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Abstract. There are several public key establishment protocols as well as complete public key
cryptosystems based on allegedly hard problems from combinatorial (semi)group theory known by
now. Most of these problems are search problems, i.e., they are of the following nature: given
a property P and the information that there are objects with the property P, find at least one
particular object with the property P. So far, no cryptographic protocol based on a search problem
in a non-commutative (semi)group has been recognized as secure enough to be a viable alternative
to established protocols (such as RSA) based on commutative (semi)groups, although most of these
protocols are more efficient than RSA is.

In this paper, we suggest to use decision problems from combinatorial group theory as the core of
a public key establishment protocol or a public key cryptosystem. Decision problems are problems
of the following nature: given a property P and an object O, find out whether or not the object O
has the property P.

By using a popular decision problem, the word problem, we design a cryptosystem with the
following features: (1) Bob transmits to Alice an encrypted binary sequence which Alice decrypts
correctly with probability “very close” to 1; (2) the adversary, Eve, who is granted arbitrarily
high (but fixed) computational speed, cannot positively identify (at least, in theory), by using a
“brute force attack”, the “1” or “0” bits in Bob’s binary sequence. In other words: no matter
what computational speed we grant Eve at the outset, there is no guarantee that her “brute force
attack” program will give a conclusive answer (or an answer which is correct with overwhelming
probability) about any bit in Bob’s sequence.

1. Introduction

In search for more efficient and/or secure alternatives to established cryptographic protocols
(such as RSA), several authors have come up with public key establishment protocols as well as with
public key cryptosystems based on allegedly hard search problems from combinatorial (semi)group
theory, including the conjugacy search problem [1, 12], the homomorphism search problem [9, 20],
the decomposition search problem [7, 12, 19], the subgroup membership search problem [21]. All
these are problems of the following nature: given a property P and the information that there are
objects with the property P, find at least one particular object with the property P from a pool S
of objects.

From the very nature of these problems, one sees that security of the corresponding cryptographic
protocols relies heavily on the assumption that the adversary has limited (typically, subexponential)
computational capabilities. Indeed, there is usually a natural way to recursively enumerate elements
of the pool S; the adversary can therefore just go over S one element at a time until he hits one
with the property P (assuming that checking the latter can be done efficiently). This is what is
usually called the “brute force” attack.

In this paper, we suggest to use decision problems from combinatorial group theory as the core of a
public key establishment protocol or a public key cryptosystem. Decision problems are problems of
the following nature: given a property P and an object O, find out whether or not the object O has
the property P. Decision problems may allow us to address (to some extent) the ultimate challenge
of public key cryptography: to design a cryptosystem that would be secure against (at least, some)
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“brute force” attacks by an adversary with essentially unlimited computational capabilities. More
precisely, our computational model is as follows. We explain to the adversary, in detail, how our
cryptosystem works and allow him to choose, up front, any speed of computation that he would
like to have to attack it, but after he has made his choice, he cannot change it, i.e., he cannot
accelerate his computation beyond the limit he has chosen for himself.

A particular decision problem that we consider here is the word problem which is: given a
recursive presentation of a group G and an element g ∈ G, find out whether or not g = 1 in G.
From the very description of the word problem we see that it consists of two parts: “whether”
and “not”. We call them the “yes” and “no” parts of the word problem, respectively. If a group
is given by a recursive presentation in terms of generators and relators, then the “yes” part of
the word problem has a recursive solution because one can recursively enumerate all products of
defining relators, their inverses and conjugates. However, the number of factors in such a product
required to represent a word of length n which is equal to 1 in G, can be very large compared to
n; in particular, there are groups G with efficiently solvable word problem and words w of length n
equal to 1 in G, such that the number of factors in any factorization of w into a product of defining
relators, their inverses and conjugates is not bounded by any tower of exponents in n, see [18].
Furthermore, if in a group G the word problem is recursively unsolvable, then the length of a proof
verifying that w = 1 in G is not bounded by any recursive function of the length of w.

We also note that the “no” part of the word problem in many groups is recursively unsolvable,
and therefore the “brute force” attack described above will not be effective against this part. We
have to point out though that there is no recursively presented group (or semigroup) that would
have both “yes” and “no” parts of the word problem recursively unsolvable.

Based on these general observations, we design here a cryptographic protocol (see the next
section) with the following features:

(1) Bob transmits to Alice an encrypted binary sequence which Alice decrypts correctly with
probability “very close” to 1;

(2) The adversary, Eve, who is granted arbitrarily high (but fixed) computational speed, cannot
positively identify (at least, in theory), by using a “brute force attack”, the “1” or “0” bits
in Bob’s binary sequence. In other words: no matter what computational speed we grant
Eve at the outset, there is no guarantee that her “brute force attack” program will give a
conclusive answer (or an answer which is correct with overwhelming probability) about any
bit in Bob’s sequence.

We note that long time ago, there was an attempt to use the word problem in public key
cryptography [15], but it did not meet with success, for several reasons. One of the reasons, which
is relevant to the discussion above, was pointed out quite recently in [5]: the problem which is
actually used in [15] is not the word problem, but the word choice problem: given g, w1, w2 ∈ G,
find out whether g = w1 or g = w2 in G, provided one of the two equalities holds. In this problem,
both parts are recursively solvable for any recursively presented platform group G because they
both are the “yes” parts of the word problem, and therefore the word choice problem cannot be
used for our purposes. Thus, a similarity of our proposal to that of [15] is misleading, and ours
seems to be the first proposal actually based on a decision problem.

2. The protocol

Here is a sketch of our cryptographic protocol; details are given in the following sections.

Protocol:

(1) A pool of group presentations with efficiently solvable word problem is considered public
(e.g. is part of Alice’s software).
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(2) Alice chooses randomly a particular presentation Γ from the pool, diffuses it by isomorphism-
preserving transformations to obtain a diffused presentation Γ′, discards some of the relators
and publishes the abridged diffused presentation Γ̂.

(3) Bob transmits his private binary sequence to Alice by transmitting an element equal to 1
in Γ̂ (and therefore also in Γ′) in place of “1” and an element not equal to 1 in Γ′ in place
of “0”.

(4) Alice recovers Bob’s binary sequence by first converting elements of Γ′ to the corresponding
(under the isomorphism that she knows) elements of Γ, and then solving the word problem
in Γ.

Most parts of this protocol are rather nontrivial and open several interesting research avenues.
We discuss parts (1), (2), (3) in our Sections 3, 4, 5, respectively.

A priori it looks like the most nontrivial part is finding an element which is not equal to 1 in
Γ′ since Bob does not even know the whole presentation Γ′. We solve this problem by “going with
the flow”, so to speak. More specifically, we just let Bob select a random (well, almost random)
word of sufficiently big length and show that, with overwhelming probability, such an element is
not equal to 1 in Γ′. We discuss this in more detail in Section 5.

We emphasize once again what is, in our opinion, the main advantage (at least, theoretical) of
our protocol over the existing ones. The point is to deprive the adversary (Eve) from attacking
the protocol by doing an “exhaustive search”, which is the most obvious (although, perhaps, often
“computationally infeasible”) way to attack all existing public key protocol.

The way we plan to achieve our goal is relevant to part (3) of the above protocol, more specifically,
to solving the word problem in Γ̂. If Bob transmits an element g equal to 1 in Γ̂, Eve may be able
to detect this by going over all products of all conjugates of relators from Γ̂ and their inverses. This
set is recursive, but as we have pointed out in the Introduction, there are groups G with efficiently
solvable word problem and words w of length n equal to 1 in G, such that the length of a proof
verifying that w = 1 in G is not bounded by any tower of exponents in n, see [18].

Furthermore, if Bob transmits an element g not equal to 1 in Γ̂, then detecting this is even more
difficult for Eve. In fact, it is impossible in general; Eve’s only hope here is that she will be lucky
to find a factor group of Γ̂ where the word problem is solvable, and that g 6= 1 in that factor group.
This is what we call a quotient attack, see our Section 8.

Remark 1. It may look like an encryption protocol with the features outlined in the Introduction
cannot exist; in particular, the following attack by a computationally superior adversary, Eve, may
seem viable:

Eve can perform key generations over and over again, each time with fresh random-
ness, until the public key to be attacked is obtained – this will happen eventually with
overwhelming probability. Already the correctness (no matter if perfect or only with
overwhelming probability) of the scheme guarantees that the corresponding secret key
(as obtained by Eve while performing key generation) allows to decrypt illegitimately.

This would be indeed viable if the correctness of the legitimate decryption by Alice was perfect.
However, in our situation this kind of attack will not work for a general Γ̂. Suppose Eve is building
up two lists, corresponding to two possible encryptions “ 0 → w 6= 1 in Γ̂” or “1 → w = 1 in Γ̂”
by Bob. Our first observation is that the list that corresponds to “ 0 → w 6= 1” is useless to Eve
because it is simply going to contain all words in the alphabet X = {x1, . . . , xn, x−1

1 , . . . , x−1
n } since

Bob is choosing such w simply as a random word. Therefore, Eve may just as well forget about this
list and concentrate on the other one, that corresponds to “1 → w = 1”.

Now the situation boils down to the following: if a word w transmitted by Bob appears on the
list, then it is equal to 1 in G. If not, then not. The only problem is: how can Eve possibly conclude
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that w does not appear on the list if the list is infinite? Our opponent could say here that Eve can
stop at some point and conclude that w 6= 1 with overwhelming probability, just like Alice does. The
point however is that this probability may not at all be as “overwhelming” as the probability of the
correct decryption by Alice. Compare:

(1) For Alice to decrypt correctly “with overwhelming probability”, the probability P1(N) for a
random word w of length N not to be equal to 1 should converge to 1 (reasonably fast) as
N goes to infinity.

(2) For Eve to decrypt correctly “with overwhelming probability”, the probability P2(N, f(N))
for a random word w of length N , which is equal to 1, to have a proof of length ≤ f(N)
verifying that w = 1, should converge to 1 (reasonably fast) as N goes to infinity. Here
f(N) represents Eve’s computational capabilities; this function can be arbitrary, but fixed.

We see that the functions P1(N) and P2(N) are of very different nature, and any correlation
between them is unlikely. We note that the function P1(N) is generally well understood, and in
particular, it is known that in any infinite group G, P1(N) indeed converges to 1 as N goes to
infinity; see our Section 5 for more details.

On the other hand, the functions P2(N, f(N)) are more complex; they are currently subject of a
very active research, and in particular, it appears likely that for any f(N), there are groups in which
P2(N, f(N)) does not converge to 1 at all. Of course, P2(N, f(N)) may depend on a particular
algorithm used by Bob to produce words equal to 1, but we leave this discussion to another paper.

We also note, in passing, that if in a group G the word problem is recursively unsolvable, then
the length of a proof verifying that w = 1 in G is not bounded by any recursive function of the
length of w.

To conclude this section, we guide the reader to other sections of this paper where the questions
of efficiency (for legitimate parties) are addressed. All steps of our protocol are shown to be quite
efficient with the suggested parameters (the latter are summarized in Section 6). Step (2) of the
protocol (Alice’s algorithm for obtaining her public and private keys) is discussed in Section 4. Step
(3) (encryption by Bob) is discussed in Section 5. It turns out that encryption (of one bit) takes
quadratic time in the length of a transmitted word; the latter is approximately 150 on average,
according to our computer experiments. Step (4) (decryption by Alice) is discussed at the end of
Section 4. It is straightforward to see that the time Alice needs to decrypt each transmitted word
w is bounded by C · |w|, where |w| is the length of w and C is a constant which basically depends
on Alice’s private isomorphism between Γ and Γ′.

The fact that Alice (the receiver) and the adversary are separated in power is essentially due to
Alice’s knowledge of her private isomorphism between Γ and Γ′ (note that Bob does not have to
know this isomorphism for encryption!).

We have to admit here one disadvantage of our protocol compared to most well-established public
key protocols: we have encryption with a rather big “expansion factor”. Computer experiments
show that, with suggested parameters, one bit in Bob’s message gets encrypted into a word of
length approximately 150 on average. This is the price we have to pay for granting the adversary
too much computational power.

Finally, we touch upon semantic security in the end of Section 5.

3. Pool of group presentations

There are many classes of finitely presented groups with solvable word problem known by now,
e.g. one-relator groups, hyperbolic groups, nilpotent groups, metabelian groups. Note however
that Alice should be able to randomly select a presentation from the pool efficiently, which imposes
some restrictions on classes of presentations that can be used in this context. The class of finitely
presented groups that we suggest to include in our pool is small cancellation groups.
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Small cancellation groups have relators satisfying a simple (and efficiently verifiable) “metric
condition” (we follow the exposition in [14]). More specifically, let F (X) be the free group with
a basis X = {xi | i ∈ I }, where I is an indexing set. Let εk ∈ {±1}, where 1 ≤ k ≤ n. A word
w(x1, . . . , xn) = xε1

i1
xε2

i2
· · ·xεn

in
in F (X), with all xik not necessarily distinct, is a reduced X-word

if xεk
ik
6= x

− εk+1

ik+1
, for 1 ≤ k ≤ n − 1. In addition, the word w(x1, . . . , xn) is cyclically reduced if it

is a reduced X-word and xε1
i1
6= x− εn

in
. A set R containing cyclically reduced words from F (X) is

symmetrized if it is closed under cyclic permutations and taking inverses.
Let G be a group with presentation 〈X; R〉. A non-empty word u ∈ F (X) is called a piece if there

are two distinct relators r1, r2 ∈ R of G such that r1 = uv1 and r2 = uv2 for some v1, v2 ∈ F (X),
with no cancellation between u and v1 or between u and v2. The group G belongs to the class C(p)
if no element of R is a product of fewer than p pieces. Also, the group G belongs to the class C ′(λ)
if for every r ∈ R such that r = uv and u is a piece, one has |u| < λ|r|.

In particular, if G belongs to the class C ′(1
6), then Dehn’s algorithm solves the word problem for

G efficiently. This algorithm is very simple: in a given word w, look for a “large” piece of a relator
from R (that means, a piece whose length is more than a half of the length of the whole relator).
If no such piece exists, then w 6= 1 in G. If such a piece, call it u, does exist, then r = uv for some
r ∈ R, where the length of v is smaller than that of u. Then replace u by v−1 in w. The length
of the resulting word is smaller than that of w; therefore, the algorithm will terminate in a finite
number of steps. It has quadratic time complexity with respect to the length of w.

We also note that a generic finitely presented group is a small cancellation group (see [2]);
therefore, to randomly select a small cancellation group, Alice can just take a few random words
and check whether the corresponding symmetrized set satisfies the condition for C ′(1

6). If not, then
repeat.

To conclude this section, we give a more specific recipe for Alice to produce a presentation Γ for
the protocol in Section 2.

(1) Alice fixes a number k, 10 ≤ k ≤ 20, of generators in her presentation Γ. Her Γ will
therefore have generators x1, . . . , xk.

(2) Alice selects m random words r1, . . . , rm in the generators x1, . . . , xk. Here 10 ≤ m ≤ 30
and the lengths li of ri are random integers from the interval L1 ≤ li ≤ L2. Particular
values that we suggest are: L1 = 12, L2 = 20.

(3) After Alice obtains the abridged presentation Γ̂, she adds a relation

x′i =
M∏

j=1

[x′i, wj ]

to it, where x′i is a (randomly chosen) generator from Γ̂, wj are random elements of
length 1 or 2 in the generators x′1, x

′
2, . . . , and M = 10. (Our commutator notation is:

[a, b] = a−1b−1ab.) This relation is needed to foil quotient attacks, see Section 8. Then
Alice finds the preimage of this relation under the isomorphism between Γ and Γ̂ and adds
this preimage to the defining relators of Γ. Thus, Γ finally has k generators and m + 1
defining relators.

(4) Finally, Alice checks whether her private presentation Γ satisfies the small cancellation
condition C ′(1

6) (it will with overwhelming probability, see [2]). If not, then she has to start
over.

4. Tietze transformations: elementary isomorphisms

In this section, we explain how Alice can implement step (2) of the protocol given in the In-
troduction. First we introduce Tietze transformations; these are “elementary isomorphisms”: any
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isomorphism between finitely presented groups is a composition of Tietze transformations. What
is important to us is that every Tietze transformation is easily invertible, and therefore Alice can
compute the inverse isomorphism that takes Γ′ to Γ.

Tietze introduced isomorphism-preserving elementary transformations that can be applied to
groups presented by generators and relators. They are of the following types.

(T1): Introducing a new generator : Replace 〈x1, x2, . . . | r1, r2, . . . 〉 by
〈y, x1, x2, . . . | ys−1, r1, r2, . . . 〉, where s = s(x1, x2, . . . ) is an arbitrary element in the
generators x1, x2, . . . .

(T2): Canceling a generator (this is the converse of (T1)): If we have a presentation of the
form 〈y, x1, x2, . . . | q, r1, r2, . . . 〉, where q is of the form ys−1, and s, r1, r2, . . . are in the
group generated by x1, x2, . . . , replace this presentation by 〈x1, x2, . . . | r1, r2, . . . 〉.

(T3): Applying an automorphism: Apply an automorphism of the free group generated by
x1, x2, . . . to all the relators r1, r2, . . . .

(T4): Changing defining relators: Replace the set r1, r2, . . . of defining relators by another
set r′1, r

′
2, . . . with the same normal closure. That means, each of r′1, r

′
2, . . . should belong

to the normal subgroup generated by r1, r2, . . . , and vice versa.
Tietze has proved (see e.g. [14]) that two groups 〈x1, x2, . . . | r1, r2, . . . 〉 and 〈x1, x2, . . . |

s1, s2, . . . 〉 are isomorphic if and only if one can get from one of the presentations to the other
by a sequence of transformations (T1)–(T4).

For each Tietze transformation of the types (T1)–(T3), it is easy to obtain an explicit isomor-
phism (as a mapping on generators) and its inverse. For a Tietze transformation of the type (T4),
the isomorphism is just the identity map. We would like here to make Tietze transformations
of the type (T4) recursive, because a priori it is not clear how Alice can actually apply these
transformations. Thus, Alice is going to use the following recursive version of (T4):

(T4′) In the set r1, r2, . . . , replace some ri by one of the: r−1
i , rirj , rir

−1
j , rjri, rjr

−1
i , x−1

k rixk,
xkrix

−1
k , where j 6= i, and k is arbitrary.

We suggest that in part (2) of the protocol in Section 2, Alice should first apply several trans-
formations of the type (T4′) to “mix” the presentation Γ. (This does not add complexity to the
final isomorphism since for a Tietze transformation of the type (T4), the isomorphism is just the
identity map, as we have noted above.) In particular, if Γ was a small cancellation presentation (see
Section 3) to begin with, then after applying several transformations (T4′) it will, most likely, no
longer be. As a result, Eve’s chances to augment the public presentation Γ̂ to a small cancellation
presentation (see Section 7) are getting slimmer.

One more trick that Alice can use for better diffusion of her presentation is making a free
product of her group with the trivial group given by a non-standard presentation. That means,
she can add new generators z1, . . . , zq and new relators s1(z1, . . . , zq), . . . , st(z1, . . . , zq), such that
the presentation 〈z1, . . . , zq | s1, . . . , st〉 defines the trivial group. After that, she has to apply
several (T3)s and (T4′)s to mix the new generators with the old ones. We note that there are
many non-trivial presentations of the trivial group to choose from; for example, in [16], there are
given several infinite series of such presentations in the special case where t = q (so-called balanced
presentations). Without this restriction, there are even more choices; in particular, Alice can just
add arbitrary relators to a balanced presentation of the trivial group, thus adding to the confusion
of the adversary.

After Alice has mixed Γ by using these tricks, we suggest that she should aim for breaking down
some of the defining relators into “small pieces”. More formally, she can replace a given presentation
by an isomorphic presentation where most defining relators have length at most 4. (Intuitively,
diffusion of elements should be easier to achieve in a group with shorter defining relators). This
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is easily achieved by applying transformations (T1) (see below) which can be “seasoned” by a few
elementary automorphisms (type (T3)) of the form xi → xix

±1
j or xi → x±1

j xi, for better diffusion.
The procedure of breaking down defining relators is quite simple. Let Γ be a presentation

〈x1, . . . , xk; r1, ..., rm〉. We are going to obtain a different, isomorphic, presentation by using Tietze
transformations of types (T1). Specifically, let, say, r1 = xixju, 1 ≤ i, j ≤ k. We introduce a new
generator xk+1 and a new relator rm+1 = x−1

k+1xixj . The presentation
〈x1, . . . , xk, xk+1; r1, . . . , rm, rm+1〉 is obviously isomorphic to Γ. Now if we replace r1 with r′1 =
xk+1u, then the presentation 〈x1, . . . , xk, xk+1; r′1, . . . , rm, rm+1〉 will again be isomorphic to Γ, but
now the length of one of the defining relators (r1) has decreased by 1. Continuing in this manner,
Alice can eventually obtain a presentation where many relators have length at most 3, at the
expense of introducing more generators. In fact, relators of length 4 are also good for the purpose
of diffusing a given word, so we are not going to “cut” the relators into too small pieces (i.e., we
do not want pieces of length 1 or 2), but rather settle with relators of length 3 or 4. Most of the
longer relators can be discarded from the presentation Γ′ to obtain the abridged presentation Γ̂.

We conclude this section with a simple example, just to illustrate how Tietze transformations
can be used to cut relators into pieces. In this example, we start with a presentation having two
relators of length 5 in 3 generators, and end up with a presentation having 4 relators of length 3
or 4 in 5 generators. The symbol ∼= below means “is isomorphic to”.

Example. 〈x1, x2, x3 | x2
1x

3
2, x1x

2
2x
−1
1 x3〉 ∼= 〈x1, x2, x3, x4 | x4 = x2

1, x4x
3
2, x1x

2
2x
−1
1 x3〉∼= 〈x1, x2, x3, x4, x5 | x5 = x1x

2
2, x4 = x2

1, x4x
3
2, x5x

−1
1 x3〉 ∼=

〈x1, x2, x3, x4, x5 | x5 = x2
2, x4 = x2

1, x4x
3
2, x1x5x

−1
1 x3〉.

The last isomorphism illustrates applying a transformation of type (T3), namely, the automor-
phism x5 → x1x5, xi → xi, i 6= 5.

5. Generating random elements in finitely presented groups

In this section, we explain how to implement the crucial step (3) of the protocol given in Section
2.

When Bob wants to transmit an element equal to 1 in Γ̂, he should construct a word, looking “as
random as possible” (for semantic security), in the relators r̂1, . . . , r̂l and their conjugates. When
he wants to transmit an element not equal to 1 in Γ̂, he just selects a random word of sufficiently
big length; it turns out that, with overwhelming probability, such an element is not equal to 1 in
Γ′ (we explain it in the end of this section).

We start with a description of Bob’s possible diffusion strategy for producing elements equal to
1 in Γ̂. (It is rather straightforward to produce a random word of a given length in generators
x1, . . . , xk, so we are not going to discuss it here.) When Bob transmits a word w equal to 1 in
Γ̂, he wants to diffuse it so that large pieces of defining relators would not be visible in w. In
some specific groups (e.g. in braid groups) a diffusion is provided by a “normal form”, which is a
collection of symbols that uniquely corresponds to a given element of the group. The existence of
such normal forms is usually due to some special algebraic or geometric properties of a given group.

However, since Bob does not know any meaningful properties of the group defined by the pre-
sentation Γ̂ which is given to him, he cannot employ normal forms in the usual sense. The only
useful property that the presentation Γ̂ has is that most of its defining relators have length 3 or 4,
see Section 3. We are going to take advantage of this property as follows. We suggest the following
procedure which is probably best described by the word “shuffling”.

(1) Make a product of the form u = s1 · · · sp, where each si is randomly chosen among defining
relators r̂1, r̂2, . . . , of length 3 or 4, their inverses, and their conjugates by one- or two-letter
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words in x′1, x
′
2, . . . . The number p of factors should be sufficiently big, at least 10 times

the number of defining relators in Γ̂.
(2) Insert approximately 2p

k expressions of the form x′j(x
′
j)
−1 or (x′j)

−1x′j in random places of
the word u (here k is the number of generators x′i of Γ̂), for random values of j.

(3) Going left to right in the word u, look for two-letter subwords that are parts of defining
relators r̂i of length 3 or 4. When you spot such a subword, replace it by the inverse of the
augmenting part of the same defining relator and continue. For example, suppose there is
a relator r̂i = x′1x

′
2x
′
3x
′
4, and suppose you spot the subword x′1x

′
2 in u. Then replace it by

(x′4)
−1(x′3)

−1 (obviously, x′1x
′
2 = (x′4)

−1(x′3)
−1 in your group). If you spot the subword x′2x

′
3

in w, replace it by (x′1)
−1(x′4)

−1. If there is more than one choice for replacement, choose
randomly between them.

(4) Cancel remaining subwords (if any) of the form x′j(x
′
j)
−1 or (x′j)

−1x′j .
Steps (2)–(4) should be repeated approximately p times for good mixing.
Finally, after Bob has obtained a word u this way, he sets w = [x′i, u] and applies steps (2)–(4) to

w approximately |w|
2 times, where |w| is the length of w. This final step is needed to make this w

(which is equal to 1 in Γ̂, and therefore also in Γ′) indistinguishable from w 6= 1, which is constructed
in the same form w = [x′i, u], see below. Here x′i is the same as in the relator x′i =

∏M
j=1[x

′
i, wj ]

published by Alice, see Section 3. Having w 6= 1 in this form is needed, in turn, to foil “quotient
attacks”, see the end of Section 8.

When Bob wants to transmit an element not equal to 1 in Γ′, he should first choose a random
word u from the commutator subgroup of the free group generated by x′1, x

′
2, . . .. To select a random

word from the commutator subgroup is easy; Bob can select an arbitrary random word v first, and
then adjust the exponents on the generators in v so that the exponent sum on every generator in
v is 0. The length of u should be in the same range as the lengths of the words u equal to 1 in
Γ̂ constructed by Bob before. Then Bob lets w = [x′i, u], where x′i is the same as in the relator
x′i =

∏M
j=1[x

′
i, wj ] published by Alice, see Section 3. Finally, to hide u, he applies “shuffling” to w

(steps (2)–(4) above) approximately |w|
2 times, where |w| is the length of w.

Now we explain why a random word of sufficiently big length is not equal to 1 in Γ with over-
whelming probability, provided Γ is a presentation described in the end of Section 3.

Like any other group, the group G given by the presentation Γ is a factor group G = F/R of
the ambient free group F generated by x1, x2, . . . . Therefore, to estimate the probability that a
random word in x1, x2, . . . would not belong to R (and therefore, would not be equal to 1 in G),
one should estimate the asymptotic density (see e.g. [10]) of the complement to R in the free group
F . It makes notation simpler if one deals instead with the asymptotic density of R itself, which is

ρF (R) = lim sup
n→∞

#{u ∈ R : l(u) ≤ n}
#{u ∈ F : l(u) ≤ n} .

Here l(u) denotes the usual lexicographic length of u as a word in x1, x2, . . . . Thus, the asymptotic
density depends, in general, on a free generating set of F , but we will not go into these details here
because all facts that we are going to need are independent of the choice of basis. One principal fact
that we can use here is due to Woess [22]: if the group G = F/R is infinite, then ρF (R) = 0. Since
the group G given by the presentation Γ is infinite (see our Section 3), this already tells us that the
probability for a random word of length n in x1, x2, . . . not to be equal to 1 in G is approaching
1 when n → ∞. However, if we want words transmitted by Bob to be of reasonable length (on
the order of 100–200, say), we have to address the question of how fast the ratio in the definition
of the asymptotic density converges to 0 if R is the normal closure of the relators described in the
end of Section 3. It turns out that for non-amenable groups the convergence is exponentially fast;
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this is also due to Woess [22]. We are not going to explain here what amenable groups are; it is
sufficient for us to know that small cancellation groups are not amenable (because they have free
subgroups, see e.g. [14]). Thus, small cancellation groups are just fine for our purposes here: the
probability for a random word of length n in x1, x2, . . . not to be equal to 1 in G is approaching 1
exponentially fast when n →∞.

Finally, we touch upon semantic security (see [8]) of the words transmitted by Bob. We do not
give any rigorous probabilistic estimates since this would require at least defining a probability
measure on an infinite group, which is a very nontrivial problem by itself (cf. [6]). Instead, we offer
here an informal argument which we hope to be convincing. A nice thing about Bob’s encryption
procedure is that when he selects a word u 6= 1, he simply selects a random word. Thus, u 6= 1 is
indistinguishable from a random word just because it is random! Then, the element w = [x′i, u],
which is transmitted by Bob, looks like it is no longer random because it is of a special form.
However:

(1) What is actually transmitted by Bob is a word in the alphabet x′1, x
′
2, . . . representing the

element w = [x′i, u] of the group defined by Γ̂. This word is not of the form [x′i, u] because
Bob has applied a “shuffling” to w.

(2) Given the specifics of our protocol, what really matters is that transmitted words equal to
1 in Γ̂ are indistinguishable from transmitted words not equal to 1. This is why we require
Bob’s elements representing 1 in Γ̂ to be of the form [x′i, u] as well.

Thus, the question about semantic security of Bob’s transmissions boils down to the following
question of independent interest: is a word u representing 1 in Γ̂ indistinguishable from a random
word (of the same length)? As we have admitted above, we do not have a rigorous proof that it is,
but computer experiments show that when most of the relators in Γ̂ have length at most 4, then
the words u representing 1 in Γ̂, obtained as described earlier in this section, pass at least the equal
frequency test for 1-, 2-, and 3-letter subwords, thus making it appear likely that the answer to the
question above is affirmative for such Γ̂.

6. Suggested parameters

In this section, we summarize all suggested parameters of our protocol for the reader’s conve-
nience, although most of these parameters were already discussed in previous sections.

(1) The number of generators xi in Alice’s private presentation Γ is k, a random integer from
the interval 10 ≤ k ≤ 20.

(2) Relators r1, . . . , rm in Alice’s private presentation Γ are random words in the generators
x1, . . . , xk. Here m is a random integer from the interval 10 ≤ m ≤ 30, and the lengths li
of ri are random integers from the interval 12 ≤ li ≤ 20. There is one other, special, relator
in Γ, which is obtained as described in the end of Section 3.

(3) Alice’s private isomorphism (between the presentations Γ and Γ′) is a product, in random
order, of s1 elementary transformations of type (T1) and s2 elementary transformations of
type (T3) (see Section 4). Each relator introduced by a transformation of type (T1) is a
random word whose length is a random integer from the interval [12, 20]. Neither of the
parameters s1, s2 is specified, but their sum should be at least 50; more specifically, as soon
as s1 + s2 becomes equal to 50, only transformations of type (T1) are applied, targeted at
making about 30% of the relators to have length at most 4, as described in Section 4. After
that, Alice should discard about 70% of the relators, taking care that among the remaining
relators, at least 50% have length at most 4.

(4) Bob encrypts his secret bits by words in the given alphabet, as described in Section 5. Here
we specify the length of those words. Recall that Bob starts building a word w = 1 in Γ′
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as a product of p words randomly chosen among published defining relators, their inverses,
and their conjugates by one- or two-letter words in the published generators. We specify p
as a random integer from the interval 5 ≤ p ≤ 12, thus making the whole w a word of length
approximately 150 on average. Computer experiments show that subsequent “shuffling”, as
described in Section 5, only slightly increases the length of w.

Finally, we recall that Bob selects a word w 6= 1 in Γ′ in the form [x′i, u], where u is a
random word from the commutator subgroup of the free group generated by the published
generators x′1, x

′
2, . . .. We therefore specify u as a random word of length l, where l is a

random integer from the interval 65 ≤ l ≤ 85. Then the length of w = [x′i, u], which is
2l + 2, is going to be approximately 150 on average, just as in the case of w = 1 considered
above.

7. Isomorphism attack

In this section, we discuss a (theoretically) possible “brute force” attack on the protocol from
Section 2.

Knowing the pool of group presentations from which Alice selects her private presentation Γ,
Eve can try to augment the public presentation Γ̂ to a presentation that would be isomorphic to
one from the pool. Theoretically, this is possible because the pool is recursive and because the set
of finite presentations isomorphic to a given one is recursive, too. However, this procedure requires
enormous resources. Let us take a closer look at it.

Eve can add to Γ̂ one element at a time and check whether the resulting presentation, call it Γ̂+,
is isomorphic to one of the presentations from Alice’s pool. The latter is done the following way.
Suppose Eve wants to check whether Γ̂+ is isomorphic to some Γi. She goes over mappings from Γi

to Γ̂+, one at a time, defined on the generators of Γi. At the same time, she also goes over mappings
from Γ̂+ to Γi defined on the generators of Γ̂+. She composes various pairs of these mappings and
checks: (1) whether she gets the identical mapping on Γi, and (2) whether both mappings in such
a pair are homomorphisms, i.e., whether they send relators of either presentation to elements equal
to 1 in the other presentation. Having the word problem in Γi solvable makes the former checking
more efficient, but it is, in fact, not necessary because what matters here is the “yes” part of the
word problem, which is always recursive.

Now let us focus on the part of this procedure where Eve works with a particular presentation
Γi from Alice’s pool. Suppose Γi is not isomorphic to Γ̂+. Since the “no” part of the isomorphism
problem between Γ̂+ and Γi is not recursive, Eve would have to try out various pairs of mappings
between Γ̂+ and Γi (see above) indefinitely. Therefore, she will have to allocate (indefinitely) some
memory resources to checking this particular Γi. Since the number of Γi grows exponentially with
the size of the presentation (which is the total length of relators), Eve would require essentially
unlimited storage space and, in fact, she will reach physical limits (e.g. the number of electrons
in the universe) on the storage space very quickly because, say, the number of presentations on 6
generators with the total length of relators bounded by 100 is already more than 10100.

We note that there seems to be no way to bypass these storage space requirements, even assuming
that Eve enjoys arbitrarily high (but fixed) computational speed. She basically has two options:
(1) to run in parallel subroutines corresponding to each Γi, until one of the subroutines finds Γi

isomorphic to Γ̂+; (2) to enumerate all steps in all subroutines the same way that one enumerates
rational numbers (so that Step i in the Subroutine j corresponds to the rational number i

j ).
The first option obviously requires essentially unlimited storage space. With the second option, it

may look like just having arbitrarily high computational speed would be sufficient for Eve. However,
since under this arrangement Eve would have to interrupt each subroutine and then return to it, she
would have to at least store the information indicating where she left off each particular subroutine.
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Therefore, since the number of subroutines is huge, she would again reach physical limits on the
storage space very quickly.

8. Quotient attack

In this section, we discuss an attack which is, in general, more efficient (especially in real life)
than the “brute force” attack described in Section 7. We use here some group-theoretic terminology
not supported by formal definitions when we feel it should not affect the reader’s understanding of
the material. Some of the basic terminology has to be introduced though.

A group G is called abelian (or commutative) if [a, b] = 1 for any a, b ∈ G, where [a, b] is the
notation for a−1b−1ab. Thus, [a, b] = 1 is equivalent to ab = ba. This can be generalized in
different ways. A group G is called metabelian if [[x, y], [z, t]] = 1 for any x, y, z, t ∈ G. A group
G is called nilpotent of class c ≥ 1 if [y1, y2, . . . , yc+1] = 1 for any y1, y2, . . . , yc+1 ∈ G, where
[y1, y2, y3] = [[y1, y2], y3], etc.

We note that in the definition of an abelian group, it is sufficient to require that [xi, xj ] = 1 for
all generators xi, xj of the group G. Thus, any finitely generated abelian group is finitely presented.
The same is true for all finitely generated nilpotent groups of any class c ≥ 1, but not for all
metabelian groups. In particular, it is known that finitely generated free metabelian groups are
infinitely presented [4]. (A free metabelian group is the factor group F/[[F, F ], [F, F ]] of a free
group by the second commutator subgroup.)

Now we get to quotient attacks. One way for Eve to try to positively identify those places in
Bob’s binary sequence where he intended to transmit a 0 is to use a quotient test (see e.g. [10]
for a general background). That means the following: Eve tries to add finitely or infinitely many
relators to the given presentation Γ̂ to obtain a presentation defining a group H with solvable word
problem (more accurately, a group H that Eve can recognize as having solvable word problem).

It makes sense for Eve to only try recognizable quotients, such as, for example, abelian or,
more generally, nilpotent ones. This amounts to adding specific relators to Γ̂; for example, for an
abelian quotient, Eve can add relators [x′i, x

′
j ] for all pairs of generators x′i, x

′
j in Γ̂. For nilpotent

quotients, Eve will have to add commutators of higher weight in the generators. For a metabelian
quotient, Eve will have to add infinitely many relators (because, as we have already mentioned, free
metabelian groups are infinitely presented), but this is not a problem since she does not have to
“actually add” those relators; she can just consider Γ̂ as a presentation in the variety of metabelian
groups and apply the relevant algorithm for solving the word problem which is universal for all
groups finitely presented in the variety of metabelian groups.

Note that this trick will not work with hyperbolic quotients, say. This is because there is no way,
in general, to add specific relators (finitely or infinitely many) to Γ̂ to make sure that the extended
presentation defines a hyperbolic group. This deprives Eve from using a (rather powerful, cf. [10])
hyperbolic quotient attack.

Classes of groups with solvable word problem are summarized in the survey [11]. It appears that
a quotient attack can essentially employ either a nilpotent or a metabelian quotient of Γ̂. This is
why, to foil such attacks, Alice adds a relator x′i =

∏M
j=1[x

′
i, wj ] to Γ̂ (see our Section 3). This is also

the reason why Bob should choose a word of the form [x′i, u] when he wants to transmit an element
not equal to 1 in Γ′ (see Section 5). Indeed, a metabelian quotient attack on an element of the form
[x′i, u] will not work because this element belongs to the second commutator subgroup of the group
defined by Γ̂ since in this group, x′i =

∏M
j=1[x

′
i, wj ], so x′i belongs to the commutator subgroup of the

given group. Furthermore, an element of the form [x′i, u] belongs to every term of the lower central
series of the given group since in this group, [x′i, u] = [

∏M
j=1[x

′
i, wj ], u] = [

∏M
j=1[

∏M
j=1[x

′
i, wj ], wj ], u],

etc. This foils nilpotent quotient attacks, too.
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