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Abstract. In this paper, we present a practical attack on the signature
scheme SFLASH proposed by Patarin, Goubin and Courtois in 2001 follow-
ing a design they had introduced in 1998. The attack only needs the public
key and requires about one second to forge a signature for any message,
after a one-time computation of several minutes. It can be applied to both
SFLASHv2 which was accepted by NESSIE, as well as to SFLASHv3 which
is a higher security version.

1 Introduction

In the last twenty years, multivariate cryptography has emerged as a po-
tential alternative to RSA or DLOG [12, 2] schemes. Many schemes have
been proposed whose security appears somehow related to the problem of
deciding whether or not a quadratic system of equations is solvable, which
is known to be NP-complete [5]. An attractive feature of such schemes is
that they have efficient implementations on smart cards, although the pub-
lic and secret keys are rather large. Contrary to RSA or DLOG schemes, no
polynomial quantum algorithm is known to solve this problem.

The SFLASH Scheme. SFLASH is based on the Matsumoto-Imai scheme
(MI) [7], also called the C∗ scheme. It uses exponentiation x 7→ xqθ+1 in a
finite field Fqn of dimension n over a binary field Fq, and two affine maps
on the input and output variables. The MI scheme was broken by Patarin in
1995 [8]. However, based on an idea of Shamir [13], Patarin et al. proposed
at CT-RSA 2001 [10] to remove some equations from the MI public key and
called the resulting scheme C∗−. This completely avoids the previous attack
and, although not appropriate for an encryption scheme, it is well-suited for a
signature scheme. The scheme was selected in 2003 by the NESSIE European
Consortium as one of the three recommended public key signature schemes,
and as the best known solution for low cost smart cards.



Previous Attacks on SFLASH. The first version of SFLASH, called
SFLASHv1, is a more efficient variant of C∗− using a small subfield. It
has been attacked by Gilbert and Minier in [6]. However, the later versions
(SFLASHv2 and SFLASHv3) were immune to this attack.

Recently, Dubois, Fouque and Stern in [1] proposed an attack on a special
class of SFLASH-like signatures. They show that when the kernel of the
linear map x 7→ x + xqθ

is non-trivial, the C∗− scheme is not secure. The
attack is very efficient in this case, but relies on some specific properties
which are not met by the NESSIE proposals and which make the scheme
look less secure.

Our Results. In this paper, we achieve a total break of the NESSIE stan-
dard with the actual parameters suggested by the designers: given only the
public key, a signature for any message can be forged in about one second
after a one time computation of several minutes. The asymptotic running
time of the attack is O(log2(q)n6) since it only needs standard linear algebra
algorithms on O(n2) variables, and n is typically very small. As in [1], the
basic strategy of the attack is to recover additional independent equations in
order to apply Patarin’s attack [8]. To this end, both attacks use the differ-
ential of the public key. However, the attacks differ in the way the invariants
related to the differential are found. The differential of the public key, also
called its polar form, is very important since it transforms quadratic equa-
tions into linear ones. Hence, it can be used to find some linear relations that
involve the secret keys. Its cryptanalytic significance had been demonstrated
in [4].

Organization of the Paper. In section 2, we describe the SFLASH sig-
nature scheme and the practical parameters recommended by Patarin et al.
and approved by NESSIE. Then, in section 3 we present the multiplicative
property of the differential that we need. Next, in section 4 we describe how
to recover linear maps related to multiplications in the finite field from the
public key. In section 5, we show how to break the NESSIE proposal given
only the public key. In section 6, we extend the attack to cover the case when
up to half of the equations are removed, and finally in section 7, we compare
our method with the technique of [1] before we conclude.

2 Description of SFLASH

In 1988, Matsumoto and Imai [7] proposed the C∗ scheme for encryption and
signature. The basic idea is to hide a quadratic easily invertible mapping F
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in some large finite field Fqn by two secret invertible linear (or affine) maps
U and T which mix together the n coordinates of F over the small field Fq :

P = T ◦ F ◦ U

where F (x) = xqθ+1 in Fqn . This particular form was chosen since its rep-
resentation as a multivariate mapping over the small field is quadratic, and
thus the size of the public key is relatively small.

The secret key consists of the maps U and T ; the public key P is formed
by the n quadratic expressions, whose inputs and outputs are mixed by U
and T , respectively. It can be seen that F and P are invertible whenever
gcd(qθ + 1, qn − 1) = 1, which implies that q has to be a power of 2 since q
is a prime power.

This scheme was successfully attacked by Patarin [8] in 1996. To avoid
this attack and restore security Patarin et al. proposed in [11] to remove
from the public key the last r quadratic expressions (out of the initial n),
and called this variant of C∗ schemes, C∗−. Furthermore, if the value of r is
chosen such that qr ≥ 280, then the variant is termed C∗−−. If we denote by
Π the projection of n variables over Fq onto the first n− r coordinates, we
can represent the public key by the composition :

PΠ = Π ◦ T ◦ F ◦ U = TΠ ◦ F ◦ U.

In the sequel, P denotes the public key of a C∗ scheme whereas PΠ denotes
a C∗− or C∗−− public key. In both cases the secret key consists of the two
linear maps T and U .

To sign a message m, the last r coordinates are chosen at random, and
the signer recovers s such that PΠ(s) = m by inverting of T , U and F .
A signature (m, s) can be checked by computing PΠ(s) with the public key,
which is extremely fast since it only involves the evaluation of a small number
of quadratic expressions over the small finite field Fq.

For the NESSIE project and in [10], Patarin et al. proposed two particular
recommended choices for the parameters of C∗−− :

– for SFLASHv2 : q = 27, n = 37, θ = 11 and r = 11
– for SFLASHv3 : q = 27, n = 67, θ = 33 and r = 11

SFLASHv3 was actually proposed to provide an even more conservative
level of security than SFLASHv2 [10]. However, the designers made clear
that they viewed SFLASHv2 as providing adequate security, and no attack
on these two choices of parameters had been reported so far.

The important fact to notice here is that in both cases gcd(n, θ) = 1
and thus the attack described in [1] on a modified version of SFLASH in
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which gcd(n, θ) > 1 cannot be applied. The attack described in this paper
shares with [1] the basic observation about the multiplicative property of C∗−

schemes which is described in section 3, but proceeds in a completely different
way. More discussion about the relationships between the two attacks can
be found in section 7.

3 The Multiplicative Property of the Differential

The attack uses a specific multiplicative property of the differential of the
public key of a C∗− scheme.

The differential of the internal quadratic system F (x) = xqθ+1 is a sym-
metric bilinear function in Fqn , called DF , and it is defined for all a, x ∈ Fqn

by the linear operator :

DF (a, x) = F (a + x)− F (a)− F (x) + F (0).

When F (x) = xqθ+1, we get for all a, x ∈ Fqn

DF (a, x) = axqθ
+ aqθ

x.

Note that this expression is bilinear since exponentiation by qθ is a linear
operation. This map has a very specific multiplicative property: for all ξ ∈
Fqn

DF (ξ · a, x) + DF (a, ξ · x) = (ξ + ξqθ
) ·DF (a, x) (1)

We now explain how this identity on the internal polynomial induces a sim-
ilar one on the differential of the public keys in C∗ and C∗−. Due to the
linearity of the DP operator, we can combine it with the linear maps T
and U to get that the differential of any C∗ public key P is DP (a, x) =
T ◦DF (U(a), U(x)). Then, equation (1) becomes for any ξ ∈ Fqn :

T ◦DF (ξ · U(a), U(x)) + T ◦DF (U(a), ξ · U(x))

= T ◦ (ξ + ξqθ
) ·DF (U(a), U(x))

= T ◦ (ξ + ξqθ
) · T−1(DP (a, x)).

We denote by Mξ and ML(ξ) respectively the multiplications by ξ and by
L(ξ) = ξ + ξqθ

. Also, we let Nξ denote the linear map U−1 ◦ Mξ ◦ U which
depends on the secret key. We still use the word“multiplication” for Nξ, even
though this wording is not actually accurate since this is not the standard
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multiplication in Fqn , due to the action of the input transformation U . With
these notations :

DP (Nξ(a), x) + DP (a,Nξ(x)) = T ◦ML(ξ) ◦ T−1(DP (a, x)).

Finally, if DPΠ is the differential of a C∗− public key PΠ , then :

DPΠ(Nξ(a), x) + DPΠ(a,Nξ(x)) = TΠ ◦ML(ξ) ◦ T−1(DP (a, x)).

Let Λ(L(ξ)) denote the linear map TΠ ◦ML(ξ) ◦ T−1, then

DPΠ(Nξ(a), x) + DPΠ(a,Nξ(x)) = Λ(L(ξ)) (DP (a, x)) . (2)

This last equation is interesting since each coordinate of the left hand side
is linear in the unknown coefficients of Nξ and each coordinate of the right
hand side is a linear combination by the unknown coefficients of Λ(L(ξ))
of the symmetric bilinear coordinate forms of the original DP , which are
partially known since their first (n− r) coordinates are public.

The heart of the attack consists in identifying some Nξ, given the public
key and equation (2), and then using its mixing effect on the n coordinates
to recover the r missing quadratic forms from the (n − r) known quadratic
forms of the public key. In the next section, we will see how to recover some
non-trivial multiplication Nξ, in which ξ can be any value in Fqn \ Fq.

4 Recovering Multiplications from the Public Key

Any linear mapping can be represented by an n× n matrix with n2 entries
from Fq. Note that the multiplications Nξ form a tiny subspace of dimension
n within the space of all linear maps whose dimension is n2.

The coordinates of DPΠ are known symmetric bilinear forms that can be
seen as n(n−1)/2-dimensional vectors. They generate a (n− r)-dimensional
subspace VΠ which is contained in the n-dimensional space V , generated by
the full set of coordinates of DP in the original C∗ public key.

Consider now the expression :

SM (a, x) = DPΠ(M(a), x) + DPΠ(a,M(x))

where SM is defined for any linear mapping M as a (n−r)-tuple of symmetric
bilinear forms. Most choices of M do not correspond to any multiplication
by a large field element ξ, and thus we do not expect them to satisfy the
multiplicative property described in section 3. Due to relation (2), when M is
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a multiplication Nξ, the (n−r) coordinates of SNξ
are in V . It is unlikely that

they are all in the subspace VΠ . However, there is a huge number of possible
values for ξ, and it can be expected that for some choices of ξ ∈ Fqn\Fq, some
of the bilinear forms in SM (a, x) will be contained in the known subspace
VΠ . Our goal now is to detect such special multiplications.

Dimension of the overall linear maps space. Let us consider k of the
published expressions, for instance the first k, and let us study the vec-
tor space E(1, . . . , k) of linear maps M such that the first k coordinates of
SM (a, x) are all contained in VΠ . Since membership in VΠ is expressed by
the vanishing of n(n− 1)/2− (n− r) linear forms, the elements of this sub-
space satisfy a system of k · (n(n − 1)/2 − (n − r)) linear equations in the
n2 unknown coefficients of M . If all these equations were independent, the
dimension of E(1, . . . , k) would be n2 − k · (n(n − 1)/2 − (n − r)) which is
clearly impossible as soon as k ≥ 3. Otherwise, we can only claim that it is
lower-bounded by this number. On the other hand, it can be seen that the
space E(1, . . . , k) contains a subspace of multiplications, whose dimension is
now to be computed.

Dimension of the multiplications space. For a multiplication Nξ, thanks
to equation (2), the coordinates of SNξ

are guaranteed to be linear combi-
nations of the coordinates of DP , whose coefficients Λ(L(ξ)) are linear in
ξ + ξqθ

. Setting ζ = ξ + ξqθ
, the first k linear combinations are given by the

k linear forms
Λi(ζ) = Πi ◦ T ◦Mζ ◦ T−1

for i = 1, . . . , k where Πi is the projection on the ith coordinate. Note that
Λi : ζ 7→ Λi(ζ) are linear bijections from Fqn to (Fn

q )∗, the vector space of
linear forms over Fn

q . Indeed, the kernel of Λi consists of the elements ζ such
that the ith row of T ◦ Mζ ◦ T−1 is zero. Since T ◦ Mζ ◦ T−1 is invertible
for ζ 6= 0, the kernel of Λi must be trivial. This implies that Λi is a linear
bijection, and we will use this property. Note that this is the converse of the
assumption underlying the attack in [1], and in this sense, our new attack
and the old attack can be seen as complementary.

Let us consider the subspace L′ of (Fn
q )∗ generated by the first (n − r)

coordinate projections. In this case, the k conditions Πi ◦ SNξ
∈ VΠ become

Λi(L(ξ)) ∈ L′, ∀i = 1, . . . , k (3)

which means that Λi(L(ξ)) only depends on the (n − r) first rows of DP ,
i.e. only on the known DPΠ .
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Consequently, when searching for a multiplication by ξ for which equa-
tion (3) holds, we get the following set of conditions on ζ = L(ξ) = ξ + ξqθ

:

(i) ζ ∈ Im(L)
(ii) Λi(ζ) ∈ L′ for i = 1, . . . , k

Since ζ = ξ + ξqθ
and gcd(n, θ) = 1, ζ is non-zero unless ξ = 0 or 1. This

means that the kernel of L has dimension 1, hence ζ ranges over a space of
dimension n − 1. Condition (i) corresponds to a single linear relation over
the coordinates of L(ξ), since dim Im(L) = n − 1. Also, since Λi is a linear
bijection and L′ is of codimension r, each of the conditions in (ii) corresponds
to r additional linear relations. Altogether, this means that we have kr + 1
linear equations. Furthermore, since we are interested in the space of Nξ’s
and not in the space of Mζ ’s, the dimension is n−kr−1+1 = n−kr since the
kernel of L is of dimension 1. This implies that whenever we add a condition
(i.e. increase k by 1), we add about n2/2 linear equations on the full space of
linear maps, but their effect on the subspace of multiplications is to reduce
its dimension only by r. Finally, the space of multiplications in E(1, . . . , k)
includes at least one non-trivial multiplication, i.e. a multiplication by an
element outside Fq whenever

n ≥ kr + 2. (4)

Consequently, the dimension of E(1, . . . , k) is

max
{

n2 − k

(
n(n− 1)

2
− (n− r)

)
, n− kr, 1

}
.
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Fig. 1. Evolution of the dimensions of the overall linear maps and their subspace of mul-
tiplications when r < n/3 and when r ≥ n/3, as we add more linear equations.
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Figure 1 describes the expected evolution of the dimension of the space of
all linear maps and of the dimension of the subspace of multiplications for two
different choices of r. The intuition behind our attack is that initially there
are many “useless maps” and few multiplications. However, the number of
useless maps drops rapidly as we add more equations, whereas the number of
multiplications drops slowly (since many of the equations are linearly related
on the subspace of multiplications). This leads to an elimination race, and
we hope to get rid of all the “bad maps” before we inadvertantly kill off all
the “good maps” by imposing too many conditions.

Taking k = 3, it can be seen that the first expression of the max is not
positive. This seems to indicate that E(1, . . . , k) consists entirely of multi-
plications. This is demonstrated in the left figure. This subspace contains
non-trivial multiplications, whenever n − 3r > 1. Therefore, the attack is
expected to work for values of r up to (n − 2)/3. The right figure shows a
case in which r is too large, and thus the “good maps” are eliminated before
the “bad maps”. We will see in section 6 how to improve the attack and deal
with values of r up to about n/2. Note that even without this improvement,
our technique is already sufficient to recover non-trivial multiplications for
the recommended parameters of SFLASHv2 and SFLASHv3, since r = 11 is
smaller than both 35/3 and 65/3. Of course, the argument that was offered is
only heuristic. However, it was confirmed by a large number of experiments,
in which the attack always behaved as expected by our heuristic analysis,
and signatures were successfully forged.

5 Recovering a Full C∗ Public Key

The final part of the attack is to recover a set P ′
Π of additional equations

which are independent of the first system PΠ . If the rank of the concatenation
of the original PΠ and the newly computed r equations of P ′

Π is full, then
Patarin’s attack on MI [8] can be mounted, although we do not necessarily
reconstruct the r original equations of the full public key. This idea is the
same as in [1].

Recovering a full rank system. To reconstruct a full rank system, we
note that the action of the final linear map T is to compute different linear
combinations of the full (i.e. non-truncated) internal quadratic polynomials
F ◦ U . Consequently, if we were able to mix by some linear mapping the
internal quadratic coordinates F ◦U before the action of TΠ , then we will be
able to create new quadratic polynomials which could replace the r missing
ones.
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When we compose the multiplication Nξ = U−1 ◦ Mξ ◦ U (which was
found in the previous part of the attack) with the truncated public key PΠ ,
the inputs of the internal quadratic mapping F (x) = xqθ+1 are multiplied
by ξ. Indeed,

PΠ ◦Nξ = TΠ ◦ F ◦Mξ ◦ U

since PΠ ◦Nξ(x) = TΠ ◦F ◦U ◦U−1 ◦Mξ(U(x)) = TΠ(F (Mξ(U(x)))). Let us
denote this new system by P ′

Π . We can show that the outputs of the internal
quadratic equations F ◦U are multiplied by ξqθ+1. Indeed, TΠ ◦F (ξ ·U(x)) =
TΠ((ξ · U(x))qθ+1) = TΠ(ξqθ+1 · F (U(x))), and so :

P ′
Π = PΠ ◦Nξ = TΠ ◦M

ξqθ+1 ◦ F ◦ U

Let us consider the special case ξ ∈ Fqn \ Fq. In this situation, we say
that Nξ is non-trivial. Since F is a permutation and thus F (Fq) = Fq, ξqθ+1

is not in Fq either. Thus, the multiplication by M
ξqθ+1

is non-trivial, i.e.
corresponds in particular to a non-diagonal matrix.

Therefore, in the sets PΠ and P ′
Π the internal quadratic coordinates of

F ◦U are mixed with two different linear combinations, TΠ and TΠ ◦M
ξqθ+1

.
We hope that for some value ξ ∈ Fqn \Fq, r equations in the set P ′

Π together
with PΠ will form a full rank system. This special case is not necessary since
we could use different values of ξ to add r different quadratic forms to the
(n − r) public ones. However, in our experiments it was always sufficient
to use one ξ, and then Patarin’s attack could be applied to forge actual
signatures.

In practice, to determine if the new system of n equations is of full rank,
we simply tested whether Patarin’s attack succeeded. If not, another set of r
equations was chosen amongst the (n− r) equations of P ′

Π . For each choice
of r equations, the success probability was approximately 1 − 1/q, which is
close to 1 for q = 27

If ξ ∈ Fq (i.e. the multiplication is trivial), P ′
Π is simply PΠ where each

coordinate has been multiplied by the same element of Fq, since F (Fq) = Fq

and multiplication by an element of Fq is a diagonal matrix. Thus, such
trivial ξ are not interesting for our attack and this is the reason why they
were discarded from our search for appropriate Nξ in the previous section.

Practical results. We carried our experiments on a 2GHz AMD Opteron
PC using different parameters. The following table provides the time to
recover a non-trivial multiplication and the time to recover an independent
set of equations which form a full rank system. This computation has to
be done only once per public key. Then Patarin’s attack requires about
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one second to forge an actual signature for any given message. All these
operations can be carried out by solving various systems of linear equations
with a relatively small number of variables (O(n2) or O(n), depending on
the operation).

The two columns in bold font represent the time to attack SFLASHv2

and SFLASHv3. The notation ’s’ is for seconds and ’m’ is for minutes.

n 37 37 67 67 131
θ 11 11 33 33 33
q 2 128 2 128 2
r 11 11 11 11 11

Nξ Recovery 4s 70s 1m 50m 35m
C∗ Recovery 7.5s 22s 2m 10m 7m

Forgery 0.01s 0.5s 0.02s 2s 0.1s

6 Breaking SFLASH when the Number of Deleted
Quadratic Equations r is up to n/2

In this section, we deal with this problem by a technique which we call distil-
lation, since it allows to gradually filter additional linear maps which are not
multiplications. When r ≤ (n − 2)/3, we can use three conditions to elimi-
nate all the useless linear maps, while retaining at least a two dimensional
subspace of multiplications (since we reduce the initial n coordinates three
times by r). When r > (n− 2)/3, this will usually kill all the multiplications
along with the useless linear maps.

Distillation is performed by relaxing the constraints, i.e. by forcing only
two coordinates of SM to be in VΠ . This will cancel a large fraction of
useless linear maps, but not all of them. To clarify the situation, we use in
the rest of this section angular brackets to demonstrate the stated number
of dimensions for the SFLASHv3 parameters of n = 67 and r = 11.

After forcing the two conditions, the dimension of the space of linear
maps is reduced to

n2 − 2(n(n− 1)/2− (n− r)) = 3n− 2r 〈179〉

of the n2 〈4489〉 at the beginning, while the dimension of the good subspace
(i.e. the subspace of multipications) is n − 2r 〈45〉. Now, to find at least
one non-trivial multiplication, we need to eliminate all the remaining useless
linear maps. The new idea is that we can perform this process twice with
different pairs of coordinates, i.e. coordinates 1 and 2 for the first time and
coordinates 3 and 4 for the second, and get two different sets of linear maps,
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say V S1 and V S2, which contain both good and bad linear maps. Two ran-
dom linear subspaces of dimension m in a linear space of dimension t are
likely to have a nonzero intersection if and only if m > t/2, and then the
dimension of the intersection is expected to be 2m − t. We can apply this
criterion separately to the space of all linear maps (in which t = n2) and to
the subspace of multiplications (in which t = n). In our example V S1 ∩ V S2

is likely to contain non-trivial multiplications since 〈45〉 > 〈67〉/2, but is not
likely to contain other maps since 〈179〉 < 〈4489〉/2. More generally, we may
have to replace each one of SV1 and SV2 by the sum of several such linear
subspaces in order to build up the dimension of the multiplications to more
than n/2. For example, if each V Si has only a 〈10〉-dimensional subspace of
multiplications, we can replace it by the sum of four such linear subspaces
to get the expected dimension up to 〈40〉, and the intersection of two such
sums will have an expected dimension of 〈13〉, and thus many non-trivial
multiplications.

Asymptotic Analysis. We now show how to deal with any r < (1− ε)n/2
for a fixed ε and large enough n. Note that our goal here is to simplify the
description, rather than to provide the most efficient construction or tightest
analysis. Since n − 2r > εn, we can impose pairs of conditions and create
linear subspaces V Si of total dimension O(n) which contain a subspace of
multiplications of dimension εn ≥ 2. If we add 1/ε such subspaces, the di-
mension of the subspace of multiplications will increase to almost n, while
the total dimension will remain n/ε, which is much smaller than n2. Con-
sequently, the intersection of two such sums is likely to consist entirely of
multiplications.

Experimentations. We get the following timing results when r is close to
n/2 and ’s’, ’m’ and ’h’ respectively denotes seconds, minutes and hours.

n 37 37 67 67
θ 11 11 33 33
q 2 128 2 128
r 17 16 32 31

Nξ Recovery 8s 4m 3.5m 10h

C∗ Recovery 7.5s 22s 3m 10m

Forgery 0.01s 0.4s 0.02s 2s
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7 Comparison with the Method of Dubois et al. [1]

In both attacks, the basic strategy is to recover additional independent equa-
tions in order to apply Patarin’s attack [8]. They both use the differential
of the public key, but differ in the way the invariants of the differential are
found. The method of [1] can only deal with schemes where gcd(n, θ) > 1,
which implies that the kernel of L(ξ) = ξ + ξqθ

is of dimension strictly larger
than 1.

To recover non-trivial multiplication in [1], skew-symmetric mappings
with respect to a bilinear form B are considered, i.e. linear maps M such that
B(M(a), x) = −B(a,M(x)). In fact, the authors show that skew-symmetric
mappings related to the symmetric bilinear forms of a C∗ public key are
specific multiplications in the extension Fqn by means of a suitable transfor-
mation depending on the secret key, namely U−1 ◦Mξ ◦U where ξ ∈ Ker L.
For such maps, we get DP (M(a), x) + DP (a,M(x)) = 0. Since DP can be
computed from the public key, this equation defines linear equations in the
unknowns of M . However, in the case considered in this paper, i.e. when
dim KerL = 1 or equivalently when gcd(n, θ) = 1, the only skew-symmetric
maps are the trivial multiplications which are useless to recover new inde-
pendent quadratic equations.

To recover non-trivial multiplications, we introduce here different and
more elaborate conditions related to the vector space generated by the var-
ious images of the differential in public key coordinates. In this case, we are
also able to detect images of multiplications. However, the multiplications to
be found are not known in advance but are only shown to exist by counting
arguments, and the way we find them is by setting up an elimination race
between the multiplications and other linear maps.

8 Conclusion

Multivariate cryptographic schemes are very efficient but have a lot of ex-
ploitable mathematical structure. Their security is not fully understood, and
new attacks against them are found on a regular basis. It would thus be pru-
dent not to use them in any security-critical applications.

One of the most interesting open problems is whether the new techniques
described in this paper can be applied to the HFE cryptosystem [9]. The
main attacks discovered so far against HFE are based on Gröbner Basis [3],
and are very slow. So far, we could not find a way how to detect non-trivial
multiplications in HFE, since it lacks the multiplicative property described
in section 3, but this is a very promising line of attack which should be
pursued further.
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