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Abstract. We present a new non-interactive message authentication
protocol in manual channel model (NIMAP, for short) using the weakest
assumption on the manual channel (i.e. assuming the strongest adver-
sary). Our protocol uses enhanced target collision resistant (eTCR) hash
family and is provably secure in the standard model. We compare our
protocol with protocols with similar properties and show that the new
NIMAP has the same security level as the best previously known NIMAP
whilst it is more practical. In particular, to authenticate a message such
as a 1024-bit public key, we require an eTCR hash family that can be
constructed from any off-the-shelf Merkle-Damg̊ard hash function using
randomized hashing mode. The underlying compression function must be
evaluated second preimage resistant (eSPR), which is a strictly weaker
security property than collision resistance. We also revisit some closely
related security notions for hash functions and study their relationships
to help understanding our protocol.

Key words: Message authentication, manual channel, eTCR hash fam-
ily, randomized hashing, hash function security.

1 Introduction

Message authentication protocols provide assurance that a received mes-
sage is genuine and sent by the claimed sender. Authentication protocols
have been studied in asymmetric (assuming PKI ) and symmetric (as-
suming shared secret keys) settings. Manual channel (or two-channel)
authentication model is a recently proposed model, motivated by secu-
rity requirements of ad hoc networking applications. In this model a user
wants to send an authenticated message to a receiver. There is neither
a shared secret key between communicants nor there is a public key in-
frastructure. However the sender, in addition to an insecure broadband
channel (e.g. a wireless channel) that is used to send the message, has
access to a second narrow-band channel, referred to as manual channel



that is authenticated in the sense that messages over this channel can-
not be modified, although they can be delayed, replayed or removed. The
channel is low capacity and can only transfer up to a few hundred bits.
A manual channel models human assisted channels such as face-to-face
communication, telephone conversation between two parties, or commu-
nication between two devices facilitated by a human: a person reads a
short number on a device display and inputs it into a second device using
a keyboard. The short authentication string sent over the manual channel
is called SAS [22]. A number of interactive and non-interactive protocols
have been proposed in this model and their security has been proven in
computational and unconditional security frameworks [8, 7, 1, 17, 12, 15].
In this paper we consider computationally secure non-interactive mes-
sage authentication protocols (NIMAPs) in manual channel model and
assume a weak manual channel as defined by Vaudenay [22] (see Sect. 2)
which corresponds to the strongest adversary. We note that in NIMAP
the scarce resource is the bandwidth of the manual channel.

Computationally secure NIMAPs. Several NIMAPs have been pro-
posed in literatures [1, 7, 17, 12]. We briefly review them below and move
their details to Appendix A for compact and completeness.

Balfanz, Smetters, Stewart, and Wong [1] (referred to as BSSW proto-
col) were the first to propose a manual channel NIMAP that was based on
collision resistant hash functions. The basic idea is to send the massage
m over the insecure channel, and send its hash value, computed using
collision resistant hash function, over the manual channel. Vaudenay [22]
proposed a formal security model for manual authentication protocols
and gave a security reduction from the security of the protocol to colli-
sion resistance property of the hash function. He showed that to guarantee
security against an adversary having time T = 2n, the SAS length must
be at least 2n bits.

Gehrmann, Mitchell, and Nyberg [7] proposed a number of protocols,
MANA I, II and III, of which only MANA I is a NIMAP. MANA I requires
low bandwidth for manual channel. For example to make the probability
of a successful attack less than about 2−17, one should use a SAS of
length about 40 bits. The protocol requires manual channel to also provide
confidentiality and Vaudenay in [22] pointed out that the manual channel
must be at least stall-free. We will not include MANA I in our comparisons
because of these extra requirements on manual channel.

Pasini-Vaudenay [17] presented a NIMAP (referred to as PV proto-
col) that requires, a hash function that is second preimage resistant, and a
trapdoor commitment scheme in Common Reference String (CRS) model.



Although compared with BSSW that uses collision resistant hash func-
tions, PV protocol has weaker security requirements on hash functions
(i.e. second preimage resistance), but it needs a secure trapdoor commit-
ment scheme in CRS model which makes it a more demanding protocol.

Mashatan and Stinson [12] proposed a new property, Hybrid Collision
Resistance(HCR) for hash functions and proposed a NIMAP (referred to
as MS protocol) that is provably secure assuming the hash function is
HCR. Mashatan et al use random oracle model to show that HCR is a
weaker security property than CR for hash functions and so the protocol
is of interest because it achieves the same level of security and efficiency
as PV protocol without requiring a complex commitment scheme and the
added assumption of CRS. In Section 3 we show that there is no clear
method of instantiating the hash function used in this protocol to be used
for arbitrary length messages. In particular, we point out that popular
Merkle-Damg̊ard construction cannot be used for domain extension of
HCR functions. This leaves construction of efficient NIMAPs for arbitrary
length messages in weak manual authentication model, an open problem.

Our contributions. We propose a new NIMAP in weak manual channel
model that uses a hash function family and is provably secure in standard
model. The protocol is based on an enhanced target collision resistant
(eTCR) hash function family and can be constructed using randomized
hashing mode of a Merkle-Damg̊ard hash function (Theorem 4 of [9]).

To evaluate our protocol we consider underlying security assumptions
of existing NIMAP protocols that use weak manual channel model. This
includes BSSW, PV and MS protocols. In all these cases, and also in the
case of our protocol, the security relies on (in BSSW and our protocol
reduces to) the required property of the hash function. We give a care-
ful comparison of these properties (collision resistance, second-preimage-
resistance, HCR and eTCR ) from two view points. Firstly, in terms of
implication or separation, i.e showing whether one property implies the
other one, or there is a clear separation between them, and secondly, if the
property can be guaranteed for arbitrary length messages. This latter re-
quirement removes restriction on the message length sent over the manual
channel. Our comparison also includes evaluated second preimage resis-
tance (eSPR) property, a property of compression functions introduced
to construct eTCR hash function families through Merkle-Damg̊ard con-
struction in the randomized hashing mode [9]. We show that eSPR notion
is not strictly stronger than HCR notion, using previously known results
[9] that eSPR is not strictly stronger than SPR notion.



The comparison is of of interest because of its direct application to
NIMAP and also for grading properties of hash functions.

Paper organization. In Section 2 we describe communication and se-
curity model for manual channel authentication. In Section 3 we give an
overview of security notions for hash functions and describe the three se-
curity notions, eSPR, eTCR and HCR, that are directly related to our
NIMAP and MS protocol. In Sect. 4 we present a new protocol and an-
alyze its security. We also compare it with previous protocols and show
its potential advantages. The paper is concluded in Sect. 5.

2 Communication and security model

Communication model. We consider the problem of noninteractive
authentication between a sender Alice and a verifier Bob: Alice wants to
send a message, M , to Bob such that Bob can be assured that the message
has come from Alice (entity authentication) and has not been modified by
an adversary Eve (message authentication). It is assumed that Alice and
Bob have access to two communication channels; a broadband insecure
channel (denoted by −→) and an authenticated narrow-band channel (de-
noted by =⇒ ). It is further assumed that the authenticated narrow-band
channel is linked to the identity of the sender, i.e. Alice. In other words
when Bob receives a message from this channel he is ensured that it is
generated by Alice although the message can be a replay of a previous
one. The most important restriction on the narrow-band channel is the
limitation on the bandwidth: the channel can transmit messages of length
at most n which in some applications n can be as small as 32 bits.

As a real world example of this scenario consider user-aided pairing of
two wireless devices (e.g. Bluetooth) such as a mobile phone and a laptop.
The user can read a message consisting of a number of characters on the
screen of mobile phone and type them on laptop keyboard. In this case
the user establishes the authenticated channel manually. These kinds of
human controlled authenticated channel are also called manual channels.

Security model. We assume weak authenticated channel model and the
strong adversary described in Vaudney [22]. The adversary Eve has full
control over the broadband channel, i.e. she can read, modify, delay, drop
messages, or insert new ones. In the weak manual channel model, it is
assumed that Eve can read, delay, replay and drop messages sent over
manual channel, but she cannot modify or insert messages into this chan-
nel. In other words there is no extra security assumptions, like confiden-
tiality or stall-freeness, on a weak manual channel. A manual channel



with some additional security requirements on it is called a strong man-
ual channel. It is also assumed that the adversary can employ adaptive
chosen message attack: she can adaptively choose the input message to
be sent by Alice and make Alice to produce messages of the protocol
to be sent over the two channels. The number of such queries made by
Eve is her online complexity and is denoted by Q. A second resource of
Eve is her offline complexity, denoted by T , denoting the time spent on
processing the messages in the attack. We assume that Eve has bounded
computational resources.

Alice Bob

Input: M

Compute x
M, x
−−−→ M ′, x′

Compute s
s

=⇒ s′

output (Alice, M ′)
if Verify(M ′, x′,s′)=1; else reject

Fig. 1. A typical manual channel NIMAP

A typical manual channel NIMAP works as follows (see Figure 1). On
input message M Alice uses (possibly randomized) algorithms to compute
a tag x and a short authentication string (SAS) s. The message M to-
gether with the tag x are sent over insecure broadband channel and SAS
is sent over the authenticated channel. Note that x may be a null string in
which case no tag will be sent over the insecure channel. Figure 1 shows
communication flows in such a protocol. We note that in PV protocol the
message might not be explicitly sent over the insecure channel. However
the message in their protocol can be transformed (i.e. re-coded) into our
representation. The transformation is public and so will not affect security
of the protocol. Received messages by Bob are denoted by M ′, x′ and s′

to show possible effects of an adversary. The verification process (accept
or reject a received message) by Bob is abstractly denoted by a (publicly
known ) deterministic binary function Verify(.). The function outputs 1
if the acceptance conditions (specified for the protocol) are satisfied by
the received message, and 0 otherwise.

Definition 1 (Adversary). An adversary Eve is said to be a (T,Q, ǫ)-
breaking adversary, if she has query resource Q (number of queries made



to Alice), time resource T (time complexity) and is successful with proba-
bility at least ǫ, in making Bob output (Alice, M ′) while M ′ has never been
an input of the protocol on Alice side, i.e. it has never been authenticated
by Alice.

A protocol is said to be (T,Q, ǫ)-secure if there exists no (T,Q, ǫ)-
breaking adversary against it.

Note that to be considered a successful adversary, Eve should respect
the communication and security model described above. For example she
can only replay a previously obtained s from Alice but she cannot mod-
ify it or inject a new one. More specifically if Eve has made Q queries
from Alice and has collected a data set {(Mi, xi, si); 1 ≤ i ≤ Q}, then a
successful attacker Eve should find an M ′ /∈ {Mi; 1 ≤ i ≤ Q}, any x′ and
an s′ ∈ {si; 1 ≤ i ≤ Q} such that Verify(M ′, x′, s′)=1.

Proving security of a manual channel NIMAP consists of two steps.
Firstly one should show that the protocol is (T ′, 1, ǫ′)-secure, i.e. secure
against adversaries that can only make one query from Alice (called one-
shot adversaries in [22] ) and have time complexity T ′. This is done by
transforming such an adversary against the protocol into an adversary
that can defeat security assumptions on the underlying building primi-
tive(s) of protocol. The second step of proof (i.e., showing that proto-
col is (T,Q, ǫ)-secure ) can be done (Lemma 6 in [22]) by transforming
a (T,Q, ǫ)-breaking adversary to a (T ′, 1, ǫ′)-breaking adversary, where
ǫ′ = ǫ

Q
.

3 Hash functions and security notions

Cryptographic hash functions play an important role in design of NIMAPs
as well as many other cryptographic protocols like MACs and digital
signature schemes. There are numerous informal and formal definitions
of security for hash functions. Definitions can be application specific. For
example Brown [4] defined Zero-Finder-Resistance as the difficulty of
finding a preimage for zero (i.e. finding a domain element that is hashed
to 0) and showed it to be a necessary security assumption for the hash
functions to prove security of DSA algorithm.

The most widely used security notions for hash functions are Col-
lision resistance(CR), Second-preimage resistance(SPR) and Preimage
resistance(PR) and are required in applications such as digital signature,
commitment and password protection. Informal definitions of these no-
tions for a fixed hash function and formal definitions of CR notion and
one of its weaker variants, UOWHF (Universal One Way Hash Function)



for a family of hash functions, can be found in [5, 6, 13, 14, 16]. UOWHF
notion (originally defined in asymptotic security framework in [14]) is also
called TCR (Target Collision Resistance) (rephrased in concrete security
framework in [3]).

Informally, for a fixed hash function H, CR means that it is computa-
tionally hard to find two distinct inputs M ′ 6= M that collide under hash
function, i.e. H(M) = H(M ′). SPR means that for a given input M , it is
computationally hard to find M ′ such that M ′ 6= M and H(M) = H(M ′).
PR refers to one-wayness property and means that it is computationally
hard to find a preimage (domain element x) for a given hash value (range
element y), so that these constitute a valid (input, output) pair for the
hash function (i.e. H(x) = y).

Regarding CR notion, there is a foundational problem, that is formal
definition of CR security notion can only be given for a family of hash
functions (also called keyed hash function) and not for a fixed hash func-
tion. There are also some other subtleties regarding formal definitions of
security notions for hash functions and studying relationships (implica-
tions and separations) between different security notions. A brief sum-
mary is provided in Appendix B. More details on CR definition dilemma
and also a comprehensive formal treatment of security notions (including
implications and separations between CR, SPR, PR and TCR notions),
can be found in [18, 21, 19].

In comparing two security notions for hash functions, we say that
notion A is stronger than notion B if A implies B; that is if a hash
function H satisfies notion A then it also satisfies notion B. For instance,
CR is a stronger security notion than SPR and the implication is shown
in [18] and [21] for keyed and unkeyed settings, respectively.

3.1 Definitions for eSPR, eTCR and HCR notions

We review in more details three security notions relevant to the discus-
sion in the next section. First we recall Merkle-Damg̊ard construction
that provides a method of extending domain for hash functions.

Merkle-Damg̊ard construction. For a compression function H : {0, 1}n+b →
{0, 1}n, an L-round Merkle-Damg̊ard construction is a method of con-
structing a hash function MDL[H] : {0, 1}n+L.b → {0, 1}n with an ex-
tended domain. For an initial value C0 ∈ {0, 1}

n and a message M =
M1||M2|| . . . ||ML consisting of L blocks each of size b bits, it outputs an
n-bit hash value denoted by CL as shown in Figure 2:



– The input message M is divided into L blocks M1, ...,ML, each block
Mi of length b bits.

– The chaining variable C is initialized to C0.

– For i=1 ... L :
Ci = H(Ci−1,Mi)

– CL is output as the hash value.

If the input message length is not a multiple of the block length b,
proper padding can be used. For a fixed initial value C0 we denote the
transformation by MDC0

L [H] : {0, 1}Lb → {0, 1}n.

Fig. 2. L-round Merkle-Damg̊ard construction

By strengthened Merkle-Damg̊ard we mean Merkle-Damg̊ard with a
proper length indicating padding and some fixed initial value. Strength-
ened Merkle-Damg̊ard’s construction converts a compression function to
a hash function for arbitrary length input while preserving CR property
of the compression function.

In the sequel, we use
$
← and

R
←, to denote randomly selecting (com-

puting ) according to a specific distribution (output distribution of a
probabilistic algorithm) and uniform distribution, respectively.

For the definition of HCR we follow [12] but parameterize the game
explicitly with the length of the randomness (l2). (As noted in [12], l2
and n are security related parameters.) We use a state variable State to
show the state information that the adversary A keeps between its attack
phases.

Definition 2 (HCR notion). A compression function H : {0, 1}l1+l2 →
{0, 1}n is (T, ǫ)−HCR[l2] if no adversary A, having time at most T , can
win the following game with probability at least ǫ:



Game(HCR[l2], A)

(M,State)
$
← A() //M ∈ {0, 1}l1

K
R
← {0, 1}l2

M ′ $
← A(K,State) //M ′ ∈ {0, 1}l1+l2

A wins the game if M ′ 6= M ||K and H(M ′) = H(M ||K)

Note that HCR[l2] notion for an arbitrary-input-length hash function
H : {0, 1}∗ → {0, 1}n can be defined by a game in which the adversary
can output M ∈ {0, 1}∗ and M ′ ∈ {0, 1}∗, in the above game.

eSPR notion is defined for a compression function[9], which is a variant
of Second-Preimage Resistance. The notion of eSPR is motived by search-
ing for properties of a compression function that suffice to ensure that
the multi-block randomized extension obtained via Merkle-Damg̊ard it-
eration is TCR or eTCR. This will be beneficial because Merkle-Damg̊ard
iteration converts a compression function for fixed-input-length to an
arbitrary-input-length hash function (family).

Definition 3 (eSPR notion). A compression function H : {0, 1}n+b →
{0, 1}n is (T,L, ǫ)- eSPR if no adversary, spending time at most T and
using messages of length L(in b-bit blocks), can win the following game
with probability at least ǫ. It is assumed that the adversary knows the ini-
tial value C0 before starting the game, i.e. either C0 is chosen at random
and given to the adversary (uniform setting) or it is a parameter of the
game that the adversary will receive as an ‘advice’ (non-uniform setting).

Game(eSPR, A )

∆1, . . . ,∆L
$
← A() //∆i ∈ {0, 1}

b , L ≥ 2

r
R
← {0, 1}b

M = ∆L ⊕ r; C = MDC0

L−1[H](∆1 ⊕ r, ...,∆L−1 ⊕ r)

(C ′,M ′)
$
← A(C,M) //C ′ ∈ {0, 1}n , M ′ ∈ {0, 1}b

A wins the game if C ′||M ′ 6= C||M and H(C ′||M ′) = H(C||M)

eTCR security notion is defined in [9] for arbitrary-input-length hash
function families. Note that HCR and eSPR security notions were defined
for a single hash function or a fixed compression function.

Definition 4 (eTCR notion). An arbitrary-input-length hash function
family, H : {0, 1}k×{0, 1}∗ → {0, 1}n, is (T, ǫ)- eTCR[m], if no adversary
spending time at most T can win the following game with probability at



least ǫ. We use a state variable State to keep adversary state between its
attack phases:

Game(eTCR[m])

(M,State)
$
← A() //M ∈ {0, 1}m

K
R
← {0, 1}k

(K ′,M ′)
$
← A(K,State) //K ′ ∈ {0, 1}k and M ′ ∈ {0, 1}∗

A wins the game if (K,M) 6= (K ′,M ′) and HK(M) = HK ′(M ′)

As mentioned previously, a method of constructing an eTCR hash func-
tion family is using an iterated hash method (e.g. Merkle-Damg̊ard con-
struction) with a compression function. Halevi et al’s iterated construc-
tion [9] reduces eTCR notion to eSPR property for the compression func-
tion (Theorem 1). In [9], the length(in blocks) of the target message M ,
is denoted by L (L = m/b, where b denotes block length in bits) and
is considered as another resource parameter of the adversary. So, alter-
natively the adversary can be denoted as a (T,L, ǫ) adversary and the
notion can be defined as (T,L, ǫ)-eTCR, instead of specifying parameter
m as a superscript.

3.2 Relations among eSPR, eTCR and HCR notions

In this section we study relationships between the three notions, eSPR,
eTCR and HCR.

eSPR versus HCR. We show that eSPR notion is not stronger than
HCR notion. That is there exist compression functions that are eSPR but
not HCR.

This can be shown by considering the following two relations.

– R1. Halevi et al [9] pointed out a separation between eSPR and SPR
and argued that (depending on the structure of the compression func-
tion) there exist compression functions that are eSPR but not SPR.

– R2. We show if a compression function is not SPR then it is not HCR
either (i.e., HCR is stronger notion than SPR). This can be seen
by noting that an adversary A against SPR property can be used
to construct an adversary B against HCR property. To win in HCR
game, B forwards M ||K to A and outputs A’s response (which is
a second preimage of H(M ||K) ) as M ′ in HCR game. Clearly B
succeeds whenever A succeeds.



Now if eSPR is stronger than HCR, then combined with R2 we can
conclude that eSPR is stronger that SPR. This contradicts R1 and so
eSPR is not a stronger notion than HCR .

Relation between HCR and eTCR. We show (constructively) that
existence of a (T, ǫ)-HCR [l2] compression function implies existence of a
(T, ǫ)- eTCR compression function family.
Assume that we have a (T, ǫ)-HCR[l2] compression function
H : {0, 1}l1+l2 → {0, 1}n . We construct a compression function family as
follows:
H = {HK}K∈{0,1}l2 , where HK : {0, 1}l1 → {0, 1}n and HK(M) =

H(M ||K). To show that the constructed family H is (T, ǫ)- eTCR, we
note that an adversary A against eTCR property of the family H can
be transformed into an adversary B against HCR property of H with
the same advantage. Adversary B plays HCR game against H while ac-
cessing A. In the first move, B runs A to choose a message M . After
receiving K, B forwards it to A who will generate (K ′,M ′) such that
HK(M) = HK ′(M ′). Upon receiving (K ′,M ′) form A, adversary B out-
puts M ′||K ′ in final move of its HCR game. Clearly B wins HCR game
against H whenever A wins eTCR game against H.

Using Merkle-Damg̊ard construction for HCR. Let MDL[H] de-
note a L-round strengthened Merkle-Damg̊ard construction. We show
that a collision finding adversary A against MDL[H] can be used to
construct an algorithm B that defeats MDL+1[H] in HCR[l2] sense. We
assume in HCR game |K| = l2 > 0 (for l2 = 0, HCR is the same as CR).
B works as follows:

Algorithm B invokes A to obtain two colliding messages M and M ′

each of length L blocks. (Note that a successful adversary against strength-
ened Merkle-Damg̊ard construction results in such a collision). In the first
move of HCR game against MDL+1[H], algorithm B commits to M and
when receives a random challenge K ∈ {0, 1}l2 , it outputs M ′||K as col-
liding pair with M ||K. Clearly B succeeds whenever A succeeds.

In MS protocol, if the sum of the lengths of the message to be sent
(i.e. l1) and the security parameter l2 (e.g. l2 = 70 as in [12]) becomes
more than one block, the hash function should be applied to a message
with length more than one block and it should provide HCR property.
In above, we showed that without CR assumption on one-round Merkle-
Damg̊ard version (i.e. compression function using specified initial value



C0 as part of input), the hash function cannot provide HCR property as
needed in MS in such a case.

Reduction from eSPR to eTCR. The following theorem reproduced
from [9] gives an explicit construction for eTCR hash function family.

Theorem 1. [9] Assume that h : {0, 1}n+b → {0, 1}n is a (T,L + 1, ǫ)-
eSPR compression function that is also (T ′, ǫ′)-OWH. The (L + 1)-round
Merkle-Damg̊ard construction based on h as compression function and
used in randomized hashing mode, defines a family of hash functions H̃r :
{0, 1}b×{0, 1}Lb → {0, 1}n that is (T −O(L), L, ǫ′ + (L+ 1)ǫ)- eTCR se-

cure. This family is constructed as H̃r(M) = H̃(r,M) = MDC0

L+1[h](r,M1⊕
r . . . ML ⊕ r), where M = M1||...||ML and C0 is a known initial value.

As argued in [9], the second property in addition to eSPR , i.e., (T ′, ǫ′)-
OWH, is implied by eSPR assuming a mild structural property for the
compression function and is redundant. We refer the reader to [9] for more
discussion on this matter.

4 A NIMAP based on eTCR hash families

4.1 Protocol description and security reduction

Assume that we have a (T, ǫ)- eTCR hash function family H : {0, 1}k ×
{0, 1}<m → {0, 1}n, where m is the maximum size of input length( e.g.,
m = 264). We construct a secure NIMAP between a claimant, Alice, and
a verifier, Bob, in weak manual channel model. The NIMAP is as follows:

1. On input message M , Alice chooses uniformly at random a key x ∈
{0, 1}k and computes s = Hx(M);

2. Alice sends (M , x) to Bob over the insecure channel and sends s =
Hx(M) over the authenticated channel;

3. Bob receives (M ′, x′) via insecure channel and s′ via authenticated
channel;

4. Bob outputs (Alice, M ′) if s′ = Hx′(M ′) and rejects M ′ otherwise.

The proposed protocol is illustrated in Figure 3.
The following Theorem guarantees security of the NIMAP.

Theorem 2. Let H : {0, 1}k × {0, 1}<m → {0, 1}n be a (TH , ǫH)- eTCR
hash function family. The proposed NIMAP as in Figure 3 is a (T,Q, ǫ)-
secure NIMAP, where T = TH − µQ − σ, ǫ = QǫH . Constants µ and σ
represent the maximum time complexity of Alice over all Q queries and
the time required for a single hash computation, respectively.



Alice Bob

Input: M

x ∈R {0, 1}k
M, x
−−−→ M ′, x′

s = Hx(M)
s

=⇒ s′

output (Alice, M ′)
if s′ = Hx′(M ′); else reject

Fig. 3. A new manual channel NIMAP based on eTCR hash family

Proof. First we show that any (T ′, 1, ǫ′)-breaking adversary Â against
our NIMAP can be used to construct a (T ′ + σ, ǫ′)-breaking adversary B
against eTCR hash family H. Then we complete the proof by a general
reduction from any (T,Q, ǫ)-breaking adversary A to a (T ′, 1, ǫ′)-breaking
adversary Â, where T ′ = T + µQ and ǫ′ ≥ ǫ

Q
.

To prove the first part, let Â be a (T ′, 1, ǫ′)-breaking adversary against
the NIMAP. That is, the adversary makes a single query from Alice to
obtain (M,x, s) and then spends time at most T ′ to mount a successful
attack, i.e. produces (M ′, x′) where M ′ 6= M and Hx′(M ′) = s. Note
that it is possible to have x′ = x. Adversary B against H plays eTCR
game using Â as follows. It runs Â and obtains the query M and commits
to it in the first move of eTCR game. After receiving the hash function
key, i.e. x ∈ {0, 1}k , B computes s = Hx(M) in time σ, and forwards
x and s to Â. Adversary Â within time T ′ produce (M ′, x′). Adversary
B outputs M ′ as the second message and x′ as the second hash function
key in eTCR game. This means that B succeeds in time T ′ + σ and with
the same success probability ǫ′ as Â.

The second part of the proof is a general transformation between a
Q-query adversary and 1-query adversary [22]. For completeness of the
proof, we have included the proof (i.e. two-party NIMAP). Let A be
a (T,Q, ǫ)-breaking adversary against the NIMAP. We can construct a
(T ′, 1, ǫ′)-breaking adversary Â as follows.
Adversary Â chooses uniformly at random j ∈ {1, 2, . . . , Q} and runs A.
When A makes its i − th query M i, adversary Â selects at random an
xi ∈R {0, 1}

k, computes si = Hxi(M i) and provide A with xi and si. This
is done for every i− th query except when i = j in which case Â forwards
the query (j − th query of A) to Alice (in real protocol) and uses Alice’s
response to respond A. When A succeeds, it outputs (M ′, x′, s′) where
s′ = Hx′(M ′), M ′, is different from all previously queried messages and



s′ is a replay of one of the previously obtained authenticated messages.
With probability 1

Q
we have s′ = sj and so Â succeeds with probability

ǫ′ ≥ ǫ
Q

. Denote by µ the maximum overall time to run the protocol once,
i.e., to compute x and s on an input M , where the maximum is over Q
queries made by A. It is easy to see that time complexity of algorithm Â
is T ′ = T + µQ. This completes the proof of the theorem.

⊓⊔

4.2 Comparison with previous schemes

We compare our proposed NIMAP with the existing NIMAP protocols
using weak manual channel, namely BSSW [1], PV [17] and MS [12].
The comparison is made for the same level of security, from following
viewpoints:

1. Security assumptions required for the underlying primitives (commit-
ment schemes and/or hash functions)

2. Required bandwidth for the manual channel (i.e., the SAS length).

Security assumptions. We consider security assumptions required by
BSSW, PV, MS and our protocol when there is no restriction on the
length of the input message.

The BSSW protocol uses a fixed (unkeyed) hash function and requires
it to be collision resistant (CR). CR is a strong security assumption for
a hash function which cannot be formally defined for a single hash func-
tion [2, 18]. To obtain the property for arbitrary length messages Merkle-
Damg̊ard construction can be used [19].

The PV protocol uses SPR which is a weaker assumption than CR
([21, 18]). PV protocol also requires a secure trapdoor commitment scheme
in CRS model. Furthermore, the commitment string c is taken as an in-
put to the hash function ([17]) and so the hash domain needs to be of
arbitrary size (if one uses an arbitrary commitment scheme ); i.e., one
needs an arbitrary-input-length hash function that provides security in
SPR sense.
To compute SAS length, PV assumes that hash function provides ideal
security in SPR sense, i.e., a hash function with security level of 2−n,
where n is the hash size. This assumption for the case of long messages
is not satisfied by iterated Merkle-Damg̊ard hash functions (like MD5,
SHA1, RIPEMD-160, Whirlpool) as shown by recent analysis in [11].

MS protocol also uses a fixed hash function satisfying HCR property.
The HCR[l] is a notion between CR and SPR, depending on the value



of l. As shown in subsection 3.2, the commonly used Merkle-Damg̊ard
domain extension construction does not guarantee HCR (without CR
assumption) and so it is not clear how to construct an arbitrary-input-
length HCR hash functions from a fixed-input-length one.

Our NIMAP uses an eTCR hash family to hash arbitrary-length mes-
sages. Standard Merkle-Damg̊ard iteration in randomized hashing mode
can be used to construct such an eTCR hash family from an eSPR com-
pression function (i.e. a fixed-input-length hash function) [9]. Hence se-
curity of our protocol is reduced to eSPR property for a fixed-input-length
hash function. It has been argued [9] that eSPR notion is weaker than
CR and also is not stronger than SPR. We also argued in subsection 3.2
that eSPR is not stronger than HCR. The above argument shows that our
protocol, when used for arbitrary length messages, requires less demand-
ing security assumption (namely, eSPR-ness of a fixed-input-length hash
function) and benefits from provable security framework in constructing
eTCR hash family for arbitrary length messages (Theorem 1).

Manual channel bandwidth. Assume an adversary with the same re-
sources and required security level (denoted by ǫ) as in [12]. Namely, we
require the NIMAP to be (T,Q, ǫ)-secure , where T ≤ 270, Q ≤ 210 and
ǫ = 2−20.

In BSSW the SAS length must be at least 140 bits. In PV protocol
a SAS of length 100 is required (, but as mentioned above for arbitrary
long messages PV requires that the used hash function provides ideal
SPR security for long messages which is not satisfied by Merkle-Damg̊ard
constructions due to recent attacks in [11]). MS can theoretically reach the
same level of security using a SAS of 100 bits for l2 = 70 bits (, but we are
not aware of a practical hash function that provides HCR for arbitrary-
length messages without need to a stronger than HCR assumption on
the underlying compression function and as we showed Merkle-Damg̊ard
constructions cannot be used for this purpose).

Our NIMAP needs a SAS with length n = 100 + log2(L + 2) bits,
where L denotes the message length in blocks. (See more details and
computation of SAS length below.) For a 1024-bit message using SHA1
in randomized hashing mode (L = 2), the required SAS length will be 102
bits. Our NIMAP can still use randomized hashing mode for messages up
to about 249 bits using a SAS of only 140 bits.

To calculate SAS length for our protocol to have a NIMAP that is
(T,Q, ǫ)-secure (for T = 270, Q = 210, ǫ = 2−20), using Theorem 2,
we need a hash function family that is 2−30 (=2−20/210) secure in eTCR
sense. Using Theorem 1, we can construct such an eTCR family assuming



that the compression function is eSPR with ǫ = 2−30

L+2 and L being the
number of blocks in the input message of the eTCR function .(We assumed
that ǫ′ = ǫ in Theorem 1). The length of SAS (i.e. required n) must be
computed for each message length taking into account non-tightness of
the reduction between eTCR and eSPR notions. One can use compression
function of a standard hash function like SHA1 and truncate its output
to n bits. Assuming that the compression function provides 2−n security
level in eSPR sense1 , i.e. ǫ = T2−n, the SAS length of our NIMAP, i.e.
n, for messages of length L blocks, is n = 100 + log2(L + 2) bits.

5 Conclusion

We proposed a new practical non-interactive message authentication pro-
tocol in manual channel model using a family of eTCR secure hash func-
tions. For applications such as sending a public key where message length
is small (e.g. 1024 bits), using randomized hashing mode one can con-
struct an eTCR hash family using an off-the-shelf Merkle-Damg̊ard hash
function (e.g. SHA1). In this case security of the scheme will be based on
eSPR property of the compression function which is strictly weaker than
collision resistance property. For longer messages however, randomized
hashing may not produce optimal result (shortest SAS) because of the
non-tightness of reduction. Using randomized hashing for messages of up
to 249 bits results in SAS of around 140 bits. Other constructions of eTCR
with tighter reduction can be directly used in the proposed NIMAP and
could result in shorter SAS.
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Appendix

A Previous work

BSSW protocol [1] is the first NIMAP based on collision resistant hash
functions. The protocol is shown in Figure 4. The massage M and its hash
are sent over the insecure channel and the manual channel, respectively. It
can be shown that a (T, ǫ)- collision finding adversary can be transformed
to a (T + µ, 1, ǫ)- breaking adversary against this NIMAP, where µ is the
overall time complexity of the protocol (i.e., overall time complexity of
Alice to respond to one query.) Therefore any collision finding adversary
using only offline computations (based on Birthday attack) can be used
to break this protocol.

Alice Bob

Input: M

M
−→ M ′

Compute s = H(M)
s

=⇒ s′

output (Alice, M ′) if

s′ = H(M ′)
else reject M ′

Fig. 4. BSSW protocol

PV protocol [17] is a manual channel NIMAP which uses both a hash
function and a trapdoor commitment scheme in CRS model. Its security
relies on second preimage resistance of the hash function and security
of the trapdoor commitment scheme in the Common Reference String
(CRS) model. In CRS model a public random string Kp is assumed to
be accessible to all parties in the system. In the definition of a trapdoor
commitment scheme to be used in PV protocol, as usual in CRS model,
it is assumed that in a setup(.) phase a pair of keys (Kp,Ks) is generated
and Kp is made publicly available to all parties. The key Ks is secret
and can only be used by special algorithms (or oracles) in extensions
of the commitment scheme. For example it can be used by equivocate(.)



algorithm in equivocable commitment schemes or by extract(.) algorithm
in extractable commitment schemes. The protocol is shown in Figure 5.
This NIMAP uses a weak security property of a hash function (i.e. second
preimage resistance) but needs a secure trapdoor commitment scheme in
CRS model (which is stronger than the standard model) as well.

The two algorithms, commit(.) and open(.) are used to generate (com-
mit, decommit) values (represented by (c, d)) and to recover message,
respectively. Both these algorithms have access to the CRS, Kp. The
commit(.) algorithm is probabilistic (randomized) algorithm and open(.)
is deterministic. In case of any error, open(.) outputs a special symbol ⊥.
More details can be found in [22, 17].

Alice Bob

Input: M

(c, d)← commit(Kp, M)
c,d
−−→ c′, d′

s = H(c)
s

=⇒ s′

M ′ ← open(Kp, c′, d′)
output (Alice, M ′) if

s′ = H(c′) and M ′ 6= ⊥
else reject M ′

Fig. 5. PV protocol

As noted before the two message flows in PV protocol can be trans-
formed into the form shown in Figure 1, by using open(.) function to
obtain M and consider the message (M,x) = (M, (c, d)) as the message
over insecure channel.

MS protocol [12] is a manual channel NIMAP which uses a hash
function and requires the hash function to be Hybrid Collision Resis-
tance(HCR) as defined in [12]. The protocol is in weak manual channel
model and requires the same bandwidth for the manual channel as PV
protocol (to reach to the same level of security). MS protocol is shown in
Figure 6.

B On security notions for hash functions

There are some subtleties regarding formal definitions of security notions
for hash functions and studying relations between different notions. A



Alice Bob

Input: M

|M | = l1

x ∈R {0, 1}l2
M,x
−−−→ M ′, x′

Compute s = H(M ||x)
s

=⇒ s′

output (Alice, M ′) if

s′ = H(M ′||x′))
else reject M ′

Fig. 6. MS protocol

crucial step in formally defining and comparing security notions is to make
it clear that what one means by saying a certain secure hash function.
There are usual two ways to view a hash function, namely seeing it as a
hash function family or as a fixed hash function. Modeling a hash function
as a Random Oracle can be seen as an extreme case in which one assumes
a hash function family in which the family consists of all possible function
with specified domain and range.

A hash function familyH is a class of functions, each is from domain D
to range {0, 1}n, indentified by an element from {0, 1}k . In other words
a hash family is a two-argument mapping H : {0, 1}k × D → {0, 1}n.
More specifically, {0, 1}k represents the set of strings of length k bits,
whose elements are used as a key to select a function from the family, D
represents the domain of function family, and n is the hash length of the
ouput in bits. In this setting H is also named as keyed hash function. A
member of this family (i.e. a fixed hash function belonging to this family)
is selected by a key K ∈ {0, 1}k and is denoted as H(K, .) or HK(.). If
domain D is the set of all strings of arbitrary length (in practice of length
less than a huge number) the family is called an arbitrary-input-length
hash function family or simply a hash function family. If domain only
consists of strings of a fixed length (i.e., D = {0, 1}m for a fixed m) the
family is called a fixed-input-length hash function family or a compression
function family.

A fixed (unkeyed) hash function H is a function (a one-argument
mapping) H : D → {0, 1}n. Similarly we have an (arbitrary-input-length)
hash function or a compression function, if domain D is {0, 1}∗ or {0, 1}m

(for some fixed m), respectively.

Most of efficient practical hash functions (like MD5, SHA1) are de-
signed as a fixed (unkeyed) hash function and it has been a common
practice in many of the cryptographic protocols to use a hash function



as a single function (not a family) and security of the protocol on some
security assumptions on the hash function, e.g. assuming some properties
like CR, SPR or PR from the hash function..

Here we reiterate a problem in giving a formal definition for collision
resistance notion. It is well-known that treating a hash function as a fam-
ily and not a single function, is the only way to give a formal definition of
collision resistance notion. Defining CR as a game between an adversary
and challenger for a fixed hash function (and saying that it is computa-
tionally hard to win this game) is problematic as there is no challenge
from the challenger and so an adversary with a priori knowledge of a
colliding pair for the function cannot be ruled out. More details on this
can be found in[2, 18, 21]. We discuss this matter briefly at the end of this
subsection.

For some of security notions for hash function (exempt CR notion),
like second preimage resistance notion, there are both sensible formal def-
initions for a family of hash functions and a fixed hash function. But it is
worth noticing that to compare two different security notions (i.e. study-
ing their relative strength or showing separation results) both notions
should be defined in the same setting, in order to stay away from funda-
mental formalization problems arise regarding mathematical meaning of
definitions (like in CR notion as above).

Rogaway and Shrimpton [18] gave formal definitions in concrete secu-
rity framework for basic security notions (CR, SPR, PR) of hash functions
and some of their variants. These definitions are given in the setting of
keyed hash functions, i.e. considering a family of a hash function rather
than one fixed hash function. They also studied all relations (implications
and separations) between these notions (in the keyed setting).

To point out some relations between a security notion defined for a
family of hash functions and required security assumption(s) on a fixed
hash function (to be a member of that family), we consider two secu-
rity notions , called aSec and aPre and defined in [18], for a family of
hash functions. The notions are defined in terms of games in which a
key that is known to the adversary is chosen first and then the chal-
lenger chooses a random challenge. (Alternatively the key can be cho-
sen by the adversary using the best strategy.) Here we point out the
fact that existence of an aSec or aPre family of hash functions, say
H : {0, 1}k × {0, 1}∗ → {0, 1}n implies existence of a fixed (unkeyed)
hash function, H ′ : {0, 1}∗ → {0, 1}n, that is SPR or PR, respectively,

as defined by following games. Recall that x
R
← X and x

$
← X represent

randomly selecting an element x of the set X according to uniform dis-



tribution and some specific distribution, respectively.

Game(SPR[m], A) Game(PR[m], A)

M
R
← {0, 1}m M

R
← {0, 1}m; Y = H ′(M)

M ′ $
← A(M) //M ′ ∈ {0, 1}∗ M ′ $

← A(Y ) //M ′ ∈ {0, 1}∗

A wins the game if : A wins the game if :
M 6= M ′ and H ′(M) = H ′(M ′) H ′(M ′) = Y

We say that the hash function H ′ is (T, ǫ)−SPR[m] or (T, ǫ)−PR[m] if
no adversary with time complexity at most T can win the corresponding
game with probability at least ǫ. If H ′ is compression function (i.e., H ′ :
{0, 1}m → {0, 1}n), all inputs will have the same length and one can drop
superscript m from notations( i.e., just say (T, ǫ) − SPR or (T, ǫ) − PR
compression function).

Stinson [21] studied relations between security notions (Zero-Preimage,
CR, SPR, and PR) for a fixed hash function via related games. To show
an implication between two notions, a black-box reduction is used from
any adversary winning one game to an adversary that wins the other
game.

Let us end this brief overview by considering the notion of collision
resistance. The formal definition of CR notion for a hash function fam-
ily was proposed by Damgard [5, 6], in asymptotic security framework.
A rephrased variant of this formal definition for a hash function family
H : {0, 1}k ×D → {0, 1}n , in concrete security framework (as in [18]), is
as follows:

Game(CR, A)

K
R
← {0, 1}k

(M,M ′)
$
← A(K) // M,M ′ ∈ D

A wins the game if :
M 6= M ′ and HK(M) = HK(M ′)

A hash function family H is said (T, ǫ)-CR if no adversary with time
complexity at most T can win the CR game above with a probability not
smaller than ǫ.

As it is seen from CR game if one wants to consider a fixed hash
function, then there would be no input (as a challenge) for adversary and
so one cannot say that there is no (T, ǫ) adversary. Consider an adversary



that already saved a colliding pair M,M ′ in her/his memeory. Such a
colliding pair is assured if hash function is compressing and so existence
of such a simple adversary is already assured for any fixed (compressing)
hash function. This may seem somewhat puzzling because security of
many of protocols is based on CR property of a fixed hash function to
be used in the protocol. Some options can be imagined for treating this
matter. If it is possible modify the protocol to make it use a weaker
than CR notion. Or modify it to let application of a hash function family
(instead of only a single hash function) and then use a provably secure CR
hash function family in it. But what if one wants to study and compare
protocols as they are? An (informal) option is pointed out by Brown [4]
(see also [21]) assuming CR as a strong property that “ there is no known

(T, ǫ) adversary” instead of assuming that “there is no (T, ǫ) adversary
at all ”.

Recently, Rogaway [19] has introduced an interesting way out of this
CR formalization dilemma.

C On hardness of eSPR game in random oracle model

(T,L, ǫ)-eSPR property for a given (fixed) compression function is just a
security assumption whose validity can be verified by the best cryptanal-
ysis results against the specified compression function, and this is also the
case for all other properties defined for a fixed compression function (not
for a family of functions). For example considering a compression function
like md5 : {0, 1}128+512 → {0, 1}128 used in the MD5 hash function, one
can assume as a security notion that md5 is SPR or PR, but validity of
such an assumption is not provable and one can have some feelings about
this due to the fact that the best practical cryptanalysis results cannot
do much so far.

Regarding the fact that eSPR notion is a very recent one at present we
should wait for cryptanalysis results to evaluate popular practical hash
functions like MD5 (not so popular now due to recent attacks like [23]) and
SHA1. In the following we provide an intuition about hardness of eSPR
game compared to SPR game under Random Oracle Model. The proof
of following proposition is very similar(with some small modification) to
that of HCR game as shown by Mashatan and Stinson[12].

Proposition 1 (eSPR difficulty in random oracle model). Assume
that H is a random function from the set of all functions with domain
{0, 1}n+b and range {0, 1}n and every adversary has oracle access to it,
i.e. can query M and obtain H(M). Let b ≥ t and 2t be much smaller



than 2n. Then for any adversary Eve making at most T = 2t queries
to oracle H, an upper bound on the probability of the adversary winning
eSPR game is ǫ ≤ 2t−n + 22t−2n−b.

Proof (Hint). Note that because of modeling H as a random oracle we
should only consider eSPR adversaries with L = 2, for by repeated in-
vocation of random oracle, the output distribution (related to evaluated
part in eSPR game) does not change. The rest of proof is very similar to
proof of HCR difficulty in [12].

⊓⊔


