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Abstract. In this paper, we introduce the exact concept of ID-based
signature without trusted Private Key Generater(PKG), which solves
the key escrow problem through binding two public key with a same
identity. In this scheme, PKG is prevented from forging a legal user’s
signature because he only generates the partially private key. Using Gap
Diffie-Hellman (GDH) groups, we construct an efficient ID-based signa-
ture scheme without trusted PKG, which security relies on the hardness
of the Computational Diffie-Hellman Problem (CDHP). More precisely,
under the random oracle model, our scheme is proved to be secure against
existential forgery on adaptively chosen message and ID attack, assuming
CDHP is intractable. Our scheme not only eliminates the inherent key
escrow problem but also has a higher efficiency than the existing schemes.

Keywords: ID-based Signature, Key Escrow, Gap Diffie-Hellman Group,
Bilinear Pairing, Dishonest PKG.

1 Introduction

With the widely use of open networks such as the Internet, digital signatures
have become one of the most important cryptographic tools. In traditional CA-
based Cryptosystems (CBC), the public key of a signer is essentially a random
bit string. This leads to a problem of how the public key is associated with the
signer. In these CBC, the binding between public key and identity of the signer
is obtained via a digital certificate, issued by a Trusted Third Party (TTP)
called Certifying Authority (CA). The traditional CBC requires huge efforts in
terms of computing time and storage to manage the certificates. To simplify
the certificate management process, an ID-based Cryptosystem (IBC) based on
integer factorization problem was first proposed by Shamir in 1984 [1], which
allows a user to use his identity as the public key. For the simple key management
procedure compared to CBC, IBC can be an alternative for CA-based public key
systems in some occasions, especially in the case that efficient key management
is essential to the cryptosystem.



1.1 Related Works

Lots of research on ID-based schemes has been proposed after the initial work
of Shamir [1], but most of them are impractical for low efficiency. In [2] Guillou
and Quisquater proposed a paradoxical ID-based signature using their interactive
zero-knowledge protocol in [2].

Recently, the bilinear pairings, namely the Weil pairing and the Tate pairing
of algebraic curves, have initiated some completely new fields in cryptography,
making it possible to realize cryptographic primitives that were previously un-
known or impractical [3, 4]. More precisely, they are important tools for construc-
tion of ID-based signature schemes(IBS). Plenty of ID-based signature schemes
from bilinear pairings have been proposed in recent years [5–12]. An ID-based
signature using pairings was first proposed by Sakai, Ohgishi and Kasahara in
[5], however they did not present the security analysis in their work. Paterson
[6] proposed an IBS scheme based on pairings with brief security arguments
but without rigorous proof. A provably secure IBS was proposed by Hess in [7],
which is secure against existential forgery under adaptively chosen message and
fixed ID attacks. In 2003, Cha-Cheon [8] proposed an IBS scheme based Gap
Diffe-Hellman groups. They provided a definition of security for IBS schemes
called security against existential forgery under adaptively chosen message and
ID attacks and proved their scheme secure. In ASIACRYPT 2003, Al-Riyami et
al. [9] introduced a concept of certificateless public key cryptography (CL-PKC),
a model for the use of public key cryptographic which avoids the inherent key
escrow of IBC. In the same year, Chen et al. [10] proposed an IBS scheme with-
out trusted PKG, eliminating the inherent key escrow problem. In [11], Gorantla
and Saxena proposed an efficient certificateless signature scheme which is more
efficient than the IBS in [9]. In [12], Al-Riyami et al. present another CL-PKE
scheme whose security is proven to rest on the hardness of the Bilinear Diffie-
Hellman Problem (BDHP) and that is more efficient than the original scheme
[9]. In [13], the authors propose a new CLPKE scheme that does not depend on
the bilinear pairings and give a security proof in the random oracle model.

1.2 Our Contributions

In this paper, we introduce the exact concept of ID-based signature without
trusted PKG, which solves the key escrow problem through binding two pub-
lic key with a same identity. In this scheme, PKG is prevented from positive
attacking because he only generates the partially private key. Using Gap Diffie-
Hellman (GDH) groups, we construct an efficient ID-based signature scheme
without trusted PKG, which security relies on the hardness of the Computa-
tional Diffie-Hellman Problem (CDHP). More precisely, under the random oracle
model, our scheme is proved to be secure against existential forgery on adap-
tively chosen message and ID attack, which is a natural ID-based version of
the standard adaptively chosen message attack, assuming CDHP is intractable.
Our scheme not only eliminates the inherent key escrow problem but also has



a higher efficiency than the existing schemes. We will discuss the security and
efficiency analysis of our scheme in section 5.

The main contributions in this paper are listed as follows:

1. Propose the generic definitions and the basic models of ID-based signature
without trusted PKG.

2. Construct an efficient ID-based signature without trusted PKG.
3. Provide the security proof of the ID-based signature without trusted PKG

in the random oracle model.

The rest of the paper is organized as follows. In the next section, we briefly
describe some preliminary works. In section 3, we introduce the definition and
basic model of ID-based signatures without trusted PKG. An efficient ID-based
signature scheme without trusted PKG is constructed in detail in section 4. In
section 5, the security analysis of our scheme is discussed and the efficiency
comparison between our scheme and the existing schemes is shown. Finally, the
concluding remarks are given in Section 6.

2 Preliminary Works

In this Section, we will briefly describe the basic definition and properties of
bilinear pairings and Gap Diffie-Hellman Group.

2.1 Bilinear Pairings

The bilinear pairings namely Weil pairing and Tate pairing of algebraic curves is
defined as a map e : G1×G1 → G2 where G1 is a cyclic additive group generated
by P , whose order is a prime q, and G2 is a cyclic multiplicative group of the
same order q. Let a, b be elements of (Z/qZ)×. We assume that the discrete
logarithm problems (DLP) in both G1 and G2 are hard. A bilinear pairings has
the following properties:

1. Bilinear: e(aR, bS) = e(R, S)ab, ∀R, S ∈ G1 and a, b ∈ (Z/qZ)×. This can
be related as ∀R, S, T ∈ G1, e(R + S, T ) = e(R, T )e(S, T ) and e(R, S + T ) =
e(R, S)e(R, T );

2. Non-degenerate: There exists R, S ∈ G1 such that e(R, S) 6= IG2 , where
IG2 denotes the identity element of the group G2;

3. Computable: There is an efficient algorithm to compute e(R, S) for all
R, S ∈ G1.

2.2 Gap Diffie-Hellman Group

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
assume that the inversion and multiplication in G1 can be computed efficiently.
We first introduce the following problems in G1.

1. Discrete Logarithm Problem (DLP): Given two elements R, S ∈ G1, to
find an integer n ∈ (Z/qZ)×, such that S = nR whenever such an integer exists.



2. Computational Diffie-Hellman Problem (CDHP): Given P , aP , bP for a,
b ∈ (Z/qZ)×, to compute abP .

3. Decisional Diffie-Hellman Problem (DDHP): Given P , aP , bP , cP for a,
b, c ∈ (Z/qZ)× to decide whether c ≡ ab mod q.

We call G1 a Gap Diffie-Hellman Group if DDHP can be solved in polynomial
time but there is no polynomial time algorithm to solve CDHP or DLP with
nonnegligible probability. Such group can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings.

3 Basic Models

3.1 Definitions

In this section, we introduce some basic definitions of ID-based signatures with-
out trusted PKG. The parameters involved in the schemes are depicted in the
following.

• a plaintext message space M : a set of strings over some alphabet.
• a identity space ID: a set of possible id.
• a signature space S: a set of possible signatures.
• a partially private key space X1: a set of possible partially private keys

for signature creation, which is generated by the signer himself.
• a partially private key space X2: a set of possible partially private keys

for signature creation, which is generated by PKG.
• a partially public key space Y1: a set of possible partially public keys for

signature verification, which is generated by the signer himself.
• a partially public key space Y2: a set of possible partially public keys for

signature verification, which is generated from the signer’s identity and Y1 by
PKG.

• A PKG involved in ID-based signature scheme maybe play three roles:
1. Trusted, Just as traditional, the trusted PKG wouldn’t collude with an

adversary;
2. Negatively Dishonest, The PKG would release the signer’s partially private

key x2 ∈ X2 to an adversary;
3. Positively Dishonest, The PKG would generate a valid public tuple 〈y′1, y′2〉

and a valid private couple 〈x′1, x′2〉 binding the id of a signer for an adversary.
Definition 1. A full ID-based signature without trusted PKG consists of five

procedures (Parameter Setup, Extract, Sign, Verify, Trace):
• an efficient probabilistic algorithm Parameter Setup:

k → description of system parameters 〈M, S,X1, X2, Y1, Y2, yPKG, xPKG〉
where k is a security parameter and yPKG is PKG’s public key generated

from xPKG that is PKG’s master secret key.
• an efficient probabilistic algorithm Extract:



Extract includes three sub-algorithms:




Y1Gen : X1 → Y1, which is denoted by y1 = Y1Gen(x1);
Y2Gen : ID × Y1 → Y2, which is denoted by y2 = Y2Gen(id, y1);
X2Gen : Y2 → X2, which is denoted by x2 = X2GenxP KG

(y2).

where Y2Gen is a one-way function to binding y1, y2 with id at one time.
• an efficient probabilistic signing algorithm Sign:

M ×X1 ×X2 → S,

for any message m ∈ M and private key x1 ∈ X1, x2 ∈ X2, we denote by

s = Sign(x1,x2)(m)

where s ∈ S.
• an efficient signature verification algorithm Verify:

M × S × ID × Y1 × Y2 → {True, False},

for any message m ∈ M and public key y1 ∈ Y, y2 ∈ Y2, it is necessary

Verify(id,y1,y2) (m, s) =
{

True, if s = Sign(x1,x2)(m) and y2 = Y2Gen(id, y1)
False, elsewise.

• an efficient interactive “knowledge proof” algorithm Trace:

Y2 × ID × Y1 → {Honest, Dishonest},

if, for PKG’ positively dishonesty, there exist two triple 〈x2, id, y1〉 and 〈x′2, id, y′1〉
and id ∈ ID, y1, y

′
1 ∈ Y1, x2, x

′
2 ∈ X2, it is necessary

Trace(id, y1, x2, y
′
1, x

′
2) =





Dishonest, if x2 = X2GenxP KG
(Y2Gen(id, y1))

and x′2 = X2GenxP KG
(Y2Gen(id, y′1))

Honest, elsewise.

To protect user’s partially secret key x2, algorithm Trace should be an interactive
“knowledge proof” algorithm that is performed by an arbiter and a legal user.

3.2 Basic Model of ID-Based Signature without Trusted PKG

In the normal case, most of ID-based signature schemes often involve a trusted
PKG to generate a user’s private key with his identity that is the correspond
public key, so everyone can verify a signature using the signer’s identity informa-
tion. This property make ID-based signature advantageous over the traditional
signature scheme, as the key distribution is far simplified. It needs a list for
some public system parameters of PKG instead of a public key directory for all
users. However, these schemes suffer from inherent drawback of key escrow that



PKG knows all users’ private keys. But this weakness will be overcome in our
signature scheme.

Following Definition 1, the detailed implement process of ID-based signature
without trusted PKG is depicted as follows.

Parameter Setup:
PKG first choose a secret parameter k and the public system parameters

〈M, S, ID,X1, X2, Y1, Y2, yPKG〉. yPKG is computed from xPKG.
Extract:
1. A user chooses a partially private key x1 ∈ X1 randomly and computes the

partially public key y1 = Y1Gen(x1), y2 = Y2Gen(id, y1), where y1 ∈ Y1, y2 ∈
Y2 and id is the user’s identity information. He sends 〈id, y1, y2〉 to PKG.

2. After receiving user’s 〈id, y1, y2〉, PKG verifies whether y2 = Y2Gen(id, y1).
If hold, PKG computes x2 = X2GenxP KG

(y2) and sends it back to the user in a
secret channel. Couple 〈x1, x2〉 is the private key and couple 〈y1, y2〉 is the public
key. Otherwise, PKG aborts.

Sign:
The user signs a message m with his private key 〈x1, x2〉 using algorithm

Sign.
s = Sign(x1,x2)(m)

Where s is the signature of the message m.
Verify:
Everyone can verify whether Verify(id,y1,y2)(m, s) = True.
Trace:
Suppose positively dishonest PKG forged a “valid” public key 〈y′1, y′2〉 and

private key 〈x′1, x′2〉 for a id of a legal user, whose public key is 〈y1, y2〉 and
private key is 〈x1, x2〉, which fit

{
x2 = X2GenxP KG

(Y2Gen(id, y1))
x′2 = X2GenxP KG

(Y2Gen(id, y′1))

Using the interactive “knowledge proof” algorithm Trace, the legal user can
show the proof that x2 is really his legal partially private key, which is signed by
PKG’ private key, to an arbiter. Identity id correspond to x2 and x′2 together,
so the PKG is proved to be positively dishonest

Here we need to point out that our ID-based signature scheme can really
prevent a positively dishonest PKG from binding several public keys with a
same id, but it cannot avoid a Negatively dishonest PKG revealing the partially
private key of a user. Fortunately, the other partially private key still can protect
the users’ right. In section 5, we will give the strict security proof for this case.

3.3 Attack Model for ID-based Signature without Trusted PKG

In traditional CA-based signature scheme, the property of secure against exis-
tential forgery on adaptively chosen message attack is necessary. In this model
[14, 15], an adversary wins the game if he outputs a valid pair of a message



and a signature, where he is allowed to ask the signer to sign any message ex-
cept the output. Here we will introduce an attack model for ID-based signature
without trusted PKG, similarly to [8, 15]. We say that an ID-based signature
scheme, which consists of five algorithms Parameter Setup, Extract, Sign, Verify
and Trace playing the same role as ours, is secure against existential forgery on
adaptively chosen message and id attacks if no polynomial time algorithm A has
a non-negligible advantage against a challenger S in the following game:

1. S runs Parameter Setup firstly and gives the public system parameters to
A.

2. A can require the following queries:
(a) Hash function query. S computes the value of the hash function for the

requested input and sends the value to A.
(b) Extract query. Given an identity id and the public key 〈y1, y2〉, S returns

the partially private key x2 corresponding to id, which is obtained by running
X2Gen algorithm.

(c) Sign query. Given a triple 〈id, y1, y2〉 and a message m, S returns a
signature which is obtained by running Sign algorithm.

3. A outputs 〈m, s〉, where m is a message, and s is the signature. A wins
the game if s is a valid signature of m for id in the following three cases:

Case 1: A outputs 〈〈id, y1, y2〉,m, s〉 , where id is a legal identity, 〈y1, y2〉 is
the correspond legal public key, 〈id, y1, y2〉 and m are not equal to the inputs of
any query to Extract and Sign respectively.

Case 2: A outputs 〈〈id, y1, y2〉,m, s〉 , where id is a legal identity, 〈y1, y2〉 is
the correspond legal public key, 〈id, y1, y2〉 is an input of query Extract and m
are not equal to the inputs of query to Sign.

Case 3: A outputs 〈〈id, y′1, y
′
2〉,m, s〉, where id is a legal identity, 〈y′1, y′2〉 is

the forged public key, 〈id, y′1, y
′
2〉 is an input of query to Extract and m is an

input of query to Sign.
Using this attack model, we can reduce the security of ID-based signature

without trusted PKG to the hardness of CDHP (Case 1 and Case 2) and DLP
(Case 3) in section 5.

4 An Efficient ID-based Signature without Trusted PKG

Let (G1,+) and (G2, ·) denote cyclic groups of prime order q, P ∈ G1 a generator
of G1 and let e : G1 × G1 → G2 be a pairing which satisfies the properties of
Bilinear and Non-degenerate.

We also assume that e(R, S) can be easily computed while, for any given
random S ∈ G1 and T ∈ G2, it should be infeasible to compute R ∈ G1 such
that e(R, S) = T . We remark that the pairing e is required to be symmetric.
Furthermore we define the hash functions H : {0, 1}∗ → G∗1 and h : {0, 1}∗ ×
G∗2 → (Z/qZ)×, where G∗1 := G1 \ {0}. We also abbreviate G∗2 := G2 \ {1}.

The efficient ID-based signature scheme without trusted PKG also consists
of five algorithms, Setup, Extract, Sign, Verify and Trace. There are three
parties in the system, the authority PKG, the signer and the verifier.



Setup : The PKG picks a random integer sPKG ∈ (Z/qZ)×, computes
QPKG = sPKGP and publishes QPKG while sPKG is kept secret. The signer
also selects a random integer s1 ∈ (Z/qZ)× as his partially secret key and com-
putes Q1 = s1P as his partially public key.

Extract : This algorithm is performed by the PKG when a signer requests
the secret key corresponding to his identity. Suppose the signer’s identity is given
by the string id which is the other partially public key. The other partially secret
key of the identity is then given by S2 = sPKGQ2 where Q2 = H(id,Q1), which
is computed by the PKG and given to the signer. For a signer, 〈Q1, Q2〉 is his
public key and 〈s1, S2〉 is his private key.

The extraction step is typically done once for every identity and uses the
same setup data for many different identities.

Sign: To sign a message m, the signer chooses a random integer k ∈ (Z/qZ)×

and computes:
1. r = e(Q2, QPKG)k

2. v = h(m, r)
3. U = kS2 − vs1Q2

The signature is then the pair (v, U) ∈ ((Z/qZ)×, G1).
Verify : On receiving a message m and signature 〈v, U〉 the verifier computes:
1. r = e(U,P ) · e(Q2, Q1)v.
2. Accept the signature if and only if v = h(m, r) and Q2 = H(id,Q1).
It is straightforward to check that the verification equation holds for a valid

signature.
Trace : Suppose PKG (or colludes with a dishonest user) wants to imper-

sonate an honest user whose identity information is id. He (or they) can do as
follows:

-PKG randomly chooses an integer s′1 ∈ (Z/qZ)× and let Q′1 = s′1P , Q′2 =
H(id,Q′

1) and S′2 = sPKGQ′2;
-He then performs the above signing protocol for the message m;
-Outputs (v′, U ′) ∈ ((Z/qZ)×, G1).
Because v′ = h(m, r′) and Q′2 = H(id,Q′

1), where r′ = e(U ′, P ) · e(Q2, Q1)v,
PKG forged a “valid” signature of the honest user. However, the user can provide
a proof to convince that the signature is forged by PKG, which is similar to CA-
based systems. He firstly sends Q1 to the arbiter, and then provides a ”knowledge
proof” that he knows S2 = sPKGH(id,Q1): the arbiter randomly chooses a
secret integer α ∈ (Z/qZ)× and sends αP to the user; the user then computes
e(S2, αP ). If the equation e(S2, αP ) = e(Q2, QPKG)α holds, the arbiter deduces
PKG dishonest because identity id corresponds to 〈Q1, Q2〉 and 〈Q′1, Q′

2〉 and
the master-key sPKG is only known to PKG.

5 Security and Efficiency Analysis of Our Scheme

5.1 Security

In this section, we will discuss the security of our signature schemes in the
random oracle model [16].



THEOREM 5.1. (Correctness) Our scheme in section 4 is correct.
proof: If

s = Sign(s1,S2)(m) = 〈v, U〉
where

r = e(Q2, QPKG)k

v = h(m, r)
U = kS2 − vs1Q2

then
{

v = h(m, e(U,P ) · e(Q2, Q1)v)
Q2 = H(id,Q1)

⇔ Verify(id,Q1,Q2)(m, v, U) = True.

This theorem is proved. ¤
To prove the Unforgeability of our ID-based signature scheme without trusted

PKG, we firstly introduce an important conclusion – Forking Lemma [15]. It gives
a reductionist security proof for triplet ElGamal-family signature schemes which
produce a signature (σ1, h, σ2) on an input message m, where σ1 takes its value
randomly from a large set, h is the hash of m and σ1, and σ2 depends only on
σ1,m and h.

LEMMA 5.2. (Forking Lemma) Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data. We denote respectively
by Q and R the number of queries that A can ask to the random oracle and the
number of queries that A can ask to the signer. Assume that, within time bound
T , A produces, with probability ε ≥ 10(R + 1)(R + Q)/2k (where k is a secu-
rity parameter), a valid signature (m,σ1, h, σ2). If the triples (σ1, h, σ2) can be
simulated without knowing the secret key, with an indistinguishable distribution
probability, then there is another machine which has control over the machine
obtained from A replacing interaction with the signer by simulation and produces
two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′ in expected
time T ′ ≤ 120686QT/ε.

THEOREM 5.3. (Unforgeability) Our scheme in section 4 is unforge-
able under a chosen message attack in the random oracle model, assuming the
hardness of the CDHP.

proof: The proof is referred to the proof of unforgeability of the signature
scheme by Pointcheval and Stern [14], and makes use of the forking lemma [14,
15]. Firstly, we note that our ID-based signature scheme in section 4, given the
input message m, produces a valid signature of the form triple 〈r, v, U〉, where
r = e(Q2, QPKG)k randomly takes its values in G2 for k is randomly selected in
(Z/qZ)×, v is the hash value of 〈m, r〉 and U depends on r, the message m and
v.

Because our ID-based signature scheme does not use a trusted PKG, the
adversary A maybe forge a signature collude with a dishonest PKG. Thus there
have two cases to discuss.

1. A forges a valid signature with no help of a trusted PKG;



2. A forges a valid signature with the help of a negatively dishonest PKG.
Case 1: We suppose that H and h are random oracles, and there exists a

probabilistic polynomial time Turing machine A whose input only consists of
public data. We assume that A can make QH queries to the random oracle H,
Qh queries to the random oracle h and R queries to the signing oracle Sign.
Within time bound T , A produces, with probability ε ≥ 10(R + 1)(R + Qh)/2q

(where q is a security parameter), a valid signature 〈m, 〈v, U〉〉.
simulation: S gives the parameters 〈G1, G2, QPKG, P, H, h〉 and 〈Q1, Q2〉

to A. S tries to simulate the challenger by simulating all the oracles to gain
〈s1Q2, kS2〉 for a fixed k, which is the random integer in (Z/qZ)× used in algo-
rithm Sign, to have the ability of signing arbitrary message m as the real signer.
A can query as follows:

H-Queries: A can query the random oracle H at any time. S simulates the
random oracle by keeping list of couples 〈∑i, Q(2,i)〉 which is called the H-List,
where

∑
i is a couple of 〈idi, Q(1,i)〉. When the oracle is queried with an input∑

, S responds as follows:

1. If the query
∑

is already on the H-List in the couple 〈∑, Q(2,i)〉, then S
outputs Q(2,i).

2. Otherwise S selects a random Q2 ∈ G∗1, outputs Q2 and adds 〈∑, Q2〉 to
the H-List.

Extract-Queries: A can query the partially private key for any identity idi

and the public key 〈Q(1,i), Q(2,i)〉. If Q(2,i) 6= H(idi, Q(1,i)), S returns invalid.
Otherwise, it outputs the partially private key S(2,i) corresponding to idi which
is obtained by running Extract algorithm.

h-Queries: A can query the random oracle h at any time. S simulates the
random oracle by keeping list of couples 〈∑i, vi〉 which is called the h-List,
where

∑
i is a couple of 〈mi, ri〉. When the oracle is queried with an input

∑
,

S responds as follows:

1. If the query
∑

is already on the h-List in the couple 〈∑, vi〉, then S outputs
vi.

2. Otherwise S selects a random v ∈ (Z/qZ)×, outputs v and adds 〈∑, v〉 to
the h-List.

Sign-Queries: S simulates the signature oracle by accepting signature queries
of the message m to be signed. S answers the query as follows:

1. S picks a random U ∈ G1 and v ∈ (Z/qZ)× which v isn’t equal to some
previous output for the h oracle.

2. S computes r = e(U,P ) · e(Q2, Q1)v. If
∑

= 〈m, r〉 is some previous input
for the h oracle, then return to step 1.

3. S adds a couple 〈∑, v〉 to h-List.
4. S outputs s = 〈v, U〉 as the signature for message m.



NOTE : Here we must check whether the distributions of real signature δ and
forged signature δ′ are same.{

δ = {(r, v, U)|k, v ∈ (Z/qZ)×, r = e(Q2, QPKG)k, U = kS2 − vs1Q2}
δ′ = {(r, v, U)|U ∈ G2, v ∈ (Z/qZ)×, r = e(U,P ) · e(Q2, Q1)v}

First we compute the probability of a real signature signed using secret key,

Pr
δ

[(r, v, U) = (ε, β, γ)]

= Pr
k 6=0,v

[r = e(Q2, QPKG)k = ε, v = β, U = kS2 − vs1Q2 = γ]

=
1

q(q − 1)
.

The probability of a forged signature is

Pr
δ′

[(r, v, U) = (ε, β, γ)]

= Pr
v,U

[v = β, U = γ, r = e(U,P ) · e(Q2, Q1)v = ε 6= 1]

=
1

q(q − 1)
.

So the triple 〈r, v, U〉 can be simulated without knowing the secret key, with
an indistinguishable distribution probability. Thus, the signing oracle simulated
by S is high quality, and thereby A is very satisfied with the Sign-Queries’
answer. He can fully exert his forgery ability.

Output: Finally, with non-negligible probability, A outputs a signature s =
〈r, v, U〉 with a message m ∈ M , where Verify(id,Q1,Q2)(m, v, U) = True, in
the case that A produces v through h queries but no Extract query with input
〈id,Q1, Q2〉, no Sign query with input m were made by A.

Now S can play the simulation twice so that A should produce two valid
signature s = 〈r, v, U〉 and s′ = 〈r, v′, U ′〉 with v 6= v′. Then we have the following
equations.

{
U = kS2 − vs1Q2

U ′ = kS2 − v′s1Q2
⇔

{
R1 = s1Q2 = (v′ − v)−1(U − U ′)
R2 = kS2 = U + v(v′ − v)−1(U − U ′)

Using 〈R1, R2〉, S can sign a valid signature 〈v, U〉 for any message m with a
fixed k (Note: Here r is also fixed for r = e(Q2, QPKG)k.), where v = h(m, r)
and U = R2 − vR1, just as the real signer signs the signature using his private
key 〈s1, S2〉.

From above equations S can solve the hard CDHP:
{

Q1 = aP = s1P
Q2 = bP

⇒ abP = R1 = s1Q2

within expected time less than 120686×2q×QhT
10×(R+1)×(R+Qh) . This contradicts the hardness

of the CDHP.



Case 2: The random oracle assumption is same as before. We suppose there
exists a probabilistic polynomial time Turing machine A whose input only con-
sists of public data. We assume that A can make QH queries to the random
oracle H, Qh queries to the random oracle h and R queries to the signing oracle
Sign. But, in this case, A has a piece of additional information S2 from the
dishonest PKG.

simulation: S gives the parameters 〈G1, G2, QPKG, P, H, h〉 and 〈Q1, Q2, S2〉
to A. S tries to simulate the challenger by simulating all the oracles to gain
s1Q2 to have the ability of signing arbitrary message m as the real signer. A can
query as in case 1.

Output: Finally, with non-negligible probability, A output a signature s =
〈r, v, U〉 with a message m ∈ M , where Verify(id,Q1,Q2)(m, v, U) = True, in the
case that A produces v through h queries, S2 through Extract query with input
〈id,Q1, Q2〉 but no Sign query with input m were made by A.

Now S can play the simulation twice so that A should produce two valid
signature s = 〈r, v, U〉 and s′ = 〈r, v′, U ′〉 with v 6= v′. Then we have the following
equations.

{
U = kS2 − vs1Q2

U ′ = kS2 − v′s1Q2
⇒ R1 = s1Q2 = (v′ − v)−1(U − U ′)

Using 〈R1, S2〉, S can sign a valid signature 〈v, U〉 for any message m, where
v = h(m, e(Q2, QPKG)k), U = kS2 − vR1 and k is chose randomly in (Z/qZ)×,
just as the real signer uses 〈s1, S2〉. From above equations S can solve the CDHP:

{
Q1 = aP = s1P
Q2 = bP

⇒ abP = R1 = s1Q2

within expected time less than 120686×2q×QhT
10×(R+1)×(R+Qh) . This contradicts the hardness

of the CDHP. ¤
Before THEOREM 5.4, we first introduce the definition-Traceability.
Definition 2. In ID-based signature, if PKG forged a ”valid” public key

〈Q′1, Q′
2〉 and private key 〈s′1, S′2〉 for a id of a legal user, whose public key is

〈Q1, Q2〉 and private key is 〈s1, S2〉, the user can provides a proof, using the
interactive “knowledge proof” algorithm Trace, to the arbiter that PKG is pos-
itively dishonest, we call the scheme has the property of Traceability.

THEOREM 5.4. (Traceability) Our scheme in section 4 is traceable.
proof: We suppose that H is a random oracle, and there exists a probabilistic

polynomial time Turing machine A whose input only consists of public data. We
assume that A can make following two queries.

H-Queries: is defined as in THEOREM 5.3.
Extract-Queries: is defined as in THEOREM 5.3.
Output: Finally, with non-negligible probability,A outputs S′2 being a “valid”

partially private key for 〈id,Q′
1, Q

′
2〉, which fit

{
Q′2 = H(id,Q′

1)
S′2 = sPKGQ′2



but the legal partially private key and public key of id is S2 and 〈Q1, Q2〉. One
of the following two cases holds:

Case 1. PKG is really trusted, which means that no Extract query with input
〈id,Q1, Q2〉 and 〈id,Q′

1, Q
′
2〉, but adversary can always compute S′2 = sPKGQ′2

for Q′2 = H(id,Q′
1).

However, this comes into collision with the hardness of DLP, thus we are sure
that the next case must have occurred.

Case 2. PKG is positively dishonest, triple 〈id,Q′
1, Q

′
2〉 must have been an

input of Extract query: {
Q′2 = H(id,Q′

1)
S′2 = sPKGQ′2

.
The user can provides a proof, using the interactive “knowledge proof” algo-

rithm Trace, that he knows S2 = sPKGH(id,Q1). The arbiter deduces PKG dis-
honest because identity id corresponds to 〈Q1, Q2〉 and 〈Q′1, Q′

2〉 and the master-
key sPKG is only known to PKG. ¤

5.2 Efficiency

In our ID-based signature without trusted PKG, there is some pre-computation,
which makes our scheme efficient. Before signing any message, the user can
pre-compute e(Q2, QPKG) for r = e(Q2, QPKG)k in step 1 and s1Q2 for U =
kS2 − vs1Q2 in step 3. Similarly, before verifying any signature, the verifier can
pre-compute e(Q2, Q1) for r = e(U,P )e(Q2, Q1)v in step 1 and Q2 = H(id,Q1).

Because our ID-based signature scheme has much pre-computation , so it
has higher efficiency than the existing schemes. Executive efficiency comparison
between our scheme and the existing schemes is given in Table 1. In the table
1, “ e ” denotes the number of pairing operation, “ EG2 ” denotes the number
of exponentiation in G2, “ MG1 ” denotes the number of multiplication in G1, “
MG2 ” denotes the number of multiplication in G2, “ AG1 ” denotes the number
of addition in G1, “ H ” denotes the number of H hash operation, “ h ” denotes
the number of h hash operation, “A(Z/qZ)×” denotes the number of addition in
(Z/qZ)×. In the Table 1, only for signing, our scheme performs as bad as [9]
and worse than [10, 11], but the verify algorithm is simplified very much. For
a simple signature scheme, in general, is one-time-sign and multi-time-verify, so
our scheme obtains a higher efficiency in the whole.

6 Conclusions

In this paper, we introduce the exact concept of ID-based signature without
trusted PKG, which solves the key escrow problem through binding two public
key with a same identity. In this scheme, PKG is prevented from forging a le-
gal user’s signature because he only generates the partially private key. Using
Gap Diffie-Hellman (GDH) groups, we construct an efficient ID-based signature



Algorithm Pre-Sign Sign

[AP03] 1e 1EG2 , 2MG1 , 1h, 1AG1

[CZK03] / 3MG1 , 1H, 1h, 1AG1 , 1A(Z/qZ)×

[GS05] / 2MG1 , 1h, 1AG1 , 1A(Z/qZ)×

Our Scheme 1e, 1MG1 1EG2 , 2MG1 , 1h, 1AG1

Algorithm Pre-Verify Verify

[AP03] / 4e, 1EG2 , 1MG2 , 1h

[CZK03] 1H 4e, 1H, 1h, 1MG1 , 2AG1

[GS05] / 3e, 1h, 1MG2 , 1MG1 , 1AG1

Our Scheme 1e, 1H 1e, 1EG2 , 1MG2 , 1h

Table 1. Efficiency Comparison with Our Scheme and the Existing Schemes

scheme without trusted PKG, which security relies on the hardness of the Com-
putational Diffie-Hellman Problem (CDHP). More precisely, under the random
oracle model, our scheme is proved to be secure against existential forgery on
adaptively chosen message and ID attack, which is a natural ID-based version of
the standard adaptively chosen message attack, assuming CDHP is intractable.
From the comparison, we conclude that our scheme not only eliminates the in-
herent key escrow problem but also has a higher efficiency than the existing
schemes, which make it have many applications in different environment.

We have taken the directions for future research to transform the basic
scheme to various more efficient transmutations.
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