perspective. As a result, 

bservation we get ElGamal 

 under the assumption of 
 result was directly proven in 



 
An interesting aspect of ElGamal scheme is that it is NOT anonymous against 

chosen-ciphertext attacks . We’ll have an explanation for this in next subsection.  
 
Example 3.2(Cramer-Shoup scheme’s anonymity against chosen-ciphertext attacks) 
Cramer-Shoup scheme is provably secure against chosen-ciphertext attacks under the 
assumption of decisional Diffie-Hellman problem’s hardness [6]. Its anonymity 
against chosen-ciphertext attacks can be also derived from its proven security and 
theorem 3.1 via an analysis very similar as example 3.1. 

Before we proceed to analyze Cramer-Shoup scheme’s anonymity, we explicitly 
present a convention that we regard K, g1 and g2(fig.2) only as public parameters 
instead of public-key components. This means that anonymity in Cramer-Shoup 
scheme only concerns c,d and h. This convention is reasonable because g1,g2 and K 
are shared by all users of this scheme and only c,d and h are independently generated 
and designated to each individual. In fact, the original proof in [2](refer to the 
adversary’s construction in [2]’s appendix B.1) was also carried out implicitly in this 
opinion. We’ll follow this convention in other examples and in each example we will 
explicitly point out the public (shared) parameters and (individual) public-keys. 

Coming back to Cramer-Shoup scheme’s anonymity, the critical point is that for 

any adversary A in  when A)(__
, kExp CCAANORE
Aπ 2 is provided with the challenge ciphertext 

Y*=(u1,u2,e,v), where e=hrM and M is selected at random and independent of the message M* 
output by A1(pk0,pk1)(the only relationship is that |M|=|M*|), (u1,u2,e,v) in case of pk0 and pk1 
have exactly the same distribution from A2’s perspective, even if A2 queries its decryption oracles 

D(sk0,.) and D(sk1,.) on Y*(recall that in  the adversary A is allowed to 

query its decryption oracle on the challenge ciphertext). As a result, =0 and 

the anonymity against chosen-ciphertext attacks follows. 

)(__
, kExp CCAANORE
Aπ

)(__
, kAdv CCAANORE
Aπ

 
 
    

 
 
 
 
 
 
 

Encryption algorithm E(pk, M), 

M∈G: 

     r←$Zq;  

u1←g1
r; u2←g2

r;  

e←Mhr;  

T←HK(u1,u2,e);  

v←crdrT;  

return(u1,u2,e, v) 

Key generator KG(q,g1,g2,K): 

    g1←g; 

x1,x2,y1,y2, z←$Zq; 

c←g1
x1g2

x2; d←g1
y1g2

y2;  

h←g1
z; 

pk←(c,d,h);  

sk←(x1,x2,y1,y2, z);  

return(pk, sk) 

 

Decryption algorithm D(sk,Y): 

 

Parse Y as (u1,u2,e, v) 

T←HK(u1,u2,e); 

If  v=u1
x1+Ty1u2

x2+Ty2; 

Then  M←e/u1
z;  

Else  M← ; ⊥
return(M) 

Figure 2  Crammer-Shoup Scheme: G is a prime-order(q) group with generator g. 
 

   The above examples just repeat some already-known anonymity consequences in 
public-key encryption but regain them in a simple way. In example 3.3 we’ll obtain a 
new anonymity result(with our knowledge so far)on a well-known scheme, PSEC-1, 
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proposed for NISSIE[9].  
 
Example 3.3(PSEC-1 scheme’s anonymity against chosen-ciphertext attacks) PSEC-1 
public-key encryption scheme is provably secure(in random oracle model)against 
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman 
problem’s hardness on elliptic curves. In this scheme(fig.3), it’s reasonable to consider 
the curve E/Fq, p, q and point P as (shared) public parameters and W as the real 
public-key (each individual has distinct W).  
 
 
 
    

 
 
 
 
 
 
 

Encryption algorithm E(pk, M), 

M∈{0,1}k: 

  r←$Zp;  

t←H(M||r); /*r used as a string*/ 

Q←tW;  

C1←tP;  

C2←(M||r)⊕ x(Q);  

return(C1,C2) 

Key generator KG(E/Fq,p,q,P): 

    

 s←Zp; 

W←sP;  

pk←W;  

sk←s;  

return(pk, sk) 

Decryption algorithm D(sk,Y): 

 

Parse Y as (C1,C2) 

Q←sC1; 

u←C2⊕ x(Q); 

parse u as M||r; 

if  C1=H(u)P 

Then  return(M);  

Else  return( ); ⊥
 
Figure 3  PSEC-1 encryption Scheme: E/Fq is the group of an elliptic curve  

over field Fq . P is a point on E/Fq with (prime) order p. x(Q) is  
                the x-coordinate of curve point Q. H is a random oracle. 

 

For any adversary A in , A)(__
, kExp CCAANORE
Aπ 2 is provided with the challenge ciphertext 

Y*=(C1,C2), which equals (tP, R x(tW⊕ 0)) or (tP, R⊕ x(tW1)) respectively in case of pk0 or pk1 

where R=M||r and M is selected at random and independent of the message M* output by 
A1(pk0,pk1)(the only relationship is that |M|=|M*|). Note that for any b∈{0,1} we have (tP, 
R x(tW⊕ b))=(tP, R’⊕ x(tW1-b)) where R’=R⊕ x(tW0)⊕ x(tW1), i.e., R and R’ have exactly 
the same distribution from A2’s perspective even if A2 can get the plaintexts (R and R’ 
respectively) via querying its decryption oracle D(sk0,.) and D(sk1,.) on Y*. This implies 

that =0 unconditionally and the anonymity against chosen-ciphertext 

attacks follows. 

)(__
, kAdv CCAANORE
Aπ

Proposition 3.1 PSEC-1 is both secure and anonymous in random oracle model 
against chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman 
problem’s hardness on elliptic curves.   □ 
 
3.2  Relevant security and its relationship with anonymity  
 

In this section we develop a concept conjugate to relevant anonymity, which is not 
only useful in our works but also independently valuable in practice. 
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Definition 3.2(Relevant Security) Let П=(KG, E, D) be a public-key encryption 
scheme, A=(A1,A2) be an P.P.T. adversary, ATK∈{CPA, CCA} and Oracle be oracle 
determined by ATK. Consider the following game(Note: to emphasize that two 
public/secret key pairs in this game are generated under the same public parameters, 
we use sp to explicitly represent this fact in all necessary places. This cumbersome 
representation will be omitted hereafter): 

:)(__
, kExp ATKINDRE
Aπ                  

    (pk*, sk*)←KG(sp, k); /*sp is public (shared) parameters, refer to example 3.2 */   
    (M0*, M1*, St)←A1

Oracle(sp, pk*);       
    (pk, sk)←KG(sp, k); /*randomly generate another public-secret key pair (pk, sk) 

under the same parameter sp.*/      
    b←${0,1};       
    y*←E(sp, pk, Mb*);                         
    d←A2

 Oracle(y*, St);                            
    if d=b then output 1 else output 0.  
          

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=D(sk*, .), 
Similar to the case of relevant anonymity, A is allowed to query its Oracle on the 

challenge ciphertext y*. The adversary’s advantage  is defined as 

|or equivalently |P[d=0|b=0]-P[d=0|b=1]|. We say that П is 

relevant secure against adaptive chosen-plaintext(respectively, chosen-ciphertext) 

attacks if (respectively, ) is negligible in k for any P.P.T. 

adversary A. We notate  as  and have similar 

conventions as those for . 

ATKINDRE
AAdv __

,π

1]1)([2| __
, −=kExpP ATKINDRE
Aπ

CPAINDRE
AAdv __

,π
CCAINDRE

AAdv __
,π

ATKINDRE
ATPPA

Adv __
,...

max π∈

ATKINDRE
AAdv __

,π

ATKANORE
AAdv __

,π

Its easy to prove that П’s security implies its corresponding relevant security, i.e., 
relevant security is weaker than security. Similar as the case of relevant anonymity, 
relevant security in combination with anonymity can imply (strong) security, which is 
exactly presented in the following theorem.  

 
Theorem  3.2. Let П=(KG, E, D) be a public-key encryption scheme which is  
anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks. If П is 
relevant secure against chosen-plaintext(respectively, chosen-ciphertext) attacks, then 
П is secure against chosen-plaint(respectively, chosen-ciphertext) attacks. Concretely, 
we have 

               )(2)()( ____ tAdvtAdvtAdv CPAANOCPAINDRECPAIND
πππ +≤

),(2),(),( ____ qtAdvqtAdvqtAdv CCAANOCCAINDRECCAIND
πππ +≤  
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where Td is computational time of decryption algorithm D.  
Proof. For the same reason as in the proof of theorem 3.1, we only prove the 
(comparatively more complicated )case of chosen-ciphertext attack. Suppose 
A=(A1,A2) is an P.P.T. adversary cracking П’s chosen-ciphertext security. We 
construct an P.P.T adversary BA=(B1,B2) cracking П’s chosen-ciphertext anonymity as 
the following. Consider the game: 
 

:)(_
, kExp CCAANO
Bπ  

    (pk0, sk0), (pk1, sk1)←KG(sp, k); /*sp is the public (shared) parameter.*/  
    (M*, St)←B1

D(sk0,.), D(sk1,.)(sp, pk0, pk1) where B1 is implemented as: 
  (M0*, M1*, St)←A1

D(sk0,.) (sp, pk0);  
  M*←M0;  
  return(M*, St);      

    b←${0,1};                             
    y*←E(sp, pkb, M*);                         
    d←B2

D(sk0, .), D(sk1,.) (y*, St) where B2 is implemented as: 
                 d←A2

D(sk0,.) (y*, St); 
                 return(d); 
    if d=b then output 1 else output 0. 

In this game, B simulates oracle D(sk0, .) via its own oracle and such simulation is 
obviously perfect. 

 

It’s straightforward to verify that  in case of b=0 is equivalent to 

 in case of b=0 and  in case of b=1 is equivalent to 

 in case of b=0. On the other hand, we can construct another P.P.T. 

adversary C

)(_
, kExp CCAANO
Bπ

)(_
, kExp CCAIND
Aπ )(_

, kExp CCAANO
Bπ

)(__
, kExp CCAINDRE
Aπ

A=(C1,C2) cracking П’s chosen-ciphertext anonymity in a very similar 
way as that of BA, with the only difference that C1

D(sk0, .)(pk0, pk1) calls A1 in the way 
of A1

D(sk1,.)(sp, pk1)(correspondingly C simulates A’s oracle D(sk1,.) with its oracle 

D(sk1,.)) and set M* to M1*. As a result,  in case of b=0 is equivalent to 

 in case of b=1 and  in case of b=1 is equivalent to 

 in case of b=1. Therefore: 

)(_
, kExp CCAANO
Cπ

)(__
, kExp CCAINDRE
Aπ )(_

, kExp CCAANO
Cπ

)(_
, kExp CCAIND
Aπ

      =| | )(_
, kAdv CCAANO
Bπ −== ]0|1)([ _

, bkExpP CCAANO
Bπ ]1|1)([ _

, == bkExpP CCAANO
Bπ

     =| - |   ]0|1)([ _
, == bkExpP CCAIND
Aπ ]0|1)([ __

, == bkExpP CCAINDRE
Aπ

)(_
, kAdv CCAANO
Cπ =| | −== ]0|1)([ _

, bkExpP CCAANO
Cπ ]1|1)([ _

, == bkExpP CCAANO
Cπ
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     =| - |   ]1|1)([ __
, == bkExpP CCAINDRE
Aπ ]1|1)([ _

, == bkExpP CCAIND
Aπ

Then +  )(_
, kAdv CCAANO
Bπ )(_

, kAdv CCAANO
Cπ

≥| - | ]0|1)([ _
, == bkExpP CCAIND
Aπ ]0|1)([ __

, == bkExpP CCAINDRE
Aπ

+| - |   ]1|1)([ __
, == bkExpP CCAINDRE
Aπ ]1|1)([ _

, == bkExpP CCAIND
Aπ

   ≥ - , namely,  )(_
, kAdv CCAIND
Aπ )(__

, kAdv CCAINDRE
Aπ

    ≤ + +  )(_
, kAdv CCAIND
Aπ )(__

, kAdv CCAINDRE
Aπ )(_

, kAdv CCAANO
Bπ )(_

, kAdv CCAANO
Cπ

The theorem’s inequality can be derived directly and time complexity can be easily 
verified.   □ 
 
Alike theorem 3.1, theorem 3.2 presents an easy-to-check sufficient condition for a 
anonymous public-key encryption scheme to be secure, which can be used to simplify 
security proofs based-upon already known anonymous consequences. The concept of 
relevant security can be also ported to IBE schemes and theorem 3.2 is still true in 
that case.  

 
Example 3.4(Example 3.1 continued): ElGamal scheme is not anonymous against 
chosen-ciphertext attacks. In fact an analysis very similar as in example 3.2(for 

Cramer-Shoup scheme)can derive that =0 for any adversary A. If 

ElGamal scheme is really anonymous against chosen-ciphertext attacks, by theorem 3.2 it 
would be secure against chosen-ciphertext attaks, however, the consequence is 
actually false because of ElGamal scheme’s malleability. This contradiction shows 
that ElGamal scheme is anonymous only against chosen-plaintext but not 
chosen-ciphertext attacks. 

)(__
, kAdv CCAINDRE
Aπ

 
Example 3.5(Example 3.2 continued) It’s not hard to observe that in Cramer-Shoup 

scheme =0 for any adversary A. Since this scheme’s anonymity 

against chosen-ciphertext attacks is provably true [3], we can derive its security 
against chosen-ciphertext attacks under the same computational hardness assumption 
by combining the consequence in [3] and our theorem 3.2. In the style, some 
complicated proofs can be saved. The same thing holds for PSEC-1 too. 

)(__
, kAdv CCAINDRE
Aπ
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4  Anonymity of Fujisaki-Okamoto Hybrid Scheme 

 

4.1  Fujisaki-Okamoto Hybrid Scheme    
 
Fujisaki-Okamoto hybrid scheme[8] П=(KG, E, D, G, H) is constructed from 
public-key encryption scheme Пa=(KGa, Ea, Da), symmetric encryption scheme 
Пs=(KGs, Es, Ds) and two random oracles G, H. KG=KGa. The encryption algorithm is 
defined as E(pk,M)=Ea(pk,σ; H(σ||M))||Es(G(σ),M) whereσis randomly selected 
and H(σ ||M) plays the role of random seed in encryption computation. The 
decryption algorithm D(sk,y) woks as the following: 
       parse y as y1||y2; 
       σ←Da(sk,y1); 
       M←Ds(G(σ),y2); 
       if y1=Ea(pk,σ; H(σ||M)) then output(M) else output(⊥ ) 
 
To proceed with our discussion we need one more concept related to the hybrid 
construction. A plaintext-checking oracle PCAsk(.) takes plaintext-ciphertext pair 
(M,y) as input, outputs 1 if M=D(sk,y) and 0 otherwise. Let ATK∈{CPA,PCA, CCA}, 
Oracle be oracle determined by ATK, which is empty for CPA, PCAsk(.) for PCA and 
Dsk(.) for CCA. Consider the following game: 

:)(_
,

kExp ATKOWE
Jaπ

 

       (pk, sk)←KG(k);   
Randomly select σ* from Πa’s message space; 
y*←E (pk, σ*);  
σ0←JOracle (pk, y*); 

           if(σ0=σ* ) then output 1 else output 0. 
 
In case of ATK=CCA, J is disallowed to query on its challenge ciphertext y*(but in 
case of PCA, this event is allowed). Public-key scheme Пa is said one-way secure 
against chosen-plaintext, chosen plaintext-checking or chosen-ciphertext attacks 
respectively if for any P.P.T. adversary J the corresponding game can output 1 only 

with a negligible probability in k. Such probability is notated as  

and . In this whole section only one-way security 

against chosen-plaintext attacks is needed so we simply name it “one-way secure” as shorthand. 

)(_
, kAdv ATKOWE
Jπ

)(max)( _
,...

_ kAdvkAdv ATKOWE
JTPPJ

ATKOWE
ππ

∈
≡

Fujisaki-Okamoto hybrid scheme can strongly enhance its component schemes’ 
security, which is exactly proved in their original paper[8](In our following work the 
asymmetric scheme’s γ-uniformity and symmetric scheme’s find-and-guess security 
are not used, so no explanations on them are given in this paper). 
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Fujisaki-Okamoto Theorem Let П=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid 
public-key encryption scheme constructed from public-key encryption scheme 
Пa=(KGa, Ea, Da) and symmetric encryption scheme Пs=(KGs, Es, Ds). If Пa is 
one-way secure and γ–uniform where γ is negligible in k, Пs is secure in sense of 
Find-and-Guess, then П is secure against chosen-ciphertext attacks. 
 
 
4.2 A Sufficient and Necessary Condition for Anonymity against 
Chosen-plaintext Attacks  
 
Before exactly presenting our results we need to specify a property of 
well-constructed public-key encryption schemes. 
 
Definition 4.1(regular encryption)A public-key encryption scheme П=(KG, E, D) is 

defined as regular if for any message-pair (M0,M1) the probability )(kaπδ ≡P[(pk0, 

sk0),(pk1, sk1)←KG(k): E(pk0,M0)=E(pk1, M1)] is negligible in complexity parameter k.  
 
Regularity is a good property possessed by almost all practical public-key schemes, 
e.g., ElGamal and Cramer-Shoup schemes(for instance of ElGamal scheme, 

E(pk0,M0)=E(pk1, M1) iff .Since r and r’ are selected at 

random and independently,

1
'

1
'

1000
10 |||| MggMgg xrrrxr =

)(kElGamalδ =P[ ]≤P[ ]=1/q  

which is obviously negligible in complexity parameter k(=log

1
'

1
'

1000
10 |||| MggMgg xrrrxr = '

10
rr gg =

2q). The same analysis is 
also true for Cramer-Shoup scheme).  
 
Theorem 4.1  Let П=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid public-key 
encryption scheme constructed from regular public-key scheme Пa=(KGa, Ea, Da) and 
symmetric encryption scheme Пs=(KGs, Es, Ds). П is anonymous against 
chosen-plaintext attacks if and only if Пa is relevant anonymous against 
chosen-plaintext attacks and one-way secure.  
 
Remarks: Conditions in the theorem only concerns the component public-key 
scheme Пa’s weak anonymity(RE_ANO_CPA) and its weak security(OWE). As 
Fujiksaki-Okamoto theorem states, OWE(together with other weak properties) leads 
to the hybrid scheme’s strong security, i.e., IND_CCA(in fact even stronger than that: 
plaintext-aware in random oracle model as shown in their original paper). Therefore, 
for applications where both anonymity and security are desired conditions in theorem 
4.1 is weak and practical.  

In the following proof, the adversary’s advantage is denoted as 

 or  where q),,(}_,__{ tqqAdv hg
CPAANOCPAANORE

π ),,,(}_,__{ tqqqAdv dhg
CCAANOCCAANORE

π g, 

qh, qd are number of queries to G, H and decryption oracles respectively. Theorem 4.1 comes 
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from the following three lemmas. 
 

Lemma 4.1  If П is relevantly anonymous against chosen-plaintext attacks, then Пa 

is also relevant anonymous against chosen-plaintext attacks. Concretely, 

 ≤ . )(__ tAdv CPAANORE
aπ

),0,0(__ tAdv CPAANORE
π

Proof   Suppose A=(A1,A2) is an P.P.T. chosen-plaintext adversary cracking Пa’s 
relevant anonymity, we construct a P.P.T chosen-plaintext adversary BA=(B1,B2) 
cracking П’s relevant anonymity. B has access to random oracles G and H. Consider 
the following game: 

:)(__
, kExp CPAANORE
Bπ                  

    (pk0, sk0), (pk1, sk1)←KG(k);              
    (M*, St)←B1

G, H (pk0, pk1) where B1 is implemented as: 
               (σ*, StA)←A1(pk0, pk1); 
               randomly select M* fromΠ’s message space; 
               return(M*, St); 
    b←${0,1};  

randomly select M fromΠ’s message space and in the same size of M*: |M|=|M*|;                       
    randomly select σfrom Πa’s message space;  

/*σis used in the hybrid encryption and comes from the same space in whichσ* 
resides. In particular, |σ|=|σ*|.*/   

    y*←Ea(pkb,σ, H(σ||M))|| Es(G(σ),M);                         
    d←B2

 G, H(y*, St) where B2 is implemented as: 
              parse y* as ya||ys; 
              d←A2

 (ya, St);  
              return(d); 
    if d=b then output 1 else output 0. 

 

Note that in for any b∈{0,1} the challenge ciphertext y)(__
, kExp CPAANORE
Bπ

a= Ea(pkb,σ, 

H( σ ||M)) as input to A2 has exactly the same distribution as that 

in in the same case of b. Therefore, = 

|2 -1| = |2 -1| = . The 

theorem’s inequality can be directly derived from this result.  □ 

)(__
,

kExp PAANORE
Aaπ

)(__
, kAdv CPAANORE
Bπ

]1)([ __
, =kExpP CPAANORE
Bπ ]1)([ __

,
=kExpP CPAANORE

Aaπ
)(__

,
kAdv CPAANORE

Aaπ

 
Lemma 4.2  If П is anonymous against chosen-plaintext attacks and Пa is regular, 
then Пa is one-way secure. Concretely,  

)(_ tAdv CPAOWE
aπ ≤ +))(,,(_

aEhg
CPAANO TtOqqAdv +π )(kaπδ   

where qg=0, qh≤2, is ПaET a’s computation time of its encryption algorithm.    
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Proof  Suppose J is an P.P.T. adversary cracking Пa’s one-way security, we construct 
a P.P.T chosen-plaintext adversary AJ=(A1,A2) cracking П’s anonymity. A has access 
to random oracles G and H. Consider the following game: 

:                          )(_
, kExp CPAANO
Aπ

    (pk0, sk0), (pk1, sk1)←KG(k);              
    (M*, St)←A1

G, H (pk0, pk1) where A1 is implemented as: 
               randomly select M* fromΠ’s message space; 
               St←M*|| pk0||pk1;    
               return(M*, St);      
    b←${0,1};  
    randomly select σ* from Πa’s message space;  
    y*←Ea(pkb,σ*; H(σ*||M*))|| Es(G(σ*),M*);     
    d←A2

 G, H(y*, St) where A2 is implemented as: 
               parse y* as ya||ys; parse St as M*||pk0||pk1;    
               σ0←J(pk0, ya);  σ1←J(pk1, ya);   
               if  Ea(pk0,σ0; H(σ0||M*))=ya     

then  d←0; 
else  if  Ea(pk1,σ1, H(σ1||M*))=ya  

                   then  d←1;          
                   else  d←${0,1};      

return(d); 
    if d=b then output 1 else output 0. 

   

Denote the probability in as P)(_
, kExp CPAANO
Aπ A[] and the probability in as P)(, kExp OWE

Jπ J[]. 

By A’s specification we have   
PA[d=0|b=0]=PA[Ea(pk0,σ0;H(σ0||M*))=ya| ya

∈Ea(pk0,σ*)]+  
+ (1/2) PA[Ea(pk0,σ0; H(σ0||M*))≠ya

∧Ea(pk1,σ1; H(σ1||M*))≠ya | ya
∈Ea(pk0,σ*)]  

   = PJ[y
a
∈Ea(pk0,σ*): J(pk0, y

a)=Da(sk0, y
a)]   

+ (1/2) PJ[J(pk0, y
a)≠Da(sk0, y

a)∧J(pk1, y
a)≠Da(sk1, y

a) | ya
∈Ea(pk0,σ*)]     

PA[d=0|b=1]=PA[Ea(pk0,σ0; H(σ0||M*))=ya| ya
∈Ea(pk1,σ*)] 

+ (1/2) PA[Ea(pk0,σ0; H(σ0||M*))≠ya
∧Ea(pk1,σ1;H(σ1||M*))≠ya | ya

∈Ea(pk1,σ*)]  
   = P[(pk0, sk0),(pk1, sk1) are randomly selected: Ea(pk0,σ0; H(σ0||M*))=Ea(pk1,σ*; H(σ*||M*))] 

+ (1/2) PJ[J(pk0, y
a)≠Da(sk0, y

a)∧J(pk1, y
a)≠Da(sk1, y

a) | ya
∈Ea(pk1,σ*)]   

  ≤ )(kaπδ + (1/2) PJ[J(pk0, y
a)≠Da(sk0, y

a)∧J(pk1, y
a)≠Da(sk1, y

a) | ya
∈Ea(pk1,σ*)] 

where )(kaπδ  is Пa’s regularity advantage(since H is a random oracle). Note that (pk0, 

sk0) and (pk1, sk1) are randomly and independently generated so PJ[J(pk0,y
a)≠Da(sk0,y

a)
∧J(pk1, ya)≠Da(sk1,y

a) | ya
∈Ea(pk0,σ*)]=PJ[J(pk0,y

a)≠Da(sk0,y
a)∧J(pk1, ya)≠Da(sk1,y

a) | ya
∈

Ea(pk1,σ*)]. Therefore: 

)(_
, kAdv CPAANO
Aπ =| PA[d=0|b=0] - PA[d=0|b=1]| 
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 =| PJ[y
a
∈Ea(pk0,σ*): J(pk0, y

a)=Da(sk0, y
a)|] - )(kaπδ | 

 ≥ -)(_
, kAdv CPAOWE
Jaπ

)(kaπδ . namely  

   ≤ +)(_
, kAdv CPAOWE
Jaπ

)(_
, kAdv CPAANO
Aπ )(kaπδ  

which derives the lemma’s inequality and the time complexity can be directly verified 
according to A’s specification.  □ 
 
Lemma 4.1 and lemma 4.2 proves the necessity of Пa’s one-way security and relevant 
anonymity against chosen-plaintext attacks. Next lemma proves its sufficiency. 
 
Lemma 4.3  If Пa is one-way secure and relevantly anonymous against 
chosen-plaintext attacks, then П is anonymous against chosen-plaintext attacks. 
Concretely, 

  ≤ +(q),,(_ tqqAdv hg
CPAANO

π )(__ tAdv CPAANORE
aπ g+qh)  )(_ tAdv CPAOWE

aπ

Proof  Suppose A=(A1,A2) is an P.P.T. chosen-plaintext adversary cracking П’s 
anonymity, we construct a P.P.T chosen-plaintext adversary BA=(B1,B2) cracking Пa’s 
relevant anonymity. A needs access to random oracles G and H. Consider the 
following game: 

:)(__
,

kExp CPAANORE
Baπ

                          

    (pk0, sk0), (pk1, sk1)←KG(k);              
    (σ0, St)←B1(pk0, pk1) where B1 is implemented as: 
               Both G-list and H-list are initialized to be empty;  
               Randomly select σ0 fromΠa’s message space; 
               Randomly select g0 fromΠs’s key space; 
               (M*, StA)←A1

G, H(pk0, pk1); 
               St←StA||M*||σ0||g0;    
               Return(σ0, St);      
    b←${0,1};  
    Randomly select h* from Πa’s coin space; 
    Randomly select σ* from Πa’s message space; /*It’s the same space as  

from which σ0 is generated. In particular, |σ*|=|σ0|.*/  
    y*←Ea(pkb,σ*; h*)     
   d←B2

 (y*, St) where B2 is implemented as: 
              parse St as StA||M*||σ0||g0; 
              v*←Es(g0, M*);   
              d←A2

G, H(y*||v*, StA); 
              return(d); 
    if d=b then output 1 else output 0. 

 
B carries out simulation as follows. 
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On each query σfrom A to oracle G(.), B does: 
       If there exists (σ,g) in G-list  

Then return(g) 
       Else randomly select g fromΠs’s key space;  
          Insert (σ,g) in G-list; 
          Return(g); 
 
On each query (σ,m) from A to oracle H(.), B does: 
       If there exists (σ,m,h) in H-list  

Then return(g) 
       Else randomly select h fromΠa’s coin space;  
          Insert (σ,m,h) in H-list; 
          Return(h); 

 
Define an event Z as that there exists an item (σ*,.) in G-list or (σ*,.,.) in H-list. Let p0 

be P[Z]. According to B’s specification we have P[ =1|～ Z] 

=P[ =1], so P[ =1] ≥ P[ =1|～Z]P[～Z] 

)(__
,

kExp CPAANORE
Baπ

)(_
, kExp CPAANO
Aπ )(__

,
kExp CPAANORE

Baπ
)(__

,
kExp CPAANORE

Baπ

 = P[ =1|～Z](1-p)(__
,

kExp CPAANORE
Baπ 0) ≥P[ =1]-p)(_

, kExp CPAANO
Aπ 0, hence 

 P[ =1]≤ P[ =1] + p)(_
, kExp CPAANO
Aπ )(__

,
kExp CPAANORE

Baπ 0. 

   Furthermore, p0 can be estimated by constructing two P.P.T. adversaries J0 and J1 
based-on A to crack Пa’s one-way security. Consider the game: 

   :)(_
0, kExp CPAOWE

Jaπ

   (pk0, sk0)←KG(k);   
Randomly select σ* from Πa’s message space; 
y*←Ea(pk0, σ*);  
σ0←J0(pk0, y*) where J0 is implemented as:  
         cnt←0;   
         (pk1, sk1)←KG(k); 
         Randomly select g* from Πs’s key space; 
         (M, St)←A1

G, H(pk0, pk1); 
         v0←Es(g*, M); 

             d←A2
G, H (y*||v0, St);  

             i← ${1,2,…,cnt}; 
             /* w.o.l.g., all σ’s queried by A for G and H are distinct and  

indexed as σ1,…, σcnt.*/    
             output(σi).      
           

On each query σ or (σ,m) from A to its oracle G(.) or H(.) respectively, J0 simulates G 
and H as B does in the above; Additionally, every query from A is counted by J0 via 
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the variable cnt. Note that  is just in case of b=0. 

Denoting the probability of the event occurring in  as P

)(_
0, kExp CPAOWE

Jaπ )(_
,

kExp CPAANO
Aπ

)(_
,

kExp CPAANO
Aπ A[.], we have  

        =P[ =1]≥(1/cnt)P)(_
0, kAdv CPAOWE

Jaπ
)(_

0, kExp CPAOWE
Jaπ A[Z|b=0]≥PA[Z|b=0]/(qg+qh)  

On the other hand, we can construct another adversary J1 in a similar way as that of J0 
with the only difference that J1 calls A1 in the form of (M, St)←A1

G, H(pk1, pk0), i.e., 

exchanging pk0 and pk1’s roles. As a result, is just in case 

of b=1 and we have  

)(_
1, kExp CPAOWE

Jaπ )(_
,

kExp CPAANO
Aπ

              =P[ =1]≥P)(_
1, kAdv CPAOWE

Jaπ
)(_

1, kExp CPAOWE
Jaπ A[Z|b=1]/(qg+qh) 

So p0≡P[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=0])≤(cnt/2)( + ) 

≤((q

)(_
0, kAdv CPAOWE

Jaπ
)(_

1, kAdv CPAOWE
Jaπ

g+qh)/2)( + ) ). In combination with the 

inequality ≤ P[ =1] + p

)(_
0, kAdv CPAOWE

Jaπ
(_

1, kAdv CPAOWE
Jaπ

)

                                                                

)(_
, kExp CPAANO
Aπ )(__

,
kExp CPAANORE

Baπ 0 we got before, we have: 

P[ =1] )(_
, kExp CPAANO
Aπ

≤ P[ =1]+(1/2(q)(__
,

kExp CPAANORE
Baπ g+qh))( + ) )(_

0, kAdv CPAOWE
Jaπ

(_
1, kAdv CPAOWE

Jaπ

and the lemma’s final inequality can be derived directly.   □ 
 
4.3  A Sufficient Condition for Anonymity against Chosen-ciphertext Attacks 
 
Theorem 4.1 shows that Fujisaki-Okamoto’s hybrid scheme also has a good 
enhancement in anonymity, although not as good as its enhancement in security. A 
further question is that which kind of anonymity of the component public-key scheme 
can be enhanced to the strongest one, i.e., anonymity against chose-ciphertext attacks? 
Theorem 4.2 presents such a condition and this theorem can be regarded as a 
generalization of lemma 4.3 to the case of chosen-ciphertext attacks. Its proof logic is 
somewhat like that of lemma 4.3 and its special difficulty comes from how to 
simulate П’s decryption oracle by Пa’s one-way security cracker, which is solved 
essentially by П’s knowledge extractor.2 As remarks on theorem 4.1, conditions in 
theorem 4.2 are weak and practical for applications where both security and 
anonymity of the hybrid scheme is desired. 
 

 

2  The same idea was originally used by Fujisaki and Okamoto to prove that their hybrid scheme is in fact 
plaintext-aware(in oracle model). The decryption simulation in our proof is essentially the same as that in [8]. 
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Theorem 4.2 If Пa is one-way secure(against chosen-plaintext attacks) and relevantly 
anonymous against chosen-ciphertext attacks, then П is anonymous against 

chosen-ciphertext attacks. Concretely, ≤ ),,,(_ tqqqAdv dhg
CCAANO

π

))(,(__
dd

CCAANORE qOtqAdv a +
π

+(qg+qh)  ))((_
dhg

CPAOWE qqqOtAdv a ++
π

 

Proof  Suppose A=(A1,A2) is an P.P.T. chosen-ciphertext adversary cracking П’s 
anonymity, we construct a P.P.T chosen-ciphertext adversary BA=(B1,B2) cracking 
Пa’s relevant anonymity. Consider the following game: 

:)(__
,

kExp CCAANORE
Baπ

                          

    (pk0, sk0), (pk1, sk1)←KG(k);              

    (σ0, St)←  where B),( 10
,.)(,.),(

1
10 pkpkB skDskD aa

1 is implemented as: 

               Both G-list and H-list are initialized to be empty;  
               Randomly select σ0 fromΠa’s message space; 
               Randomly select g0 fromΠs’s key space; 

               (M0, StA)← ; ),( 10
,.)(,.),(,,

1
10 pkpkA skDskDHG

               St←StA||M0||σ0||g0;    
               Return(σ0, St);      
    b←${0,1};  
    Randomly select h* from Πa’s coin space; 
    Randomly select σ* from Πa’s message space; /*it’s the same space as  

from which σ0 is generated. In particular, |σ0|=|σ*|.*/  
    y*←Ea(pkb,σ*; h*);     

   d←  where B)*,(,.)(,.),(
2

10 StyB skDskD aa

2 is implemented as: 

              parse St as StA||M0||σ0||g0; 
              v*←Es(g0, M0);   

              d← ; )*,||*(,.)(,.),(,,
2

10
A

skDskDHG StvyA

              return(d); 
    if d=b then output 1 else output 0. 

 
B carries out simulations as follows. 
(1)On each query σfrom A to oracle G(.), B does: 
       If there exists (σ,g) in G-list  

Then return(g);   
       Else randomly select g fromΠs’s key space;  
          Insert (σ,g) in G-list;   
          Return(g); 
 

 21



(2)On each query (σ,m) from A to oracle H(.), B does: 
       If there exists (σ,m,h) in H-list  

Then return(h); 
       Else randomly select h fromΠa’s coin space;  
          Insert (σ,m,h) in H-list; 
          Return(h); 
 
(3)On each query y from A to its oracle D(skj,.), j=0,1, B simulates D(skj,y) as 
follows( note that oracle-D(skj,.) may access G and H from inside and such accesses are 
also processed by B in the afore-specified way): 
       Parse y as ya||ys;   

σ←Da(skj,y
a);  /* Da(skj,.) is B’s decryption oracle and recall that ya is allowed 

to be y* in defition.*/ 
       Find the item (σ, g) in G-list; 

If there is no item (σ, . ) in G-list  
       Then  randomly select g fromΠs’s key space; 
             Insert (σ, g) into G-list; 
       m←Ds(g,ys); 
       Find the item (σ, m, h) in H-list; 
       If there is no item (σ, m, . ) in H-list  
       Then  randomly select h fromΠa’s coin space; 
             Insert (σ, g, h) into H-list; 
       If  ya=Ea(pkj, σ; h) 
       Then  return(m); 
       Else   return(⊥ ) 

 
Define an event Z as that there exists an item (σ*,.) in G-list or item (σ*,.,.) in H-list. 

Let p0 be P[Z]. According to B’s specification we have P[ =1|～Z] 

=P[ =1] because in event of ～Z decryption operations simulated by B 

on all queries from A is perfect, so  

)(__
, kExp CCAANORE
Baπ

)(_
, kExp CCAANO
Aπ

P[ =1]≥P[ =1|～Z] P[～Z] )(__
,

kExp CCAANORE
Baπ

)(__
,

kExp CCAANORE
Baπ

=P[ =1|～Z](1-p)(__
,

kExp CCAANORE
Baπ 0) ≥P[ =1]-p)(_

, kExp CCAANO
Aπ 0

hence ≤ P[ =1]+p)(_
, kExp CCAANO
Aπ )(__

,
kExp CCAANORE

Baπ 0. 

   Furthermore p0 can be estimated by constructing two P.P.T. adversaries J0 and J1 
based-on A to crack Пa’s one-way security. Consider the game: 

   :)(_
0, kExp CPAOWE

Jaπ

   (pk0, sk0)←KG(k);   
Randomly select σ* from Πa’s message space; 
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ya*←Ea(pk0, σ*);  
σ0←J0(pk0, ya*) where J0 is implemented as:  
         cnt←0;   
         (pk1, sk1)←KG(k); 
         Randomly select g* from Πs’s key space; 

         (M, St)← ; ),( 10
,.)(,.),(,,

1
10 pkpkA skDskDHG

         v*←Es(g*, M); 

             d← ;  )*,||*(,.)(,.),(,,
2

10 StvyA askDskDHG

             i← ${1,2,…,cnt}; 
             /* w.o.l.g., all σ’s queried by A for G and H are distinct and  

indexed as σ1,…, σcnt.*/    
             output(σi).      
           

J0 carries out simulations as follows. 
(1)On each query σ or (σ, m) from A to its oracle G(.) or H(.) respectively, J0 
simulates G or H as B does in the above; Additionally, every query from A is counted 
by J0 via cnt.  
 
(2)On each query y from A to its oracle-D(sk1,.), J0 simulates D(sk1,y) via directly 
applying Π’s decipher algorithm with its complete knowledge of secret key sk1( when 
D(sk1,.) needs to access G and H from inside, such accesses are also processed by B in 
the afore-specified way): 
  
(3) On each query y from A to its oracle-D(sk0,.), J0 simulates D(sk0,y) as follows: 
       Parse y as ya||ys; 
       If  There exist an item (σ, g) in G-list and item (σ, m, h) in H-list  

such that ya=Ea(pk0, σ; h) 
       Then  return(m); 
       Else /*y is not produced by A via explicitly encrypting some plaintext.*/ 
           If  there exists (σ, m, h) in H-list such that ya=Ea(pk0, σ; h) 
                /*but no (σ, .) in G-list */ 
           Then randomly select g fromΠs’s key space;     
                Insert (σ, g) into G-list; 
                 m←Ds(g, ys); 
                 Return(m); 
            Else 
                Randomly select m from Πs’s message space; 
                  Return(m) 

 
Because ya*||v* is disallowed to query and G,H are random oracles, this simulation is 

perfect. Furthermore, note that  is just in case of b=0. )(_
0, kExp CPAOWE

Jaπ )(_
,

kExp CCAANO
Aπ
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Denoting the probability of the event occurring in  as P)(_
,

kExp CCAANO
Aπ A[.], we have  

                =P[ =1]≥1/(q)(_
0, kAdv CPAOWE

Jaπ
)(_

0, kExp CPAOWE
Jaπ g+gh)PA[Z|b=0] 

On the other hand, we can construct another adversary J1 in a similar way as that of J0 
with the only difference that J1 calls A1 in the form of (M, 

St)← , i.e., exchanging pk),( 01
,.)(,.),(,,

1
01 pkpkA skDskDHG

0 and pk1’s roles. As a 

result, is just in case of b=1 and we have  )(_
1, kExp CPAOWE

Jaπ )(_
,

kExp CCAANO
Aπ

              =P[ =1]≥1/(q)(_
1, kAdv CPAOWE

Jaπ
)(_

1, kExp CPAOWE
Jaπ g+gh)PA[Z|b=1] 

So p0≡P[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=0])≤(1/2(qg+qh))( + ). 

In combination with the inequality ≤P[ =1]+p

)(_
0, kAdv CPAOWE

Jaπ
)(_

1, kAdv CPAOWE
Jaπ

)

)(_
, kExp CCAANO
Aπ )(__

,
kExp CCAANORE

Baπ 0 we got 

before, we have P[ =1] )(_
, kExp CCAANO
Aπ

≤P[ =1]+(1/2(q)(__
,

kExp CCAANORE
Baπ g+qh))( + )  )(_

0, kAdv CPAOWE
Jaπ

(_
1, kAdv CPAOWE

Jaπ

and the lemma’s final inequality can be derived directly and the time/query 
complexity can be directly verified.   □ 
    
Corollary 4.1 Let П=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid public-key 
encryption scheme constructed from public-key encryption scheme Пa=(KGa, Ea, Da) 
and symmetric encryption scheme Пs=(KGs, Es, Ds). If Пa is one-way secure, 
γ–uniform where γ is negligible in k and relevantly anonymous against 
chosen-ciphertext attacks; Пs is secure in sense of Find-and-Guess, then П is secure 
and anonymous, both are against chosen-ciphertext attacks. 
 
Theorem 4.2 shows that in many reasonable cases the component public-key scheme’s 
weak anonymity(i.e.,relevant anonymity against chosen-ciphertext attacks) can be 
enhanced by Fujisaki-Okamoto construction to the strongest anonymity. Theorem 4.2 
can be applied to lots of concrete hybrid schemes(e.g.,ElGamal-based and 
Okamoto-Uchiyama-based schemes in [8]’s section 6) to prove their anonymity 
against chosen-ciphertext attacks. Here we apply this theorem to PSEC-2, an provably 
secure elliptic curve encryption scheme proposed for NISSIE[9]. 
 
Example 4.1(PSEC-2’s anonymity against chosen-ciphertext attacks) PSEC-2 
public-key encryption scheme is provably secure(in random oracle model)against 
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman 
problem’s hardness on elliptic curves and some additional weak security assumptions 
on its symmetric encryption component. In this scheme(fig.4), just like in PSEC-1 it’s 
reasonable to consider (E/Fq, p, q, P) as (shared) public parameters and W as the real 
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public-key (each individual has distinct W).  
Note that PSEC-2 is actually a Fujisaki-Okamoto construction from asymmetric 

scheme Πa and symmetric scheme (SymEnc,SymDec) where Πa=(KGa, Ea, Da) is 
defined in fig.5。 

With the same analysis as in example 3.3 for PSEC-1, it holds unconditionally that  

=0. In addition, all conditions in Fujisaki-Okamoto theorem are 

satisfied by Π

)(__
,

kAdv CCAANORE
Aaπ

a [9], in particular Πa is one-way secure (against chosen-plaintext 
attacks). Combining these facts and our theorem 4.2, we have the following 
consequence on PSEC-2. 
 
 
 
    

 
 
 
 
 
 
 

 

Encryption algorithm E(pk, M), 

M∈{0,1}+: 

  r←$Zp;  

t←H(r||M); /*r used as a string*/ 

Q←tW;  

C1←tP;  

C2←r⊕ x(Q);  

C3←SymEnc(G(r), M);  

return(C1,C2, C3) 

Key generator KG(E/Fq,p,q,P): 

    

 s←$Zp; 

W←sP;  

pk←W;  

sk←s;  

return(pk, sk) 

Decryption algorithm D(sk,Y): 

 

Parse Y as (C1,C2,C3) 

Q←sC1; 

u←C2⊕ x(Q); 

M←SymDec(G(u), C3); 

if  C1=H(u||M)P  

Then  return(M);  

Else  return( ); ⊥

Figure 4  PSEC-2 encryption Scheme: E/Fq is the group of an elliptic curve  
over field Fq. P is a point on E/Fq with (prime) order p. x(Q) is the x-coordinate  
of curve point Q. (SymEnc, SymDec) is a symmetric encryption scheme.  
G:Zp→{0,1}k and H: {0,1}+→Zp are random oracles. 

 
    

 
 
 
 
 
 
 

Decryption algorithm Da(sk,Y): 

 

Parse Y as (C1,C2) 

Q←sC1; 

σ←C2⊕ x(Q); 

return(σ);  

Encryption algorithm Ea(pk, σ), 

σ∈{0,1}+: 

  t←$ Zp; 

Q←tW;  

C1←tP;  

C2←σ⊕ x(Q);  

return(C1,C2) 

Key generator KGa(E/Fq,p,q,P): 

    

 s←$Zp; 

W←sP;  

pk←W;  

sk←s;  

return(pk, sk) 

Figure 5  PSEC-2’s asymmetric component encryption scheme Πa

 
Proposition 4.1 If the component symmetric encryption scheme is Find-and-Guess 
secure, then PSEC-2 is both secure and anonymous in random oracle model against 
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman 
problem’s hardness on elliptic curves.   □ 
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5  Anonymity of Okamoto-Pointcheval Hybrid Scheme: REACT 

 

REACT[11] is another highly efficient hybrid scheme П=(KG, E, D, G, H) constructed 
from a public-key encryption scheme Пa=(KGa, Ea, Da), a symmetric encryption 
scheme Пs=(KGs, Es, Ds) and two random oracles G, H. Alike Fujisaki-Okamoto 
scheme, KG=KGa. The encryption algorithm is defined as E(pk,M)=Ea(pk,R;u) 
||Es(G(R),M)||H(R,m,y1,y2), where u is random seed in encryption computation, y1= 
Ea(pk,R;u) and y2=Es(G(R),M). The decryption algorithm D(sk,y) woks as the 
following:    
       parse y as y1||y2||h; 
       R←Da(sk,y1); 
       M←Ds(G(R),y2); 
       if h=H(R,M, y1,y2) then output(M) else output(⊥ ) 
 

Alike Fujisaki-Okamoto hybrid scheme, REACT can also strongly enhance its 
component schemes’ security, which is exactly proved in [11]. 

 
Okamoto-Pointcheval Theorem Let П=(KG, E, D, G, H) be REACT hybrid 
public-key encryption scheme constructed from public-key encryption scheme 
Пa=(KGa, Ea, Da) and symmetric encryption scheme Пs=(KGs, Es, Ds). If Пa is 
one-way secure against plaintext-checking attacks, Пs is secure in sense of 
Find-and-Guess, then П is secure against chosen-ciphertext attacks.  
 
Similar results as theorem 4.1 can be proved for REACT, however, we only present 
the strongest result in the following which is most useful in practice. 
 
Theorem 5.1  If Пa is one-way secure and relevantly anonymous, both are against 
plaintext-checking attacks, then П is anonymous against chosen-ciphertext attacks. 

Concretely,  ),,,(_ tqqqAdv dhg
CCAANO

π

≤ + (q))(,(__
dd

PCAANORE qOtqAdv a +
π g+qh)  ))((_

dhg
PCAOWE qqqOtAdv a ++

π

Proof  Suppose A=(A1,A2) is an P.P.T. chosen-ciphertext adversary cracking П’s 
anonymity, we construct a P.P.T plaintext-checking adversary BA=(B1,B2) cracking 
Пa’s relevant anonymity. Consider the following game: 

:)(__
,

kExp PCAANORE
Baπ

                          

    (pk0, sk0), (pk1, sk1)←KG(k);              

    (R0, St)←  where B),( 10
,.)(,.),(

1
10 pkpkB skPCAskPCA aa

1 is implemented as: 

               Both G-list and H-list are initialized to be empty;  
               Randomly select R0 fromΠa’s message space; 
               Randomly select g0 fromΠs’s key space; 
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                (M0, StA)← ; ),( 10
,.)(,.),(,,

1
10 pkpkA skDskDHG

               St←StA||M0||R0||g0;    
               return(R0, St);      
    b←${0,1};  
    Randomly select R* from Πa’s message space; /*the same space as that  

from which R0 is generated. In particular, |R0|=|R*|.*/  
    y1*←Ea(pkb,R*);     

   d←  where B)*,( 1
,.)(,.),(

2
10 StyB skPCAskPCA aa

2 is implemented as: 

              parse St as StA||M0||R0||g0; 
              y2*←Es(g0, M0);   

Randomly select h* from H’s image space; 

              d← ; )*,||*||*( 21
,.)(,.),(,,

2
10

A
skDskDHG SthyyA

              return(d); 
    if d=b then output 1 else output 0. 

 
   B carries out simulation as follows. 

(1)On each query R from A to oracle G(.), B does: 
       If there exists (R,g) in G-list  

Then return(g)   
       Else randomly select g fromΠs’s key space;  
          Insert (R,g) in G-list;   
          Return(g); 
 
(2)On each query (R,m, y1, y2) from A to oracle H(.), B does: 
       If there exists ((R,m, y1, y2),h) in H-list  

Then return(h) 
       Else randomly select h from H’s image space;  
          Insert ((R,m, y1, y2),h) in H-list; 
          Return(h); 
 
(3)On query y from A to its oracle D(skj,.), j=0,1, B simulates D(skj,y) as follows( note that 
oracle-D(skj,.) may access G and H from inside and such accesses are also processed by B 
in the afore-specified way): 
       Parse y as y1||y2||h;  
      if there exists (R,K) in G-list s.t. PCAa(skj,R,y1)=1 
       /*note that there is at most one such (R,K).*/   
      then if there exits (R,M,y1,y2,h) in H-list     
          then  return(M) 
          else  M←Ds(K,y2);  
               insert (R,M,y1,y2,h) into H-list 
               return(M); 
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      else /*For any (R,K) in G-list, it has PCAa(skj,R,y1)=0*/ 
               return(⊥ ) 

 
Define an event Z as that there exists an item (R*,.) in G-list or item ((R*,.,.,.),.) in 
H-list. Let p0 be P[Z]. According to B’s specification, we have 

P[ =1|～Z]=P[ =1] because in event of ～Z decryption 

oracle simulated by B on all queries from A is perfect, so 

)(__
, kExp PCAANORE
Baπ

)(_
, kExp CCAANO
Aπ

   P[ =1] ≥ P[ =1|～Z]P[～Z] )(__
, kExp PCAANORE
Baπ

)(__
, kExp PCAANORE
Baπ

 = P[ =1](1-p)(_
, kExp CCAANO
Aπ 0)≥P[ =1]-p)(_

, kExp CCAANO
Aπ 0

hence ≤ P[ =1]+p)(_
, kExp CCAANO
Aπ )(__

,
kExp PCAANORE

Baπ 0. 

   Furthermore, p0 can be estimated by constructing two P.P.T. adversaries J0 and J1 
based-on A to crack Пa’s one-way security under plaintext-checking attack. Consider 
the game: 

   :)(_
0,

kExp PCAOWE
Jaπ

   (pk0, sk0)←KG(k);   
Randomly select R* from Πa’s message space; 
y1*←E(pk0, σ*);  
σ0←J0

PCA(sk0,.)(pk0, ya*) where J0 is implemented as:  
         cnt←0;   
         (pk1, sk1)←KG(k); 
         Randomly select K* from Πs’s key space; 

         (M, St)← ; ),( 10
,.)(,.),(,,

1
10 pkpkA skDskDHG

         v*←Es(K*, M); 

             d← ;  )*,||*( 1
,.)(,.),(,,

2
10 StvyA skDskDHG

             i← ${1,2,…,cnt}; 
             /* w.o.l.g., all R’s queried by A for G and H are distinct and  

indexed as R1,…, Rcnt.*/    
             output(Ri).      
           

(1)On each query R or (R, m,y1,y2) from A to its oracle G(.) or H(.) respectively, J0 simulates 
G or H as B does in the above; Additionally, every query from A is counted by J0 via 
increasing cnt by 1 on each query.  
(2)On each query y from A to its oracle-D(sk1,.), J0 simulates D(sk1,y) via directly applying Π’s 
decipher algorithm with its complete knowledge of the secret key sk1( when D(sk1,.) needs to 
access G and H from inside, such accesses are also processed by B in the afore-specified way). 
(3) On each query y from A to its oracle-D(sk0,.), J0 (with its PCA-oracle) simulates D(sk0,y) in 
the same way as B does in the above.  
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   Note that  is just in case of b=0. Denoting the 

probability of the event occurring in  as P

)(_
0,

kExp PCAOWE
Jaπ

)(_
, kExp CCAANO
Aπ

)(_
, kExp CCAANO
Aπ A[.], we have  

   =P[ =1]≥(1/cnt)P)(_
0,

kAdv PCAOWE
Jaπ

)(_
0,

kExp PCAOWE
Jaπ A[Z|b=0]≥1/(qg+gh)PA[Z|b=0] 

On the other hand, we construct another adversary J1 in a similar way as that of J0 
with the only difference that J1 calls A1 in the form of (M, 

St)← , i.e., exchanging pk),( 01
,.)(,.),(,,

1
01 pkpkA skDskDHG

0 and pk1’s roles. As a 

result, is just in case of b=1 and we have  )(_
1,

kExp PCAOWE
Jaπ

)(_
,

kExp CCAANO
Aπ

            =P[ =1]≥1/(q)(_
1,

kAdv PCAOWE
Jaπ

)(_
1,

kExp PCAOWE
Jaπ g+gh)PA[Z|b=1] 

So p0≡P[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=0])≤(qg+qh)( + )/2. In 

combination with the inequality ≤P[ =1]+p

)(_
0,

kAdv PCAOWE
Jaπ

)(_
1,

kAdv PCAOWE
Jaπ

)(_
, kExp CCAANO
Aπ )(__

, kExp PCAANORE
Baπ 0 we got 

before, we have  

P[ =1]≤P[ =1]+4(q)(_
, kExp CCAANO
Aπ )(__

, kExp PCAANORE
Baπ g+qh)( + ) )(_

0,
kAdv PCAOWE

Jaπ
)(_

1,
kAdv PCAOWE

Jaπ

and the final inequality can be derived directly and the time and query complexity can 
be directly verified.   □ 
    
Corollary 5.1 Let П=(KG, E, D, G, H) be REACT hybrid public-key encryption 
scheme constructed from public-key encryption scheme Пa=(KGa, Ea, Da) and 
symmetric encryption scheme Пs=(KGs, Es, Ds). If Пa is one-way secure and 
relevantly anonymous, both are against plaintext-checking attacks; Пs is secure in 
sense of Find-and-Guess, then П is secure and anonymous , both are against 
chosen-ciphertext attacks.      □ 
 
Example 5.1(PSEC-3’s anonymity against chosen-ciphertext attacks) PSEC-3 
public-key encryption scheme is provably secure(in random oracle model)against 
chosen-ciphertext attacks under the assumption of Gap-Diffie-Hellman problem’s 
hardness [13] on elliptic curves and some additional weak security assumptions on its 
symmetric encryption component. In this scheme(fig.6), just like in PSEC-1/2 it’s 
reasonable to consider the curve E/Fq, p, q and point P as (shared) public parameters 
and W as the real public-key (each individual has distinct W).  

Note that PSEC-3 is actually a REACT scheme constructed from Πa and 
(SymEnc,SymDec) where Πa=(KGa, Ea, Da) is defined in fig. 7. 
In fact this Πa is just that asymmetric component encryption scheme in 

PSEC-2(example 4.1), particularly =0(implied by 

=0). In addition, all conditions in Okamoto-Pointcheval theorem are 

)(__
,

kExp PCAANORE
Aaπ

)(__
,

kExp CCAANORE
Aaπ
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satisfied by Πa (as proved in t1he original proposal [9]), in particular Πa is one-way 
secure against plaintext-checking attacks. Combining all these facts and our theorem 
5.1, we have the following consequence on PSEC-3: 
 
Proposition 5.1 If the component symmetric encryption scheme is Find-and-Guess 
secure, then PSEC-3 is both secure and anonymous in random oracle model against 
chosen-ciphertext attacks under the assumption of Gap-Diffie-Hellman problem’s 
hardness on elliptic curves.   □   
 
 
 
    

 
 
 
 
 
 
 

 
 

Decryption algorithm D(sk,Y): 

 

Parse Y as (C1,C2, C3, C4) 

Q←sC1; 

u←C2⊕ x(Q); 

M←SymDec(G(u), C3); 

if  C4=H(u, M, C1,C2, C3 )  

then  return(M);  

else   return( ); ⊥

Encryption algorithm E(pk, M), 

M∈{0,1}+: 

  t←$Zp;  

  u←${0,1}k; 

C1←tP; 

Q←tW; 

C2←u⊕ x(Q);  

C3←SymEnc(G(u), M);   

C4←H(u, M, C1,C2, C3);  

return(C1,C2, C3, C4) 

Key generator KG(E/Fq,p,q,P): 

    

 s←$Zp; 

W←sP;  

pk←W;  

sk←s;  

return(pk, sk) 

Figure 6: PSEC-3 encryption Scheme. E/Fq is the group of an elliptic curve  
over field Fq. P is a point on E/Fq with (prime) order p. x(Q) is the x-coordinate  
of curve point Q. (SymEnc, SymDec) is a symmetric encryption scheme.  
G and H are random oracles. 

 
    

 
 
 
 
 
 
 

Encryption algorithm Ea(pk, R), 

R∈{0,1}+: 

  t←$ Zp; 

Q←tW;  

C1←tP;  

C2←R⊕ x(Q);  

return(C1,C2) 

Key generator KGa(E/Fq,p,q,P): 

    

 s←$Zp; 

W←sP;  

pk←W;  

sk←s;  

return(pk, sk) 

Decryption algorithm Da(sk,Y): 

 

Parse Y as (C1,C2) 

Q←sC1; 

R←C2⊕ x(Q); 

return(R);  

Figure 7: PSEC-3’s asymmetric component encryption scheme Πa

 
 
6  Summary 
 

In this paper some general results on anonymity in two well-known hybrid encryption 
constructions, i.e., Fujisaki-Okamoto and REACT schemes are proved, based-upon 
new and general concept of relevant anonymity. The main results are quite positive, 
and as applications well-known NISSIE schemes PSEC-1/2/3’s chosen-ciphertext 
anonymity is proved. Further work naturally along this way is to investigate more 
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other hybrid schemes, e.g, the very efficient GEM proposed recently by Coron et al.. 
Another interesting work is to investigate anonymity in other strong secure 
constructions, e.g., the IBE-based chosen-ciphertext secure public-key encryption’s 
construction recently proposed by Canetti-Halevi-Katz and Boneh-Katz. Because of 
practical usefulness of anonymity, such results will be valuable in cryptographic 
applications. 
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