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Abstract. Compact e-cash schemes allow a user to withdraw a wallet containing k coins in a single
operation, each of which the user can spend unlinkably. One big open problem for compact e-cash is to
allow multiple denominations of coins to be spent efficiently without executing the spend protocol a number
of times. In this paper, we give a (partial) solution to this open problem by introducing two additional
protocols, namely, compact spending and batch spending. Compact spending allows spending all the k
coins in one operation while batch spending allows spending any number of coins in the wallet in a single
execution.
We modify the security model of compact e-cash to accommodate these added protocols and present a
generic construction. While the spending and compact spending protocol are of constant time and space
complexities, complexities of batch spending is linear in the number of coins to be spent together. Thus,
we regard our solution to the open problem as partial.
We provide two instantiations under the q-SDH assumption and the LRSW assumption respectively and
present security arguments for both instantiations in the random oracle model.
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1 Introduction

Electronic cash (e-cash) was invented by Chaum[12] in 1982. In its simplest form, an e-cash system
consists of three parties (the bank B, the user U and the shop S) and four main procedures (account
establishment, withdrawal, payment and deposit). The user U first performs an account establishment
protocol with the bank B. The currency circulating around is quantized as coins. U obtains a coin by
performing a withdrawal protocol with B and spends the coin by participating in a spend protocol
with S. To deposit a coin, S performs a deposit protocol with B.

Security of e-cash refers to the fact that only the bank B can produce a coin and for offline
schemes, users who double-spent should be identified. The problem of double-spending only occurs
in the electronic world due to easy duplication of digital coins. On the other hand, honest spenders
cannot be slandered to have double spent (exculpability), and when the shops deposit the money from
the payee, the bank should not be able to trace who the actual spender is (anonymity). Many e-cash
systems that provide the function of identifying double-spenders have been proposed, but most of them
rely on a trusted third party (TTP) to revoke the anonymity so as to identify the double-spenders [7,
18, 11]. While the TTP cannot slander an honest user, its existence in fact implies that even honest
users are not anonymous.

High efficiency is also of key importance for practical e-cash systems. For efficiency, we look at:
(1) the time and bandwidth needed for the withdrawal, payment and deposit protocols; (2) the size
of an electronic coin; and (3) the size of the bank’s database.

Camenisch, Hohenberger and Lysyanskaya [8] proposed a secure offline anonymous e-cash scheme
(which we shall refer to as CHL scheme from now on) which is compact to address the efficiency issue.
In their scheme, a wallet containing k coins can be withdrawn and stored in complexity O(λ+ log(k))
for a security parameter λ, where each coin can be spent unlinkably with complexity O(λ + log(k)) as
well. Au et al. [2] construct compact e-cash from another approach by using a bounded accumulator.
However, both schemes involve extensive use of proof-of-knowledge and the exact cost of each operation
is somehow hard to quantify.
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Related Results. Compact e-cash scheme is closely related to k-TAA[21] and itself can be regarded
as a multi-show credential system[13]. The main difference between a compact e-cash and a k-TAA is
that in the former case, a token can only be used for a total of k times while in the latter, a token can
be shown for k-times to each application provider where k is specified by each application provider
independently. In some sense a k-TAA is more general. If the authentication of the k-TAA can be
done non-interactively, that k-TAA scheme can be used as a compact e-cash system as follows. All
shops play the role of a single application provider with k being specified by the bank, while the bank
plays the role of a GM. A user withdraws a coin by obtaining a credential from the bank and spend
the coin by authenticating himself to the shop non-interactively. The shop deposits by submitting the
authentication transcript back to the bank.

CHL’s Compact E-Cash. There are two versions of CHL’s scheme. We describe the first one since
it is simpler and much more efficient than the other. When a user withdraws a wallet, it obtains a
signature σ from the bank on the commitment of user’s secret key and two secret random numbers, s
and t. To spend a coin, the user proves to the merchant that it possesses such a signature σ, and uses
s to generate a link tag. By using a verifiable random function on s and counter i, the user generates
a link tag Si (called serial number). By the same method, the user also generates a blinding value Bi

from t and counter i. For the counter i running from 0 to 2` − 1, the wallet can be spent 2` times
unlinkably. The blinding value is used to compute the value Ti = guBR

i , where gu is the secret key of
the user and R is provided by the merchant. Ti is called a double-spending equation. Should a user
double-spent any of his coins, two double-spending equations can be used to reveal the public key of
the user. It can be extended to incorporate the coin tracing protocol, such that all spendings of the
double-spender can be traced, by making the XDH assumption.

Overview of Our Scheme. One big open problem mentioned in the CHL’s paper is how to spend
several coins in the wallet together efficiently. For the first time, we address this open problem and
propose two protocols, namely, batch spending and compact spending. In batch spending, the user pays
an arbitrary number of coins to the merchant while in compact spending, the user spends the whole
wallet in a single execution. Our result is based on the CHL scheme. Our main idea is that, submitting
s and t directly essentially gives away all the coins in the wallet since everybody could then compute
all the Si and Ti. Now the remaining problem is to prevent the user from double compact spends. We
solve the problem by introducing a third random number y during withdrawal. Whenever the user
executes compact spend, we use y to compute a blinding value Ci and uses it to compute Tc = guCR

i .
Double compact spend shall then be identified with duplicated (s, t) and from two double-spending
equation Tc, the double-spender will be caught. A user commits double-spending by first doing a
normal spending followed by a compact spending shall be identified and caught as follows. Firstly,
from the value s, the bank can compute all Si and uses it to identify the double-spent coin. Then from
the value t and i, the bank computes Bi, the blinding value of the user’s public key in Ti, and uses it
to identify the double-spender.

We optimize several spend protocols together into batch spending protocol. Finally, we make use
of the idea from [22] to further improve the efficiency of the scheme from O(λ + log(k)) to O(λ). CHL
scheme restricts the coin to be k-spendable by requiring the user to prove that the counter i is within
1 to k with the smart use of the result from Boudot[6]. Boudot’s result is of complexity O(log(k)) and
works in groups of unknown order. Consequently, a natural choice of the bank’s signature in CHL’s
scheme is the strong RSA-based CL signature[9]. With the idea from [22], we are able to make use of
more efficient signature schemes from elliptic curve group such as CL+[10] or BBS+[1]. We shall see
in the efficiency analysis section that, all our protocols except batch spending, are of constant size and
computational cost. While the time and space complexities of batch spending is linear in the number
of coins spent, the number of pairing computation required is constant. In fact, spending an extra coin
in the batch spending protocol only adds 43 bytes and 4 multi-based exponentiation in the overhead.
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Concerns About q-SDH Assumption. Due to recent concern about the q-SDH assumption[14],
we also present a construction from the LRSW-based CL+ signature[10]. The scheme, however, is less
efficient computationally.

Our Contributions. Specifically, we make the following contributions

– We solve an open problem stated in the CHL paper by introducing the idea of compact spending
and batch spending into compact e-cash systems.

– We present generic construction of compact e-cash system with these two added protocols and
propose two instantiations

– We formalize a model to accommodate batch spending and compact spending protocols into com-
pact e-cash schemes and present security arguments for our schemes.

– We outline how size of the wallet can be chosen arbitrarily by users while preserving user privacy
during spending.

Organization. We discuss related works and technical preliminaries in the next section. A security
model is shown in Section 3. The construction is shown in Section 4, accompanied by security analysis.
Finally we conclude in Section 5.

2 Preliminaries

2.1 Notations

Let ê be a bilinear map such that ê : G1 ×G2 → GT .

– G1 and G2 are cyclic multiplicative groups of prime order p.
– each element of G1, G2 and GT has unique binary representation.
– g0, h0 are generators of G1 and G2 respectively.
– ψ : G2 → G1 is a computable isomorphism from G2 to G1, with ψ(h0) = g0.
– (Bilinear) ∀x ∈ G1, y ∈ G2 and a, b ∈ Zp, ê(xa, yb) = ê(x, y)ab.
– (Non-degenerate)ê(g0, h0) 6= 1.

G1 and G2 can be the same or different groups. We say that two groups (G1, G2) are a bilinear
group pair if the group action in G1, G2, the isomorphism ψ and the bilinear mapping ê are all
efficiently computable.

2.2 Mathematical Assumptions

Definition 1 (Decisional Diffie-Hellman). The Decisional Diffie-Hellman (DDH) problem in G
is defined as follow: On input a quadruple (g, ga, gb, gc) ∈ G4, output 1 if c = ab and 0 otherwise.
We say that the DDH assumption holds in G if no PPT algorithm has non-negligible advantage over
random guessing in solving the DDH problem in G.

Definition 2 (q-Strong Diffie-Hellman[3]). The q-Strong Diffie-Hellman (q-SDH) problem in (G1,G2)
is defined as follow: On input a (q+2)-tuple (g0, h0, hx

0 , hx2

0 , · · · , hxq

0 ) ∈ G1×Gq+1
2 , output a pair (A, c)

such that A(x+c) = g0 where c ∈ Z∗p. We say that the q-SDH assumption holds in (G1,G2) if no PPT
algorithm has non-negligible advantage in solving the q-SDH problem in (G1,G2).

Definition 3 (y-Decisional Diffie-Hellman Inversion Assumption[15, 8]). The y-Decisional
Diffie-Hellman Inversion problem (y-DDHI) in prime order group G is defined as follow: On input a
(y + 2)-tuple g, gx, gx2

, · · · , gxy
, gc ∈ Gy+2, output 1 if c = 1/x and 0 otherwise. We say that the y-

DDHI assumption holds in G if no PPT algorithm has non-negligible advantage over random guessing
in solving the y-DDHI problem in G.
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Definition 4 (LRSW Assumption[17]). The LRSW problem in prime order group G is defined as
follow: Let G = 〈g〉 be a prime order cyclic group of order p and u = gx, v = gy. Define Ou,v(·) as an
oracle such that on input a value m ∈ Zp, output (a, ay, ax+mxy) for a randomly chosen a ∈ G. The
problem is on input g, u, v, and the oracle Ou,v(·), output (m, a, b, c) such that m 6= 0 ∧ a ∈ G ∧ b =
ay ∧ c = ax+mxy and m has not been input to Ou,v(·). We say that the LRSW assumption holds in
G if no PPT algorithm has non-negligible advantage in solving the LRSW problem in G.

Definition 5 (eXternal Diffie-Hellman). The eXternal Diffie-Hellman (XDH) problem in (G1,G2,GT )
is defined as solving the DDH problem in G1 given the following three efficient oracles

1. solving DDH problem in G2,
2. computing the isomorphism from G2 to G1,
3. and computing the bilinear mapping of groups G1 ×G2 to GT .

We say that the XDH assumption holds in (G1,G2,GT ) if no PPT algorithm has non-negligble advan-
tage in solving the XDH problem in (G1,G2,GT ).

The above assumption implies that the isomorphism is computationally one-way, i.e. there does not
efficient way to complete ψ−1 : G1 → G2. This has proven to be false in supersingular curves while it
is conjectured to hold over MNT curves. See [4] for a more throughout discussion.

2.3 Building Blocks

Verifiable Random Function. One of the building blocks of our e-cash system is the verifiable
random function (VRF) from [15], which we shall refer to as DY VRF. The notion VRF was introduced
in [19]. Roughly speaking, a VRF is a pseudo-random function with non-interactive proof of correctness
of its output. The VRF defined in [15] is described as follow. The function f is defined by a tuple
(Gp, p, g, s), where GT is a cyclic group of prime order p, g a generator of Gp and s is a seed in Zp. On
input x, fGp,p,g,s(x) = g

1
s+x+1 . Efficient proof such that the output is correctly formed (with respect

to s and x in some commitment scheme such as Pedersen Commitment [20]) exists and the output of
f is indistinguishable from random elements in Gp if the y-DDHI assumption in Gp holds.

Signature with Efficient Protocols. A signature scheme with efficient protocols refers to signature
scheme with the following two protocols: (1) a protocol between a user and a signer with keys (pk, sk).
Both the user and the signer agreed on a commitment scheme such as Pedersen commitment. The user
input is a block of messages (m1, · · · ,mL) and a random value r such that C=Commit(m1, · · · ,mL, r).
After executing the protocol, the user obtains a signature on (m1, · · · ,mL) from the signer while the
signer learns nothing about the block of messages; (2) a protocol to prove the knowledge of a signature.
This allows the user to prove to a verifier that he is in possession of a signature. Examples include CL
signature, CL+ signature [9, 10] and a modification of the short group signature from Boneh et al.[4]
that is called BBS+[1].

3 Security Model

3.1 Syntax

A compact e-cash system with compact spending and batch spending is a tuple (BankSetup, UserSetup,
WithdrawalProtocol, SpendProtocol, BSpendProtocol, CSpendProtocol, DepositProtocol, RevokeDouble-
Spender, VerifyGuilt) of nice polynomial time algorithms/protocols between three entities, namely
Bank, Merchant and User. The following enumerates the syntax.

– BankSetup. On input an unary string 1λ, where λ is the security parameter, the algorithm outputs
the bank’s master secret bsk and the public parameter bpk.
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– UserSetup. On input bpk, outputs a key pair (pk, sk). Since merchants are a subset of users, they
may use this algorithm to obtain keys as well.

– WithdrawalProtocol. The user with input (pk, sk) withdraws a wallet w of k coins from the bank.
The bank’s input is the master secret bsk. After executing the protocol, the user obtains a wallet
w while the bank (possibly) retains certain information τw, called the trace information.

– SpendProtocol. This is the normal spend protocol when the user spends a single coin to a merchant.
The user input is w and the merchant’s identity. After the protocol, the merchant obtains a
transcript including a proof of validity π of a coin from the wallet, and possibly some auxiliary
information aux, and outputs 0/1, depending whether the payment is accepted. The user’s output
is an updated wallet w′.

– BSpendProtocol. This is the batch spend protocol when the user spends n coins, n < k, together
to a merchant. The user input is w and the merchant’s identity. After the protocol, the merchant
obtains a transcript including a proof of validity π of n coin from the wallet, and possibly some
auxiliary information aux, and outputs 0/1, depending whether the payment is accepted. The
user’s output is an updated wallet w′.

– CSpendProtocol. This is the compact spend protocol when the user spends all k coins in his wallet
w together to a merchant. The user input is w and the merchant’s identity. After the protocol,
the merchant obtains a transcript including a proof of validity π of a wallet w, and possibly some
auxiliary information aux, and outputs 0/1, depending whether the payment is accepted.

– DepositProtocol. In a deposit protocol, the merchant submits (π, aux) to the bank for deposit.
The bank outputs 0/1, indicating whether the deposit is accepted. It is required whenever an
honest merchant obtains (π, aux) by running any of the spend protocols with some user, there is
a guarantee that this transaction will be accepted by the bank. The bank adds (π, aux) to the
database of spent coins.

– RevokeDoubleSpender. Whenever a user double spends, this algorithm allows the bank to identify
the double spender. Formally, on input two spending protocol transcripts involving the same coin,
the algorithm outputs the public key pk of the double-spender. Intuitively, there are three possible
cases for a user to double-spend, namely, normal spend twice (or batch spend involving same coin),
compact spend twice, or normal spend (or batch spend) and then compact spend or vice versa.
The bank also output a proof πD to prove that user pk indeed double-spends.

– VerifyGuilt This algorithm allows the public to verify that the user with public key pk is guilty of
double-spending. In particular, when the bank uses RevokeDoubleSpender and output πD and pk
of the double-spender, everyone can check if the bank is honest.

SpendProtocol, BSpendProtocol and CSpendProtocol shall be collectively called spend protocols. In
situations where ambiguity may arise, we shall refer to executing SpendProtocol as normal spending.

Remarks: We omit the Trace and VerifyOwnership algorithm defined in the CHL paper because our
system does not support it, just as the first version in the CHL paper. We should remark, however, we
can extend our system using the same technique as in the CHL paper to support these two algorithms.
Details of extension can be found in the appendix.

3.2 Security Notions

We first provide an informal description of the security requirements. A secure compact e-cash scheme
should possess correctness, balance, anonymity and exculpability, introduced as follows.

– Correctness. If an honest user runs WithdrawalProtocol with an honest bank and runs any of the
spend protocols with an honest merchant, the merchant accepts the payment. The merchant later
runs Deposit with the bank, which will accept the transaction.

– Balance. This is the most important requirement from the bank’s point of view. Roughly speaking,
balance means that no collusion of users and merchants together can deposit more than they with-
draw. More precisely, we require that collusion of users and merchants, having run the withdrawal
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protocol for n times, cannot deposit more than nk coins back to the bank. In case they do deposit
nk + 1 coins, at least one of the colluders must be identified. A related notion is revocability,
which means identity of the double-spender must be revoked. It is straight forward to see that
revocability is implied by the definition of balance.

– Anonymity. It is required that no collusion of users, merchants and the bank can ever learn the
spending habit of an honest user.

– Exculpability. It is required that an honest user cannot be accused of having double-spent, even all
other users, merchants and the bank colludes.

From our definition, it can be seen that it is the bank’s responsibility to identify the double-spender.
The rationale behind this is that a user can always spend the same coin to different merchants in an
offline e-cash system and the merchant has no way to detect such double-spending.

Next we are going to formally define the security model. While the model in CHL uses the UC
framework, our model is game-based.

The capability of an adversary A is modeled as oracles.

– Withdrawal Oracle: A presents a public key pk and engages in the WithdrawalProtocol as user and
obtains a wallet. The oracle stores pk in a set XA.

– Spend Oracle: A now acts as a merchant and request users to spend coins with it. It can request
for CSpend, BSpend or normal Spend for any user of its choice.

– Hash Oracle: A can ask for the values of the hash functions for any input.

We require that the answers from the oracles are indistinguishable from the view as perceived by an
adversary in real world attack.

Definition 6 (Game Balance).

– (Initialization Phase.) The challenger C takes a sufficiently large security parameter λ and runs
BankSetup to generate bpk and also a master secret key bsk. C keeps bsk to itself and sends bpk to
A.

– (Probing Phase.) The adversary A can perform a polynomially bounded number of queries to the
oracles in an adaptive manner.

– (End Game Phase.) Let qw be the number of queries to the Withdrawal Oracle and qs be the number
of queries to the Spend Oracle. Note that a compact spending query to the Spend Oracle is counted
as k queries and a batch spending of n coins query is counted as n queries. A wins the game if it
can run kqw +qs+1 deposit to C such that C cannot point to any of the users during the Withdrawal
Oracle query by running RevokeDoubleSpender.

The advantage of A is defined as the probability that A wins.

Definition 7 (Game Anonymity).

– (Initialization Phase.) The challenger C gives a sufficiently large security parameter λ to A. A then
generates bpk and bsk. A gives bpk to C. Since A is in possession of bsk, only Hash oracle query
is allowed in Game Anonymity.

– (Challenge Phase.) C then chooses two public keys PK and PK ′ and presents them to A. C runs
the WithdrawalProtocol with A acting as bank to obtain several wallets w0, · · · , wt and w′0, · · · , w′t
on behalf of the two public keys, where t and t′ are specified by A. A then acts as merchant and
ask for spending from C. A is allowed to specify which wallet C uses, with the restriction that it
cannot ask C to over-spend any of the wallets. Finally, A chooses a type of spending (normal spend,
BSpend or CSpend) as challenge. A also chooses one wallet w from user PK and one wallet w′

from user PK ′ from the set of wallets that are legal for the challenge (for example, if wallet w0 has
spent k − 1 times already and BSepnd 2 coins is chosen as the challenge, A cannot specific wallet
w0). C then flips a fair coin to decide to use w or w′ for the challenge spending.
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– (End Game Phase.) The adversary A decides which public key C uses.

A wins the above game if it guesses correctly. The advantage of A is defined as the probability that
A wins minus 1

2 .

Definition 8 (Game Exculpability).

– (Initialization Phase.) The challenger C gives a sufficiently large security parameter λ to A. A then
generates bpk and bsk. A gives bpk to C. Since A is in possession of bsk, only Hash oracle query
is allowed in Game Exculpability.

– (Challenge Phase.) C runs the WithdrawalProtocol for qj times with A acting as bank to obtain
wallets w1, · · · , wqj . A then act as merchant and ask for spending from C. A is allowed to specific
which wallet C uses, with the restriction that it cannot ask C to over-spend any of the wallets. A
can also ask to corrupt any of the user in the above withdrawal protocol. A corrupted user needs to
surrender its private key as well as the wallet to A.

– (End Game Phase.) A runs two deposit protocol with C. A wins the game if RevokeDoubleSpender
on this two deposit protocol points to a user in any of the withdrawal protocol during initialization
and that user has not been corrupted.

The advantage of A is defined as the probability that A wins.

A compact e-cash scheme with compact spending is secure if no PPT adversary can win in Game
Balance, Game Anonymity and Game Exculpability with non-negligible advantage.

4 Our Constructions

4.1 Generic Construction

BankSetup. Let (KeyGen, Sign,Verify) be a signature scheme with efficient protocols as discussed. Let
Vrf(·) be an verifiable random function as discussed. The bank generates the parameter of a signature
scheme with efficient protocols using KeyGen and is in possession of the signing key. It also publishes,
preferably using another key pair of the signature scheme, σ1 = Sign(1), · · · , σk = Sign(k). Each user
is in possession of a DL type key pair (x, ux).

Withdrawal. To withdraw, the user obtains a signature σx = Sign(s, t, x, y, r) using the signature
generation protocol. The banks learns nothing about the block of messages (s, t, x, y, r). The User
keeps (σx, s, t, x, y, r) as its wallet secret and sets the counter J = 1.

Spend Protocols. For payment, the user and the merchant with identity I ∈ {0, 1}∗ first agree on the
transaction information info. Then, they compute R = H(info, I) locally, for some cryptographic hash
function H.

Spend. To spend a single coin, the user then sends to the merchant C which is a commitment of
(s, t, x, y, r, J) and also S = Vrf(s, J), T = PKVrf(t, J)R. Note that PK = ux and Vrf(s, x) denotes
the verifiable random function as discussed on input x with respect to seed s. It then sends the
following signature of knowledge to the merchant.

ΠSpend : SPK

{
(σx, s, t, x, y, r, σJ , J) :

Verify(σx, s, t, x, y, r) = 1 ∧ Verify(σJ , J) = 1 ∧ S = Vrf(s, J) ∧
T = uxVrf(t, J)R ∧ C = Commit(s, t, x, y, r, J)

}
(R)
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If ΠSpend is a valid SPK, the merchant accepts the payment. Finally, the user increases the counter
J of his wallet by 1. When J is bigger than k, the user can no longer spend his wallet unlinkably.

Compact Spend. To spend the whole wallet, the user then sends to the merchant C which is the
commitment of (s, t, x, y, r) and also Tc = PKVrf(y, 0)R. Then, it sends the following signature of
knowledge to the merchant.

ΠCSpend : SPK

{
(σx, s, t, x, y, r) :

Verify(σx, s, t, x, y, r) = 1 ∧ Tc = uxVrf(y, 0)R ∧ C = Commit(s, t, x, y, r)
}

(R)

Finally, the user discloses s, t to the merchant. If ΠCSpend is valid and s, t is indeed the value in the
commitment, the merchant accepts the whole payment.

Batch Spend. To spend n coins together, the user then sends to the merchant C which is the commit-
ment of (s, t, x, y, r, J) and also Si = Vrf(s, J + i), Ti = PKVrf(t, J + i)R for i = 0, · · · , n− 1. Then, it
sends the following signature of knowledge to the merchant.

ΠBSpend : SPK

{
(σx, s, t, x, y, r, σJ , J, σJ+n−1) :

Verify(σx, s, t, x, y, r) = 1 ∧ Verify(σJ , J) = 1 ∧ S0 = Vrf(s, J) ∧ T0 = uxVrf(t, J)R ∧
· · · ∧ Si = Vrf(s, J + i) ∧ Ti = uxVrf(t, J + i)R ∧ · · · ∧
Sn−1 = Vrf(s, J + n− 1) ∧ Tn−1 = uxVrf(t, J + n− 1)R ∧

Verify(σJ+n−1, J + n− 1) = 1 ∧ C = Commit(s, t, x, y, r, J)
}

(R)

If ΠBSpend is a valid SPK, the merchant accepts the payment. Finally, the user increases the counter
J of his wallet by n.

Remarks: S is called a serial number. For each wallet, only k valid serial numbers can be gener-
ated. Should a user attempt to double-spend, he must use a duplicated serial number. On the other
hand, during CSpend, the user submits s to the merchant and this is equivalent to submitting all
k possible serial numbers. This is the main technique we used to achieve compact spending. Once
double-spending is identified, T is the component used to revoke identity of double-spender, as shown
in the RevokeDoubleSpender algorithm.

We achieve constant-size compact e-cash, due to the idea from [22], by having the bank publishes k
signatures on 1 to k. User proving possession of these signatures on counter j indirectly proves counter
j has not reached the limit k. Proving j is within 1 to k directly require a complexity of O(logk) while
with this technique, constant-size is achieved. The price is that public parameter size is increased to
k. Note that if the bank is dishonest and gives signature on k + 1 to a user, the user is able to spend
the wallet for k+1 times without being noticed. However, this does not compromise the security since
this only breaks the balance property which is exactly against the interest of the bank. Thus, it gives
no incentive for the bank to behave dishonestly in this way.

Deposit. To deposit, the merchant simply gives the bank the whole communication transcript during
the spend protocol. The bank verifies the transcript exactly as the merchant did. In addition, the
bank has to verify that I is indeed the identity of the merchant and R = H(info, I) is not used before
by that merchant. This is to prevent colluding users and merchants from submitting a double spent
coin (which have identical transcripts). It also prevents a malicious merchant from eavesdropping an
honest transaction and depositing it (in that case, identity of the malicious merchant does not match
with I). In case the check is successful, the bank stores S, T, R to the database. In case it is CSpend,
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the bank computes Si = Vrf(s, i) for i = 1, · · · , k. The bank then stores all (S, T, R)
(
(S, Tc, s, t, R) in

case it is CSpend
)

for each spending in the database.

RevokeDoubleSpender. When a new spending transcript is received, the bank checks if S exists in
the database. If yes, then it is a double-spent coin. The bank identifies the double-spender as follows.
There are three cases:

– (Double-spending of a single coin.) Let the entry in the database be (S, T ′, R′) and the current

transcript be (S, T, R). The bank computes PK as (T R′

T ′R )1/(R′−R).
– (CSpend and spend a single coin.) Suppose the entry in database is (S, Tc, s, t) and the current

transcript is (S, T, R). The bank checks for an i such that S = Vrf(s, i) and computes PK =
T/(Vrf(t, i)R).

– (Double CSpend.) Suppose the two entries are (s, t, Tc, R) and (s, t, T ′c, R′). The bank computes

PK = (T R′
c

T ′Rc
)1/(R′−R).

Remarks: Double spending can be falsely identified if there exists J, J ′ ≤ k such that J +s = J ′+s′

for two different wallets. However, the probability is negligible if k is much smaller than the security
parameter. This applies to the CHL scheme too. The proof πD such that bank is honest is the two
double-spend transcripts.

VerifyGuilt. The bank outputs the double-spent transcripts as well as the public key of the double-
spender. Everyone can check if the bank is honest by invoking the algorithm RevokeDoubleSpender on
the two transcripts since it does not require any of the bank’s secret.

4.2 Scheme 1 (Instantiation Using BBS+ Signature and DY VRF)

Following the generic construction, efficient compact e-cash can be constructed readily by choos-
ing a suitable signature scheme with efficient protocols and VRF. One additional criterion is that
PK{(t, x, j) : T = uxVrf(t, x, j)R} can be efficiently done since that may not be efficient for any VRF.
Below we instantiate a q-SDH based compact e-cash using BBS+ signature and DY VRF.

BankSetup. Let λ be the security parameter. Let (G1,G2) be a bilinear group pair with computable
isomorphism ψ as discussed such that |G1| = |G2| = p for some prime p of λ bits. Also assume Gp is
a group of order p where DDH is intractable. Let H : {0, 1}∗ → Zp be a cryptographic hash function.
Let g0, g1, g2, g3, g4, g5 be generators of G1, h0, h1, h2, h3, h4, h5 be generators of group G2 such that
ψ(hi) = gi and u0, u1, u2, u3 be generators of Gp such that related discrete logarithm of the generators
are unknown. This can be done by setting the generators to be output by a hash function of some
publicly known seed. The bank randomly selects γ, γr ∈R Z∗p and computes w = h0

γ , wr = h0
γr . The

bank’s public key is bpk = (g0, g1, g2, g3, g4, g5, h0, w, wr, u0, u1, u2, u3, k) and the bank’s secret key is
bsk = (γ, γr). It also publishes σi = (Bi, di) s.t. ê(Bi, wrh

di
0 ) = ê(g0, h0)ê(g1, h0)i for i = 1, · · · , k.

These are the BBS+ signature on i for i = 1, · · · , k. k has to be much smaller than 2λ. For efficiency
consideration, it also publishes Ej = ê(gj , h0) for j = 0, · · · , 5 and Ew = ê(g2, w), Ewr = ê(g2, wr) as
part of the public key.

UserSetup. We assume PKI is implemented, that is, each user is equipped with a discrete logarithm
type public and private key pair (u0

x, x) ∈ Gp × Z∗p.

WithdrawalProtocol. A user randomly selects s′, t, y, r ∈R Z∗p and sends C ′ = gs′
1 gt

2g
x
3gy

4gr
5, along with

the proof Π0 = PK{(s′, t, x, y, r) : C ′ = gs′
1 gt

2g
x
3gy

4gr
5 ∧ PK = ux

0} to the bank. The bank verifies
that Π0 is valid and randomly selects s′′ ∈R Z∗p. It computes C = C ′gs′′

1 and selects e ∈R Z∗p. It then

computes A = (g0C)
1

e+γ and sends (A, e, s′′) to the user. User computes s = s′ + s′′ and checks if
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ê(A,whe
0) = ê(g0g

s
1g

t
2g

x
3gy

4gr
5, h0). He then stores (A, e, s, t, x, y, r) as his wallet secret and sets counter

J = 1.

Spend Protocols. Let the user wallet be (A, e, s, t, x, y, r, J) such that J ≤ k. The merchant with
identity I and the user first agree on the transaction information info and compute R = H(info, I)
locally.

Single Coin Spend Protocol. The user computes S = u
1

s+J+1

1 , T = ux
0u

R
t+J+1

1 . The user also computes
the following quantities A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 = gJ
1 gt

2g
r3
3 , A4 = gr4

1 gr5
2 , A5 = BJgr4

2 , for
r1, r2, r3, r4, r5 ∈R Z∗p, in G1. Recall that (BJ , dJ) is the BBS+ signature on J published by the bank.
The following SPK Π1 is then computed.

Π1 : SPK

{
(r1, r2, r3, r4, r5, δ1, δ2, δ3, δ4, δ5, δJ , δt, e, dJ , s, t, x, y, r, J) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧ ê(A2,w)

E0
= Es

1E
t
2E

x
3 Ey

4Er
5E

δ1
2 Er1

w ê(A2, h0)−e ∧
u1
S = SJSs ∧ A3 = gJ

1 gt
2g

r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧ uR

1
T = T JT tu−δJ

0 u−δt
0 u−x

0 ∧
A4 = gr4

1 gr5
2 ∧ AdJ

4 = gδ4
1 gδ5

2 ∧ ê(A5,wr)
E0

= EJ
1 Eδ4

2 Er4
wrê(A5, h0)−dJ

}
(R)

where δ1 = r1e, δ2 = r2e, δ4 = r4dJ , δ5 = r5dJ , δJ = Jx, δt = tx, δ3 = r3x.

The user sends S, T, A1, A2, A3, A4, A5 along with Π1 to the merchant for payment. The merchant
then verifies Π1 and accepts the payment if it is valid.

CSpend Protocol. To spend the whole wallet, the user computes Tc = ux
0u

R
y+1

1 . He also computes the
following quantities A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 = gy
1gr3

2 for r1, r2, r3 ∈R Z∗p, in G1. The following
SPK Π2 is then computed.

Π2 : SPK

{
(r1, r2, r3, δ1, δ2, δ3, δy, e, x, y, r) :

A1 = gr1
1 gr2

2 ∧ Ae
1 = gδ1

1 gδ2
2 ∧ ê(A2,w)

E0Es
1Et

2
= Ex

3 Ey
4Er

5E
δ1
2 Er1

w ê(A2, h0)−e ∧

A3 = gy
1gr3

2 ∧ Ax
3 = g

δy

1 gδ3
2 ∧ uR

1
Tc

= T y
c u

−δy

0 u−x
0

}
(R)

where δ1 = r1e, δ2 = r2e, δy = yx, δ3 = r3x.

The user sends Tc, s, t, A1, A2, A3, along with Π2 to the merchant for payment. The merchant then
verifies Π2 and accepts the payment if it is valid.

BSpend Protocol. To spend n coins such that J + n − 1 ≤ k, the user computes Si = u
1

s+J+i

1 ,

Ti = ux
0u

R
t+J+i

1 for i = 1 to n. Denotes I = J + n− 1. The user also computes the following quantities
A1 = gr1

1 gr2
2 , A2 = Agr1

2 , A3 = gJ
1 gt

2g
r3
3 , A4 = gr4

1 gr5
2 , A5 = BJgr4

2 , A6 = gr6
1 gr7

2 , A7 = BIg
r6
2 , for

r1, r2, r3, r4, r5, r6, r7 ∈R Z∗p, in G1. Recall that (BJ , dJ), (BI , dI) are the BBS+ signatures published
by the bank on J and I respectively. The following SPK Π3 is then computed.

Π3 : SPK{(r1, r2, r3, r4, r5, r6, r7, δ1, δ2, δ3, δ4, δ5, δ6, δ7, δJ , δt, e, dJ , dI , s, t, x, y, r, J) :

A1 = gr1
1 gr2

2 ∧Ae
1 = gδ1

1 gδ2
2 ∧ ê(A2,w)

E0
= Es

1E
t
2E

x
3 Ey

4Er
5E

δ1
2 Er1

w ê(A2, h0)−e ∧
u1

S1
1

= SJ
1 Ss

1 ∧ · · · ∧ u1

Si
i

= SJ
i Ss

i ∧ · · · ∧ u1
Sn

n
= SJ

nSs
n ∧

A3 = gJ
1 gt

2g
r3
3 ∧ Ax

3 = gδJ
1 gδt

2 gδ3
3 ∧ uR

1

T 1
1

= T J
1 T t

1u
−δJ
0 u−δt

0 (u1
0)
−x ∧ · · · ∧

uR
1

T i
i

= T J
i T t

i u
−δJ
0 u−δt

0 (ui
0)
−x ∧ · · · ∧ uR

1
T n

n
= T J

n T t
nu−δJ

0 u−δt
0 (un

0 )−x ∧
A4 = gr4

1 gr5
2 ∧ AdJ

4 = gδ4
1 gδ5

2 ∧ ê(A5,wr)
E0

= EJ
1 Eδ4

2 Er4
wrê(A5, h0)−dJ ∧

A6 = gr6
1 gr7

2 ∧ AdI
6 = gδ6

1 gδ7
2 ∧ ê(A7,wr)

E0En−1
1

= EJ
1 Eδ6

2 Er6
wrê(A7, h0)−dI

}
(R)
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where δ1 = r1e, δ2 = r2e, δ4 = r4dJ , δ5 = r5dJ , δ6 = r5dI , δ7 = r7dI , δJ = Jx, δt = tx, δ3 = r3x.

The user sends S1, T1, · · · , Sn, Tn, A1, A2, A3, A4, A5, A6, A7 along with Π3 to the merchant for
payment. The merchant then verifies Π3 and accepts the payment if it is valid.

Deposit, RevokeDoubleSpender and VerifyGuilt have been described in the generic construction.

4.3 Scheme 2 (Instantiation Using CL+ Signature and DY VRF)

BankSetup. Let λ be the security parameter. Let (G1,G2) be a bilinear group pair with computable
isomorphism ψ as discussed such that |G1| = |G2| = p for some prime p of λ bits. Also assume Gp is
a group of order p where DDH is intractable. Let H : {0, 1}∗ → Zp be a cryptographic hash function.
Let h0 be a generator of G2 and g0 = ψ(h0). Let also g1, g2, g3 be generators of G1 Let u0, u1 be
generator of Gp. The bank chooses α, β, γ1, · · · , γ4 ∈R Gp. The bank then computes X = hα

0 , Y =
hβ

0 , Z1 = hγ1
0 , · · · , Z4 = hγ4

0 ,W1 = Y γ1 , · · · ,W4 = Y γ4 . The secret key of the bank is (α, β, γ1, · · · , γ4)
and the public key is (h0, g0, g1, g2, g3, u0, u1, X, Y, Z1, · · · , Z4,W1, · · · ,W4). Also, the bank computes
Xr = hαr

0 , Yr = hβr
0 for some randomly selected αr, βr ∈R Zp. The bank then publishes CL+ signatures

σi = (ai, bi, ci) on 1 · · · , k such that (ai, bi, ci) = (ai, a
βr

i , aαr+kαrβr

i ) for some randomly generated ai.

UserSetup. A user is equipped with public/private key pair (ux
0 , x).

WithdrawalProtocol. A user with key pair (ux
0 , x) randomly chooses s, t, y, r ∈R Zp and computes

C = hs
0Z

t
1Z

x
2 Zy

3Zr
4 ∈ G2 and sends it to the bank, along with proof Π0′ = PK{(s, t, x, y, r) : C =

hs
0Z

t
1Z

x
2 Zy

3Zr
4 ∧PK = ux

0}. The banks verifies Π0′ is valid and randomly chooses d ∈R Gp. It computes
a = hd

0, A1 = aγ1 , · · · , A4 = aγ4 . It then computes b = aβ and B1 = Aβ
1 , · · · , B4 = Aβ

4 . Finally, it
computes c = aαCdαβ. The bank then sends (a, b, c, A1, A2, A3, A4, B1, B2, B3, B4) to the user as his
wallet. The user then checks if ê(ψ(a), Zi) = ê(g, Ai), ê(ψ(a), Y ) = ê(g, b), ê(ψ(Ai), Y ) = ê(g,Bi) for
i = 1, · · · , 4 and ê(g, c) = ê(ψ(X), absBt

1B
x
2By

3Br
4).

Spend Protocols. Let the user wallet be (a,b,c,A1,A2,A3,A4,B1,B2,B3,B4,s,t,x,y,r,J) such that J ≤ k.
The merchant with identity I and the user first agree on the transaction information info and computes
R = H(info, I) locally.

Single Coin Spend Protocol. The user computes S = u
1

s+J+1

1 , T = ux
0u

R
t+J+1

1 . The user chooses
r1, r2, r3, r4, r5 ∈R Zp and computes the following quantities AT = gJ

1 gt
2g

r5
3 , ã = ar1 , b̃ = br1 ,

c̃ = cr1 , Ãi = Ar1
i , B̃i = Br1

i for i = 1, · · · , 4 and computes ĉ = c̃r2 . Recall that (aJ , bJ , cJ) is
the bank’s CL+ signature on J . The user also computes (ãJ , b̃J , ĉJ) = (ar3

J , br3
J , cr3r4

J ). The following
SPK Π1′ is then computed. For simplicity we denote Eĉ = ê(g0, ĉ), Eã = ê(ψ(X), ã), Eb̃ = ê(ψ(X), b̃),
EB̃i

= ê(ψ(X), B̃i) for i = 1, · · · , 4 and also Ec̃J = ê(g0, ĉJ), EãJ = ê(ψ(Xr), ãJ), Eb̃J
= ê(ψ(Xr), b̃J).

Π1′ : SPK

{
(s, t, x, y, r, δ2, J, δ4, r5, δJ , δt, δ5) :

Eã = Eδ2
ĉ E−s

b̃
E−t

B̃1
E−x

B̃2
E−y

B̃3
E−r

B̃4
∧ EãJ = Eδ4

c̃J
E−J

b̃J
∧ u1

S = SJSs ∧

AT = gJ
1 gt

2g
r5
3 ∧ Ax

T = gδJ
1 gδt

2 gδ5
3 ∧ uR

1
T = T JT tu−δJ

0 u−δt
0 u−x

0

}
(R)

where δ2 = 1/r2 mod p, δ4 = 1/r4 mod p, δJ = Jx, δt = tx, δ5 = r5x.

The user then sends S, T,AT , ã, b̃, ĉ, Ã1, B̃1, · · · , Ã4, B̃4, ãJ , b̃J , ĉJ , along with Π1′ to the merchant.
The merchant verifies that ê(ψ(ã), Zi) = ê(g0, Ãi), ê(ψ(Ãi), Y ) = ê(g0, B̃i) for i = 1, · · · , 4 and
ê(ψ(ã), Y ) = ê(g0, b̃), ê(ψ(ãJ), Yr) = ê(g0, b̃J). Then the merchant verifies that Π1′ . It accepts the
payment if all are valid.



12 Man Ho Au, Willy Susilo, and Yi Mu

CSpend Protocol. To spend the whole wallet, the user computes Tc = ux
0u

R
y+1

1 . The user chooses
r1, r2, r3 ∈R Zp and computes the following quantities AT = gy

1gr3
2 , ã = ar1 , b̃ = br1 , c̃ = cr1 , Ãi = Ar1

i ,
B̃i = Br1

i for i = 1, · · · , 4 and computes ĉ = c̃r2 . The following SPK Π2′ is then computed, using the
same notations we use above.

Π2′ : SPK

{
(x, y, r, δ2, r3, δy, δ3) :

Eã

Es
b̃
Et

B̃1

= Eδ2
ĉ E−x

B̃2
E−y

B̃3
E−r

B̃4
∧ AT = gy

1gr3
2 ∧ Ax

T = g
δy

1 gδ3
2 ∧ uR

1
Tc

= Tc
yu
−δy

0 u−x
0

}
(R)

where δ2 = 1/r2 mod p, δy = yx, δ3 = r3x.

The user then sends s, t, Tc, AT , ã, b̃, ĉ, Ã1, B̃1, · · · , Ã4, B̃4, along with Π2′ to the merchant. The
merchant verifies that ê(ψ(ã), Zi) = ê(g0, Ãi), ê(ψ(Ãi), Y ) = ê(g0, B̃i) for i = 1, · · · , 4 and ê(ψ(ã), Y ) =
ê(g0, b̃). Then the merchant verifies that Π2′ . It accepts the payment if all are valid.

BSpend Protocol. To spend n coins such that J + n − 1 ≤ k, the user computes Si = u
1

s+J+i

1 ,

Ti = ux
0u

R
t+J+i

1 for i = 1 to n. Denotes I = J + n − 1. The user chooses r1, r2, r3, r4, r5, r6, r7 ∈R

Zp and computes the following quantities AT = gJ
1 gt

2g
r7
3 , ã = ar1 , b̃ = br1 , c̃ = cr1 , Ãi = Ar1

i ,
B̃i = Br1

i for i = 1, · · · , 4 and computes ĉ = c̃r2 . Recall that (aJ , bJ , cJ), (aI , bI , cI) are the bank’s
CL+ signatures on J and I respectively. The user also computes (ãJ , b̃J , ĉJ) = (ar3

J , br3
J , cr3r4

J ) and
(ãI , b̃I , ĉI) = (ar5

I , br5
J , cr5r6

J ). The following SPK Π3′ is then computed, using the same notations we
use above.

Π3′ : SPK

{
(s, t, x, y, r, δ2, J, δ4, δ6, r7, δJ , δt, δ7) :

Eã = Eδ2
ĉ E−s

b̃
E−t

B̃1
E−x

B̃2
E−y

B̃3
E−r

B̃4
∧ EãJ = Eδ4

c̃J
E−J

b̃J
∧ EãI

En−1

b̃I

= Eδ6
c̃I

E−J

b̃I
∧

u1

S1
1

= SJ
1 Ss

1 ∧ · · · ∧ u1

Si
i

= SJ
i Ss

i ∧ · · · ∧ u1
Sn

n
= SJ

nSs
n ∧

AT = gJ
1 gt

2g
r5
3 ∧ Ax

T = gδJ
1 gδt

2 gδ5
3 ∧ uR

1

T 1
1

= T J
1 T t

1u
−δJ
0 u−δt

0 (u1
0)
−x ∧ · · · ∧

uR
1

T i
i

= T J
i T t

i u
−δJ
0 u−δt

0 (ui
0)
−x ∧ · · · ∧ uR

1
T n

n
= T J

n T t
nu−δJ

0 u−δt
0 (un

0 )−x

}
(R)

where δ2 = 1/r2 mod p, δ4 = 1/r4 mod p, δ6 = 1/r6, δJ = Jx, δt = tx, δ7 = r7x.

The user then sends AT , S1, T1, · · · , Sn, Tn, ã, b̃, ĉ, Ã1, B̃1, · · · , Ã4, B̃4, ãJ , b̃J , ĉJ , ãI , b̃I , ĉI , along
with Π3′ to the merchant. The merchant verifies that ê(ψ(ã), Zi) = ê(g0, Ãi), ê(ψ(Ãi), Y ) = ê(g0, B̃i)
for i = 1, · · · , 4 and ê(ψ(ã), Y ) = ê(g0, b̃), ê(ψ(ãJ), Yr) = ê(g0, b̃J), ê(ψ(ãI), Yr) = ê(g0, b̃I). Then the
merchant verifies that Π1′ . It accepts the payment if all are valid.

Deposit, RevokeDoubleSpender and VerifyGuilt have been described in the generic construction.

Following the parameters suggested by Boneh et al.[5, 4], we can take p = 170 bits and each group
element in G1, G2 can be represented by 171 bits. Assume elements in Gp are represented by 171
bits (using another elliptic curve group where pairing is not available[16]). We list the time and space
complexity of our schemes and the CHL scheme in Fig.1. For the CHL scheme, we take the public
modulus N to be 1024 bits.

4.4 Extensions

Our schemes can be extended to support full coin tracing using the same method as in [8]. It can also
be extended to support arbitrary wallet size. Due to space limitation, these extensions are shown in
appendix A.

4.5 Security Analysis

Proofs of the following theorems can be found in appendix B.

Theorem 1. Our first scheme is secure under the q-SDH assumption and the k-DDHI assumption in
the random oracle model.

Theorem 2. Our second scheme is secure under the LRSW assumption and the k-DDHI assumption
in the random oracle model.
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CHL this paper(scheme 1) this paper (scheme 2)

Withdrawal 704 bytes 213 bytes 384 bytes

Single Spend 1.9 kB 596 bytes 640 bytes

Batch Spend (n > 1 coins) N/A 702 + 43n bytes 682 + 43n bytes

Compact Spend (k coins) N/A 383 bytes 491 bytes

Deposit Same as respective Spend protocols

Bank’s Store (per spent coin) 0.3 kB 64 bytes 64 bytes

Fig. 1. Space Efficiency of different protocols.

CHL this paper (scheme 1) this paper (scheme 2)

Single Spend

User 18ME 17ME + 2P 24ME +8P

Merchant 11ME 10ME + 4P 6ME +20P

Bank 11ME 10ME + 4P 6ME +20P

Batch Spend (n > 1 coins)

User N/A (4n + 18)ME + 2P (4n + 11)ME + 10P

Merchant N/A (2n + 11)ME + 6P (2n + 5)ME + 25P

Bank N/A (2n + 11)ME + 6P (2n + 5)ME + 25P

Compact Spend

User N/A 10ME + 1P 17ME + 4P

Merchant N/A 6ME + 2P 4ME + 13P

Bank N/A 6ME + 2P 4ME + 13P

Fig. 2. Computational Cost of Spend protocols. (ME=Multi-based Exponentiation, P=Pairing)

5 Concluding Remarks

We introduced the idea of compact spending and batch spending into compact e-cash, presented
security model to accommodate the new idea, and gave efficient and secure constructions. One problem
of our system is that since BBS+/CL+ (or CL) signatures do not support concurrent signature
generation, withdrawal must be done in a sequential manner. The same drawback is also present in
the original compact e-cash [8]. It remains an open problem to design a secure compact e-cash scheme
which supports concurrent withdrawal.
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A Extensions

A.1 Extending Our System to Support Full Tracing.

Our system extracts the public key ux
0 of the double-spender. Using the same method as in [8], we

can turn our scheme to support full coin tracing. That is, all coins from the double-spender can be
traced, regardless it has been spent honestly or not. The idea is to make use of bilinear encryption,
where secret key is of the form ux

0 . During withdrawal protocol, user is required to verifiably encrypt
all the serial numbers for the wallet. Should a user double-spent, his secret key is revealed and the
bank then decrypt and get all the serial numbers associated with the user.

One problem is that if bilinear encryption is used, the VRF we used may no longer secure since now
we need to move Gp to G1 where DDH may not hold. One solution is to make the XDH assumption
such that DDH in G1 still holds. Another solution is to make use of the sum-free VRF as in [8]. The
price is that the protocols will become less efficient.

A.2 Extending Our System to Support Arbitrary Wallet Size.

We outline how to modify our system so that wallet size k is to be chosen by user arbitrarily during
the withdrawal protocol while coins from wallet of different size are indistinguishable during normal
spending. The idea is that during the withdrawal protocol, the value k chosen by the user is also
signed by the bank. During spending, the user prove, in zero knowledge manner that, the counter j is
within 1 to k where k is hidden from the merchant. However, inefficient exact range proof[6] has to be
employed. Besides, compact spend of different wallet must be distinguishable. Specifically, the change
to make is that the user obtain σx = Sign(s, t, x, y, r, k) during the withdrawal protocol while change
of ΠSpend is shown as follow. Changes of ΠCSpend and ΠBSepnd are omitted.

ΠSpend : SPK

{
(σx, s, t, x, y, r, k, J) :

Verify(σx, s, t, x, y, r, k, J) = 1 ∧ 1 ≤ J ≤ k ∧
T = uxVrf(t, J)R ∧ C = Commit(s, t, x, y, r, k, J)

}
(R)
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B Proof of Theorem 1 and 2

Proof.
Balance. Let A be an adversary that makes qw withdrawal queries and qs spend queries. We outline
why the success probability of A is negligible under the qw-SDH assumption (for scheme 1) or the
LRSW assumption (for scheme 2), by constructing a simulator S acting as challenger C.

For each withdrawal query, A is required to present a public key PK = ux
0 and proof the knowledge

of representation of C ′ with Π0 (or C with Π0′ in scheme 2). S acts as if an honest bank would,
except during the proof of knowledge of C ′ (resp. C) where S runs a rewind simulation and extracts
(s′, t, y, x, r) (or (s, t, y, x, r) in scheme 2). Such an extraction is possible due to the soundness of
the proof of knowledge. If Π0 (resp. Π0′) is conducted non-interactively, then S is given control
over the random oracle as well. After each execution, S computes w = (S1, · · · , Sk, s, t, x, y, r) where

Si = u
1

i+s+1

1 for i = 1, · · · , k. The set of Γ = {Si,j |1 ≤ i ≤ qw, 1 ≤ j ≤ k} corresponds to all the serial
numbers after qw executaions of the withdrawal protocol.

For each payment query, A presents a public key PK, a transaction information info, merchant
identity I and request a legal number of Spend Protocol, be it normal Spend, CSpend or BSpend
for that user. Suppose it is normal Spend of BSpend, S responds by randomly choosing (s, t) and

computing S = u
1

s+j+1

1 , T = PKu
R

t+j+1

1 such that R = H(info, I) and j = i to i + n − 1 for some
1 ∈R [1, k] such that i + n − 1 < k. S then generates a simulated proof Π1(resp. Π1′) for Spend or
Π3(resp. Π3′) for BSpend. Such simulated proof is perfect due to the HVZK property of the underlying
SPK.

For CSpend, S randomly chooses s, t, y and computes Tc = PKu
R

y+1

1 . S then gives (s, t) to A and
computes a simulated proof Π2 (resp.Π2′). Such simulated proof is perfect due to the HVZK property
of the underlying SPK.

Finally, A runs kqw +qs+1 deposit protocol with S. In case it is a CSpend, S uses the s to calculate
the k serial numbers corresponds to that single s.

A wins the game either by (1) all the kqw + qs + 1 serial numbers during deposit are unique or
(2) some of the serial numbers are duplicated but RevokeDoubleSpender on the corresponding deposit
attempt does not point to any of the public key presented during the withdrawal queries. Now we are
to analyzes these two cases separately.

Case (1): Since that only qs serial numbers are given to A during the spend queries, A must have
produce another kqw + 1 serial numbers. Due to the soundness of the underlying proof of knowledge
protocols, Γ contains all valid serial numbers that A can produce. Thus, A can only win in Case (1)
by convincing S to accept a serial number S /∈ Γ and is not the output of a spend query. Then A must
have conducted a false proof as part of the signature of knowledge such that one of the following is
fake:

1. Possession of BBS+ (resp. CL+) signature on block of messages (s, t, x, y, r).

2. S = u
1

j+s+1

1 .
3. Possession of BBS+ (resp. CL+) signature on j.

In case it is a CSpend, A have conducted a false proof so that one of the following is fake:

1. Possession of BBS+ (resp. CL+) signature on block of messages (s, t, x, y, r).
2. Opening of (s,t) is equal to the pair committed in the above proof.

In case it is a BSpend, one of the following is fake:

1. Possession of BBS+ (resp. CL+) signature on block of messages (s, t, x, y, r).

2. Si = u
1

i+s+1

1 for i = j to j + n− 1.
3. Possession of BBS+ (resp. CL+) signatures on j and j + n− 1.



16 Man Ho Au, Willy Susilo, and Yi Mu

Fake proof of possession of BBS+ signature (resp. CL+ signature) happens with negligible proba-
bility under the q-SDH assumption (resp. LRSW assumption). Fake proof of S (and T ) are well-formed
happens with negligible probability under the discrete logarithm assumption (which is subsumed by
the k-DDHI assumption in the theorem statement). Thus A’s success probability is negligible in Case
(1).

Case (2): We have shown in case (1) that A cannot convince an S to accept an invalid serial number
with non-negligible probability. We now suppose duplicated S or s are accepted. We first argue that
at least one pair of duplicated S are in Γ . Due to the zero-knowledge property of the Spend Protocol,
A learns nothing about the signature on the values (s, t, x, y, r) presented during the spend queries.
Thus, A cannot produce valid deposit using the same set of (s, t, x, y, r) from spend query twice except
using identical transcripts, which shall be rejected.

It remains to show the associated T , or (t, Tc) is bounded by specification except with negligible
probability so that the correctness of the RevokeDoubleSpender implies the recovering of PK. Due to

the soundness of the proof of knowledge protocol, T = ux
0u

R
j+t+1

1 is the only valid T to accompany

serial number S = u
1

s+j+1

1 . Since R is chosen by the random oracle, the two R shall be different in the
two transaction. To deviate from these valid tags, A must fake the proof during Spend Protocol which

we already shown to happen with negligible probability only. Similarly, Tc = ux
0u

R
y+1

1 is the only valid
Tc to accompany the wallet (s, t, x, y, r) for CSpend and faking the tag is only possible with negligible
probability. Thus, A’s success probability is negligible.

Anonymity. Assume the pairing group and the group Gp is given. It first guesses whether the
challenge is normal spend/batch spend or compact spend.

If it is compact spend, S receives a k-DDHI problem instance in group Gp. Using the k-DDHI

problem instance, S is able to generate u1 such that it knows u
1

t+j+1

1 for some unknown t for j =
1 · · · , k − 1. Since the generators are the output of the hash function, S can back patch u1 to such
value.

A needs to choose the bank’s secret key (γ, γr) for scheme 1 or (α, β, γ1, γ2, γ3, γ4, αr, βr) for
scheme 2, and publishes the signatures on i = 1, · · · k.

The proof basically follows the VRF from [15]. S randomly generates two public keys PK and PK ′.
It chooses one of the wallets during the withdrawal protocol as w∗. For other wallets, S simply follows
the withdrawal and spend protocols honestly. For wallet w∗, if Spend Protocol is required, it uses the
k-DDHI problem instance to generate T . Though t is unknown to S, it can always simulate the proof
perfectly. In fact, since during withdrawal, there always exists an r such that C = Commit(s, t, x, y, r)
for any s, t, x, y, such proof is perfect. During the challenge spending, if w∗ is chosen, it uses the
problem instance to generate T . If the problem instance is a valid k-DDHI tuple, then the simulation
is perfect. Otherwise, it contains no information on the public key.

On the other hand, if it is compact spend, a problem instance of the DDHI problem is needed. S
uses the DDHI problem instance to generate u1 such that it knows u

1
y+1

1 for some unknown y(if it is
a valid DDHI tuple) and the rest is same as above.

Exculpability. In RevokeDoubleSpender, either one or both transcript contains the proof of correct-
ness of T or Tc, which involve proving knowledge of the user secret x. To slander an honest user,
adversary without knowledge of user secret x has to fake the knowledge of T which involve knowledge
of x to base u0. This happens with negligible probability under the discrete logarithm assumption. ut


