
Time Capsule Signature: Efficient and Provably
Secure Constructions ?

Bessie C. Hu1, Duncan S. Wong1, Qiong Huang2, Guomin Yang1, and Xiaotie
Deng1

1 Department of Computer Science
City University of Hong Kong

Hong Kong, China
{bessiehu,duncan,csyanggm,deng}@cs.cityu.edu.hk

2 csqhuang@cityu.edu.hk

Abstract. Time Capsule Signature, first formalized by Dodis and Yum
in Financial Cryptography 2005, is a digital signature scheme which al-
lows a signature to bear a (future) time t so that the signature will only
be valid at time t or later, when a trusted third party called time server
releases time-dependent information for checking the validity of a time
capsule signature. Also, the actual signer of a time capsule signature has
the privilege to make the signature valid before time t.
In this paper, we provide a new security model of time capsule signature
such that time server is not required to be fully trusted. Moreover, we
provide two efficient constructions in random oracle model and standard
model. Our improved security model and proven secure constructions
have the potential to build some new E-Commerce applications.

Keywords: Time Capsule Signature

1 Introduction

Modern business is in nature the business for future. A contract signed now is
a commitment for some future cooperation; a ticket bought now presents an
entry permit at a specific time in the future; an option obtained now, in the
derivative markets, ensures the privilege of buying/selling a stock at some time
in the future. The success of these practices requires the integrity of credential
releasers, and the involvement of an authority who can judge the rules for legal
players. To realize these activities in E-Commerce platforms, a new primitive,
which has a great promise to be a very useful tool, is called Time Capsule
Signature [13].

A time capsule signature involves a signer (known as credential releaser), a
verifier (known as credential receiver) and a time server (known as authority).
The signer can issue a future signature indicated by some time information,
? The second author was supported by a grant from City University of Hong Kong

(Project No. 7002001).

2 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

say t, and enjoys the following properties: 1) The credential receiver can verify
immediately that a signature will become valid at time t. 2) The signature will
automatically become valid at time t, even without the cooperation of signer. 3)
The legal signer has the privilege to make the signature valid before time t.

Property 1 and 2 are easy to comprehend in the current practice. However,
in a naive solution of signing a statement that ‘the message m will become valid
from time t’, the verifier is required to be aware of the current time [13]. When
time is generalized to arbitrary events, this becomes even more problematic.
Moreover, signer has lost control of the validation time t once the statement
is produced. For the variety of E-Commerce, we do need to provide signers
the power to validate their future signature before the committed time t. For
example, in the case of debt repayment, a borrower can sign a check to indicate
the repayment day (e.g. due day), he may also have the desire to repay his
debt earlier, so to improve his credit history. Of course he can sign another
check indicating the actual repayment time, but the original check should be
handled carefully to avoid ‘double spending’. Time capsule signature supports
this desirable feature with a process of making a signature valid at any time by
the actual signer known as prehatch, as opposed to hatch the signature at time
t when some additional information is published by the time server. We refer
readers to [13] for more discussions on the applications of time capsule signature.
Property 3 may also be captured in a signed statement that ’the signature of
message m will become valid from time t, or when the signer release some secret
information’. Again, such a statement has problems when time is generalized to
arbitrary events.

The notion of time capsule signature was first formalized by Dodis and Yum
[13] in 2005. Besides the above three properties, they also require that prehatched
signature should be indistinguishable from hatched signature. For practical use
of time capsule signature as discussed above, the indistinguishability between
prehatched signature and hatched signature is actually undesirable. Since the
purpose of prehatching is to make a signature valid before time t, the verifier
can simply compare the time t with the current time to identify if a signature
is prehatched or normally hatched. Furthermore, in some scenarios, we actually
need to distinguish a prehatched signature from a hatched signature. In the
above debt repayment case, a prehatched signature has to be identified for credit
history checking. On the other hand, under the property of indistinguishability,
the time server has to be fully trusted, otherwise, there is no way to tell if a
signature which becomes valid before time t is generated by the actual signer or
a cheating time server.

Therefore, in this paper, we remove the requirement of indistinguishability
for time capsule signature while retaining all other properties. This allows us
to modify the security model for capturing attacks launched by a cheating time
server. Our generic construction is based on a new primitive called identity-
based trapdoor relation (IDTR). We propose two efficient implementations for
the IDTR primitive, one is proven secure in the random oracle model, the other
in the standard model.

Time Capsule Signature: Efficient and Provably Secure Constructions 3

1.1 Related Work

The work on timed-release cryptography was first summarized and discussed by
May [17] in 1993, and further work was carried out by Rivest et al. [20] in 1996.
The main purpose of timed-release cryptography is to ensure that encryption,
commitment or signature cannot be opened or valid until a predetermined fu-
ture time. There are two main approaches for constructing such a scheme. The
first approach, categorized as time-lock puzzles [20], is to design a computational
problem which could be solved by continually computing for at least some re-
quired period of time. This approach is widely used in applications, like verifiable
time capsules [2, 3], timed commitments [9], and some recently proposed systems
[14, 15]. The tradeoff of this approach is that immense computational overhead
has to be put on the receiver, that makes it impractical for most real-world
applications.

The second approach relies on a trusted agent who releases time-dependent
information exactly according to a pre-specified schedule. Previous work is mainly
on timed-release encryption, which diversifies according to the involvement level
of the trusted agent. May [17] suggested that the trusted agent should store
messages until the time to release. Rivest et. al. [20] suggested that the agent
should pre-compute pairs of public/private keys, publish the public keys first and
then release the private keys one by one according to some pre-specified sched-
ule. Most of the recent results [10, 5, 18, 11] are based on Boneh and Franklin’s
identity-based encryption (IBE) scheme [7]. In this paper, we also use Boneh-
Franklin IBE as one of the implementations of our generic construction. In this
implementation, we replace the identity in the IBE scheme with the claimed time
t, but the technical details are different from previous constructions which are
only for timed-release encryption. They will become clear when going through
our construction in the subsequent sections of this paper.

Another stream of research based on trusted agents is optimistic fair exchange
of digital signatures [1, 8, 12]. In those constructions, a trusted agent needs to
resolve all signatures where the signers are refusing to validate the signatures.
Scalability is the main issue of this approach. Recently, there is a new construc-
tion of time capsule signature [23] based on ring signature [19]. However, in their
system, the time server needs to generate time-dependent information for each
individual user, thus scalability is a main problem.

1.2 Paper Organization

In Sec. 2, we introduce some preliminaries. The definition and security model of
time capsule signature is specified in Sec. 3. In Sec. 4, we define a new notion
called Identity-based Trapdoor Relation (IDTR) and propose two concrete im-
plementations which are proven to be secure in the random oracle model and the
the standard model. In Sec. 5, we propose a generic construction of time capsule
signature based on IDTR and analyze its security. In Sec. 6, we extend IDTR by
adding a new property called Hiding, and use it to construct a distinguishable
time capsule signature which could capture an attacker launched by a malicious
time server. Finally, we conclude in Sec. 7.

4 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

2 Preliminaries

Identity Based Encryption. The notion of Identity Based Encryption (IBE)
was introduced by Shamir in 1984 [21]. In such a mechanism, public key could
be an arbitrary string, which is chosen from user’s name, network address, etc;
user private key is properly generated by a trusted third party (Key Generation
Center), and the secret can be preserved as long as Key Generation Center does
not release its master secret key. For IBE, a message can be encrypted for a
receiver even before the corresponding private key is generated. To this extent,
IBE is a good candidate of sending a message to the future.

The first practical IBE was proposed by Boneh and Franklin [7] in 2001.
They proposed a basic IBE scheme, which is secure against chosen plaintext
attack(IND-ID-CPA). By extending the basic scheme, a full scheme could be
achieved with security against adaptive chosen ciphertext attack(IND-ID-CCA)
in the random oracle model.

In 2005, Brent Waters [22] presented the first efficient Identity-Based En-
cryption scheme that is fully secure without random oracles. The proof of their
scheme makes use of an algebraic method first used by Boneh and Boyen [6] and
the security of the scheme is reduced to the decisional Bilinear Diffie-Hellman
(BDH) assumption.

Based on IBE, in this paper, we propose a new notion called Identity Based
Trapdoor Relation (IDTR) which can then be applied to the construction of time
capsule signature scheme.

Computational Diffie-Hellman Assumption. Let G be a group of order p
(p is a prime). The challenger chooses a, b ∈ Zp at random and outputs (g, A =
ga, B = gb), where g ∈ G. The adversary then attempts to output gab ∈ G. An
adversary B has at least ε advantage if

Pr[B(g, ga, gb) = gab] ≥ ε

where the probability is taken over the random choices of a, b and the random
bits consumed by B.

Definition: The computational (t, ε)-DH assumption holds if no t-time ad-
versary has at least ε advantage in the game above.

3 Time Capsule Signature

3.1 Definition

A time capsule signature scheme consists of eight PPT algorithms (TSSetup,
UserSetup, TSig, TVer, TRelease, Hatch, PreHatch, Ver). The definition below
follows that of Dodis and Yum [13].

1. TSSetup (Time Server Key Setup): On input 1k where k ∈ N is a security
parameter, it generates a public/secret time release key pair (tpk, tsk).

Time Capsule Signature: Efficient and Provably Secure Constructions 5

2. UserSetup (User Key Setup): On input 1k, it generates a user public/secret
key pair (upk, usk).

3. TSig (Time Capsule Signature Generation): On input (m,usk, upk, t), where
t is a time value from which the signature will become valid. It outputs a
time capsule signature σ′t.

4. TVer (Time Capsule Signature Verification): On input (m,σ′t, upk, tpk, t),
it returns 1 (accept) or 0 (reject). A time capsule signature σ′t is said to be
valid if TVer returns 1 on it.

5. TRelease (Time Release): At the beginning of each time period T , zT ←
TRelease(T, tsk) is published by the time server.

6. Hatch (Signature Hatch): On input (m,σ′t, upk, tpk, zt), anyone can run this
algorithm to get a hatched signature σt from a valid time capsule signature
σ′t.

7. PreHatch (Signature Prehatch): On input (m, σ′t, usk, tpk, t), the signer
can run the algorithm to get a prehatched signature σt of a valid time
capsule signature σ′t before time t. However, if σ′t is not valid, namely,
TVer(m,σ′t, upk, tpk, t) = 0, then PreHatch should return ⊥ which stands
for unsuccessful prehatch.

8. Ver (Signature Verification): On input (m,σt, upk, tpk, t), it returns 1 (ac-
cept) or 0 (reject).

Note that Time Server does not contact any user or need to know anything from
any user.

3.2 Adversarial Model

There are three types of adversaries, AI , AII and AIII . AI simulates a malicious
signer whose aim is to produce a time capsule signature σ′t, which looks good to a
verifier, but cannot be hatched at time t. AII simulates a malicious verifier who
wants to hatch a time capsule signature before time t. AIII simulates a malicious
time server who wants to forge a signature. Note that attacks launched by an
outsider who wants to forge a signature can also be captured by AIII . In the
following, let k ∈ N be a security parameter.

Game I: Let SI be the game simulator.
1. SI executes TSSetup(1k) to get (tpk, tsk).
2. SI runs AI on tpk. During the simulation, AI can make queries onto

TRelease.
3. AI is to output (m∗, t∗, σ′∗, upk).
4. SI executes TRelease(t∗, tsk) to get z∗t , and then executes Hatch(m∗, σ′∗,

upk, tpk, z∗t) to get σ∗.
AI wins if TVer(m∗, σ′∗, upk, tpk, t) = 1 and Ver(m∗, σ∗, upk, tpk,t) = 0.

A time capsule signature scheme is secure in Game I if for every PPT algorithm
AI , it is negligible forAI to win the game. Note that we do not put any restriction
on the generation of user public key upk. This is natural as in practice, AI is
normally the one who generates (upk, usk).

6 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

Game II: Let SII be the game simulator.
1. SII executes TSSetup(1k) to get (tpk, tsk) and UserSetup(1k) to get

(upk, usk).
2. SII runs AII on tpk and upk. During the simulation, AII can make

queries onto TSig, TRelease and PreHatch.
3. AII is to output (m∗, t∗, σ∗).
AII wins if Ver(m∗, σ∗, upk, tpk, t∗) = 1, andAII has never queried TRelease(t∗)
and PreHatch(m∗, t∗, ·).

A time capsule signature scheme is secure in Game II if for every PPT algorithm
AII , it is negligible for AII to win the game.

Game III: Let SIII be the game simulator.
1. SIII executes TSSetup(1k) to get (tpk, tsk), and UserSetup(1k) to get

(upk, usk).
2. SIII runs AIII on upk, tpk and tsk. During the simulation, AIII can

make queries onto TSig, and PreHatch.
3. AIII is to output (m∗, t∗, σ∗).
AIII wins if Ver(m∗, σ∗, upk, tpk, t∗) = 1, andAIII has never queried TSig(m∗, ·)
for time t∗.

A time capsule signature scheme is secure in Game III if for every PPT algo-
rithm AIII , it is negligible for AIII to win the game.

3.3 Discussion

One of the properties of time capsule signature in Dodis-Yum paper is ambiguity
which ensures that a prehatched signature is indistinguishable with a hatched
signature (with respect to the same message and time value t). Although this
property may have independent interest, we notice that in common applications
of time capsule signature described in Sec. 1 and in [13], this property is actually
undesirable. Since the only purpose of prehatching a signature is to make the
signature verifiable before time t. In this case, the verifier can simply check the
time t against the current time for finding out if the signature is prehatched or
normally hatched.

Our definition, instead, does not requires ambiguity. By this relaxation, we
can construct more efficient time capsule signature schemes based on identity-
based trapdoor relation (IDTR) in Sec. 4. We will see more discussions on this
relaxation and explain that for some applications, it is actually important for
the verifier to tell whether a signature is pre-hatched or hatched.

4 Identity-based Trapdoor Relation (IDTR)

A binary relation R is a subset of {0, 1}∗×{0, 1}∗ and the language LR is the set
of α’s for which there exist β such that (α, β) ∈ R, i.e., LR = {α|∃β[(α, β) ∈ R]}.
We assume that (1) there is an efficient algorithm to decide whether α ∈ LR or

Time Capsule Signature: Efficient and Provably Secure Constructions 7

not, (2) if (α, β) ∈ R, then the length of β is polynomially bounded in |α|, and
(3) there exists a short description DR which specifies the relation R.

An identity-based trapdoor relation (IDTR) is a set of relationsR = {Rid|id ∈
IR}, where each relation Rid is called a trapdoor relation and there is a master
trapdoor mtdR for extracting the trapdoor tdid of each Rid. Formally, IDTR is
specified by the following five probabilistic polynomial-time (PPT) algorithms
(Gen, Sample, Extract, Invert, Check).

1. Gen : This algorithm is used to generate R = {Rid|id ∈ IR} where IR is a
finite set of indices. Gen(1k) returns DR (the description of R) and mtdR
(the master trapdoor).

2. Sample : This sampling algorithm takes (DR, id) as input and SampleDR(id)
returns a random commitment c and witness d such that (c, d) ∈ Rid.

3. Extract : This algorithm is used to extract the trapdoor of each relation by
using mtdR. ExtractmtdR(id) returns the trapdoor tdRid

of relation Rid.
4. Invert : This algorithm is used to find a witness d for a given c ∈ LRid

by
using the trapdoor tdRid

. If c ∈ LRid
, then InverttdRid

(c) returns a witness d̂

such that (c, d̂) ∈ Rid.
5. Check : This algorithm is used to check the validity of a witness d on

the commitment c. If (c, d) ∈ Rid, then CheckDR,id(c, d) returns 1 (accept).
Otherwise, it returns 0 (reject).

Properties: One-wayness requires that no one is able to find the witness of a
commitment if the trapdoor information is not given. Soundness requires that
no one can produce a commitment whose witness cannot be found using Invert.

– One-wayness: Let OExtract be an oracle simulating the trapdoor extraction
procedure Extract and Query(A, OExtract) the set of queries an algorithm A
asked to OExtract. It states that the following probability is negligible for all
PPT algorithm A = (A1, A2):

Pr[CheckDR,id∗(c∗, d̃) = 1 ∧ id∗ /∈ Query(A,OExtract)|
(DR,mtdR) ← Gen(1k); (id∗, h) ← AOExtract

1 (DR);
(c∗, d) ← SampleDR(id∗); d̃ ← AOExtract

2 (id∗, c∗, h)]

– Soundness: We require that the following probability should be negligible
for all algorithm B:

Pr[Rid∗ ∈ R ∧ c∗ ∈ LRid∗ ∧ CheckDR,id∗(c∗, d̃) = 0|
(DR,mtdR) ← Gen(1k); (c∗, id∗) ← B(DR,mtdR);

tdRid∗ ← ExtractmtdR(id∗); d̃ ← InverttdRid∗
(c∗)]

Discussion: The definition of IDTR above is much like the definition of Dodis
and Yum’s Identity-based Hard-to-Invert Relation (ID-THIR) [13]. ID-THIR has
an ambiguity property which requires that witness d̂ inverted from c given tdRid

is computationally indistinguishable from d obtained from SampleDR(id) for the

8 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

same commitment c. To facilitate our construction of time capsule signature
under new definition in Sec. 3, we do not require ambiguity property in the
definition of IDTR above. We will see that with this relaxation we can construct
much more efficient schemes then that in [13].

4.1 Implementations of IDTR

In this section, we propose two concrete constructions of IDTR, one based on
Boneh and Franklin’s IBE whose security has been proven in the random oracle
model [7], and the other one based on Waters’ IBE whose security has been
proven in the standard model [22].

Implementation 1: In Random Oracle Model. An IBE scheme consists
of four PPT algorithms (Setup, KeyGen, Encrypt, Decrypt). The Boneh-Franklin
scheme [7] is described as follows:

1. Setup : Given a security parameter k ∈ N, generate a prime q, two groups
G1, G2 of order q, and an admissible bilinear map ê: G1 ×G1 → G2, where
|q| is some polynomial in k. Choose a random generator P ∈ G1, pick a
random s ∈ Z∗q and set Ppub = sP . Choose a cryptographic hash function
H1: {0, 1}∗ → G1, another hash function H2: G2 → {0, 1}k, and the security
analysis will view H1, H2 as random oracles [4]. The message space is M =
{0, 1}k. The ciphertext space is C = G1 × {0, 1}k. The system public key is
mpk = 〈q,G1,G2, ê, k, P, Ppub,H1,H2〉. The master secret key msk is s ∈ Z∗q .

2. KeyGen : For a given string id ∈ {0, 1}∗ the algorithm computes Qid =
H1(id) ∈ G1, and sets the private key skid to be sQid where s is the master
secret key.

3. Encrypt : To encrypt m ∈ M under the public key id, the algorithm com-
putes Qid = H1(id) ∈ G1, chooses a random r ∈ Z∗q , and sets the ciphertext
to be c = 〈rP, m⊕H2(gr

id)〉 where gid = ê(Qid, Ppub) ∈ G2.
4. Decrypt : Given the private key skid ∈ G1, a ciphertext c = 〈c1, c2〉 ∈ C can

be decrypted by computing c2 ⊕H2(ê(skid, c1)) = m.

An IDTR based on the IBE above is constructed as follows:

1. Gen : Run Setup(1k), and set LR = C, DR = mpk, and mtdR = msk.
2. Sample : Given DR and id, randomly pick m ∈ M and compute c =

Encryptid(m). Let r ∈ Z∗q be the randomness used in Encrypt. Set witness
d = 〈rQid, Ppub,m〉.

3. Extract : Given a string id ∈ {0, 1}∗, compute skid= KenGenmpk,msk(id),
and set tdRid

= skid.
4. Invert : Given trapdoor tdRid

∈ G1 and a commitment c = 〈c1, c2〉 ∈ C,
compute m = Decryptskid

(c), and set the witness d̂ = 〈tdRid
, c1,m〉.

5. Check : Given DR, id, c = 〈c1, c2〉 ∈ C, d = 〈d1, d2, d3〉 (where d1, d2 ∈ G1,
and d3 ∈M) , if d2 = Ppub, ê(d1, P) = ê(c1, Qid), and c2 = d3⊕H2(ê(d1, d2),
return 1. Else if d1 = tdRid

, d2 = c1, ê(d1, P) = ê(Ppub, Qid) and c2 =
d3 ⊕H2(ê(d1, d2)), return 1. Otherwise, return 0.

Time Capsule Signature: Efficient and Provably Secure Constructions 9

One-wayness. In the game of one-wayness, an adversary A has access to the
Extract oracle of all id other than id∗. This oracle is simulated by performing
KeyGen of the underlying IBE scheme. A wins if it can find secret key skid∗

and plaintext m∗. However, the semantic security (IND-ID-CPA) [7] of the un-
derlying IBE attains that any PPT adversary will have negligible advantage in
distinguishing m∗ with another m in M. If A succeeds, it is easy to see that we
can also distinguish m∗, which contradicts the security of the underlying IBE
scheme.

Soundness. An adversary B wins if it can generate a value c∗ which is not able
to decrypt under skid∗ . In the underlying IBE scheme, this will not be the case
even when B knows msk. Given id∗, skid∗ can always be properly generated
with the knowledge of msk. As long as c∗ is in the ciphertext domain, a valid
plaintext m∗ can always be retrieved.

Remark: This construction of IDTR in random oracle model based on the
Boneh-Franklin IBE scheme is much more efficient than the OR-proof for ID-
THIR [13].

Implementation 2: In Standard Model. We now review Waters’ IBE [22]
and propose a construction for IDTR based on this scheme.

1. Setup : Given a security parameter k ∈ N, generate a prime p, two groups
G1, G2 of order p, and an admissible bilinear map ê: G1×G1 → G2, where |p|
is some polynomial in k. Choose a random generator g ∈ G1, pick a random
α ∈ Z∗p and set g1 = gα. Choose random values g2, u′ ∈ G1, and a random k-
length vector U = (ui), whose elements are chosen uniformly at random from
G1. The message space isM⊆ G2. The ciphertext space is C = G2×G1×G1.
The system public key is mpk = 〈p,G1,G2, ê, k, g, g1, g2, u

′, U〉. The master
secret key msk is gα

2 .
2. KeyGen : Let v be an k-bit string representing an identity id, vi denote the

ith bit of v, and V ⊆ 1, ..., k be the set of all i for which vi = 1. (V is the set
of indices for which the bitstring v is set to 1.) Randomly select r ∈ Z∗p and
construct the private key skid as:

skid = 〈gα
2 (u′

∏

i∈V
ui)r, gr〉

3. Encrypt : To encrypt m ∈ M for an identity v, randomly select t ∈ Z∗p and
construct the ciphertext c as:

c = 〈ê(g1, g2)tm, gt, (u′
∏

i∈V
ui)t〉

4. Decrypt : Given the private key skid = 〈sk1, sk2〉, a ciphertext c = 〈c1, c2, c3〉 ∈
C can be decrypted as:

10 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

c1
ê(sk2, c3)
ê(sk1, c2)

= (ê(g1, g2)tm)
ê(gr, (u′

∏
i∈V ui)t)

ê(gα
2 (u′

∏
i∈V ui)r, gt)

= (ê(g1, g2)tm)
ê(g, (u′

∏
i∈V ui)rt)

(ê(g1, g2)t)ê((u′
∏

i∈V ui)rt, g)
= m

Based on Waters’ IBE: (mpk, msk) ← Setup(1k); skid= KenGenmpk,msk(id);
c = Encryptid(m); m = Decryptskid

(c), an IDTR can be constructed as follows:

1. Gen : Given k ∈ N, execute (mpk, msk) ← Setup(1k) and set LR = C,
DR = mpk, and mtdR = msk.

2. Sample : Given DR and id, randomly pick m ∈ G2 and compute c =
Encryptid(m). Let t ∈ Z∗p be the randomness in producing c. Set witness d to

d = 〈gt
2, g1(u′

∏

i∈V
ui), g2, c3,m〉

3. Extract : Let v be an k-bit identity id, compute skid= KenGenmpk,msk(id)
and set tdRid

= skid.
4. Invert : Given trapdoor tdRid

and a commitment c = 〈c1, c2, c3〉 ∈ C, compute
m = Decryptskid

(c), and set the witness to

d̂ = 〈sk1, c2, sk2, c3,m〉

5. Check : Given DR, id, c = 〈c1, c2, c3〉 ∈ C, d = 〈d1, d2, d3, d4, d5〉 (where
d1, d2, d3, d4 ∈ G1, and d5 ∈ M), if d2 = g1(u′

∏
i∈V ui), d3 = g2,d4 = c3,

ê(d1, u
′∏

i∈V ui) = ê(g2, c3), and c1 = M ê(d1,d2)
ê(d3,d4)

, return 1(∗∗). Else if d1 =
sk1, d2 = c2, d3 = sk2, d4 = c3, ê(sk1, g) = ê(g2, g1) · ê(u′

∏
i∈V ui, sk2), and

c1 = m ê(d1,d2)
ê(d3,d4)

, return 1. Otherwise, return 0.

(∗∗):The check will pass because:

m
ê(d1, d2)
ê(d3, d4)

= m
ê(gt

2, g1(u′
∏

i∈V ui))
ê(g2, (u′

∏
i∈V ui)t)

= m
ê(gt

2, g1) · ê(gt
2, (u

′∏
i∈V ui))

ê(g2, (u′
∏

i∈V ui)t)
= m · ê(gt

2, g1) = c1

Similar to the first implementation, the proof of One-wayness can be reduced to
IND-ID-CPA security of Waters’ IBE scheme. Soundness also holds since a valid
c ∈ C can always be decrypted to a message m for a given skid.
Discussion: Note that given c ∈ C, we only require that an adversary is not
able to compute the entire m for a randomly chosen m ∈ G2. In other words, we
do not need IND-ID-CPA [7] security. Although both of the constructions could
achieve IND-ID-CPA, this is not a necessity in our security notion.

Time Capsule Signature: Efficient and Provably Secure Constructions 11

5 Generic Construction of Time Capsule Signature

We now describe our generic construction of time capsule signature scheme. Our
construction is based on the identity-based trapdoor relation (IDTR) defined in
Sec. 4.

Let (Set, Sig, Verify) be the key generation, signature generation and verifi-
cation algorithms of an ordinary signature scheme, and (Gen, Sample, Extract,
Invert, Check) be the tuples of IDTR.

1. TSSetup: Let k ∈ N be a security parameter. The Time Sever gets (DR,mtdR) ←
Gen(1k) and sets public/secret time release key pair (tpk, tsk) = (DR,mtdR).

2. UserSetup: Each user runs (pk, sk) ← Set(1k) and sets (upk, usk) = (pk, sk).
3. TSig: To generate a time capsule signature on a message m for a future

time t, the signer gets a commitment/witness pair (c, d) ← SampleDR(t),
then computes s ← Sigusk(m‖c‖t). The time capsule signature σ′t is (s, c).
The signer stores the witness d.

4. TVer: A verifier checks if σ′t=(s, c) is a valid time capsule signature by
checking whether c ∈ LRt and s is a valid standard signature under public
key upk, that is, check if Verifyupk(m‖c‖t, s) = 1. If both are correct, output
1; otherwise, output 0.

5. TRelease: At the beginning of each time period T , the Time Server gets
tdRT

← Extracttsk(T) and publishes tdRT
as zT .

6. Hatch: To hatch a time capsule signature σ′t = (s, c), a party computes
d̂ ← InverttdRt

(c). The hatched signature is σt = (s, c, d̂).
7. PreHatch: To prehatch a valid time capsule signature σ′t=(s, c), the signer

retrieves stored value d, and sets the prehatched signature to σt = (s, c, d).
However, if TVer(m,σ′t, upk, tpk, t) = 0, then the algorithm outputs ⊥.

8. Ver: For a given prehatched (or hatched) signature σt = (s, c, d), the verifier
checks the validity of (c, d) by running Checktpk,t(c, d). Then, it verifies s
on m‖c‖t by running Verifyupk(m‖c‖t, s). If both verifications are correct,
output 1; otherwise, output 0.

5.1 Security Analysis

Theorem 1. The proposed time capsule signature scheme is secure if the un-
derlying public key signature scheme is existentially unforgeable against adaptive
chosen message attacks (euf-cma) [16] and the IDTR has the properties of one-
wayness and soundness.

Proof. We prove the security of our proposed time capsule signature scheme
against Game I, Game II and Game III.

Security Against Game I: AI wins the game if he can generate a valid time
capsule signature σ′t=(s, c) such that c ∈ LRt , and Verupk(m||c||t, s) =1. More-
over, no party can obtain a witness d̃ = InverttdRt

(c) such that Checktpk,t(c, d̃)
= 1, where tdRt

← Extracttsk(t) is released by the Time Server. This contradicts
the Soundness property of IDTR. Thus, the proposed time capsule signature

12 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

scheme is secure against Game I if underlying IDTR satisfies the Soundness
property.

Security Against Game II: We construct an adversary B which breaks the
One-wayness of IDTR with non-negligible advantage if AII forges a valid sig-
nature σ. Let (m∗, t∗, σ∗) be a successful forgery generated by AII . Since the
underlying standard signature scheme (Set,Sig,Verify) is euf-cma, AII has over-
whelming probability to have obtained the corresponding time capsule signature
σ′∗ from oracle TSig rather than forging σ′ on its own.

The game between the IDTR One-wayness challenger and adversary B starts
when the challenger generates DR and mtdR by running Gen(1k). After receiving
DR from the challenger, B interacts with AII in Game II as follows:

B gets a random public/private key pair (pk, sk) ← Set(1k), sets (upk, usk) =
(pk, sk), tpk = DR, and gives (tpk, upk) to AII .

B manages a list L = {(mi, ti, si, ci, di)} for answering AII ’s queries on Pre-
Hatch. Let qTSig be the total number of TSig queries made by AII and r be the
random number chosen by B in the interval of [1, qTSig]. B responds to the i-th
TSig query (mi, ti) as follows:

– If i = r, B sends tr to the IDTR One-wayness challenger and receives a
random commitment c ∈ Rtr from the challenger. B sets cr = c and com-
putes sr = Sigusk(mr‖cr‖tr). B returns σ′tr

= (sr, cr) to AII and stores
(mr, tr, sr, cr,⊥) in the list L.

– If i 6= r, B gets a random commitment/witness pair (ci, di) generated from
SampleDR and computes si = Sigusk(mi‖ci‖ti). B returns σ′ti

= (si, ci) to
AII and stores (mi, ti, si, ci, di) in L.

To simulate oracle TRelease, say on query ti from AII , B relays ti to the trapdoor
extraction oracle Extract simulated by the IDTR One-wayness challenger and gets
tdRti

. If ti = tr, B aborts. Otherwise, B returns zti
= tdRti

to AII .
To simulate oracle PreHatch, say on query (mi, ti, si, ci), B checks whether

the query is in the list L or not. If (mi, ti, si, ci) is in the list L, and equal
to (mr, tr, sr, cr), B aborts. If (mi, ti, si, ci) is in the list L, and not equal to
(mr, tr, sr, cr), B extracts di from L and gives a prehatched signature σti

=
(si, ci, di) to AII . If (mi, ti, si, ci) is not in L, since AII does not know usk and
this case implies that si is not generated by B on mi‖ci‖ti, due to the euf-cma
assumption of the underlying standard signature, it is negligible to have si be
valid. Hence this case will happen with negligible chance. Therefore, for this
case, B returns ⊥.

When AII outputs the forgery (m∗, t∗, σ∗) where σ∗ = (s∗, c∗, d∗), B veri-
fies whether the forgery passes the verification algorithm Ver, and (m∗,t∗,s∗,c∗)
= (mr, tr, sr, cr). If so, B outputs the witness d∗. Otherwise, it chooses a dB

randomly and outputs dB . The probability that B does not abort during the
simulation and has a right guess of r is at least 1/qTSig since r is randomly cho-
sen. Therefore, if AII forges with a probability ε, B succeeds in breaking the
One-wayness of IDTR with probability ε ≥ ε/qTSig.

Time Capsule Signature: Efficient and Provably Secure Constructions 13

Security Against Game III: To show the security against Game III, we con-
vert any adversary AIII which wins in Game III to a forger F against the
underlying standard signature scheme. F gets pk as an input, and has access
to signing oracle Sig of the signature scheme as described in the euf-cma model
[16]. F simulates Game III for AIII as follows:

F gets (DR,mtdR) ← Gen(1k) and gives (upk, tpk, tsk) = (pk, DR,mtdR) to
AIII . F simulates TSig on query (mi, ti) by getting (ci, di) ← SampleDR(ti) and
obtaining si ← Sig(mi‖ci‖ti) from signing oracle Sig. F stores (mi, ci, di, ti) in
a list L = {(mi, ci, di, ti)} for answering AIII ’s queries to PreHatch. To simulate
PreHatch on query (mi, ti, si, ci), F verifies if si is a valid signature on mi‖ci‖ti.

– If si is valid, F checks if (mi, ci, ti) is in the list L. If so, F gives the corre-
sponding di to AIII . Otherwise, si is a new signature value and F succeeds
in producing a new forgery si on mi‖ci‖ti.

– If si is not valid, F returns ⊥ due to the same reason as shown above in the
Security Against Game II.

Finally, when AIII outputs a forgery (m∗, t∗, σ∗t) where σ∗t = (s∗, c∗, d∗), F
outputs a signature s∗ on message m∗‖c∗‖t∗. Therefore, if AIII succeeds with a
probability ε, F succeeds in producing a new forgery with at least probability
ε. ut

6 Distinguishable Time Capsule Signature

As discussed in Sec 3.3, the ambiguity between a prehatched signature and a
hatched signature may not be desirable in practice. Moreover, in some scenarios,
there are demands to distinguish a prehatched signature from a hatched signa-
ture. In the case of debt repayment, as an example, if a borrower repays his debt
before the actual due date, he can improve his credit history or get extra reward.
Then the signature for validating the payment check should be determined on
whether it is prehatched or hatched.

Our generic construction of time capsule signature can be extended to cap-
ture the need of distinguishability. In the following, we first extend the IDTR
(identity-based trapdoor relation). We then modify our construction based on
the extended IDTR.

6.1 Extended IDTR

The extended IDTR (identity-based trapdoor relation) has seven PPT algo-
rithms associated (Gen, Sample, Reveal, Extract, Invert, CheckS, CheckI). The
settings of Gen, Sample, Extract, and Invert remain the same as in IDTR. Re-
veal is used to print out a ‘sampled’ witness. Check in IDTR is replaced by two
separated functions CheckS and CheckI, which are used to check the validity of
sampled witness and inverted witness, respectively.

14 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

– Reveal: Given c ∈ LRid
, if there is a pair (c, d) in a sampling list defined by

List = {(c, d, id)} where (c, d) ← SampleDR(id), Revealid(c) returns witness
d. Otherwise, it returns ⊥.

– CheckS: For any (c, d) ← SampleDR(id), we have CheckSDR,id(c, d) return
1 (accept); otherwise, it returns 0 (reject).

– CheckI: Given (c, d̂) ∈ Rid, where d̂ ← InverttdRid
(c), CheckIDR,id(c, d̂) re-

turns 1 (accept). Otherwise, it returns 0 (reject).

With this modification, the extended IDTR can be used to achieve another
property called Hiding, which is beyond One-wayness and Soundness. Hiding cap-
tures a malicious system master (e.g. a malicious Time Server) who aims to forge
a sampled witness for a given commitment.

– Hiding: Let OSample and OReveal be oracles simulating the procedures of Sam-
ple and Reveal, respectively, where OSample only returns a commitment for
each query. Let Query(A,OX) be the set of queries an algorithm A asked to
OX, where X can be Sample or Reveal. Note that A can only obtain commit-
ment c from OSample. It states that the following probability is negligible for
all PPT algorithm A:

Pr[CheckSDR,id∗(c∗, d∗) = 1 ∧ c∗ ∈ Query(A,OSample)
∧ c∗ /∈ Query(A,OReveal)|(DR,mtdR) ← Gen(1k);

(c∗, d∗, id∗) ← AOSampleOReveal(DR,mtdR)]

For One-wayness and Soundness, we refer readers to Sec. 4 for their definitions
while replacing Check in One-wayness with CheckS and CheckI, and replacing
Check in Soundness with CheckI.

6.2 A Generic Construction of Extended IDTR

Let E be an IBE scheme. Let E .Enc(mpk, id,m; r) be E ’s encryption algorithm
which encrypts message m under identity id and master public key mpk using
randomness r. We say that E is injective if it satisfies the following condition:

Injective: For every master public key mpk and every identity id, for every
ciphertext e of a message m under mpk and id, there exists at most one
randomness r such that e = E .Enc(mpk, id,m; r).

In the literature, many IBE schemes are injective, like BasicIdent and FullIdent
proposed by Boneh and Franklin [7], and Waters’ IBE [22].

Suppose E = (Setup,Extract,Enc,Dec) is an injective encryption scheme with
IND-ID-CPA security [7], MSP is the message space, and RSP is the space
of randomness used in E .Enc. Let f : {0, 1}`(k) → RSP be a one-way function
(or a hash function). We now give a generic construction of extended IDTR as
follows.

– Gen: On input 1k, run E .Setup(1k) to generate a master key pair (mpk, msk)
and set DR = mpk and mtdR = msk.

Time Capsule Signature: Efficient and Provably Secure Constructions 15

– Sample: On input DR and id, randomly select m ∈MSP and s ∈ {0, 1}`(k),
compute r = f(s), and run E .Enc(DR, id, m; r) to generate a ciphertext e of
m under the identity id. Store (id, c, d) = (id, (e), (m, s)) into a sampling list
List and return (c, d).

– Extract: Given mtdR and id, run E .Extract(mtdR, id) to generate the cor-
responding private key skid with respect to the identity id, and return
tdRid

= skid.
– Invert: Given tdRid

and c, run E .Dec(DR, tdRid
, c) to get the plaintext m,

and return d̂ = (tdRid
,m).

– Reveal: Given c ∈ LRid
, check if there is an entry for c in the sampling list

List = {(id, c, d)}. If so, return the corresponding d; otherwise return ⊥.
– CheckS: For any pair (c, d) output by algorithm Sample on input DR and id,

we have that (c, d) = ((e), (m, s)). Check if E .Enc(DR, id, m; f(s)) = e. If so,
return 1 (accept); otherwise return 0 (reject).

– CheckI: For any (c, d̂) ∈ Rid, where d̂ ← InverttdRid
(c), we have that (c, d̂) =

((e), (skid,m)). Check if m = E .Dec(DR, skid, e). If so, return 1 (accept);
otherwise, return 0 (reject).

Theorem 2. The above scheme is a secure extended IDTR scheme, provided
that the underlying IBE scheme E is IND-ID-CPA secure, and function f is
one-way.

Proof. For the sake of completeness of underlying ID-based Encryption
schemes, we provide all the proofs of One-wayness, Soundness and Hiding here.

One-wayness: If the above scheme is not one-way, namely, there is a PPT
algorithm A = (A1,A2) which breaks the one-wayness property with non-
negligible probability ε, we then construct a PPT algorithm B to break the
IND-ID-CPA-security of the underlying encryption scheme E with non-negligible
probability as well.

After obtaining system parameters and master public key mpk from its chal-
lenger, B sets DR = mpk and runs A on input DR. To answer A1’s Extract query
on id, B forwards this query to its own Extract oracle, and forwards the answer
skid as tdRid

back to A. After A1’s Extract query phase is over, B randomly
selects an id∗ which was not queried by A1, along with two random messages
m0,m1 ∈ MSP. It sends id∗,m0,m1 to its own challenger. After receiving a
ciphertext e∗ of either m0 or m1, B sets c = (e∗), and feeds (id∗, c) to A2. Again,
B needs answer A2’s Extract queries. It acts the same as in answering A1’s Ex-
tract queries with the only exception that if the query input id is equal to id∗,
B aborts the simulation and outputs a random bit.

Finally, A2 outputs a d̂ = (d̂1, d̂2). Then B computes b0 = CheckIDR,id∗(c, d̂)
and b1 = CheckSDR,id∗(c, d̂). If b0 = 1, B could easily get the corresponding
private key skid∗ of identity id∗ as well as the plaintext m′ of e∗, such that
m′ = E .Dec(mpk, skid∗ , e

∗). It’s guaranteed by the correctness of E that m′

must be either m0 or m1. Thus, B can output the right bit b. Otherwise, if
b1 = 1, we have that e∗ = E .Enc(mpk, id∗, d̂1; f(d̂2)). Again, guaranteed by the
correctness of E , d̂1 is either m0 or m1. Thus B can know a bit b such that

16 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

mb = d̂1. It outputs b and wins in the IND-ID-CPA game. If both b0 and b1 are
0, B simply flips a coin, and outputs the outcome. Obliviously, if A succeeds, B
also succeeds. Therefore, the probability that B wins in the IND-ID-CPA game
is at least ε + 1

2 (1− ε) = 1
2 + 1

2ε, which is non-negligibly greater than one-half.
Soundness: The soundness is guaranteed by the correctness of the underly-

ing encryption scheme E . That is, for any valid ciphertext e with respect to any
identity id, the owner of the corresponding private key skid can always decrypt
e to the original message m.

Hiding: If the above scheme is not hiding, that is, there is a PPT algorithm
A which can break the hiding property with non-negligible probability ε, then
we can construct another PPT algorithm B to break the one-wayness of function
f with non-negligible probability as well.

On input y = f(x) for some string x ∈ {0, 1}`(k), B runs A as a subroutine.
Suppose that A issues at most qS queries to OSample and at most qR queries to
OReveal. Implicitly, we have that qS > qR. B randomly chooses i ∈ {1, 2, · · · , qS},
and then simulates oracles OExtract and OReveal for A as follows:

OSample: Suppose that this is the j-th query. On input idj , B randomly selects
m ∈ MSP. If j = i, B sets r = y and d = (m,⊥); otherwise, B randomly
selects s ∈ {0, 1}`(k), computes r = f(s) and set d = (m, s). It computes
e ← E .Enc(DR, idj ,m; r) and sets c = (e). B stores (idj , c, d) into a sampling
list List, and returns c. Note that in this way B perfectly simulates OSample’s
answers.

OReveal: On input id and c = (e), B searches its sampling list List for an entry for
(id, c). If there is no List or no such an entry (id, c, d = (d1, d2)), B returns
⊥; otherwise, if d2 =⊥, B aborts; otherwise, it returns d.

Finally, A outputs (id∗, (c∗, d∗)) where d∗ = (d∗1, d
∗
2). If A wins in the Hiding

game, we have c∗ ∈ Query(A,OSample), c∗ 6∈ Query(A,OReveal) and CheckSDR,id∗

(c∗, d∗)= 1. It implies that c∗ = E .Enc(DR, id∗, d∗1; f(d∗2)). If B’s guess is correct,
namely, c∗ is returned in the answer to the i-th Sample query, then by the
injective property of E , we have that f(d∗2) = y. Thus, d∗2 is a pre-image of y.
The probability that B succeeds in guessing i is at least 1

qS
. If A breaks the

Hiding property with probability ε, then B breaks the one-wayness of f with
probability at least ε

qS
, which is non-negligible. This is a contradiction to the

one-wayness of f .

6.3 Extended Time Capsule Signature

The Ver function in time capsule signature can also be separated into two func-
tions accordingly: VerP is to verify the prehatched signature, VerH is to verify
the hatched signature. The generic construction of time capsule signature based
on IDTR can then be modified as follows:

– VerP: For a given prehatched signature σt = (s, c, d) on m, a verifier checks
if CheckStpk,t(c, d) outputs 1 and Verifyupk(m‖c‖t, s) outputs 1. If both of
the verifications are correct, output 1; otherwise, output 0.

Time Capsule Signature: Efficient and Provably Secure Constructions 17

– VerH: For a given hatched signature σt = (s, c, d̂) on m, the verifier compares
the current time with t. If the current time is smaller than t, it returns ⊥
indicating that hatching cannot be done at the moment. Otherwise, the ver-
ifier determines if CheckItpk,t(c, d̂) outputs 1 and Verifyupk(m‖c‖t, s) outputs
1. If both of the verifications are correct, output 1; otherwise, output 0.

In the construction of [13], the Time Server should be fully trusted and it is
assumed that the Time Server would not collude with any malicious user and
release some time trapdoor zt before t. Otherwise, there is no way to distinguish
whether a signature is pre-hatched by the actual signer or hatched by a malicious
Time Server. In our distinguishable time capsule signature, we make this act of
a malicious Time Server distinguishable. Below is the formal security model. Let
k ∈ N be a security parameter.

Game IV: Let SIV be the game simulator.
1. SIV executes TSSetup(1k) to get (tpk, tsk) and UserSetup(1k) to get

(upk, usk).
2. SIV runs AIV on upk, tpk and tsk. During the simulation, AIV can

make queries onto TSig, and PreHatch.
3. AIV is to output (m∗, t∗, σ∗).
AIV wins if VerP(m∗, σ∗, upk, tpk, t∗) = 1, and AIV has never queried
PreHatch(m∗, t∗, ·).

A time capsule signature scheme is secure in Game IV if for all PPT algorithm
AIV , it is negligible for AIV to win the game.

Now we prove the security of our proposed time capsule signature scheme
against Game IV.

Theorem 3. The extended time capsule signature scheme is secure in Game
IV if the underlying extended IDTR scheme has the Hiding property, and the
standard signature scheme is existentially unforgeable against adaptive chosen
message attacks (euf-cma) [16].

Proof. To show security against Game IV, we construct an adversary B which
can compromise Hiding of the extended IDTR with non-negligible advantage if
AIV can non-negligibly forge a prehatched signature σ∗. Let (m∗, t∗, σ∗) be a
successful forgery by AIV , where σ∗ = (s∗, c∗, d∗). Note that it has overwhelming
probability that AIV obtained the corresponding time capsule signature σ′∗ from
oracle TSig. This is because of the euf-cma assumption of the underlying standard
signature scheme.

The game between the challenger of the extended IDTR Hiding game and
adversary B starts when the challenger generates DR and mtdR by running
Gen(1k), and then gives DR and mtdR to B. B then interacts with AIV as
follows:

B gets a random public/private key pair (pk, sk) ← Set(1k), sets (upk, usk) =
(pk, sk), (tpk, tsk) = (DR,mtdR), and gives (tpk, tsk, upk) to AIV .

B manages a list L = {(mi, ti, si, ci, di)} for answering AIV ’s queries to
PreHatch. Let qTSig and qPreH be the total number of TSig and PreHatch queries

18 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

made by AIV , respectively, and r be the random number chosen by B in the
interval of [1, qTSig]. B responds to the i-th TSig query (mi, ti) as follows:

– If i = r, B queries to its challenger on the Sample oracle on tr and re-
ceives a random commitment c ∈ Rtr

. B sets cr = c and computes sr =
Sigsk(mr‖cr‖tr). B returns σ′tr

= (sr, cr) to AIV and stores (mr, tr, sr, cr,⊥)
in L.

– If i 6= r, B gets a random commitment/witness pair (ci, di) ← SampleDR and
si ← Sigsk(mi‖ci‖ti). B returns σ′ti

= (si, ci) toAIV and stores (mi, ti, si, ci, di)
in L.

To simulate PreHatch on query (mi, ti, si, ci), B checks if the query is in the list
L. If (mi, ti, si, ci) is L, and equal to (mr, tr, sr, cr), B aborts. If (mi, ti, si, ci) is
in L, and not equal to (mr, tr, sr, cr), B obtains di from L and gives a prehatched
signature σti = (si, ci, di) to AIV . If (mi, ti, si, ci) is not in L, since AII does
not know usk and this case implies that si is not generated by B on mi‖ci‖ti,
due to the euf-cma assumption of the underlying standard signature scheme,
it is negligible to have si be valid. Hence this case will happen with negligible
chance. For this case, B returns ⊥.

When AIV outputs the forgery (m∗, t∗, σ∗) where σ∗ = (s∗, c∗, d∗), B deter-
mines if the forgery passes CheckS, and (m∗, t∗, s∗, c∗) = (mr, tr, sr, cr). If so, B
outputs d∗. Otherwise, it chooses a value d randomly and outputs d. The prob-
ability that B does not abort during the simulation and has the right guess of r
is at least 1/qTSig since r is randomly chosen (*). Therefore, if AIV forges with
success probability at least ε, B succeeds in breaking the Hiding property of the
extended IDTR with probability at least ε/qTSig.

(*) Without loss of generality, we assume that each TSig query is distinct
and each PreHatch is also distinct, and qPreH ≤ qTSig. The probability that AIV

outputs a forgery (m∗, t∗, s∗, c∗) which passes CheckS but not in the list L is
negligible due to the euf-cma assumption of the underlying standard signature
scheme. B does not abort when answering the first PreHatch query is at least
(1− 1/qTSig). It does not abort when answering the second PreHatch query is at
least (1− 1/qTSig)× (1− 1/(qTSig − 1)). Finally we get

Pr[B does not abort]

≥ (1− 1

qTSig
)× (1− 1

(qTSig−1)
)× · · · × (1− 1

qTSig−qPreH+1
)

=
qTSig − 1

qTSig
× qTSig − 2

qTSig − 1
× · · · × qTSig − qPreH

qTSig − qPreH + 1

=
qTSig − qPreH

qTSig

And B makes the right guess of r in the remaining qTSig−qPreH tuples is 1/(qTSig−
qPreH). Thus, the probability that B does not abort during the simulation and
makes the right guess of r is at least 1/qTSig.

Time Capsule Signature: Efficient and Provably Secure Constructions 19

7 Conclusion

Time Capsule Signature is a promising technique for various E-Commerce appli-
cations. In this paper, we improve the security model of time capsule signature,
construct a generic and provably secure time capsule signature scheme based
on a new primitive called identity-based trapdoor relation (IDTR), and show
that IDTR can be implemented efficiently by proposing two instantiations. We
believe that the IDTR itself is of independent interest and may be implemented
by other techniques. We leave these as our further investigations.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):593–610, 2000.

2. M. Bellare and S. Goldwasser. Encapsulated key escrow. Technical Report 688,
MIT/LCS/TR, 1996.

3. M. Bellare and S. Goldwasser. Verifiable partial key escrow. In ACM Conference
on Computer and Communications Security, pages 78–91, 1997.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

5. I. F. Blake and A. C.-F. Chan. Scalable, server-passive, user-anonymous timed
release public key encryption from bilinear pairing. In ICDCS, 2005.

6. D. Boneh and X. Boyen. Efficient selective-id secure identity based encryption with-
out random oracles. In Proc. EUROCRYPT 2004. Springer-Verlag, 2004. LNCS.

7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Proc. CRYPTO 2001, pages 213–229. Springer-Verlag, 2001. LNCS 2139.

8. D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably en-
crypted signatures from bilinear maps. In Eurocrypt’03, pages 416–432. Spinger,
2003. LNCS.

9. D. Boneh and M. Naor. Timed commitments. In Proc. CRYPTO 2000, page 236.
Springer-Verlag, 2000. LNCS 1880.

10. L. Chen, K. Harrison, N. Smart, and D. Soldera. Applications of multiple trust
authorities in pairing based cryptosystems. In Infrastructure Security Conference
2002, pages 260–275. Spinger-Verlag, 2002. LNCS 2437.

11. J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov. Timed-release and key-insulated
public key encryption. Cryptology ePrint Archive, Report 2004/231, 2004.

12. Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from
PODC 2003. In ACM Workshop on Digital Rights Management (DRM), Oct.
2003.

13. Y. Dodis and D. Yum. Time capsule signature. In Financial Cryptography and
Data Security 2005, pages 57–71. Springer-Verlag, 2005. LNCS 3570.

14. J. A. Garay and M. Jakobsson. Timed release of standard digital signatures. In
Financial Cryptography and Data Security 2002, pages 168–182. Spinger-Verlag,
2002. LNCS 2357.

15. J. A. Garay and C. Pomerance. Timed fair exchange of standard signatures. In
Financial Cryptography and Data Security 2003, pages 190–207. Springer-Verlag,
2003. LNCS 2742.

20 B. C. Hu, D. S. Wong, Q. Huang, G. Yang and X. Deng

16. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing, 17(2):281–308, Apr. 1988.

17. T. C. May. Timed-release crypto, 1993. www.cyphernet.org/cyphernomicon/chapter14/14.5.html.
18. M. C. Mont, K. Harrison, and M. Sadler. The HP time vault service: Exploiting

IBE for timed release of confidential information. In WWW, 2003.
19. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt01,

pages 552–565. Spinger-Verlag, 2001. LNCS /2248.
20. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. Technical Report 684, MIT/LCS/TR, 1996.
21. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc.

CRYPTO 84, pages 47–53. Springer, 1984. LNCS 196.
22. B. Waters. Efficient identity-based encryption without random oracles. In Proc.

EUROCRYPT 2005, pages 114–127. Springer-Verlag, 2005. LNCS 3494.
23. M. Zhang, G. Chen, J. Li, L. Wang, and H. Qian. A new construction of

time capsule signature. Cryptology ePrint Archive, Report 2006/113, 2006.
http://eprint.iacr.org.

