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Abstract

Anonymity(key-privacy) as well as security(data-privacy) are all important features in public-key encryption
applications. In this paper two new and general concepts, named “relevant anonymity” and “relevant security”, are
defined. Based-upon these concepts some general results on anonymity in public-key encryption are proved, which
fall in three categories. The first results are two general relationships between anonymity and security; the second
are a sufficient and necessary condition for chosen-plaintext anonymity in Fujisaki-Okamoto hybrid construction
and a sufficient condition for its chosen-ciphertext anonymity; the third is a sufficient condition for
chosen-ciphertext anonymity in Okamoto-Pointcheval hybrid construction (REACT). All these conditions are also
easy-to-use criteria in practice. By examples such general consequences are applied to some specific schemes and
as a result anonymity of some well-known schemes are re-established in a simpler way. Furthermore, NISSIE

scheme PSEC-/1/2/3’s chosen-ciphertext anonymity are proved.
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1 Introduction

Anonymity as well as security are both widely-desired features in practical public-key
encryption schemes, although the former comes to get a systematic theoretical
treatment much later [3]. Intuitively, anonymity(key-privacy) guarantees that
ciphertext can effectively hide public-key under which it is produced while
security(data-privacy) guarantees that ciphertext can effectively hide the plaintext
from which it is enciphered. In addition to key-privacy per se, anonymity is also an
approach to some high level and complicated security objectives[1,2,10]. In general,
security and anonymity are orthogonal each other and a scheme with both features are
quite useful.

Although anonymity is a very general concept in all public-key cryptographic
systems and its importance has been surfacing increasingly, it gets much fewer
research than security. For example, we still have little knowledge on many
well-known public-key encryption scheme’s anonymity, although their security have
been concretely established. Furthermore, because of wide requirements on both
security and anonymity and difficulty of constructing efficient and provably secure
public-key encryption schemes, it makes sense to investigate existed provably secure
schemes’ anonymity other than construct new ones from scratch.

Among existed public-key encryption constructions, hybrid schemes constructed
from asymmetric and symmetric component encryption schemes are widely used in
practice[8,10,11,12,15]. Not only better efficiency but also stronger security can be
obtained by this construction, enhancing component encryption schemes which have
only weak security to the strongest one. For instance, Fujisaki-Okamoto hybrid
scheme[8] can provide provably adaptive chosen-ciphertext security (in random
oracle) as long as its asymmetric and symmetric encryption components have
comparatively very weak security features(one-way secure, Yy-consistent and
passive-attack-resistant), and a few other hybrid schemes also have such nice
properties[10,11,12,15]. However, despite of practical importance and good
understanding in hybrid schemes’ security, so far there’s few knowledge about their
anonymity, e.g., whether a hybrid scheme can also enhance its component’s weak
anonymity to strong one, just like it does in security? If yes, to which degree can this
enhancement reach? Answers to such questions are no doubt valuable in applications

In this paper we make a step in answering these questions, particularly with
respect to two well-used hybrid constructions, i.e., Fujisaki-Okamoto and
Okamoto-Pointcheval schemes[8,11]. A sequence of very general results are provably
established with applications to some important examples, including some new
specific anonymity results which are obtained for the first time with our knowledge.

1.1 Our Contributions
In this paper our contributions fall in three categories. Firstly, we present two new and

generic concepts, named relevant anonymity and relevant security, and prove some
general relationships between these new concepts and already well-established



concepts of anonymity and security(theorem 3.1 and 3.2). Relevant
anonymity/security are very weak and easy-to-verify properties in practice, however,
by means of them some complicated security/anonymity proofs can be significantly
simplified, as shown in examples 3.1-3.5. In these examples we re-establish some
well-known anonymity consequences about specific schemes but in a easier way. In
addition, some new and interesting results are also proved in these examples.

The concept of relevant anonymity was first introduced by Abdalla et al. in [1] in
case of IBE (only the version against chosen-plaintext attacks was formally
established in their innovative paper). Our definition 3.1 can be regarded as a
transplant to traditional public-key encryption and our theorem 3.1 can be thought of
as a counterpart to lemma 4.3 in [1]. However, the (conjugate) concept of relevant
security and its relationship with anonymity are new and we believe all these are
valuable tools in practice, just as we use in our works.

Secondly, based-on the concept of relevant anonymity we establish the strongest
anonymity for two well-known hybrid encryption constructions: Fujisaki-Okamoto
scheme and Okamoto-Pointcheval scheme(REACT hereafter). Both of them are used
in PSEC-1/2/3 schemes proposed for NISSIE[9]. In case of Fujisaki-Okamoto
scheme, we prove that the hybrid scheme is in the chosen-plaintext anonymity if and
only if the component public-key encryption scheme is relevantly chosen-plaintext
anonymous and one-way secure(theorem 4.1). Furthermore, if the component
public-key scheme is relevantly strong anonymous( but not very strong as seen in
examples) and one-way secure, the hybrid scheme can be in the strongest
anonymity( against adaptive chosen-ciphertext attacks, theorem 4.2). In case of
REACT, a similar consequence is proved(theorem 5.1). All consequences are
established in style of concrete security. In combination with the original security
results on these hybrid schemes, we can get quite weak and practical conditions to
guarantee such schemes’ anonymity and security at the same time.

Thirdly, as applications of these general consequences, we prove the famous
PESC-1/2/3 schemes’ anonymity against adaptive chosen-ciphertext attacks in oracle
model(proposition 3.1,4.1 and 5.1). With our knowledge these are the first formal
proofs about these schemes.

1.2 Outline of the Paper

After a brief overview of basic concepts, relevant anonymity/security concepts are
defined and two general theorems are proved in section 3. Fujisaki-Okamoto hybrid
scheme’s anonymity and REACT’s anonymity are investigated respectively in section
4 and 5. Section 6 concludes the paper and discusses some further works.

2 Preliminaries

In this section some basic concepts are recalled, together with some commonly-used
notations. Let X be a set, we use a—'X to denote that a is randomly selected(with
uniform distribution) from X. All algorithms are presented in pseudo-C with some



comments in style of /*...*/. Given some specific value a*, such items as (a*, b) in a
list of 2-tuples are simply denoted as (a*,.) (i.e., dot “.” means some value we don’t care),
and similar notations are used for any list of n-tuples. For example, (a*,b*,.,.,.)
denotes those items in a list of 5-tuples which first and second fields have the given
specific values a* and b* respectively. A probabilistic polynomial-time algorithm is
simply named P.P.T. algorithm.

Definition 2.1(Public-Key Encryption Scheme) A public-key encryption scheme
[NI=(KG,E,D) is composed of three P.P.T. algorithms KG, E and D. Let k be complexity
parameter, KG is the key generator which takes k as input and outputs
public-key/secret-key pair (pk, sk); E is the encryption algorithm which takes
public-key pk and plaintext M as input and outputs a ciphertext y; D is the decryption
algorithm which takes secret-key sk and ciphertext y as input and outputs a message
M. Additionally, P[(pk, sk)«—KG(k); y«<—E(pk, M): D(sk, y)=M]=1 for any k and M.

Definition 2.2(Security) Let [I=(KGE,D) be a public-key encryption scheme, k be the
complexity parameter, A=(A;,A;) be an P.P.T. adversary, ATK {CPA, CCA} and
Oracle be oracle determined by ATK. Consider the following game:

Expya - (k)

(pk, sk)«—KG(k);

(Mo, My, St)y—A, "™ (pk);
be—*{0,1};

y*«—E(pk, Mp);

de—A, O™ (y*, St);

if d=b then output 1 else output 0.

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=D(sk, .) and A
is disallowed to query its oracle-D(sk, .) on the challenge ciphertext y*. The adversary’s

advantage Adv:,’?‘AD*ATK is defined as [2P[Exprs-""™(k)=1]-1]. II is said secure

against adaptive chosen-plaintext(respectively, chosen-ciphertext) attacks if

Adv 'Y -PA (respectively, Adv)'e-““) is a negligible function in k for any P.P.T.

adversary A. Denote the adversary’s advantage Adv!"°-A™ (k)= Aggng.Advz':'E—ATK k),
a function in k. Whenever the advantage is regarded as a function of computational

IND _ATK
T

time t and number of oracle queries q, we use the notation Adv (t,q) instead

of Adv"°-*™ (k). Because we only concern about adaptive adversary hereafter, we

will simply omit the adjective “adaptive” for brevity.

Definition 2.3(Anonymity)Let [I=(KGE,D) be a public-key encryption scheme,



A=(A,A;) be an PPT. adversary, ATK {CPA, CCA} and Oracle be oracle
determined by ATK. Consider the following game:

Exp?f}o* ATK gy

(pko, sko), (pki, ski)«—KG(k); /*run KG(k) two times independently*/
(M, St)—A, ™ (pko, pky);

be—*{0,1};

y*—E(pky, M*);

de—A, O™ (y*, St);

if d=b then output 1 else output 0.

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sko, .),
D(skj, .)) and A is disallowed to query anyone of D(sky, .) and D(skj, .) on y*. The

adversary’s advantage Adv2C-A™ is defined as |2P[Exp\>-"™ (k)=1]-1]. II is
said anonymous against adaptive chosen-plaintext(respectively, chosen-ciphertext)

attacks if Adv°-“"* (respectively, Adv.'’-“*)is a negligible function in k for any

PP.T. adversary A. Denote Adv2VO-ATK (k)= max. Adv2NC-AT k), a function in k.

Whenever the advantage is regarded as a function of computational time t and number
of oracle queries q, we use the notation AdvAN°-A™(t,q) instead of Adv No-ATK(k),

and we will simply omit the adjective “adaptive” for brevity.

3 Relationships Between Anonymity and Security

Abdalla et al presented the concept of relevant anonymity for identity-based
encryption(IBE) scheme in [1] and used it as a sufficient condition for a secure IBE
scheme to be anonymous:. Here we transplant this concept to traditional public-key
schemes and prove a similar result. In addition to this, we also develop an conjugate
concept, relevant security, and prove its sufficiency for a anonymous public-key
encryption scheme to be secure. Relevant anonymity and relevant security are
properties strictly weaker than their non-relevant counterparts but easy to check in
practice. These results present some interesting and useful relationships between
security and anonymity, which will be used as helpful tools frequently in our works.

3.1 Relevant anonymity and its relationship with security

Definition 3.1(Relevant Anonymity) Let [I=(KG, E, D) be a public-key encryption
scheme, A=(A;,A;) be a P.PT. adversary, ATK {CPA, CCA} and Oracle be oracle

1 [1] Only gives the concept in case of chosen-plaintext attacks which is adequate for their objectives.
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determined by ATK. Consider the following game:
Exp RE_ANO _ATK (k)
A .

(pko, sko), (pki, ski)«—KG(k); /*run KG(k) two times independently*/

(M, St)—A; " (pko, pky);

M<—${0,1}‘M*|; /*randomly generate a valid message M in the same size as M*.*/
be*{0,1};

y*—E(pkp, M);

de—A, O™ (y*, St);

if d=b then output 1 else output 0.

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=(D(sko, .),
D(skj, .)). In contrast to the concept of (non-relevant) anonymity, A is allowed to
query its oracles D(sky, .) and D(sk;, .) on the challenge ciphertext y*. The adversary’s

advantage Advi,-""O-ATC is defined as |2P[Expi-A"O-A™ (k)=1]-1] or equivalently
|[P[d=0|b=0]-P[d=0b=1]]. We say that II is relevantly anonymous against

chosen-plaintext(respectively, — chosen-ciphertext) —attacks if  Advy, "N~

(respectively, AdvEE-"NO-°“4) s a negligible function in k for any P.P.T. adversary A.
We denote (Jnax. AdvE,E,; ANO_ATK a5 AdvRE-ANO_ATK " \Whenever the advantage is

regarded as a function of computational time t and number of oracle queries q, we use the
notation Adv:E-"NO-AT(t,q) instead of AdviF-""°-A™(k), and we simply omit the

adjective “adaptive” for brevity.

Its easy to prove that IT’s anonymity implies its corresponding relevant anonymity,
i.e., relevant anonymity is weaker than anonymity. On the other hand, relevant
anonymity in combination with security can imply (strong) anonymity, which is
exactly presented in the following theorem.

Theorem 3.1. Let [I=(KG, E, D) be a public-key encryption scheme which is secure
against chosen-plaintext (respectively, chosen-ciphertext) attacks . If II is also
relevant anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks,
then IT is anonymous against chosen-plaintext(respectively, chosen-ciphertext)
attacks. Concretely, we have

AdV,';“NO*CPA(t) < Adv;&EfANOfCPA(t)+2AdV7I[ND70PA(t)

AdvANO-CCA(t ) < AdvRE-ANO-CCAt q)+ 2 Adv!NP-CCA (£ +O(qT, ), q)

where T4 is computational time of decryption algorithm D.

Proof. We only prove the case of chosen-ciphertext attack. The case of



chosen-plaintext attack can be done following almost exactly the same logic(but more
easily). Suppose A=(A},A;) is an P.P.T. adversary cracking II’s chosen-ciphertext
anonymity. We construct an PPT adversary B*=(B;,B,) cracking II’s
chosen-ciphertext security as the following. Consider the game:

Exprg-“A(k):

(pko, sko) «—KG(k);
(Mo, My,St)«—B; X% )(pko) where By is implemented as:
(pki, ski)—KG(k);
(M*, Sta) A" P (pk, pk);
Mo—M*; M {0, 1M, Ste—Sty|[pk|Iski;
return(M,, My,St);
be*{0,1};
y*<—E(pko, My);
de—B, ¢k ')(y*, St) where B, is implemented as:
parse St as Stal[pk;||sk;
de— A PO DERL) (g gt
return(d).
if d=b then output 1 else output 0.

In this game, B simulates oracle D(sky, .) via its own oracle and simulates oracle
D(sk;,.) via direct decipher computation based-on its possession of sk;. Such

simulation is obviously perfect.

It’s straightforward to verify that Expil[’t‘g -®“A(k) in case of b=0 is just equivalent

to Exp-““*(k) in case of b=0, and Exp]g-“““(k) in case of b=I is equivalent

to Expl"N"O-“A(k) in case of b=0. On the other hand, we can construct another

P.P.T. adversary C*=(C,,C,) cracking IT’s chosen-ciphertext security in very similar
way as that of B*, with the only difference that C;°®)(pko) calls A, in the way of
A, PO DEKOY (5 ko), i.e. exchanging the roles of pko and pk;. As a result,
Exprc-““*(k) in case of b=0 is equivalent toExp.,’-““*(k) in case of b=1 and

IND_CCA RE _ANO_CCA
- NS

EXp, ¢ (k) in case of b=1 is equivalent to Exp in case of b=I.

Therefore:

Adv g~ k) = PIExp) g - ““A (k) =1]b=0]- P[Exp g -““A(k)=1|b=1]|

= PIExp >~ (k) =1]b = 0]- P[Exp 5 "0 -A (k) =1|b =0]|

Adv "S- k) = PIExp O - (k) =1|b=0]- P[Exp} ¢ -“A(k)=1|b=1]|



= PIExp -4 (k) =1|b =1]- P[Exp 5 ANO-CA (k) = 1| b =1] |
Then Adv)g-“A(k)+ AdvE-““ (k)
=| P[Exp. - A (k) =1]b=0]- P[Exp 5 "0~ k) =1|b=0]|
+] PIExp>-CA (k) =1]b=1]- P[ExpR5-A"-Ak) =1|b=1] |
= Adv2\0- (k) - AdvS5 AN k), namely,

AdvANO-CA () = AdyFE-AH0CEA ) ¢ Agy N2 -COA ) 4 Ay DA k)

The theorem’s inequality can be derived directly and the adversary’s time complexity
can be easily verified. [

In practice theorem 3.1 is an easy-to-check sufficient condition for a secure
public-key encryption scheme to be anonymous, and can be used to simplify
anonymity proofs based-upon already known security consequences.

Example 3.1(ElGamal scheme’s anonymity against chosen-plaintext attacks)
ElGamal scheme is provably secure against chosen-plaintext attacks under the
assumption of decisional Diffie-Hellman problem’s hardness[7]. Furthermore, its
anonymity can be derivedfrom its security and theorem 3.1.

key generator KG(q,g): Encryption algorithm E(pk, M),  Decryption algorithm D(sk, (Y,W)):
M G:
x —Z,; re"Z; T—Y%
Xe—gh; Yegh M<—W/T;
pk(q,g,X); T—X" return(M)
sk—(q,.%); WTM;
return(pk, sk) return(Y, W)

Figure 1: ElGamal Scheme. G is a prime-order(q) group with generator g.

It’s straightforward to observe that for any adversary A inExp} 5 ""°-“"A(k) when A,

is provided with the challenge ciphertext (Y, W), where W=TM and M is selected at random and
independent of the message M* output by A;(pko,pk;)(the only relationship is that [M|=|M*|), Xo"
M and X;'M have exactly the same distribution from A,’s perspective. As a result,

AdvRE-ANO-CPA() =0. Applying theorem 3.1 to this observation we get ElGamal

scheme’s anonymity against chosen-plaintext attacks under the assumption of
decisional Diffie-Hellman problem’s hardness. The same result was directly proven in

[3].



An interesting aspect of ElGamal scheme is that it is NOT anonymous against
chosen-ciphertext attacks . We’ll have an explanation for this in next subsection.

Example 3.2(Cramer-Shoup scheme’s anonymity against chosen-ciphertext attacks)
Cramer-Shoup scheme is provably secure against chosen-ciphertext attacks under the
assumption of decisional Diffie-Hellman problem’s hardness [6]. Its anonymity
against chosen-ciphertext attacks can be also derived from its proven security and
theorem 3.1 via an analysis very similar as example 3.1.

Before we proceed to analyze Cramer-Shoup scheme’s anonymity, we explicitly
present a convention that we regard K, g; and g(fig.2) only as public parameters
instead of public-key components. This means that anonymity in Cramer-Shoup
scheme only concerns c,d and h. This convention is reasonable because g;,g, and K
are shared by all users of this scheme and only c,d and h are independently generated
and designated to each individual. In fact, the original proof in [2](refer to the
adversary’s construction in [2]’s appendix B.1) was also carried out implicitly in this
opinion. We’ll follow this convention in other examples and in each example we will
explicitly point out the public (shared) parameters and (individual) public-keys.

Coming back to Cramer-Shoup scheme’s anonymity, the critical point is that for

any adversary A in EXpE’EA—ANO—CCA(k) when A, is provided with the challenge ciphertext

Y*=(uy,uze,v), where e=h'M and M is selected at random and independent of the message M*
output by A;(pko,pk;)(the only relationship is that [M|=|M*|), (u;,uz,e,v) in case of pky and pk;
have exactly the same distribution from A;’s perspective, even if A, queries its decryption oracles

D(sko,.) and D(skj,.) on Y*(recall that in EXpE’EA—ANO—CCA(k) the adversary A is allowed to

query its decryption oracle on the challenge ciphertext). As a result, Adv ,F:’EA* ANO_CCA () =0 and

the anonymity against chosen-ciphertext attacks follows.

Key generator KG(q,81,82.K): Encryption algorithm E(pk, M), Decryption algorithm D(sk,Y):
g8, M G:
X1X0:Y 1Y 2, Z—Zg; r—Z; Parse Y as (uj,upe, v)
cgMg de—g'gr”; ueg); g’ T—Hg(uy,up,e);
heg/* e«Mh'; If =y g,
pk«(c.d,h); T« Hg(u;,use); Then M«e/u/%
ske—(X1,X2,¥1,Y2, 2); V<—crdrT; Else M« 1;
return(pk, sk) return(u;,uy,e, v) return(M)

Figure 2 Crammer-Shoup Scheme: G is a prime-order(q) group with generator g.

The above examples just repeat some already-known anonymity consequences in
public-key encryption but regain them in a simple way. In example 3.3 we’ll obtain a
new anonymity result(with our knowledge so far)on a well-known scheme, PSEC-1,



proposed for NISSIE[9].

Example 3.3(PSEC-1 scheme’s anonymity against chosen-ciphertext attacks) PSEC-1
public-key encryption scheme is provably secure(in random oracle model)against
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman
problem’s hardness on elliptic curves. In this scheme(fig.3), it’s reasonable to consider
the curve E/Fq, p, q and point P as (shared) public parameters and W as the real
public-key (each individual has distinct W).

Key generator KG(E/Fq,p,q,P): Encryption algorithm E(pk, M), Decryption algorithm D(sk,Y):
M {01}

sZp; r<—$Zp; Parse Y as (C4,Cy)

WesP; te—H(M|[r); /*r used as a string*/ Q—sC;;

pke—W; Qe—tW; u—C, D x(Q);

ske—s; CtP; parse u as M||r;

return(pk, sk) Cr—MIr) @ x(Q); if C,=H(u)P
return(C;,C,) Then return(M);

Else return(_L);

Figure 3 PSEC-1 encryption Scheme: E/F is the group of an elliptic curve
over field Fy . P is a point on E/F, with (prime) order p. x(Q) is
the x-coordinate of curve point Q. H is a random oracle.

For any adversary A in EXpE’EA— ANO_CCA(K), A, is provided with the challenge ciphertext

Y *=(C,,C,), which equals (tP, R ® x(tWy)) or (tP, R @ x(tW))) respectively in case of pk, or pk;
where R=M|jr and M is selected at random and independent of the message M* output by
A1(pko,pki)(the only relationship is that |M|=|M*|). Note that for any b {0,1} we have (tP,
R ®x(tWp))=(tP, R’ ® x(tW)) where R’=R ® x(tW,) @ x(tW,), i.e., R and R’ have exactly
the same distribution from A,’s perspective even if A, can get the plaintexts (R and R’
respectively) via querying its decryption oracle D(sky,.) and D(sk;,.) on Y*. This implies

that Adv - ""°-““ (k) =0 unconditionally and the anonymity against chosen-ciphertext

attacks follows.

Proposition 3.1 PSEC-1 is both secure and anonymous in random oracle model
against chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman
problem’s hardness on elliptic curves. 1

3.2 Relevant security and its relationship with anonymity

In this section we develop a concept conjugate to relevant anonymity, which is not
only useful in our works but also independently valuable in practice.
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Definition 3.2(Relevant Security) Let II=(KG, E, D) be a public-key encryption
scheme, A=(A},A;) be an P.P.T. adversary, ATK {CPA, CCA} and Oracle be oracle
determined by ATK. Consider the following game(Note: to emphasize that two
public/secret key pairs in this game are generated under the same public parameters,
we use Sp to explicitly represent this fact in all necessary places. This cumbersome
representation will be omitted hereafter):

Exp:’EAf IND_ATK ()

(pk*, sk*)«—KG(sp, k); /*sp is public (shared) parameters, refer to example 3.2 */

(Mo*, My*, St)y—A, " (sp, pk*);

(pk, sk)«—KG(sp, k); /*randomly generate another public-secret key pair (pk, sk)
under the same parameter sp.*/

be—*{0,1};

y*<—E(sp, pk, Mp*);

de—A, O™ (y*, St);

if d=b then output 1 else output 0.

In case of ATK=CPA, Oracle is empty; in case of ATK=CCA, Oracle=D(sk*, .),
Similar to the case of relevant anonymity, A is allowed to query its Oracle on the

IND_ATK

challenge ciphertext y*. The adversary’s advantage Adv::,EA* is defined as

| 2P[Expfo-""P-AT¢ (k) =1]-1| or equivalently [P[d=0|b=0]-P[d=0|b=1]|. We say that IT is

relevant secure against adaptive chosen-plaintext(respectively, chosen-ciphertext)

attacks if Advi5-"™°-"A(respectively, Advi,-""P-““*) is negligible in k for any P.P.T.
adversary A. We notate max Adv o-"P-ATK a5 AQVRE-NP-ATK and have similar
AcP.P.T. ’ ’

- RE_ANO _ATK
conventions as those for Adv " -7 .

Its easy to prove that IT’s security implies its corresponding relevant security, i.e.,
relevant security is weaker than security. Similar as the case of relevant anonymity,
relevant security in combination with anonymity can imply (strong) security, which is
exactly presented in the following theorem.

Theorem 3.2. Let [I=(KG, E, D) be a public-key encryption scheme which is
anonymous against chosen-plaintext(respectively, chosen-ciphertext) attacks. If IT is
relevant secure against chosen-plaintext(respectively, chosen-ciphertext) attacks, then
IT is secure against chosen-plaint(respectively, chosen-ciphertext) attacks. Concretely,
we have

Adv/l[NDfCPA(t) < AdV§E7INDicPA(t)+2Adv£N07CPA(t)

Adv/l[NDfCCA(t,q) < Adv;&EleDfCCA(t’q)_}_zAdV?NOiCCA(t’ )

11



where T4 is computational time of decryption algorithm D.

Proof. For the same reason as in the proof of theorem 3.1, we only prove the
(comparatively more complicated )case of chosen-ciphertext attack. Suppose
A=(A;,A;) is an PPT. adversary cracking IT’s chosen-ciphertext security. We
construct an P.P.T adversary B*=(B,,B,) cracking II’s chosen-ciphertext anonymity as
the following. Consider the game:

Exprg - (k):

(pko, sko), (pki, ski)«—KG(sp, k); /*sp is the public (shared) parameter.*/
(M*, St)«—B,PEk0-)-D6kL) (o ki pky) where By is implemented as:
(Mo*, My, St)—A,""* (sp, pko);
M*«—My;
return(M*, St);
b*{0,1};
y*<—E(sp, pke, M*);
de—B,PER0 - DEKL (w3 Sty where B, is implemented as:
de—A;" (y%, S0);
return(d);
if d=b then output 1 else output 0.
In this game, B simulates oracle D(sky, .) via its own oracle and such simulation is

obviously perfect.

It’s straightforward to verify that Exp.y’>-““*(k) in case of b=0 is equivalent to

Expia-““"(k) in case of b=0 and Exp/°-“““(k) in case of b=I is equivalent to

ExpL "0-““A(k) in case of b=0. On the other hand, we can construct another P.P.T.
adversary C*=(C,,C,) cracking IT’s chosen-ciphertext anonymity in a very similar
way as that of B*, with the only difference that C;"***)(pky, pk;) calls A; in the way

of A" ")(sp, pk;)(correspondingly C simulates A’s oracle D(skj,.) with its oracle

D(ski,.)) and set M* to M *. As a result, Exp/'>-““*(k) in case of b=0 is equivalent to

IND_CCA ANO _CCA

S (k) in case of b=1 and Exp,">-““*(k) in case of b=1I is equivalent to

Expya-““"(k) in case of b=1. Therefore:

Adv2E - k) = PIExpe" - ““A (k) =1]b = 01— P[Exp. s>~ “A(k)=1|b=1]]|
=| PLEXp R - (k) =1]b = 0] - P[Exp - "= (k) = 1] b= 0]

T, A

Adv2-“A (k) = PIEXp - A (k) =1|b = 0]- P[Exp/e>-““A(k)=1|b=1]|
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_| P[EXpRE IND CCA(k) =1 ‘ b= 1] [EXD,IZNE CCA(k) =1 | b= 1] |
Then AdvA’\,‘3O CCA (k) + AdvANo CCA (k)
=| P[Exp, " (k)=1]b=0] - P[Exp 5 "P-“Ak)=1b=0]|
+ PIEXp R "= k) =1|b=1] - P[Exp s -““A (k) =1]b=1]|
= Adv'R - A (k) - AdvEE-NP-CA k) | namely,

AdVIND CCA(k)<AdVRE IND CCA(k)+AdVANO CCA(k)+AdVANO CCA(k)

7,A

The theorem’s inequality can be derived directly and time complexity can be easily
verified. [

Alike theorem 3.1, theorem 3.2 presents an easy-to-check sufficient condition for a
anonymous public-key encryption scheme to be secure, which can be used to simplify
security proofs based-upon already known anonymous consequences. The concept of
relevant security can be also ported to IBE schemes and theorem 3.2 is still true in
that case.

Example 3.4(Example 3.1 continued): ElGamal scheme is not anonymous against
chosen-ciphertext attacks. In fact an analysis very similar as in example 3.2(for

RE IND _CCA

Cramer-Shoup scheme)can derive that Adv; (k) =0 for any adversary A. If

ElGamal scheme is really anonymous against chosen-ciphertext attacks, by theorem 3.2 it
would be secure against chosen-ciphertext attaks, however, the consequence is
actually false because of ElGamal scheme’s malleability. This contradiction shows
that ElGamal scheme is anonymous only against chosen-plaintext but not
chosen-ciphertext attacks.

Example 3.5(Example 3.2 continued) It’s not hard to observe that in Cramer-Shoup

RE IND _CCA

scheme Adv, (k) =0 for any adversary A. Since this scheme’s anonymity

against chosen-ciphertext attacks is provably true [3], we can derive its security
against chosen-ciphertext attacks under the same computational hardness assumption
by combining the consequence in [3] and our theorem 3.2. In the style, some
complicated proofs can be saved. The same thing holds for PSEC-1 too.
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4  Anonymity of Fujisaki-Okamoto Hybrid Scheme

4.1 Fujisaki-Okamoto Hybrid Scheme

Fujisaki-Okamoto hybrid scheme[8] I[I=(KG, E, D, G, H) is constructed from
public-key encryption scheme IT'=(KG®, E° D), symmetric encryption scheme
ITI’=(KG®, E®, D®) and two random oracles G, H. KG=KG?®. The encryption algorithm is
defined as E(pk,M)=E’(pk,o; H(c|M))||[E’(G(o),M) whereais randomly selected
and H(o |[M) plays the role of random seed in encryption computation. The
decryption algorithm D(sk,y) woks as the following:

parse y as yil[y2;

o - D(sk,y1);

M—D(G(0).y»);

if y;=E*(pk,o; H(c|[M)) then output(M) else output( L)

To proceed with our discussion we need one more concept related to the hybrid
construction. A plaintext-checking oracle PCAg(.) takes plaintext-ciphertext pair
(M,y) as input, outputs 1 if M=D(sk,y) and 0 otherwise. Let ATK € {CPA,PCA, CCA},
Oracle be oracle determined by ATK, which is empty for CPA, PCA(.) for PCA and
Dg(.) for CCA. Consider the following game:

OWE _ ATK
sy (K

Exp

(pk, sk)«—KG(k);

Randomly select 6* from M*’s message space;
y*<—E (pk, 0*);

o' 17" (pk, y*);

if(c"=c* ) then output 1 else output 0.

In case of ATK=CCA, J is disallowed to query on its challenge ciphertext y*(but in
case of PCA, this event is allowed). Public-key scheme IT* is said one-way secure
against chosen-plaintext, chosen plaintext-checking or chosen-ciphertext attacks
respectively if for any P.P.T. adversary J the corresponding game can output 1 only

with a negligible probability in k. Such probability is notated as Advoy-*™ (k)

and Adv,(,)WEJ\TK (k)EJrr;elleT Adv,(i\’J\'E—ATK (k). In this whole section only one-way security
er.r.l.

against chosen-plaintext attacks is needed so we simply name it “one-way secure” as shorthand.

Fujisaki-Okamoto hybrid scheme can strongly enhance its component schemes’
security, which is exactly proved in their original paper[8](In our following work the
asymmetric scheme’s y-uniformity and symmetric scheme’s find-and-guess security
are not used, so no explanations on them are given in this paper).
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Fujisaki-Okamoto Theorem Let I[I=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid
public-key encryption scheme constructed from public-key encryption scheme
I1"=(KG", E*, D% and symmetric encryption scheme IT'=(KG®, E°, D%. If IT" is
one-way secure and y-uniform where vy is negligible in k, IT° is secure in sense of
Find-and-Guess, then IT is secure against chosen-ciphertext attacks.

4.2 A Sufficient and Necessary Condition for Anonymity against
Chosen-plaintext Attacks

Before exactly presenting our results we need to specify a property of
well-constructed public-key encryption schemes.

Definition 4.1(regular encryption)A public-key encryption scheme I[I=(KG, E, D) is
defined as regular if for any message-pair (Mo,M;) the probability 5 . (k) =P[(pk,

sko),(pki, ski)—KG(k): E(pko,Mo)=E(pk;, M;)] is negligible in complexity parameter k.

Regularity is a good property possessed by almost all practical public-key schemes,
e.g., ElGamal and Cramer-Shoup schemes(for instance of ElGamal scheme,

E(pko,Mo)=E(pki, M) iff gf[gi*M, =g/ |9 M,.Since r and r’ are selected at

random and independently,s_ . (K =P[ g [g;°M,=g{ [l9/ "M, I<P[ g =g/ ]=1/q

which is obviously negligible in complexity parameter k(=log,q). The same analysis is
also true for Cramer-Shoup scheme).

Theorem 4.1 Let II=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid public-key
encryption scheme constructed from regular public-key scheme IT°=(KG", E*, D) and
symmetric encryption scheme II'=(KG®°, E°, D°). II is anonymous against
chosen-plaintext attacks if and only if II" is relevant anonymous against
chosen-plaintext attacks and one-way secure.

Remarks: Conditions in the theorem only concerns the component public-key
scheme II"’s weak anonymity(RE ANO CPA) and its weak security(OWE). As
Fujiksaki-Okamoto theorem states, OWE(together with other weak properties) leads
to the hybrid scheme’s strong security, i.e., IND CCA(in fact even stronger than that:
plaintext-aware in random oracle model as shown in their original paper). Therefore,
for applications where both anonymity and security are desired conditions in theorem
4.1 is weak and practical.

In the following proof, the adversary’s advantage is denoted as

{RE _ANO _CPA,ANO _CPA RE _ ANO_CCA,ANO _CCA
Adv & - AN - (q,, Adv{RE-ANO- A (ay.

g,,t) or 0n,0q,t) where qg,

Gn, qa are number of queries to G, H and decryption oracles respectively. Theorem 4.1 comes
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from the following three lemmas.

Lemma 4.1 If IT is relevantly anonymous against chosen-plaintext attacks, then IT*
is also relevant anonymous against chosen-plaintext attacks. Concretely,

Adv:ﬁEfANOfCPA = Adv,F;EfANOfCPA(O’O,t) '

Proof  Suppose A=(Aj,A;) is an P.P.T. chosen-plaintext adversary cracking IT*’s
relevant anonymity, we construct a P.P.T chosen-plaintext adversary B"=(B,B,)
cracking IT’s relevant anonymity. B has access to random oracles G and H. Consider
the following game:

ExpiF:,Eg ANOiCPA(k) :

(pko, sko), (pki, ski)—KG(k);
(M*, St)<—BlG’ " (pko, pk) where B is implemented as:
(T*, Sta)—Ai(pko, pki);
randomly select M* froml1’s message space;
return(M*, St);
be*{0,1};
randomly select M froml'1’s message space and in the same size of M*: |[M|=|M*|;
randomly select Ofrom IM®s message space;
/*ois used in the hybrid encryption and comes from the same space in whicha*
resides. In particular, |o|=|c*|.*/
y*E'(pky, 0, H(O|M))]| EX(G(0),M);
dB,¢ l'[(y*, St) where B, is implemented as:
parse y* as y'||y’;
deAy (¥, St);
return(d);
if d=b then output 1 else output 0.

Note that in Exp}g-""°-“"(k)for any b {0,1} the challenge ciphertext y*= E*(pks,O,

H( o |M)) as input to A, has exactly the same distribution as that

in Exp ,';Ea A ANO - _PA (k) in the same case of b. Therefore, Adv;%—ANO—CPA(k) =

2 PIExp MO0 =11 -1 = 2 PIExp "S- MO-A () =11 -1] = Adv™E"MO-A(k) . The

theorem’s inequality can be directly derived from this result. [

Lemma 4.2 If IT is anonymous against chosen-plaintext attacks and IT"is regular,
then IT" is one-way secure. Concretely,

AdvOE-PA(t) < AdvANO-PA (g, 4, Ot + T ) +6 4 (K)

where q,=0, qu=2, T_.is II*’s computation time of its encryption algorithm.
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Proof Suppose J is an P.P.T. adversary cracking I1*’s one-way security, we construct
a PP.T chosen-plaintext adversary A'=(A|,A,) cracking IT’s anonymity. A has access
to random oracles G and H. Consider the following game:

EXpQ’I\LO*CPA(k):

(pko, sko), (pki, ski)—KG(k);
(M*, St)<—A1C" H (pko, pky) where A is implemented as:
randomly select M* froml1’s message space;
St—M*|| pkol[pk;
return(M*, St);
be—*{0,1};
randomly select 6* from [M%s message space;
y*E'(pky,0*; H(c*|[M*))|| E*(G(c*),M*);
de—A, % H(y*, St) where A; is implemented as:
parse y* as y°||y"; parse St as M*||pko||pk;
SoJ(pko, ¥);  o1e=J(pki, ¥°);
it E*(pko,oo; H(oo[M*))=y"
then d<0;
else if E%pky,0;, H(cy|[M*)=y"
then d«1;
else  d%{0,11;
return(d);
if d=b then output 1 else output 0.

Denote the probability in ExpNC-“"*(k) as P[] and the probability in Exp%E (k) as P[].
p Yy z,A p y

7,

By A’s specification we have
PA[d=0[b=01=PA[E"(pko,c0;H(c0|[M*))=y"| y*  E"(pko,c*)]+
+ (1/2) P[E"(pko,oo; H(oo[M*)#y*  E*(pk;,01; H(o1|[M*))#y" | y*  E'(pko,o*)]
=Pily* E%(pko,0™): J(pko, y*)=D"(sko, y*)]
+(1/2) Pyl (pko, y)#D"(sko, y*)  J(pki, y)#D"(ski, y*) | v*  E'(pko,c™)]
PA[d=0]b=11=PA[E"(pko,G0; H(co| M*))=y"| y* E'(pk;,c*)]
+ (1/2) P[E"(pko,0o; H(oo[M*)#y*  E*(pk;,01:H(o1|[M*))#y" | y*  E(pki,6%)]
= P[(pko, sko),(pki, ski) are randomly selected: Ea(pko,co; H(Go||M*))=Ea(pk1,G*; H(c*|M*))]
+ (1/2) Pi[J(pko, y)#D"(sko, y*)  J(pki, y)#D sk, y*) | v* E'(pki,06%)]

<68 . (k) + (1/2) Py[J(pko, y)#D"(sko, y*)  J(pki, y)#D(sk1, y*) [ y*  E*(pki,6%)]

where s . (k) is IT"’s regularity advantage(since H is a random oracle). Note that (pko,
,, g y g p

sko) and (pki, sk;) are randomly and independently generated so Py[J(pko,y")#D"(sko,y")
J(pki, yH#ED(skiy") | y" E'(pko,o*)=PilJ(pko,y }#D"(sko,y")  J(pki, y)#D(skiy”) | y*
E*(pk;,0%)]. Therefore:

Adv/NO-CPA (1) =| Po[d=0b=0] - PA[d=0[b=1]|
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= Pily"  E(pko,c*): J(pko, y")=D"(sko, y")1 =5 « (K) |
OWE CPA
zAdv”a’J (k) -6 . (k). namely

Adv 2= (k) < Adv-SFAK) + 6 ()

which derives the lemma’s inequality and the time complexity can be directly verified
according to A’s specification. [

Lemma 4.1 and lemma 4.2 proves the necessity of I1"’s one-way security and relevant
anonymity against chosen-plaintext attacks. Next lemma proves its sufficiency.

Lemma 4.3 If II" is one-way secure and relevantly anonymous against
chosen-plaintext attacks, then IT is anonymous against chosen-plaintext attacks.
Concretely,

AdV?NO*CPA(qg,qh,t) = AdvjffANOfCPA(t) +(qetan) AdeWEfCPA(t)

Proof Suppose A=(A;,A;) is an P.P.T. chosen-plaintext adversary cracking II’s
anonymity, we construct a P.P.T chosen-plaintext adversary B*=(B,,B,) cracking IT*’s
relevant anonymity. A needs access to random oracles G and H. Consider the
following game:
;F:E,E ANO _CPA K):

(pko, sko), (pki, ski)—KG(k);

(6°, St)—Bi(pko, pki) where B; is implemented as:

Exp

Both G-list and H-list are initialized to be empty;
Randomly select 6° fromM®’s message space;
Randomly select g’ fromI1°’s key space;
(M*, Sta)—A;*"(pko, pk);
SteStal[M*||o”l|g";
Return(co, St);
be—{0,1};
Randomly select h* from ™s coin space;
Randomly select 6* from IM®s message space; /*It’s the same space as
from which ¢”is generated. In particular, |o*|=|c°|.*/
y*«E"(pkp,*; h*)
d<B; (y*, St) where B, is implemented as:
parse St as StA||M*||GO||gO;
VE—E'(g’, M¥);
A"y ¥|Iv¥, Sta);
return(d);
if d=b then output 1 else output 0.

B carries out simulation as follows.

18



On each query O from A to oracle G(.), B does:
If there exists (o,g) in G-list
Then return(g)
Else randomly select g froml1°’s key space;
Insert (o,g) in G-list;
Return(g);

On each query (o,m) from A to oracle H(.), B does:
If there exists (o,m,h) in H-list
Then return(g)
Else randomly select h fromlM®’s coin space;
Insert (o,m,h) in H-list;
Return(h);

Define an event Z as that there exists an item (c*,.) in G-list or (c*,.,.) in H-list. Let p,

be P[Z]. According to B’s specification we have P[ ExpRE-ANO-CPA) =1 7]

7%.B

=P[ Exp”NO-CPA (k) =1], so P[ ExpRE-ANO_CPA(k) =1] > P[ ExpRE-ANO-CPA(y=1| Z]P[ Z]

z,A 7%,B 7%,B

=P[ExpFE-ANC-PA(ky=1]  Z](1-po) =P[ Exp X" (k) =1]-po, hence

72,8

PLExp, - (k) =1]< P Exp 55 - () =1] + py.

Furthermore, p,can be estimated by constructing two P.P.T. adversaries Jy and J;
based-on A to crack IT*’s one-way security. Consider the game:

OWE CPA /|,\ .
z{J& (k)'

(pko, sko)—KG(k);
Randomly select 6* from IM"’s message space;
y*—E'(pko, 6%);

o’ —Jo(pko, y*) where Jy is implemented as:

Exp

cnt«—0;

(pki, ski)—KG(k);

Randomly select g* from I%’s key space;

M, Sty—A,* (pko, pki);

VI—E(g*, M);

de—=A % (y* |V, Sb);

i—%{1,2,....cnt};

/* w.o.l.g., all 6’s queried by A for G and H are distinct and
indexed as o,..., Ot */

output(c;).

On each query o or (o,m) from A to its oracle G(.) or H(.) respectively, Jy simulates G
and H as B does in the above; Additionally, every query from A is counted by J, via
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OWE _CPA

the variable cnt. Note that Exp . 30

(k) is just Exp""?-“"(k) in case of b=0.
Denoting the probability of the event occurring in  Exp*™0-“" (k) as P[], we have

Adv 2P () =PLEXp " - (K) =11=(1/ent)PA[Z]b=0]=PA[Z|b=0)/(qs 1)

On the other hand, we can construct another adversary J; in a similar way as that of Jy
with the only difference that J; calls A; in the form of (M, St)—A,;%"(pk, pko), i.e.,

OWE _CPA

exchanging pko and pk;’s roles. As a result, Exp o

(k) is just Exp "M -"4 (k) in case

of b=1 and we have

AdvOE-CPA (k) =P[ Exp e~ "2 (k) =11>PA[Z|b=11/(q.*qy)

7?31 72,31

So  p=P[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=0])<(cnt/2)( Adv2"*-*(k) + Adv®'=-“(k) )

72,30 7?31

<((qerany/2)( AV + AV (k) ). In combination  with  the

inequality Exp,"y’~“"* (k) < P[ Exp"F - - (k) =1] + po we got before, we have:
P[ EXpANO CPA(k) :1]

< P[ EXp RE _ANO CPA(k):1]+(1/2(qg+qh))( AdVOWE*CPA(k)‘l‘ AdVOWE CPA(k))

72,30 7,1

and the lemma’s final inequality can be derived directly. [
4.3 A Sufficient Condition for Anonymity against Chosen-ciphertext Attacks

Theorem 4.1 shows that Fujisaki-Okamoto’s hybrid scheme also has a good
enhancement in anonymity, although not as good as its enhancement in security. A
further question is that which kind of anonymity of the component public-key scheme
can be enhanced to the strongest one, i.e., anonymity against chose-ciphertext attacks?
Theorem 4.2 presents such a condition and this theorem can be regarded as a
generalization of lemma 4.3 to the case of chosen-ciphertext attacks. Its proof logic is
somewhat like that of lemma 4.3 and its special difficulty comes from how to
simulate IT’s decryption oracle by IT”’s one-way security cracker, which is solved
essentially by IT’s knowledge extractor.. As remarks on theorem 4.1, conditions in
theorem 4.2 are weak and practical for applications where both security and
anonymity of the hybrid scheme is desired.

> The same idea was originally used by Fujisaki and Okamoto to prove that their hybrid scheme is in fact
plaintext-aware(in oracle model). The decryption simulation in our proof is essentially the same as that in [8].
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Theorem 4.2 If IT" is one-way secure(against chosen-plaintext attacks) and relevantly
anonymous against chosen-ciphertext attacks, then II is anonymous against

chosen-ciphertext attacks. Concretely, Adv,N°-“*(q,,q,.04.1) <

AdvE-ANO-CA gy t+O(dg)) Hagtan) AdV S (t+O(g, +1,)dy)

Proof Suppose A=(Aj,A;) is an P.P.T. chosen-ciphertext adversary cracking IT’s
anonymity, we construct a PP.T chosen-ciphertext adversary B*=(B;,B,) cracking
IT"’s relevant anonymity. Consider the following game:

RE_ANO CCA - .
s (k):

(pko, sko), (pki, ski)«<—KG(k);

Exp

(0°, St)— BlDa(SkO")’Da(Sk"') (pKy, pk;) where By is implemented as:

Both G-list and H-list are initialized to be empty;
Randomly select 6° fromM®’s message space;
Randomly select g° froml*’s key space;

(MO, StA)<— A]G,H,D(Sko,.),D(Skl ,) ( pk() , pk]) ;

Ste—Sta[M"llc”lg";
Return(co, St);
be{0,1};
Randomly select h* from ™s coin space;
Randomly select 6* from IM®’s message space; /*it’s the same space as
from which ¢ is generated. In particular, |c"|=|c*|.*/
y*—E"(pky,c*; h*);

de— BzD (sko).D (Sk"')(y*,St) where B, is implemented as:

parse St as Sta[M’||c”|g
ve—E'(g’, M");
de AZG,H,D(sko,.),D(Skl,-) (y*[|v¥,Sta);

return(d);
if d=b then output 1 else output 0.

B carries out simulations as follows.
(1)On each query Ofrom A to oracle G(.), B does:
If there exists (o,g) in G-list
Then return(g);
Else randomly select g froml1°’s key space;
Insert (o,g) in G-list;
Return(g);

21



(2)On each query (o,m) from A to oracle H(.), B does:
If there exists (o,m,h) in H-list
Then return(h);
Else randomly select h fromlM®’s coin space;
Insert (o,m,h) in H-list;
Return(h);

(3)On each query y from A to its oracle D(skj.), j=0,1, B simulates D(skjy) as
follows( note that oracle-D(sk;,.) may access G and H from inside and such accesses are
also processed by B in the afore-specified way):
Parse y as y'||y’;
0<—Da(skj,ya); /* Da(skj,.) is B’s decryption oracle and recall that y* is allowed
to be y* in defition.*/
Find the item (o, g) in G-list;
If there is no item (o, . ) in G-list
Then randomly select g froml1%’s key space;
Insert (o, g) into G-list;
me—D(g.y");
Find the item (o, m, h) in H-list;
If there is no item (o, m, . ) in H-list
Then randomly select h froml1®’s coin space;
Insert (o, g, h) into H-list;
If y*=E%(pkj, o; h)
Then return(m);
Else  return(l)

Define an event Z as that there exists an item (c*,.) in G-list or item (c*,.,.) in H-list.

Let po be P[Z]. According to B’s specification we have P[ Exp®-*"°-““*(k)=1| Z]

7%.B
=P[ Exp°-““*(k)=1] because in event of ~ Z decryption operations simulated by B

on all queries from A is perfect, so

P[ EXp RE _ ANO _CCA (k) :1]21)[ EXp RE_ANO_CCA(k) :1| Z] P[ Z]

72.B 72,8

:P[ EXp RE_ANO_CCA (k) :1| Z](l_p()) ZP[ Expzl\io_CCA(k)zl]_pO

72.B
hence Exp.'-“A (k)< P[ Exp"E - ANO-“A (k) =1T+p,.

72.B

Furthermore pycan be estimated by constructing two P.P.T. adversaries Jy and J;
based-on A to crack IT*’s one-way security. Consider the game:

OWE CPA /|,\ .
za,J(; (k) :

(pko, sko)—KG(k);
Randomly select 6* from IM"’s message space;

Exp
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y*«—E'(pko, 0*);

o’ —Jo(pko, y**) where Jy is implemented as:
cnt«—0;
(pki, ski)—KG(k);

Randomly select g* from I%’s key space;
(M, St)— AP PP (o pi) 5
* s
v —E(g*, M);
d(— AzG,H,D(SkO,.),D(Skl,.) (ya* || V*, St) ;

i—%{1,.2,....cnt};
/* w.o.l.g., all 6’s queried by A for G and H are distinct and
indexed as o,..., Ocnt.*/

output(oc;).

Jo carries out simulations as follows.

(1)On each query ¢ or (o, m) from A to its oracle G(.) or H(.) respectively, J,
simulates G or H as B does in the above; Additionally, every query from A is counted
by J, via cnt.

(2)On each query y from A to its oracle-D(sky,.), Jo simulates D(sk;,y) via directly
applying I'1’s decipher algorithm with its complete knowledge of secret key sk;( when
D(skj,.) needs to access G and H from inside, such accesses are also processed by B in
the afore-specified way):

(3) On each query y from A to its oracle-D(sko,.), Jo simulates D(sko,y) as follows:
Parse y as y||y%;
If There exist an item (o, g) in G-list and item (o, m, h) in H-list
such that y*=E*(pky, o; h)
Then return(m);
Else /*y is not produced by A via explicitly encrypting some plaintext.*/
If there exists (o, m, h) in H-list such that y*=E"(pko, o; h)
/*but no (o, .) in G-list */
Then randomly select g fromI*’s key space;
Insert (o, g) into G-list;
meD’(g, y°);
Return(m);
Else
Randomly select m from IM®’s message space;
Return(m)

Because y**||v* is disallowed to query and G,H are random oracles, this simulation is

perfect. Furthermore, note that Exp"s-“™ (k) is justExp""®-“*(k)in case of b=0.
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Denoting the probability of the event occurring in  Exp"0-“*(k) as P4[.], we have

Adv 2 (k) =PLEXp "5 © (K) =11=1/(qg+)PAlZIb=0]

On the other hand, we can construct another adversary J; in a similar way as that of J
with the only difference that J; calls A; in the form of (M,

St)e— AZMHPEIPE ) (e ok ), ie., exchanging pko and pk;’s roles. As a

OWE _CPA
21

ANO _CCA

result, EXp - (k) is just Exp ™ (k) in case of b=1 and we have

AdvOYE-CPA (k) =P[ Exp°"®-“PA (k) =11>1/(qg+2n)PA[Z|b=1]

7?31 72,31

So pEP[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=0])<(1/2(qe*+qn)( Adv -4 (k) + AdvS= -4 (k).

72,30 72,31

In combination with the inequality Exp/°-““* (k) <P[ Exp’s i NO-CA (k) =1]+po we got

before, we have P[ Exp/,°-““*(k)=1]

<P[ EXpRE ANO CCA(k) 1]+(1/2(Qg+CIh))( AdVOWE CPA(k)+AdVOWE CPA(k))

72,30 78,31

and the lemma’s final inequality can be derived directly and the time/query
complexity can be directly verified. [

Corollary 4.1 Let II=(KG, E, D, G, H) be Fujisaki-Okamoto hybrid public-key
encryption scheme constructed from public-key encryption scheme IT°=(KG", E*, D%
and symmetric encryption scheme IT’=(KG® E° D°. If II" is one-way secure,
y-uniform where vy is negligible in k and relevantly anonymous against
chosen-ciphertext attacks; IT" is secure in sense of Find-and-Guess, then IT is secure
and anonymous, both are against chosen-ciphertext attacks.

Theorem 4.2 shows that in many reasonable cases the component public-key scheme’s
weak anonymity(i.e.,relevant anonymity against chosen-ciphertext attacks) can be
enhanced by Fujisaki-Okamoto construction to the strongest anonymity. Theorem 4.2
can be applied to lots of concrete hybrid schemes(e.g.,ElGamal-based and
Okamoto-Uchiyama-based schemes in [8]’s section 6) to prove their anonymity
against chosen-ciphertext attacks. Here we apply this theorem to PSEC-2, an provably
secure elliptic curve encryption scheme proposed for NISSIE[9].

Example 4.1(PSEC-2’s anonymity against chosen-ciphertext attacks) PSEC-2
public-key encryption scheme is provably secure(in random oracle model)against
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman
problem’s hardness on elliptic curves and some additional weak security assumptions
on its symmetric encryption component. In this scheme(fig.4), just like in PSEC-1 it’s
reasonable to consider (E/Fg, p, q, P) as (shared) public parameters and W as the real

24



public-key (each individual has distinct W).

Note that PSEC-2 is actually a Fujisaki-Okamoto construction from asymmetric
scheme IT* and symmetric scheme (SymEnc,SymDec) where IT°=(KG®, E*, DY) is
defined in fig.5

With the same analysis as in example 3.3 for PSEC-1, it holds unconditionally that

RE_ANO_CCA
Adv©; -
7%, A

(k)=0. In addition, all conditions in Fujisaki-Okamoto theorem are

satisfied by IT" [9], in particular IT" is one-way secure (against chosen-plaintext
attacks). Combining these facts and our theorem 4.2, we have the following
consequence on PSEC-2.

Key generator KG(E/Fq,p,q.P): Encryption algorithm E(pk, M), Decryption algorithm D(sk,Y):
M {01}

s<—$Zp; r<—$Zp; Parse Y as (C;,C,,Cs)

WesP; te—H(r|[M); /*r used as a string*/ Q—sC;;

pk—W; Q—tW; u—C, D x(Q);

skes; C«tP; M«—SymDec(G(u), Cs);

return(pk, sk) Cr—1 D x(Q); if C=H(u|M)P
C3—SymEnc(G(r), M); Then return(M);
return(C,,C,, C;) Else return(_L);

Figure 4 PSEC-2 encryption Scheme: E/F is the group of an elliptic curve
over field Fg. P is a point on E/Fy with (prime) order p. x(Q) is the x-coordinate
of curve point Q. (SymEnc, SymDec) is a symmetric encryption scheme.
G:Z,- {O,I}k and H: {0,1} - Z, are random oracles.

Key generator KG*(E/Fy,p,q,P): Encryption algorithm E*(pk, o), Decryption algorithm D*(sk,Y):

o {01}
s<—$Zp; te—? Zy, Parse Y as (C;,C,)
WesP; Q—tW; Q—sCy;
pk—W; CitP; 6—C, D x(Q);
ske—s; Cr—0 D x(Q); return(c);
return(pk, sk) return(C;,C,)

Figure 5 PSEC-2’s asymmetric component encryption scheme IT*

Proposition 4.1 If the component symmetric encryption scheme is Find-and-Guess
secure, then PSEC-2 is both secure and anonymous in random oracle model against
chosen-ciphertext attacks under the assumption of decisional Diffie-Hellman
problem’s hardness on elliptic curves. 1
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5 Anonymity of Okamoto-Pointcheval Hybrid Scheme: REACT

REACT][11] is another highly efficient hybrid scheme I[I=(KG, E, D, G, H) constructed
from a public-key encryption scheme IT'=(KG®, E°, D), a symmetric encryption
scheme IT’=(KG®, E°, D) and two random oracles G, H. Alike Fujisaki-Okamoto
scheme, KG=KG". The encryption algorithm is defined as E(pk,M)=E’(pk,R;u)
IIE*(G(R),M)|[H(R,m,y1,y2), where u is random seed in encryption computation, y;=
E*(pk,R;u) and y,=E°(G(R),M). The decryption algorithm D(sk,y) woks as the
following:

parse y as yi|y2||h;

RD*(sk,y1);

M—D*(G(R),y2);

if h=H(R,M, y1,y») then output(M) else output( L)

Alike Fujisaki-Okamoto hybrid scheme, REACT can also strongly enhance its
component schemes’ security, which is exactly proved in [11].

Okamoto-Pointcheval Theorem Let I[I=(KG, E, D, G, H) be REACT hybrid
public-key encryption scheme constructed from public-key encryption scheme
II’=(KG®, E* D% and symmetric encryption scheme IT’=(KG®’, E°, D%. If IT" is
one-way secure against plaintext-checking attacks, IT° is secure in sense of
Find-and-Guess, then IT is secure against chosen-ciphertext attacks.

Similar results as theorem 4.1 can be proved for REACT, however, we only present
the strongest result in the following which is most useful in practice.

Theorem 5.1 If IT" is one-way secure and relevantly anonymous, both are against
plaintext-checking attacks, then IT is anonymous against chosen-ciphertext attacks.

Concretely, AdvA"°-°“*(q,, ;. 04.1)

= AdvTE-MO-PR (g, 1+ O(0g)) + (getan) AdvE-PA (1t + O(g +d4)dg)

Proof Suppose A=(Aj,A;) is an P.P.T. chosen-ciphertext adversary cracking IT’s
anonymity, we construct a P.P.T plaintext-checking adversary B"*=(B;,B,) cracking
IT"’s relevant anonymity. Consider the following game:

RE ANO PCA
- (OF

Exp
(pkos sko), (pki, ski)—KG(k);
(R’, St)— BIPCAa(Sk"")’PCAa(Sk‘") (pk,, pk,) where B, is implemented as:

Both G-list and H-list are initialized to be empty;
Randomly select R® fromM®s message space;

Randomly select g0 froml*’s key space;
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(MO, StA)<— A]G,H,D(Sko,.),D(Skl ,) ( pk() , pkl) ;

Ste—Sta| MR |g";
return(R’, St);
be—{0,1};
Randomly select R* from M%s message space; /*the same space as that
from which R"is generated. In particular, |R°|=|R*|.*/
yi*—E'(pky,R*);

de— BzP CA” (sko ). PCA"(sk.) (y,*,St) where B; is implemented as:

parse St as Sta|[M||R”||g";
yr*—E'(g’, M';

Randomly select h* from H’s image space;
G.H,D(sky,.),D(sk; )
dem A THPEIBI) (g, 1y, % h%, St

return(d);
if d=b then output 1 else output 0.

B carries out simulation as follows.
(1)On each query R from A to oracle G(.), B does:
If there exists (R,g) in G-list
Then return(g)
Else randomly select g froml1%’s key space;
Insert (R,g) in G-list;
Return(g);

(2)On each query (R,m, y, y») from A to oracle H(.), B does:
If there exists ((R,m, yi, y2),h) in H-list
Then return(h)
Else randomly select h from H’s image space;
Insert ((R,m, yi, y2),h) in H-list;
Return(h);

(3)On query y from A to its oracle D(sk;,.), j=0,1, B simulates D(sk;,y) as follows( note that
oracle-D(skj,.) may access G and H from inside and such accesses are also processed by B
in the afore-specified way):
Parse y as yilya|[h;
if there exists (R,K) in G-list s.t. PCA"(sk;,R,y1)=1
/*note that there is at most one such (R,K).*/
then if there exits (R,M,y1,y2,h) in H-list
then return(M)
else M—D*(K,y»);
insert (R,M,y1,y2,h) into H-list
return(M);
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else /*For any (R,K) in G-list, it has PCA"(sk;,R,y;)=0*/
return( L)

Define an event Z as that there exists an item (R*,.) in G-list or item ((R*,.,.,.),.) in
H-list. Let po be P[Z]. According to B’s specification, we have

P[ExpE_"MO-PA(k)=1| Z]=P[ Exp/"X-“*(k)=1] because in event of  Z decryption

7%,B
oracle simulated by B on all queries from A is perfect, so

P[ EXpRE*ANO*PCA(k):l] EP[ EXpRE*ANO*PCA(k):” Z]P[ Z]

7%,B 7%,B

= P[Exp/"\>-““A (k) =1](1-po)=P[ Exp X" (k) =11-po

z,A
hence Exp - ““* (k)< P[ Expff)éANo— PCA (k) =1T+po.
Furthermore, p,can be estimated by constructing two P.P.T. adversaries Jy and J;
based-on A to crack I1"’s one-way security under plaintext-checking attack. Consider
the game:

OWE _PCA .
ﬂ_a’\]o (k) *

(pko, sko)—KG(k);
Randomly select R* from M%s message space;

Exp

y1*«E(pko, 6%);

6" —JPAK) bk, y**) where Jois implemented as:
cnt—0;
(pki, ski)—KG(k);
Randomly select K* from I1M%’s key space;

(M, St)<— A]G,H,D(Sko,.),D(Skl,.)(pk0 , pkl) ;
* s

v —E(K*, M);

d(— AZG,H ,D(Sko,.),D(Skl,.) (yl * || V*, St) ’

i—%{1,2,....cnt};

/* w.o.l.g., all R’s queried by A for G and H are distinct and
indexed as Ry,..., Rent. ®/

output(R)).

(1)On each query R or (R, m,y;,y;) from A to its oracle G(.) or H(.) respectively, Jo simulates
G or H as B does in the above; Additionally, every query from A is counted by J, via
increasing cnt by 1 on each query.

(2)On each query y from A to its oracle-D(sk;,.), Jo simulates D(sk;,y) via directly applying I'l’s
decipher algorithm with its complete knowledge of the secret key sk;( when D(sk;,.) needs to
access G and H from inside, such accesses are also processed by B in the afore-specified way).

(3) On each query y from A to its oracle-D(sky,.), Jo (with its PCA-oracle) simulates D(sko,y) in
the same way as B does in the above.
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Note that Exp2's- " (k) is just EXpANO ““A(k) in case of b=0. Denoting the

probability of the event occurring in  Exp"?-“*(k) as P,[.], we have

Adv 2= PEA (k) =P Exp 2" -7 (k) =112(1/ent)PA[Zb=01>1/(qg+gn)PA[Z[b=0]

On the other hand, we construct another adversary J; in a similar way as that of J
with the only difference that J; calls A; in the form of (M,

St)e— AZMHPEIPE ) (e ok ), i.e., exchanging pko and pk;’s roles. As a

OWE _ PCA
2.1

ANO _CCA

result, Exp - (k)is just Exp * (k)in case of b=1 and we have

AdvOVE-PCA (k) =P[ ExpO"&-PA (k) =11>1/(qg+2n)PA[Z[b=1]

72,31 aJl
So p=P[Z]=(1/2)(PA[Z|b=1]+PA[Z|b=01)<(qg*+qn)( AdVOWE SR+ AV PR ()2, In

RE _ ANO PCA

combination with the inequality Exp ANO-CCA (k) <P[ Exp (k)=1]+po we got

before, we have

P[ EXpANO CCA(k) 1]<P[ EXpRE ANO PCA(k) 1]+4(qg+qh)( AdVOWE PCA(k)+AdVOWE_PCA(k))

78,30 7?31

and the final inequality can be derived directly and the time and query complexity can
be directly verified. [

Corollary 5.1 Let II=(KG, E, D, G, H) be REACT hybrid public-key encryption
scheme constructed from public-key encryption scheme IT°=(KG", E°, D*) and
symmetric encryption scheme IT'=(KG’, E°, D%. If IT" is one-way secure and
relevantly anonymous, both are against plaintext-checking attacks; IT° is secure in
sense of Find-and-Guess, then II is secure and anonymous , both are against
chosen-ciphertext attacks. 1

Example 5.1(PSEC-3’s anonymity against chosen-ciphertext attacks) PSEC-3
public-key encryption scheme is provably secure(in random oracle model)against
chosen-ciphertext attacks under the assumption of Gap-Diffie-Hellman problem’s
hardness [13] on elliptic curves and some additional weak security assumptions on its
symmetric encryption component. In this scheme(fig.6), just like in PSEC-1/2 it’s
reasonable to consider the curve E/F,, p, q and point P as (shared) public parameters
and W as the real public-key (each individual has distinct W).

Note that PSEC-3 is actually a REACT scheme constructed from IT*° and
(SymEnc,SymDec) where IT*=(KG", E*, D% is defined in fig. 7.
In fact this II" is just that asymmetric component encryption scheme in

PSEC-2(example ~ 4.1),  particularly — Exp’; AANO PCA(k)  =0(implied by
RE _ ANO _CCA

Exp. (k)=0). In addition, all conditions in Okamoto-Pointcheval theorem are

29



satisfied by IT* (as proved in tlhe original proposal [9]), in particular IT* is one-way
secure against plaintext-checking attacks. Combining all these facts and our theorem
5.1, we have the following consequence on PSEC-3:

Proposition 5.1 If the component symmetric encryption scheme is Find-and-Guess
secure, then PSEC-3 is both secure and anonymous in random oracle model against
chosen-ciphertext attacks under the assumption of Gap-Diffie-Hellman problem’
hardness on elliptic curves. [

Key generator KG(E/Fq,p,q,P): Encryption algorithm E(pk, M), Decryption algorithm D(sk,Y):
M {0,1}"

s<—$Zp; t<—$Zp; Parse Y as (C;,Cs, Cs, Cy)

W«sP; u—? {0,1 }k; Q—sCy;

pk—W; CitP; u—C, @ x(Q);

sk<—s; Q—tW; M«—SymDec(G(u), Cs);

return(pk, sk) Cr—u D x(Q); if C;=H(u, M, C,,Cy, C3)
C3—SymEnc(G(u), M); then return(M);
Cs—H(u, M, C;,C,, Gy); else  return(L);

return(C;,C,, Cs, Cy)

Figure 6: PSEC-3 encryption Scheme. E/F is the group of an elliptic curve
over field Fg. P is a point on E/Fy with (prime) order p. x(Q) is the x-coordinate
of curve point Q. (SymEnc, SymDec) is a symmetric encryption scheme.

G and H are random oracles.

Key generator KG*(E/F,p,q,P): Encryption algorithm E*(pk, R), Decryption algorithm D*(sk,Y):
R {01}
s<—$Zp; te’ Zy Parse Y as (C;,Cy)
We—sP; Qe—tW; Qe—=sCy;
pk—W; C,tP; R—C, @ x(Q);
ske—s; C,—R D x(Q); return(R);
return(pk, sk) return(C;,C,)

Figure 7: PSEC-3’s asymmetric component encryption scheme IT*

6 Summary

In this paper some general results on anonymity in two well-known hybrid encryption
constructions, i.e., Fujisaki-Okamoto and REACT schemes are proved, based-upon
new and general concept of relevant anonymity. The main results are quite positive,
and as applications well-known NISSIE schemes PSEC-1/2/3’s chosen-ciphertext
anonymity is proved. Further work naturally along this way is to investigate more
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other hybrid schemes, e.g, the very efficient GEM proposed recently by Coron et al..
Another interesting work is to investigate anonymity in other strong secure
constructions, e.g., the IBE-based chosen-ciphertext secure public-key encryption’s
construction recently proposed by Canetti-Halevi-Katz and Boneh-Katz. Because of
practical usefulness of anonymity, such results will be valuable in cryptographic
applications.
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