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Abstract. We construct two simple families of two-message (n, 1)-oblivious transfer protocols based on
degree-t homomorphic cryptosystems with the communication of respectively 1 + dn/te and 3 + dn/(t + 1)e
ciphertexts. The construction of both families relies on efficient cryptocomputable conditional disclosure of
secret protocols; the way this is done may be of independent interest. The currently most interesting case
t = 2 can be based on the Boneh-Goh-Nissim cryptosystem. As an important application, we show how to
reduce the communication of virtually any existing oblivious transfer protocols by proposing a new related
communication-efficient generic transformation from computationally-private information retrieval protocols
to oblivious transfer protocols.
Keywords. Computationally-private information retrieval, conditional disclosure of secrets, homomorphic en-
cryption, oblivious transfer.

1 Introduction

In an (n, 1)-oblivious transfer protocol, (n, 1)-OT, Alice on input 0 ≤ σ < n retrieves the σth element of Bob’s
database D = (D0, . . . , Dn−1). One requires that Alice obtains no information about any Dj for j 6= σ, and
that Bob obtains no information about σ. It is well-known that by general reductions, one can base both two-
party computation [Yao82,IP07,Lip08] and multi-party computation [Kil88] on (2, 1)-OT. Efficient (n, 1)-OT is
a cornerstone of many handcrafted cryptographic protocols. Thus, it is important to construct (n, 1)-OT protocols
that are efficient for values of n ranging from n = 2 to say n = 220. The currently most communication-efficient
(n, 1)-OT protocols for large n were proposed in [Lip05,GR05], while some of the most communication-efficient
(2, 1)-OT protocols were proposed in [AIR01,LL07].

New linear protocols. We first propose two new families OTSt and OTXt, for t ≥ 1, of linear-communication
(n, 1)-OT protocols. Later in the paper we use these families to construct sublinear (n, 1)-OT protocols. Both
families rely on a cryptosystem that enables to cryptocompute (that is, compute-on-ciphertexts) degree-t poly-
nomials with coefficients from ZN ∪ {?}, where ? denotes a pseudorandom element of the plaintext group ZN .
(It’s formally defined by multiplication and addition to elements of ZN .) We call such a cryptosystem degree-t
homomorphic. The case t = 1 includes additively homomorphic cryptosystems like the Paillier [Pai99], and the
case t = 2 includes the BGN cryptosystem [BGN05].

Without loss of generality, assume that t | n. We also assume that the database elements are `-bit long.
Then, (n, 1)-OTSt is a parallel repetition of n/t copies of an atomic (t, 1)-OTSt protocol that use a common
secret/public key pair. They also share Alice’s first message that consists of the public key and of an encryption of
Alice’s index σ. In every single instance of (t, 1)-OTSt, Bob cryptocomputes his reply as a single encryption of
the sum of two polynomials Correctt−1

i (σ) and CDSSti(σ), where the first polynomial takes care of the correctness
and the second polynomial implements conditional disclosure of secrets (CDS, [GIKM00,AIR01,BGN05,LL07])
to guarantee Bob’s privacy.

More precisely, Correctti(σ) is the unique degree-t polynomial such that Correctti(σ) = Dσ if bσ/tc = i, and
CDSSti(σ) is a degree-t polynomial such that CDSSti(σ) = 0 for bσ/tc = i and CDSSti(σ) = ? for bσ/tc 6= i.
Thus, Correctti(σ) + CDSSti(σ) is equal to Dσ if bσ/tc = i, and to ?, otherwise. In particular, OTS1 corresponds
to the (n, 1)-OT protocols from [AIR01,LL07].

The protocol (n, 1)-OTXt is similarly composed from atomic (t+1, 1)-OTXt protocols. Here, however, Bob’s
reply is a sum of Correctti(σ) and of a CDS polynomial CDSX′i(σ) if t = 1, and of a CDS polynomial CDSXti(σ)
if t > 1. Because of the use of Correctti(σ), the number of atomic protocols is decreased to dn/(t+1)e. However,
the corresponding CDS polynomials are more complicated and require Bob to communicate 2 ciphertexts per
atomic protocol (if t = 1), or Alice to communicate 3 ciphertexts (if t > 1). The basic reason behind the added
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Table 1. Comparison of different instantiations of OTX, OTS with the protocols from [AIR01,LL07]. Here, |c| denotes the
length of ciphertexts in bits; |pk| and |c| depend on the underlying cryptosystem. Here ’?’ means that currently there are no
known cryptosystems that are suitable in this case

Protocol Alice’s comm. Bob’s comm. Max ` PKC |c| CDS eq.
Previous instantiations
[AIR01] = OTS1 |pk|+ |c| n|c| ≤ 64 Mult. hom. 180 (7)
[LL07] = OTS1 |pk|+ |c| n|c| ≤ 680 Add. hom. 1536 (7)
New instantiations
OTS2 |pk|+ |c| dn/2e|c| ≤ 64 BGN 1536 (7)
OTX1 |pk|+ 2|c| n|c| ≤ 680 Add. hom. 1536 (6)
OTX2 |pk|+ 3|c| dn/3e|c| ≤ 64 BGN 1536 (5)
Generic, hypothetical instantiations for t > 2

OTSt |pk|+ |c| dn/te|c| ? ? ? (7)
OTXt |pk|+ 3|c| dn/(t + 1)e|c| ? ? ? (5)

complexity is that there is no degree-t polynomial f such that f(σ) = 0 for bσ/(t + 1)c = i and f(σ) = ? for
bσ/(t+ 1)c 6= i.

Given the state of the art on existing degree-t homomorphic cryptosystems and efficient CDS protocols, one
can instantiate the protocols OTSt and OTXt with t = 1 or t = 2 as summarized in Table 1. (Here, the increase
of |c| to 1536 in factorization-based schemes takes into account the recent advances in factoring.) Thus, the new
protocols are communication-efficient even when n is small, say n = 2 or n = 3. See Sect. 3 for more comparison.

New sublinear protocols. The most communication-efficient known sublinear (n, 1)-OT protocols are con-
structed by combining a communication-efficient (n, 1)-computationally-private information retrieval (CPIR) pro-
tocol such as [Lip05,GR05] with a linear (n, 1)-OT protocol from [AIR01,LL07], i.e., with OTS1. For ` < 264,
the communication of the combined protocols decreases if OTS1 is replaced with either OTS2 or OTX2. In
the case of the only known CPIR protocol with log-communication [GR05], this replacement decreases slightly
the communication of the combined protocol. In the case of Lipmaa’s CPIR protocol from [Lip05], for small `,
the transformed oblivious transfer protocol is not only more secure but also more communication-efficient than
Lipmaa’s original CPIR protocol. We also point out that the existence of degree-2 cryptosystem with efficient
decryption would imply the second log-communication oblivious transfer protocol.

General remarks. Apart from presenting the concrete protocols, the current paper has a few more contributions.
First, it provides a precise complexity analysis of the oblivious transfer protocols from [BGN05]. Second, it
defines a clean methodology for cryptocomputing protocols, where Bob’s answer is a sum of two polynomials,
one of which takes care of the correctness and the second one takes care of Bob’s privacy by using recent advances
in defining efficient cryptocomputable protocols for conditional disclosure of secrets [LL07]. Third, it can be seen
as a unification of several different oblivious transfers from the literature, and then generalisation to not yet studied
cases.

Caveats. The proposed two-message protocols are secure only if the plaintext group order N of the underlying
cryptosystem has no small prime divisors. This means that if the group order is composite (like in the case of
existing additively homomorphic cryptosystems or the BGN cryptosystem) then one can either rely on the PKI
model, use zero-knowledge proofs or correctness, or say use Lenstra’s ECM algorithm to detect small divisors of
N . See [LL07] for a discussion. This is not a problem if N is prime, for example, if we rely on lifted Elgamal.
More relevantly, this is also not a problem if the cryptosystem does not have efficient decryption as it is the case
with the BGN: in the case of BGN, one only has to verify that the smallest prime divisor p of N is large enough
so that doing O(

√
p) operations is infeasible.

Notation. For a set S, U(S) denotes the uniform distribution on it. ? is used as a new element of some fixed group
or ring, and is defined by it’s multiplication or addition with other group elements. That is, if the group/ring order
is prime, then ? · 0 = 0, ? · i = ? and ?+ j = ? for any i 6= 0 and any j.
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Road-map. In Sect. 2, we give necessary preliminaries. In Sect. 3, we describe the protocols OTSt and OTXt.
In Sect. 4, we describe a generic transformation of any (n, 1)-CPIR protocol to a (n, 1)-OT protocol with a
comparable communication. In Sect. 5, we discuss related work.

2 Preliminaries

Composite order bilinear groups. Let G and GT be two multiplicative cyclic groups of order N where N =
pq ∈ Z and p, q are λ-bit primes for some fixed security parameter λ ∈ Z+, e : G × G → GT is a bilinear map,
and for some fixed generator g of G, e(g, g) is a generator of GT . We assume that group operations and e are all
efficiently computable. Let G be a bilinear group generation algorithm that outputs such a tuple (p, q,G,GT , e).
[BGN05] suggest the following example. Pick large primes p < q and let N = pq. Find the smallest ` so
P = `N − 1 is prime and equal to 2 modulo 3. Consider the points on the elliptic curve y2 = x3 + 1 over FP .
This curve has P +1 = `N points, so it has a subgroup G of order N . We let GT be the order N subgroup of F∗P 2

and e : G×G→ GT be the modified Weil pairing from [BF03].
Let (p, q,G,GT , e) ← G(λ). For an adversary A, define AdvSD(A), the advantage of A in solving the sub-

group decision problem [BGN05] as

AdvSD(G,GT ,e)(A) := |Pr[x← G : A(pq,G,GT , e, x) = 1]| − |Pr[x← G : A(pq,G,GT , e, x
q) = 1]| .

That is, the task of A is to distinguish random elements of G from random elements of its order p subgroup. We
say that (G,GT , e) is a (τ, ε)-SD group if for any τ -time adversary A, AdvSD(G,GT ,e)(A) ≤ ε.

Public-key cryptosystems. A public-key cryptosystem is a tuple (K, E ,D) of algorithms with (possibly public-
key dependent) plaintext spaceM, randomizer space R and ciphertext space C, such that G generates a random
secret/public key pair (sk, pk), Epk(m; r) = c encrypts a plaintext m ∈ M to a ciphertext c ∈ C by using a
randomizer r ∈ R, and Dsk(c) = m decrypts a ciphertext c ∈ C to a plaintext m ∈ M. One requires that for any
(sk, pk) ∈ G and for any m ∈ M, r ∈ R, Dsk(Epk(m; r)) = m. A public-key cryptosystem is (τ, ε)-IND-CPA
secure if for a freshly generated public/secret key pair (sk, pk), any τ -time adversary A can distinguish random
encryptions of any two plaintext messagesm1,m2, even chosen by himself, with probability≤ ε. (The probability
is also taken over the choice of the keys.)

Additively homomorphic public-key cryptosystems. A public-key cryptosystem is additively homomorphic if
M = (ZN ,+, 0) for some integer N , (C, ·, 1) is a finite cyclic group, and if

Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 +m2

for any m1,m2, r1, r2. In addition, we require that Epk(m; r) · Epk(0;U(R)) = Epk(m;U(R)) for any m, r; this
enables to perform efficient rerandomization. There are many well-known additively homomorphic public-key
cryptosystems, see for example, [Pai99,DJ01].

Disclose-if-equal. For an additively homomorphic cryptosystem, given an encryption c = Epk(m; r) of some m,
one can compute c1 ← c? · Epk(0;U(R)) = Epk(? ·m;U(R)). If gcd(m,N) = 1 (resp., gcd(m,N) > 1) and
? = U(ZN ) then c1 = Epk(U(ZN );U(R)) is a random encryption of a random value from ZN (resp., in some
nontrivial subgroup of ZN ). In a disclose-if-equal protocol, Alice on input a obtains Bob’s input b1 if a = b2 for
Bob’s second input b2, otherwise Alice obtains ?. In a simple disclose-if-equal protocol [AIR01,LL07], given a
random encryption of a, Bob computes a random encryption of

? · (b2 − a) + b1 (1)

and returns it to Alice. However, this protocol is not secure by itself: if b2 − a is a non-trivial divisor of N ,
then because ? · (b2 − a) belongs to a non-trivial subgroup of ZN , Alice can obtain partial information about
b1 [LL07]. This means that if decryption is inefficient, then this disclose-if-equal protocol is computationally
private for Bob under the subgroup decision assumption. Otherwise, one should use the disclose-if-equal protocol
of [LL07] that forces c1 to be an encryption of a (statistically) pseudorandom value of ZN for any m 6= 0, while
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c1 is an encryption of 0 if m = 0. This can then used in the described disclose-if-equal protocol. Briefly, in the
implementation of the Laur-Lipmaa protocol, instead of Eq. (1), one uses the polynomial

? · (b2 − a) + † · 2` + b1 . (2)

where † denotes the formal random element of ZbN/2`c. Alice recovers the answers modulo 2` with ` < p−1−ε,
where p is the smallest prime divisor of N and 2−ε is the desired privacy level of honest Bob. Denote by Z̃N the
set ZN enhanced by all possible formal random elements that are computable by Bob. Thus, given an additively
homomorphic cryptosystem, Bob can cryptocompute linear polynomials f ∈ Z̃N [M1, . . . ,Mt]

The BGN cryptosystem and degree-t homomorphic cryptosystems. The BGN cryptosystem is defined as
follows [BGN05]. The algorithmK runs G to generate (p, q,G,GT , e). LetN ← pq. Pick generators g, u← U(G)
and let h ← uq . Output public key pk ← (N,G,GT , e, g, h) and private key sk ← p. To encrypt a message
m ∈ Z2` where 2` < q with public key pk, pick a random r ← R := ZN and compute Epk(m; r)← gmhr ∈ G.
To decrypt a ciphertext c using the private key sk, compute first cp = (gmhr)p = (gp)m and then recover m by
computing the discrete logarithm of cp on base gp. This can be done in time O(2`/2) and thus one must take say
` < 64 or ` = O(log λ). Set g1 ← e(g, g) and h1 ← e(g, h), clearly g1 has orderN and h1 has order q. Define the
associated BGN cryptosystem (Ea,Da) in group GT , with Ea

pk(m; r) := gm1 h
r
1 where Da is defined as the discrete

logarithm of Ea
pk(m; r)p on base gp1 .

Given BGN encryptions of anym1,m2, one can compute a BGN encryption ofm1+m2 as Epk(m1)·Epk(m2),
and an associated BGN encryption of m1m2 as e(Epk(m1), Epk(m2)). In particular,

Ea
pk(m; r) = e(Epk(m; r), g) .

Thus, given BGN encryptions of any m1, . . . ,mt, and using the disclose-if-equal protocol of Eq. 1, one can
compute associated BGN encryptions of

Ea
pk(f(m1, . . . ,mt)) (3)

for any quadratic polynomial f ∈ Z̃N [M1, . . . ,Mt]. This generalizes the computations that one can do in the case
of additively homomorphic cryptosystems.

We call a cryptosystem degree-t homomorphic if one can cryptocompute (associated) encryptions of type
Eq. (3) for any degree-t polynomial f ∈ Z̃N [M1, . . . ,Mt], given encryptions of Mi. Thus, t = 1 in the case of
additively homomorphic public-key cryptosystems and t = 2 in the case of the BGN cryptosystem.

Conditional disclosure of secrets. During a conditional disclosure of secrets (CDS) protocol (see, for exam-
ple, [GIKM00,AIR01,BGN05,LL07]), Alice obtains Bob’s secret exactly iff her own input belongs to some pub-
licly specified set of valid inputs; if Alice’s input is incorrect then Alice obtains usually a value that is statistically
close to a uniformly random plaintext. There exist several general approaches of constructing CDS protocols that
are cryptocomputable given a degree-t homomorphic cryptosystem. In particular, efficient cryptocomputable CDS
protocols for many tasks for t = 1 and t = 2 were respectively proposed in [AIR01,LL07] and [BGN05]; such
protocols are usually based on disclose-if-equal subprotocols.

Oblivious transfer. Assume that Alice has an input σ ∈ {0, . . . , n− 1} and Bob has a database D =
(D0, . . . , Dn−1) where Di ∈ {0, 1}`. In an (n, 1)-oblivious transfer protocol for `-bit strings, (n, 1)-OT`, Alice
obtainsDσ and no additional information, and Bob obtains no information about σ. We only consider two-message
oblivious transfer (OT) protocols. An OT protocol is correct when in the case of honest parties, Alice receivesDσ .
An OT protocol is (τ, ε1)-private for Alice if for any two indices σ1, σ2, even chosen by Bob himself, a τ -time Bob
cannot distinguish the first messages of Alice that correspond to σ1, σ2. An OT protocol is statistically ε2-private
(resp., computationally (τ2, ε2)-private) for Bob if there exists an unbounded simulator that, only given access to
the first message of Alice and Bob’s database element Dσ , generates Bob’s second message from the distribution
that is statistically ε2-close to (resp., computationally (τ2, ε2)-indistinguishable from) Bob’s response in the real
protocol to Alice’s first message. An OT protocol is statistically (resp., computationally) (τ1, ε1; τ2, ε2)-relaxed-
secure if it is correct, (τ1, ε1)-private for Alice and statistically (resp., computationally) (τ2, ε2)-private for Bob.
A statistically (resp., computationally) (τ, ε)-secure (n, 1)-computationally-private information retrieval (CPIR)
protocol is the same as a statistically (resp., computationally) (τ, ε; poly(λ), 1)-relaxed-secure OT protocol.
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The presented security definition is standard in the case of CPIR and OT proto-
cols [AIR01,Lip05,BGN05,NP05] but also say in the case of private keyword search protocols [FIPR05].
A proof that one can run many copies of corresponding protocols securely, while using the same public key in
every copy, can be found in [LL07].

3 New Families of Oblivious Transfer Protocols

We next propose two families OTXt and OTSt of linear-communication (n, 1)-OT protocols that use the prop-
erties of a degree-t cryptosystem to decrease the number of communicated ciphertexts to 3 + dn/(t + 1)e and
1 + dn/te, respectively. Sect. 4 uses these linear protocols to construct sublinear protocols.

Underlying idea of OTXt. Without loss of generality, assume that (t + 1) | n. The basic idea of the first
new protocol, that we call (n, 1)-OTX, follows. Alice first generates a new key pair for a degree-t homomorphic
cryptosystem. She sends to Bob the new public key with a random encryption of σ. Given that, for every 0 ≤ i <
n/(t+ 1), Bob cryptocomputes the polynomial Correctti(σ) + CDSXti(σ), where Correctti(σ) and CDSXti(σ) are
two degree-t polynomials that take care of protocol’s correctness and Bob’s privacy respectively. More precisely,
Correctti is the unique degree-t polynomial, such that Correctti(σ) = Dσ if bσ/(t+ 1)c = i. For example,

Correct1i (σ) =((2i+ 1)− σ) ·D2i + (σ − 2i) ·D2i+1 ,

Correct2i (σ) =
1
2
· ((3i+ 1)− σ)((3i+ 2)− σ) ·D3i+

(σ − 3i)((3i+ 2)− σ) ·D3i+1+
1
2
· (σ − 3i)(σ − (3i+ 1)) ·D3i+2 .

Second, CDSXti(σ) is a degree-t polynomial such that

CDSXti(σ)

{
0 , bσ/(t+ 1)c = i ,

CDSXti(σ) = ? , otherwise .

That is, CDSXti implements a cryptocomputable conditional disclosure of secrets protocol. Therefore,
Correctti(σ) + CDSXti(σ) is equal to Dσ if dσ/(t+ 1) = ie, and to ? otherwise.

A “minor” complication here is that such a polynomial CDSX must have degree t+1 while we need a degree-t
polynomial. To overcome this issue, we let Alice send to Bob three encryptions of (σ2, σ1, σ0), where

σ2 ←bσ/(t+ 1)c , σ1 ← b(σ mod (t+ 1))/tc , σ0 ← σ mod t . (4)

E.g., if σ = 14 and t = 4 then σ2 = 2, σ1 = 1, and σ1 = 0. From these encryptions, Bob can cryptocompute an
encryption of σ = (t+ 1)σ2 + tσ1 + σ0. We now redefine

CDSXti(σ2, σ1, σ0) := ? ·(σ2 − i) + ? · (σ1 − 1)σ1 + ? ·
t−1∏
i=0

(σ0 − i) + ? · σ1σ0 . (5)

Clearly, CDSXti is a degree-t polynomial with the required properties, that is, CDSXti(σ2, σ1, σ0) = 0 if dσ/(t +
1)e = i and CDSXti(σ2, σ1, σ0) = ?, otherwise. (Here, the last 3 monomials together guarantee that the result
is pseudorandom, unless σ0 6∈ {0, . . . , t− 1} and σ1 = 0, or σ0 = 0 and σ1 = 1, that is, unless 2σ1 + σ0 6∈
{0, . . . , t}.)

After that, Bob returns all n/(t + 1) ciphertexts to Alice who decrypts the bσ/(t + 1)cth ciphertext. Thus, if
0 ≤ σ < n then Alice retrieves Dσ , and if σ 6∈ {0, . . . , n− 1} then Alice retrieves a close-to-uniformly random
value.

The case t = 1 is different. In this case, we are not aware of a protocol with the communication of dn/2e+O(1)
ciphertexts. The main problem is that the CDS protocol for showing that x ∈ {0, 1} by methods of [LL07]
requires Bob to send two ciphertexts to Alice, because there is no way to check that σ0 ∈ {0, 1} by using a
single linear polynomial. Instead, as in [LL07], we transfer Correct1i twice, where the first time Alice obtains the
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answer if σ0 = 0 and in the second time Alice obtains the answer if σ0 = 1; this corresponds to the protocols
of [AIR01,LL07]. More precisely, assume that 2 | n. In OTX1, Alice transfers to Bob one public key and two
ciphertexts of σ1 = bσ/2c and σ0 = σ mod 2. For every 0 ≤ i < n/2, Bob forwards to Alice random encryption
of the vector (Correct1i (σ),Correct1i (σ)) + CDSX′i(σ1, σ0), where

CDSX′i(σ1, σ0) := (? · (σ1 − i) + ? · σ0, ? · (σ1 − i) + ? · (σ0 − 1)) . (6)

Thus, the communication of OTX1 is 1 public key and n+ 2 ciphertexts.

Full description of (n, 1)-OTX2. We now follow up with a precise definition of the (n, 1)-OTXt protocol.
For simplicity’s sake, we only give an implementation in the case t = 2 and assume that one uses the BGN
cryptosystem. The general case is a straightforward extension.

Let (K, E ,D) be the BGN cryptosystem with plaintext group order N ; let p be the smallest prime divisor of
N . Assume Alice’s private input is 0 ≤ σ < n and Bob’s private input is D = (D0, . . . , Dn−1). Fix ` < log2 p
such that doing O(2`/2) steps is feasible; for example, ` := 64. (For the decryption to be polynomial-time in n,
one needs that ` = O(log n). However, in practical applications n is too small for the asymptotic notion to start to
become relevant.) Without loss of generality, assume that 3 | n. The protocol description follows:

1. Alice runs K to generate a new secret/public key pair (sk, pk). She stores sk. She computes c2 ←
Epk(σ2;U(R)), c1 ← Epk(σ1;U(R)) and c0 ← Epk(σ0;U(R)), for σi computed according to Eq. (4), and
sends (pk, c2, c1, c0) to Bob.

2. If c2, c1 or c0 is not a valid ciphertext then Bob rejects. Otherwise, Bob computes c← c32c
2
1c0, di ← Epk(i; 0)

for i ∈ {1, . . . , n}, and a vector of ciphertexts b = (b1, . . . , bn/3), where

fi ←e(c2/di, g)U(ZN ) · e(c1/d1, c1)U(ZN ) · e(c0/d1, c0)U(ZN ) · e(c1, c0)U(ZN ) ,

bi ←e(d3i−2/a, d3i−1/a)D3i/2 · e(a/d3i, d3i−2/a)D3i−1 ·

e(a/d3i, a/d3i−1)D3i−2/2 · fi · hU(R)
1

for i ∈ {1, . . . , n/3}, and sends b to Alice.
3. Alice outputs Da

pk(bbσ/3c), or “reject” if decryption is not successful.

Theorem 1. Assume that the BGN cryptosystem is (τpkc, εpkc)-IND-CPA secure, (G,GT , e) is a (τg, εg)-SD
group, that the public key is correctly generated with N = pq and p < q, and that ` = O(log n) � log2 p.
Then the (n, 1)-OTX2 protocol is computationally (τpkc −O(1), 3εpkc; τg, εg)-relaxed-secure.

Proof. CORRECTNESS: clearly, if cj is generated correctly for j ∈ {0, 1, 2}, then bi is a random associated
encryption of a message distributed according to Xi := Correct2i (σ) + CDSX2

i (σ2, σ1, σ0). Clearly, if σ = 3σ2 +
2σ1 + σ0 ∈ {3i, 3i+ 1, 3i+ 2} then e = Dσ .

ALICE’S PRIVACY: the only thing Bob sees is 3 ciphertexts (together with a fresh public key pk). Therefore,
Alice’s privacy follows directly from the IND-CPA security of the BGN cryptosystem.

BOB’S PRIVACY: we need to construct a simulator that on inputs (pk, Dσ, c2, c1, c0) solely, where pk is a
random public key and σ ← Dsk(c32c

2
1c0), computes a second round message that has almost the same distribution

as b, that is, it is a random associated encryption of Xi. Simulator does the following. It rejects if any of ci is not a
valid ciphertext. First, if σ 6∈ {0, . . . , n− 1}, then it outputs a random associated encryption of a random element
from U(ZN ). On the other hand, in this case, Xi is a random element of either ZN or of some nontrivial subgroup
of ZN (e.g., when σ1 = p). Thus, Xi and U(ZN ) are computationally (τg, εg)-indistinguishable by the subgroup
decision assumption. Second, if σ ∈ {0, . . . , n− 1} then the simulator outputs a random associated encryption of
Dσ . Clearly, in this case simulator’s output has distribution Xi. ut

An alternative family OTS. We will next give a short description of an alternative family OTS of (n, 1)-OT`

protocols. In OTSt, Bob cryptocomputes polynomials

Correctt−1
i (σ) + CDSSti(σ) ,
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where Correctt−1
i is as defined before and CDSSti is another, simpler, CDS polynomial. More precisely, assume

that t | n. In OTSt, Alice transfers a new public key and a random encryption of σ, and Bob replies with n/t
random encryptions of Correctti(σ) + CDSSti(σ), where

CDSSti(σ) := ? ·
t−1∏
j=0

(σ − (ti+ j)) (7)

for 0 ≤ i ≤ n/t− 1.
Therefore, in OTSt, Alice transfers 1 public key and 1 ciphertext, while Bob transfers dn/te ciphertexts (as op-

posed to 3 and dn/(t+ 1)e ciphertexts in the case of OTXt). Clearly, OTS1 corresponds to the oblivious transfer
protocol from [AIR01,LL07]. The only other current instantiation is OTS2 when coupled with the BGN cryp-
tosystem. To the best of our knowledge, if ` ≤ 64 and one disregards the length of the public key and ciphertexts
then OTS2 is the most communication-efficient available (2, 1)-OT` protocol, having the total communication of
1 public key and 2 ciphertexts.

On the use of disclose-if-equal. Whenever the cryptosystem has efficient decryption, one must use the disclose-
if-equal protocol of [LL07]. In this case, one must assume that ` < log2 p− log2 n− ε, where 2−ε is the desired
statistical privacy-level of Bob.

Comparison. In the case t = 1, the underlying cryptosystem must be additively homomorphic. One can use either
the lifted Elgamal (that has inefficient decryption) or say the Paillier [Pai99] or the Damgård-Jurik [DJ01]. Then,
OTS1 corresponds resp. to the Aiello-Ishai-Reingold protocol [AIR01] or to the Laur and Lipmaa protocol [LL07],
while OTX1 is a related but slightly less efficient protocol. Compared to the case t = 2, the case t = 1 benefits
from the existence of a wide variety of additively homomorphic public-key cryptosystems, shorter public keys,
and efficient decryption that makes it possible to obliviously transfer long strings with say ` ≥ 680. On the
other hand, the number of transferred ciphertexts is larger than in the case of t = 2. Moreover, the ciphertexts of
existing additively homomorphic cryptosystems are twice longer than the ciphertexts of the BGN cryptosystem.
On the other hand, the ciphertexts of lifted elliptic-curve-based Elgamal are shorter than the ciphertexts of the
BGN cryptosystem.

In the case t = 2, one uses a degree-2 homomorphic cryptosystem, for example, the Boneh-Goh-Nissim
cryptosystem [BGN05]. Compared to t = 1, one now transfers less ciphertexts. Additionally, because these in-
stantiations operate on the ciphertexts of the BGN cryptosystem, they can be used in conjunction with other
protocols that rely on the BGN cryptosystem; such applications include efficient non-interactive zero-knowledge
proofs from [GOS06]. On the other hand, one is currently restricted to the BGN cryptosystem that has longer
public keys, compared to existing additively homomorphic public-key cryptosystems, and inefficient decryption
that only allows to efficiently transfer strings with say ` ≤ 64.

From the communication-efficiency view-point, if neglecting the length of the public key and assuming that `
is small, for n ≤ 15, the most efficient new protocol is (n, 1)-OTS2, while for n > 15, the most efficient protocol
is (n, 1)-OTX2. In many common applications of oblivious transfer, the public key is shared with other protocols
and thus does not incur a communication overhead.

Note that both (n, 1)-OTX and (n, 1)-OTS are secure only if one assumes that the public key is correctly
generated. As in the case of protocols based on known additively homomorphic public-key cryptosystems, one
needs that the smallest prime divisor of N is sufficiently large, see [LL07]. This assumption can be modeled by
saying that this protocol is secure in the PKI model, or by letting Alice prove once in zero knowledge that the
public key is correct and then using the same public key in many instances of the protocol. Yet another possibility
is to use Lenstra’s ECM algorithm to verify that N does not have small prime factors. These and other remedies
are thoroughly discussed in [LL07]. In the case of the BGN, because it does not have efficient decryption, it is
sufficient to verify that the smallest prime divisor p of N is larger than say 2160.

4 Sublinear Oblivious Transfer

A common methodology to construct (n, 1)-OT protocols is to first construct a communication-efficient (n, 1)-
CPIR protocol and then apply an efficient transformation to transfer it to a comparably efficient (n, 1)-OT protocol.
Examples of communication-efficient (n, 1)-CPIR protocols include [Lip05,GR05]. A typical transformation was
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proposed in [AIR01] and later refined in [LL07] to work with existing additively homomorphic cryptosystems.
Next, we generalize the approach of [AIR01,LL07].

We now describe a new transformation based on OTXt for t > 1; the transformation based on OTSt is similar.
Without loss of generality, assume that (t + 1) | n. Recall that during the OTXt protocol, Bob first constructs a
database of n/(t+1) ciphertexts, such that the ith ciphertext encryptsDσ if bσ/(t+1)c = i, and ?, otherwise. Then
Bob transfers the whole database of ciphertexts to Alice. Instead, we can use in parallel any two-message (n/(t+
1), 1)-CPIR protocol so that Alice will obtain the bσ/(t+ 1)cth ciphertext. The resulting transformed protocol is
clearly relaxed-secure: first, because OTXt is relaxed-secure even if Alice sees all intermediate ciphertexts, the
composed protocol is also relaxed-secure. Second, Bob only sees the first messages of Alice of both protocols and
thus the composed protocols preserves Alice’s privacy iff both OTXt and the used CPIR protocol preserve Alice’s
privacy.

In general, let Π1 be the OTXt (or say the OTSt) protocol, and let Π2 be an arbitrary CPIR protocol. We
denote the transformed protocol by Π2 ◦ Π1, the case Π1 = OTS1 corresponds to the transformation proposed
in [AIR01,LL07]. Clearly, if Π1 on database elements of length ` has the first message of C1(n, `) bits and
the second message of C2(n, `) ciphertexts, and Π2 on database elements of length λ with C3(n, λ) bits of
communication, then the transformed protocol Π2 ◦ Π1 has the communication of C1(n, `) + C3(C2(n, `), λ)
bits. Here, λ is the length of ciphertexts in bits. Thus, Π2 ◦ OTS1 has the communication of |pk|+ d2 log2Ne+
C3(n, d2 log2Ne) bits, where |pk| = dlog2Ne ≈ 1536 bits. On the other hand,Π2◦OTXt has the communication
of |pk| + 3dlog2Ne + C3(dn/(t + 1)e, dlog2Ne) bits, where |pk| is somewhat longer compared to the case of
OTS1.

If Π2 is the Gentry-Ramzan CPIR protocol [GR05] with communication O(log2 n+ `) then the total commu-
nication of Π2 ◦OTS1 is |pk|+O(log2 n+ 2 log2N). In this case, the total communication of Π2 ◦OTXt is not
significantly different unless t is large. On the other hand, the communication decrease is significant in the case of
less communication-efficient CPIR protocols. Recall that Lipmaa’s (n, 1)-CPIR protocol [Lip05]—when used on
top of the Damgård-Jurik cryptosystem [DJ01]—has the communication of(

1
2
· log2

2 n+ (s+ 3/2) · log2 n+ s

)
λ

bits, where λ = dlog2Ne, and s is the smallest integer such that sk > ` where k is the security parameter. Thus,
applying Lipmaa’s CPIR protocol on the OTX2-transformed database of n/3 ciphertexts results in the protocol
Π2 · OTX2 that has the communication of(

3(s+ 1) +
1
2
· log2

2

n

3
+
(

(s+ 1) +
3
2

)
· log2

n

3
+ (s+ 1)

)
λ
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(

1
2

log2
2 n+

(
s+

5
2
− log2 3

)
log2 n+ (4− log2 3) s+ 4 +

5
2
· log2 3+

1
2
· log2

2 3
)
λ

bits. This means that—assuming that the strings to be transferred are short with say ` ≤ 264—the OTX2-
transformation actually reduces the communication of Lipmaa’s original CPIR protocol, on top of increasing
its security. This same will be true with virtually any superlogarithmic-communication CPIR protocol.

Recursive OTXt. We can recursively apply OTXt to itself. Bob’s original database has n items, each ` bits. The
intermediate database, generated by OTXt has dn/(t + 1)e ciphertexts, each dlog2Ne bits. One can next apply
the (dn/(t + 1)e, 1)-OTXt protocol ξ := dlog2N/`e times to retrieve all dlog 2Ne bits of the dn/(t + 1)eth
intermediate ciphertext. Continuing, in the level r recursion, Alice sends 1 public key and 3r ciphertexts and Bob
sends ξr−1 · dn/(t+ 1)r−1e ciphertexts.

Interestingly, if there existed a degree-2 homomorphic cryptosystem with ξ = 2 then this recursive con-
struction would result in an O(log n) communication (n, 1)-OT protocol. More precisely, r ← (lnn − ln 6 +
ln ln 1.5)/ ln 1.5 would result in the optimal communication of (3 lnn + 3 − 3 ln 6 + 3 ln ln 1.5)/ ln 1.5 ≈
5.1 log2 n − 12.5 ciphertexts. The same asymptotic result holds whenever ξ ≤ t, while the optimal case for
ξ ≥ t is just the trivial one with r = 1.
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5 Related Work

Boneh, Goh and Nissim [BGN05] considered the application of degree-2 homomorphic cryptosystems to construct
efficient oblivious transfer protocols. They proposed two similar but yet different (n, 1)-CPIR protocols. The next
protocol is a symbiosis of both that achieves the same communication complexity as their second protocol but
is somewhat simpler to execute. In addition, we provide the precise communication complexity estimate. In this
protocol, ` = O(log n) as in (n, 1)-OTX. The database is viewed as comprising of n1/3 chunks, each chunk
containing n2/3 entires, where Alice is interested in retrieving entry (I, J,K) of D. For 0 ≤ i, j < 3

√
n, Alice

sends Bob random encryptions of [i = I] and [j = J ]. Bob uses the encryption scheme’s homomorphic properties
to compute associated encryptions of

DI,J,k =
∑

0≤i,j< 3√n

[i = I][j = J ]Di,j,k

for 0 ≤ k < 3
√
n. Bob sends the 3

√
n resulting associated ciphertexts to Alice who decrypts the Kth entry. As

briefly mentioned in [BGN05], recursively applying this scheme results in a communication complexity O(nελ)
for any ε > λ. More precisely, assuming that a ciphertext is η` bits, afterR rounds of recursion this protocol has the
communication of (2b3R/2c+ηb3

R/2c−1)n1/3R

ciphertexts. In the asymptotically optimal case 3R =
√

2 logη n,
this results in the communication of (1 + o(1)) exp(

√
2 ln η · lnn) ciphertexts. In the case of say η = 24 (for

example, if ciphertexts are 1536 bits long and ` = 64), this protocol is inferior to the protocol of Stern [Ste98].
The essential differences, compared to OTX2, are: first, (n, 1)-OTX2 requires Alice to send three ciphertexts

and Bob to send dn/3e ciphertexts, while the protocols of [BGN05] that correspond to one-dimensional case
require Alice to send n ciphertexts and Bob to send one ciphertext. Second, one can combine OTXt and OTSt
with an arbitrary existing sublinear computationally-private information retrieval protocol to construct an almost
as efficient oblivious transfer protocol. The oblivious transfer protocols from [BGN05] do not seem to share this
property. In the case of protocols of [BGN05] it seems that one can only use standard communication-balancing
techniques that are not in par with the state-of-the art CPIR protocols of [Lip05,GR05]. Third, the protocols
from [BGN05] are not private for Bob, and thus one must couple them with say OTX2 to design a real oblivious
transfer protocol. In this sense, the new protocols are orthogonal to the protocols from [BGN05].

Open problems. Constructing a degree-2 homomorphic cryptosystem with efficient decryption is a major open
problem. As we showed in Sect. 4, such a cryptosystem would make it possible to construct another (n, 1)-OT
protocol with O(log n) communication. Constructing degree-t, for t > 2, homomorphic cryptosystems is another
well-known open problem. We stress that not much is known about degree-t, t ≥ 2, homomorphic cryptosystems.
It may come out that the ciphertext lengths of such cryptosystems grow linearly with t. A more specific open
problem posed by this paper is to construct a degree-1 homomorphic cryptosystem based (n, 1)-OT protocol (for
example, a more efficient version of OTX1) with communication O(1) + dn/2e.

Acknowledgments. We would like to thank Jens Groth and Brent Waters for helpful comments. The author was
partially supported by the Estonian Science Foundation, grant 6848.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How to Sell Digital Goods. In Birgit
Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from The Weil Pairing. SIAM Journal of Com-
puting, 32(3):586–615, 2003.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ciphertexts. In Kilian [Kil05], pages
325–341.
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