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Abstract

Non-interactive zero-knowledge proofs and non-intevactvitness-indistinguishable proofs have
played a significant role in the theory of cryptography. Hearelack of efficiency has prevented them
from being used in practice. One of the roots of this inefficieis that non-interactive zero-knowledge
proofs have been constructed for general NP-complete &gesusuch as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reduicto a circuit. The contribution of this
paper is a general methodology for constructing very sirapteefficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishableofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous sucoetb ifield of cryptography in recent
years and have been used to construct a plethora of protdtosspaper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-kremlgle proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-irtteeaaryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptdgjaprotocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, noneéndctive zero-knowledge, common refer-
ence string, bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-intevactiitness-indistinguishable proofs have played a
significant role in the theory of cryptography. Howeverkad efficiency has prevented them from being
used in practice. Our goal is to construct efficient and prakhon-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishablé/XN proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. &in paper and subsequent wogkg.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK praofist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to inteteng theoretical results, such as the construction
of public-key encryption secure against chosen ciphegtatk by Dolev, Dwork and Naor [DDNOO], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used intipedt is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. Onavdoack is that they were designed with a
general NP-complete language in mirdg. Circuit Satisfiability. In practice, we want to prove statats
such as “the ciphertextencrypts a signature on the messageor “the three commitments,, ¢;, c. contain
messages, b, ¢ soc = ab”. An NP-reduction of even very simple statements like thgiges us big circuits
containing thousands of gates and the corresponding NIa&fgtbecome very large.

While we want to avoid an expensive NP-reduction, it is siisirable to have a general way to express
statements that arise in practice instead of having to naetshon-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-keyptography protocols are based on finite abelian
groups. If we can capture statements that express relabigimgeen group elements, then we can express
statements that come up in practice such as “the commitmgnts, c. contain messages 0= ab” or
“the plaintext ofc is a signature omn”, as long as those commitment, encryption, and signatunerses
work over the same finite group. We will therefore construtiViNand NIZK proofs forgroup-dependent
languages.

The next issue to address is where to find suitable grouprdepe languages. We will look at state-
ments related to groups with a bilinear map, which have becondely used in the design of crypto-
graphic protocols. Not only have bilinear groups been usedite new constructions of such crypto-
graphic staples as public-key encryption, digital sigredu and key agreement (see [Pat05] and the ref-
erences therein), but bilinear groups have enabled thecfirsstructions achieving goals that had never
been attained before. The most notable of these is the tgd&dsed Encryption scheme of Boneh and
Franklin [BF03] (see also [BB04a, BB04b, Wat05]), and there many others, such as Attribute-Based En-
cryption [SWO05, GPSWO06], Searchable Public-Key Encryp{BCOP04, BSW06, BWO06], and One-time
Double-Homomorphic Encryption [BGNO5]. For an incomplégt of papers (currently over 200) on the
application of bilinear groups in cryptography, see [Bdr06

1.1 Our Contribution

For completeness, let us recap the definition of a bilineangrPlease note that for notational convenience
we will follow the tradition of mathematics and use addithatation' for the binary operations ir;; and

G4. We have a probabilistic polynomial time algorittgrthat takes a security parameter as input and outputs
(n,G1,Ge2,Gr,e,P1,P2). In some cases;; = Gy andP; = Py, in which case we writén, G, Gr, e, P).

e (G1,G9, G are descriptions of cyclic groups of order

e The element$,, P, generatey; andG- respectively.

We remark that in the cryptographic literature it is more owon to use multiplicative notation for these groups, sir t
“discrete log problem” is believed to be hard in these growgsch is also important to us. In our setting, however, it v much
more convenient to use multiplicative notation to refertt® action of the bilinear map.



e ¢ : (G1 x Gy is anon-degenerate bilinear mape$®; , P2 ) generates:r and for alla, b € Z,, we have
e(aPl, bPQ) = 6(771,772)%.

¢ We can efficiently compute group operations, compute thedal map and decide membership.

In this work, we develop a general set of highly efficient t@ghes for proving statements involving
bilinear groups. The generality of our work extends in twediions. First, we formulate our constructions
in terms of modules over commutative rings with an assodiatinear map. This framework captures all
known bilinear groups with cryptographic significance —lioth supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, weidenall mathematical operations that can
take place in the context of a bilinear group - additiorizinandG,, scalar point-multiplication, addition or
multiplication of scalars, and use of the bilinear map. W alllow both group elements and exponents to
be “unknowns” in the statements to be proven.

Since we cover all operations over the bilinear group, weprane any statement formulated in terms
of the operations associated with the bilinear group. Withlevel of generality, it would for example be
easy to write down a short statement, using the operatioogealthat encodesc'is an encryption of the
value committed to irl under the product of the two keys committed taziandb” where the encryptions
and commitments being referred to are existing cryptogcapbnstructions based on bilinear groups. Log-
ical operations like AND and OR are also easy to encode intdramework using standard techniques in
arithmetization.

The proof systems we build an@n-interactive This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficigvitness-indistinguishable proof systems, which
are of independent interest. We then show how to transfoasetinto zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of amstructions in various settings (depending on
what type of bilinear group and cryptographic assumptiamsied).

The security of constructions arising from our framework ba based oany of a variety of computa-
tional assumptions about bilinear groups (3 of which weudisdn detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables frém G5 andZ,, as described

in Figure 1. We construct efficient witness-indistinguisleaproofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable fprbave perfect completeness and there are two
computationally indistinguishable types of common rafiegestrings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to 8&tP for precise definitions.

We also consider the question of non-interactive zero-kedge. We show that we can give zero-
knowledge proofs for multi-scalar multiplication &; or G5 and for quadratic equations if,. We can
also give zero-knowledge proofs for pairing product equraiwitht = 1. Whenty # 1 we can still give
zero-knowledge proofs if we can firfd;, Q1, ..., P,, O, such thatr = [, e(P;, Q:).

Instantiation 1. Subgroup decision. Throughout the paper, we will give a general description wf o
techniques. We will also offer three instantiations thastirate the use of our techniques. We note that there
are many other possible instantiations.

The first instantiation is based on the composite order gronroduced by Boneh, Goh and Nissim
[BGNO5]. Here we generate a composite order bilinear graug~, G, e, P) wheren = pq. We can
write G = Gp x Gg, WhereGy,, G4 are the subgroups of prime ordprandq respectively. Boneh, Goh
and Nissim introduced the subgroup decision assumptioighngays that it is hard to distinguish a random
element fromG from a random element frorG’y. In this paper, we will demonstrate that assuming the
hardness of the subgroup decision problem there existsn@sgtindistinguishable proof for satisfiability of
a set of equations from Figure 1 in the subgr@kpand the ordep subgroup ofG'r.
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Variables: 2 X1,..., X, €G1, V1, . Y €Go, X1, T, Y1y s Yt € L.

Pairing product equation:

[Tett 20 Tet@ 8- [T TT et 2,0 = o
=1 i=1 i=1j=1
for constants4; € G1,B; € Ga,tr € Gr,7ij € Zn.

Multi-scalar multiplication equation in Gy: °

Z%»A +ZbX +Zz%jyj = 17

i=1 j=1
for constants4;, 7, € G andb;, v;j € Zn.
Multi-scalar multiplication equation in Gs:
Zazy, +Zx B +ZZ’VU Vi, = T2
i=1 j=1
for constants3;, 7> € Gy anda;, vij € Zn.

Quadratic equation in Z,:

Zazyz"i'zl'zb +ZZ’713 TiYj, = t

=1 j=1

for constantsy;, b;, vij,t € Zn.

#We list variables irZ, in two separate groups because we will treat them diffeyéntthe NIWI proofs. If we wish to
deal with only one group of variables i, we can add equations #, of the formz1 = y1, 2 = 2, etc.

PWwith multiplicative notation, these equations would be tirekponentiation equations. We use additive notation(fgr
andGa, since this will be notationally convenient in the papet,dgain stress that the discrete logarithm problem willdgpy
be hard in these groups.

Figure 1: Equations over groups with bilinear map.

Instantiation 2: SXDH. Let (p,G1,G2,Gr,e, P, P2) be a prime order bilinear group. The external
Diffie-Hellman (XDH) assumption is that the decisional GiffHellman (DDH) problem is hard in one of the
groupsGs or G, [Sco02, BBS04, BGAMMO5, GR04, Ver04]. The Symmetric XDHuasption is that the
DDH problem is hard in botli"; andG». We will construct a witness-indistinguishable proof fatisfiability

of a set of equations of the form given in Figure 1 under the 8Xd3sumption.

Instantiation 3: DLIN. The decisional linear assumption (DLIN) for a prime ordedinbi
ear group (p,G,Gr,e,P) introduced by Boneh, Boyen and Shacham [BBSO04] states theng
(P, BP,raP,spfP,tP) for randome, 8,1, s € Zp it is hard to tell whethet = r + s or ¢ is random.
Assuming the hardness of the DLIN problem, we will constauetitness-indistinguishable proof for satisfi-
ability of a set of equations from Figure 1.



The instantiations illustrate the variety of ways bilinggoups can be constructed. We can choose prime
order groups or composite order groups, we can liaye= Go andG; # G4, and we can make various
cryptographic assumptions. All three security assumptloave been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presenteglyield efficient withess-indistinguishable proofs.
In particular, the cost in proof size of each extra equat®ednstant and independent of the number of
variables in the equation. The size of the proofs, can be otedpby adding the cost, measured in group
elements fromz; or G4, of each variable and each equation listed in Figure 2. W ttef Section 7 for
more detailed tables.

Subgroup decisior SXDH DLIN
Variable inG1 or G 1 2 3
Variable inZy, or Zy, 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication inG; or G4 1 6 9
Quadratic equation i, or Zy 1 4 6

Figure 2: Number of group elements each variable or equatiis to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonsttathat all NP-languages have non-
interactive proofs, however, did not yield efficient praofdne cause for these proofs being inefficient in
practice was the need for an expensive NP-reductiangoCircuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits mod@tweven for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigdtZd proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of iegitizisince their techniques give efficient proofs
for Circuit Satisfiability, but to use their proofs one musil snake an NP-reduction to Circuit Satisfiability
thus limiting the applications. We stress that while [GOIR@BOS06a] used hilinear groups, their application
was to build proof systems for Circuit Satisfiability. Hevee devise entirely new techniques to deal with
general statements about equations in bilinear groumplsputhaving to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reduat®have works by Boyen and Waters [BW06,
BWOQ7] that suggest efficient NIWI proofs for statementsterlao group signatures. These proofs are based
on bilinear groups of composite order and rely on the sulgdmcision assumption.

Groth [Gro06] was the first to suggest a general group-degernidnguage and NIZK proofs for state-
ments in this language. He investigated satisfiability ofipg product equations and only allowed group
elements to be variables. He looked at the special case mkmider groupgs, G with a bilinear map
e : G x G — Gr and, based on the decisional linear assumption [BBS04ktnaied NIZK proofs for
such pairing product equations. However, even for very kstalements, the very different and much more
complicated techniques of Groth yield proofs consistinthofisands of group elements (whereas ours would
be in the tens). Our techniques are much easier to understeymificantly more general, and vastly more
efficient.

We summarize our comparison with other works on NIZK proafEigure 3.

We note that there have been many earlier works (starting [@itMR89]) dealing with efficieninterac-
tive zero-knowledge protocols for a number of algebraic refetidHere, we focus onon-interactiveproofs.
We also note that even for interactive zero-knowledge oab set of techniqgues was known for dealing
with general algebraic assertions arising in bilinear gepwas we do here.



Inefficient Efficient
Circuit Satisfiability Example: [KP98] [GOS06b, GOS06a]
Group-dependent languaggGro06] (restricted case)) This work

Figure 3: Classification of NIZK proofs according to usefsa.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interaroofs for simple statements and then com-
bine many of them to get more powerful proofs. The main baoddblock in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which litde expressive power on its own. Our
approach is the opposite: we directly construct proofs &y expressive languages; as such, our techniques
are very different from previous work.

The way we achieve our generality is by viewing the groGasG», G as modules over the ring,.

The ringZ, itself can also be viewed as7g,-module. We therefore look at the more general questiontef sa
isfiability of quadratic equations ovér,-modulesA;, A;, Ar with a bilinear map, see Section 3 for detalils.
Since many bilinear groups with various cryptographic agsions and various mathematical properties can
be viewed as modules we are not bound to any particular biligeoup or any particular assumption.

Given modulesA, A5, A7 with a bilinear map, we construct new modulBs, B., Br, also equipped
with a bilinear map, and we map the elementsdin As, A7 into By, Bo, By. The latter modules will
typically be larger thereby giving us room to hide the eletearf A, A5, Ar. More precisely, we devise
commitment schemes that map variables frdm A, to the modulesB;, Bo. The commitment schemes are
homomorphic both with respect to the module operations &wveith respect to the bilinear map.

Our techniques for constructing witness-indistinguisgiroofs are fairly involved mathematically, but
we will try to present some high level intuition here. (Weayimore detailed intuition later in Section 6, where
we present our main proof system). The main idea is the fatigwbecause our commitment schemes are
homomorphicandwe equip them with a bilinear map, we can take the equatianatbare trying to prove,
and just replace the variables in the equation with commmtmto those variables. Of course, because the
commitment schemes are hiding, the equations will no lobgeralid. Intuitively, however, we can extract
out the additional terms introduced by the randomness afdhenitments: if we give away these terms in the
proof, then this would be eonvincingproof of the equation’s validity (again, because of the horarphic
properties). But, giving away these terms might destroyegs indistinguishability. Suppose, however, that
there is only one “additional term” introduced by subsiiigtthe commitments. Then, because it would be
the unique value which makes the equation true, giving ityawauld preserve witness indistinguishability!
In general, we are not so lucky. But if there are many terreg, rtieans that these terms are not unique, and
because of the nice algebraic environment that we work ircameandomize these terms so that the equation
is still true, but so that we effectively reduce to the casthefe being a single term being given away with a
unique value.

1.4 Applications

Independently of our work, Boyen and Waters [BWO07] have troeted non-interactive proofs that they use
for group signatures (see also their earlier paper [BWOgjEse proofs can be seen as examples of the NIWI
proofs in instantiation 1.

Subsequent to the announcement of our work, several papeestuilt upon it: Chandran, Groth and
Sahai [CGSO07] have constructed ring-signatures of swdatirsize using the NIWI proofs in the first in-
stantiation, which is based on the subgroup decision pnobléroth and Lu [GLO7] have used the NIWI
and NIZK proofs from instantiation 3 to construct a NIZK pfdor the correctness of a shuffle. Groth



[Gro07] has used the NIWI and NIZK proofs from instantiati®to construct a fully anonymous group sig-
nature scheme. Belenkiy, Chase, Kohlweiss and LysyandlB@KL08] have used instantiations 2 and 3
to construct non-interactive anonymous credentials. Gagel Hohenberger [GHO8] use instantiation 3 in a
universally composable adaptive oblivious transfer proloAlso, by attaching NIZK proofs to semantically
secure public-key encryption in any instantiation we geefficient non-interactive verifiable cryptosystem.
Boneh [Bon06] has suggested using this for optimistic faehange [Mic03], where two parties use a trusted
but lazy third party to guarantee fairness.

1.5 Roadmap

The main result is the NIWI proof that can be found in Sectio®&ctions 3, 4, 5 and 6 explain the structure
of the NIWI proof, which goes through modules, commitmeatgescription of the common reference string,
and an explanation of how the NIWI proof works. For a conciléistration of the steps, we refer the reader
to Instantiation 1 in Section 8. Other instantiations akegiin Sections 9 and 10. In many cases, our NIWI
proofs can also be used as NIZK proofs, which we discuss itiddetl.

2 Non-interactive Witness-Indistinguishable Proofs

NOTATION. We writey = A(z;r) when the algorithmd, on inputz and randomness outputsy. We write
y + A(x) for the process of picking randomnessiniformly at random and setting = A(z;r). More
generally, we writey < S for samplingy from the setS according to some probability distribution ¢
using the uniform distribution as the default when nothifsg és specified.

We writea < A;b < B(a);. .. for running the experiment whereis chosen fromd, thenb is chosen
from B, which may depend on, etc. This yields a probability distribution over the oufpand we write
Pr [a < Asb+ Bla):...: Clayb, .. .)} for the probability of the conditiot'(a, b, . . .) being satisfied after
running the experiment.

The security of our schemes is governed by a security paearhgtvhich can be used to scale up the
security. Given two functiong, g : N — [0, 1] we write f(k) ~ g(k) when|f(k) — g(k)| = O(k~°) for
every constant. We say thaff is negligiblewhen f (k) ~ 0 and that it isoverwhelmingvhen f (k) ~ 1. We
say that two families of probability distributionsS, (k) }ren, {S2(k) }ren are indistinguishable when they
are the same for all sufficiently largec N, and we say they are computationally indistinguishablerifall
non-uniform polynomial time adversarieswe have

Pr [y — Si(k): A% y) = 1} ~ Pr [y — So(k) : A(1* y) = 1].

GROUP DEPENDENT LANGUAGES Let R be an efficiently computable ternary relation. For triplets
(gk,z,w) € R we call gk the setup,z the statement and the witness. Given somgk we let L be the
language consisting of statementginFor a relation that ignoreg: this is of course the standard definition
of an NP-language. We will be more interested in the caseevfiedescribes a bilinear group, though.

NON-INTERACTIVE PROOFS A non-interactive proof system for a relatidt with setup consists of four
probabilistic polynomial time algorithms: a setup aldgomitG, a common reference string (CRS) generation
algorithm K, a proverP and a verifierl’. The setup algorithm outputs a setlgk, sk). In our papergk

will be a description of a bilinear group. The setup algarnitmay output some related informatieh, for
instance the factorization of the group order. A cleaneechewever, is whenk is just the empty string,
meaning the protocol is built on top of the group without kiextge of any trapdoors. The CRS generation
algorithm takes(gk, sk) as input and produces a common reference stwingrhe prover takes as input
(gk,o,2z,w) and produces a proof. The verifier takes as inpuyk, o, z, ) and outputs 1 if the proof is



acceptable and 0 if rejecting the proof. We ¢@ll K, P, V') a non-interactive proof system fé with setup
g if it has the completeness and soundness properties deddyéow.

PERFECT COMPLETENESS A non-interactive proof is complete if an honest prover canvince an honest
verifier whenever the statement belongs to the languagehangrover holds a witness testifying to this fact.
We say(G, K, P, V) is perfectly complete if for all adversarie$we havé

Pr |(gk, sk) < g(lk);a «— K(gk, sk); (z,w) + A(gk,o);m < P(gk,o0,z,w) :

V(gk,o,z,7) = 1if (gk,z,w) € R] =1.

PERFECT SOUNDNESS A non-interactive proof is sound if it is impossible to peoa false statement. We
say(G, K, P, V) is perfectly sound if for all adversarie$ we have

Pr [(gk‘,sk:) — G(1%);0 « K(gk, sk); (z,7) < A(gk,0) : V(gk,0,z,7) =0if z ¢ L| = 1.

PERFECT L.,-SOUNDNESS In the standard definition of soundness given above, theradry tries to create
a valid proof forz € L. Groth, Ostrovsky and Sahai [GOS06b, Gro06] generalizaadstrd soundness to
co-soundness, which says that it is impossible to creatéichpr@of for a statement € L., whereL., is a
language that may depend gh ando. Standard soundness is a special case of co-soundnesbwith L,
but co-soundness can be used to capture other interestag aa well: Instantiation 1 in Section 8 offers an
example where co-soundness captures the fact that sosndolés in the ordep subgroups of7 andGr.

We say(G, K, P, V) is perfectly L.,-sound if for all adversariegl we have

Pr [(gk, sk) < G(1%); 0 « K (gk, sk); (z,7) < Algk, o) : V(gk,o,2,m) = 0if z € LCO] — 1

COMPOSABLE WITNESS INDISTINGUISHABILITY. A statement may have many possible witnesses. A non-
interactive proof is witness indistinguishable if the drdoes not reveal which of those witnesses the prover
has used. We will use a strong definition of witness indistisigability called composable witness indistin-
guishability. We introduce a reference string simulaidhat generates a simulated CRS and require that the
adversary cannot distinguish areal CRS from a simulated. @RSlso require that on a simulated CRS there
is no information whatsoever to distinguish the differeitnesses that might have been used to construct the
proof.

We say(G, K, P, V') is composable witness indistinguishable, if there is a @bdlstic polynomial time
simulatorS, such that for all non-uniform polynomial time adversatiésve have

Pr [(gk, sk) « G(1%); 0 + K (gk, sk) : A(gk, o) = 1}
~ Pr [(gk, sk) « G(1F); 0  S(gk, sk) : A(gk, o) = 1],
and for all adversariegl we have
Pr [(gk, sk) « G(1¥);0 = S(gk, sk); (w0, wn) < Algh, 0)im = P(gh,0,2,wp) : A(r) = 1]
= Pr(gh,sk) < G(1%);0  S(gk, sk); (w,wo,w1) & Algh, o) 7 < Plgh,o,a,w1) : Am) = 1],

where we requirégk, x, wy), (gk, z,w1) € R.
COMPOSABLE ZERGKNOWLEDGE. A zero-knowledge proof, is a proof that shows the statensdnte, but
does not reveal anything else. Traditionally, this is defibg having a simulatofS;, S2) that can simulate

2Since the probability is exactly, the definition quantifies over ajlk in the support ot and all(gk, z, w) € R.
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respectively the CRS and the proof. The first part of the siouloutputs a simulated CRS and a simulation
trapdoorr, and the second part of the simulator uses the simulatipdd@ to simulate proofs for statements
without knowing the corresponding witnesses. The standafiition of (multi-theorem) zero-knowledge
then says that real proofs on a real CRS should be compudéiyiondistinguishable from simulated proofs
on a simulated CRS.

We will obtain a strong notion of zero-knowledge, called pmsable zero-knowledge [Gro06]. Com-
posable zero-knowledge implies standard zero-knowle@ge(d6] and has the advantage that it is simpler
to work with, since it separates the computational indggtiahability into two separate parts addressing re-
spectively the CRS and the proofs. In composable zero-ladyd, the real CRS and the simulated CRS are
computationally indistinguishable. Moreover, the adagyseven when it gets access to the secret simulation
keyr, cannot distinguish real proofs from simulated proofs omaukated CRS.

We say(G, K, P, V') is composable zero-knowledge if there exists a probabilgilynomial time simu-
lator (51, S2) so for all non-uniform polynomial time adversaridswe have

Pr [(gk, sk) < G(1%): 0 « K(gk, sk) : Algk,o) = 1]
~ Pr|(gh,sk) < G(1%); (0,7) - Si(gk, sk) : Algk,) = 1],
and for all adversariegl we have
Pr [(gkz, sk) ¢ G(1K); (a,7) = Si(gk, sk); (z,w) < A(gk,0,7);7 « P(gk, 0, 2,w) : A(r) = 1}
= Pr|(gh,sk) < G(1%); (0,7) = S1(gk, sk); (z,w) < Algh, 0, 7);  Sa(gh,0,7,) : Alr) = 1],

whereA outputs(gk, z, w) € R.

3 Modules with Bilinear Maps

Let (R,+,-,0,1) be a finite commutative ring. Recall that &module A is an abelian grougA, +,0)
where the ring acts on the group such that

Vr,s e RVz,y€ At (r+s)z=rz+sz A r(x+y)=rx+ry A r(sz) = (rs)z A lo ==x.

A cyclic groupG of ordern can in a natural way be viewed a¥Zg-module. We will observe that all
the equations in Figure 1 can be viewed as equations Byanodules with a bilinear map. To generalize
completely, letR be a finite commutative ring and let;, Ao, A7 be finite R-modules with a bilinear map

f: A1 x Ay — Ap. We will consider quadratic equations over variahlgs. .., x,, € A1,y1,...,yn € Ao
of the form
n m m n
> Flagy) + > F@ib) + D> yiif (@i yy) =t.
j=1 i=1 i=1 j=1
In order to simplify notation, let us faty, ..., z, € A1, y1,...,yn € Ay define

n
= flziy)
=1

The equations can now be written as

Q- J+T-b+Z-Tj=t



We note for future use that due to the bilinear propertieg, afe have for any matriX’ € Mat,,,»,,(R) and
foranys € AT, ¢ € Ab thatz - Ty =T"% 7.

Let us now return to the equations in Figure 1 and see how thieye recast as quadratic equations over
Zn-modules with a bilinear map.

Pairing product equations: DefineR = Zy,, A1 = G1,Ay = Go, Ar = G, f(z,y) = e(z,y) and we
can rewrité the pairing product equation &st - Y)(X - B)(X - TY) = tr.
Multi-scalar multiplication in G;: DefineR = Zyn, A1 = G1,As = Zn, Ar = Gy, f(X,y) = yX and

—

we can rewrite the multi-scalar multiplication equation&si+ X - b+ X - T'j = T;.

Multi-scalar multiplication in Go: DefineR = Zy, A1 = Zn, Ay = Go, Ap = Ga, f(z,)) = Y and we
can rewrite the multi-scalar multiplication equation@asy + - B+ Z-T'Y = 7.

Quadratic equation in Z,,: DefineR = Zy, A1 = Zn, Az = Zn, Ap = Zn, f(x,y) = zy mod n and we
can rewrite the quadratic equationZp asd -y +Z-b+ 2 -T'y = t.

We will therefore first focus on the more general problem ofistucting non-interactive composable
witness-indistinguishable proofs for satisfiability ofagiratic equations ové®-modulesA;, A, Ap (using
additive notation for all modules) with a bilinear m#p

4 Commitment from Modules

In our NIWI and NIZK proofs we will commit to the variables,, ..., z., € A1,y1,...,yn € As. We do
this by mapping them into othé®-modulesB;, B, and making the commitments in those modules.

Let us for now just consider how to commit to elements from ®module A. The public key for the
commitment scheme will describe anotférmodule B andR-linear maps : A — B andp : B — A.
Operations in the module and computation of the magilll be efficiently computable bup is hard to
compute? The public key will also contain elements,...,u; € B. To commit tox € A we pick
r,..., s < R atrandom and compute the commitment

T
c:=(x) + Zmul
i=1

Our commitment scheme will have two types of commitment keys

Hiding key: A hiding key is of the form(B, ¢, p, u1, . . ., u) wherew(A) C (ui, ..., u). The commitment
c:=(x) + >, ru; therefore perfectly hides the elemenwhenry, ..., ry; are chosen at random
from R.

Binding key: A binding key is of the fprn{B, LDy U, . .., Uz ) WhereVi : p(u;) = 0 andcop is non-trivial.
The commitment := «(z) + >, r;u; therefore contains the non-trivial informatipfc) = p(c(z))
aboutz. In particular, if. o p is the identity map o, then the commitment is perfectly binding:to

Computational indistinguishability: The main assumption that we will be making throughout thisepas
that the distribution of hiding keys and the distributionbifiding keys are computationally indistin-
guishable. Witness-indistinguishability of our NIWI pfsaand later the zero-knowledge property of
our NIZK proofs will rely on this property.

3We use multiplicative notation here, because, usu@lyis written multiplicatively in the literature. When we workith the
abstract modules, however, we will use additive notation.

“There are scenarios where a secret key will malefficiently computable and o p is the identity map. In this case the
commitment scheme is a cryptosystem witheing the decryption operation.



The treatment of commitments using the language of mod@eerglizes several previous works dealing
with commitments over bilinear groups, including [BGN0S)&06b, GOS06a, Gro06, Wat06].
Since we will often be committing to many elements at a timaukedefine some convenient notation.

Given elements:y, ..., z, € Awe will write ¢ := «(¥) + Ru with R € Mat,;, . (R) for making commit-
mentscy, . . ., ¢,, computed as; := ¢(z;) + E;”zl TijUj.
S5 Setup
In our NIWI and NIZK proofs the setup and the common referestdag are
gk = (R, A1, Ay, Ap, f) o = (B1, By, Br, F,11,p1, L2, p2, b7, pr, U, U, H, . .., Hyy).
Part of the common reference string speciftes v1, p1, u1, - .., un and Ba, 1o, po, vy, . .., v, that are

commitment keys ford; and A;. We note that many of these components may be given impliosgtead of
being described explicitly in the common reference string.

Another part of the common reference string specifies a lRumodule By together withHR-linear maps
tr : Ap — Bp andpr : By — Ap and a bilinear mag” : By x By — Br. We require that the maps are
commutative as described in Figure 4 below and with the eiarepf p that they are efficiently computable.

Al X A2 — AT

f
1 31 p 12 31 p2 v 41 pr

B1 X BQ BT

_)
F

Vo€ A1 Vy € As: F(u(z),2(y)) = vr(f(z,y))
Ve € BiVy € By : f(p1(z),p2(y)) = pr(F(z,y))

Figure 4: Modules and maps between them.

For notational convenience, we define #oe BT,y € By that
n
rey=) F(xy)
1

-
Il

Due to the bilinear properties @f we have for all vectors and matrices with appropriate dinoerss
Fely=T"7eq.

The final part of the common reference string is a set of mesde;, ..., H, € Mat,,.»(R) that all
satisfy« e H;i = 0. The exact number of matriced;, ..., H, that is needed, depends on the concrete
setting. In many cases, we need no matrices at all and werhave, but there are also cases where they are
needed as we shall see in Instantiation 3 in Section 10.

There will be two different settings of interest to us.

Soundness setting:In the soundness setting, we have binding commitment kdyis.rfieans, (#) = 0 and
p2(¥) = 0, and the maps; o p; ande, o p, are non-trivial. We will also wanty o pr to be non-trivial.
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Witness-indistinguishability setting: In the witness-indistinguishability setting we have hglicommit-
ment keys, sa;(A;) C (ui,...,us) andw(A4z) C (vi,...,vs). We also require thally, ..., H,
generate thé?-module of all matriced? € Mat,;,«4(R) S0 @ HU = 0. As we will see in the next
section, these matrices play a role in the randomizatiohefNIW!I proofs.

Computational indistinguishability: The (only) computational assumption this paper is baseds dhait
the two settings can be set up in a computationally indisisttable way. The instantiations show
that there are many ways to get such computationally imgjetshable soundness and witness-
indistinguishability setups.

6 Proving that Committed Values Satisfy a Quadratic Equatian

Recall that in our setting, a quadratic equation looks Ililefbllowing:
a-j+Z-b+Z-Tj=t, (1)

with constantsi € A{‘,l; € AP T € Mat,,xn(R),t € Ar. We will first consider the case of a single
guadratic equation of the above form. The first step in our NtWdgof will be to commit to all the variables
Z, 4. The commitments are of the form

C=u(Z)+Ri , d=w(f)+ 97, )
with R € Mat,,,«.n(R), S € Mat,x7(R). The prover's task is to convince the verifier that the commeitts
containz € A",y € A3 that satisfy the quadratic equation. (Note that for all ¢éigua we will use these
same commitments.)

Intuition.  Before giving the construction let us give some intuitiom the previous sections, we have
carefully set up our commitments so that the commitment#iedves also “behave” like the values being
committed to: they also belong to modules (tBenodules) equipped with a bilinear map (the napalso
implicitly used in thee operation). Given that we have done this, a natural idea take the quadratic
equation (1), and “plug in” the commitments (2) in place @& tariables; let us evaluate:

11(@) o d+ o 1a(b) + Co Id.

After some computations, where we expand the commitmenisr{@ke use of the bilinearity of, and
rearrange terms (the details can be found in the proof of femed) we get

(1@ ® 12() + 11(2) 0 2(8) + 11 (7) o Ta(7))

+11(@) @ ST+ Ril ® 15(b) + 11(Z) e T'ST + Rii @ T15(ij) + Rii @ T'S7.
By the commutative properties of the maps, the first grouprefd terms is equal tg-(¢), if Equation 1 holds.
Looking at the remaining terms, note thatand v are part of the common reference string and therefore
known to the verifier. Using the fact that bilinearity imgithat for anyZ, 7 we haveZ e 'y =I' ' Z o 7/, we
can sort the remaining terms so that they match either v’ to get (again see the proof of Theorem 1 for
details)

v(t) + e (RTia(b) + RTTua(7) + RT0ST) + (STua(@) + ST 0 (@) ) o . 3)
Now, for sake of intuition, let us make some simplifying asgtions: Let's assume that we're working in
a symmetric case wherd; = A,, andB; = By, andi = ¥ and, so, the above equation can be simplified
further to get:

-,

() + T (RTLQ( )+ R Tea(f) + R'TST+ ST 01 (a@) + 5%%(@).

11



Now, suppose the prover gives to the verifier as his pfef (RTLQ(E) + R'Tuy(j) + RIS +

ST (@) + STFTH(:E)). The verifier would then check that the followingrification equatiorholds:

-,

(@) ed+Teuy(b) +Geld = up(t) + e

Suppose further; o p1, 3 o po, v o pr are the identity maps oA, As, Ap. It is easy to see that the
proof is convincing in the soundness setting, because irs#itng we have that; (@) = 0. Then the verifier
would know (but not be able to compute) that by applying thesnpa, ps, pr we get

— —

d o pa(d) + p1(6) @ b+ p1() @ Tpa(d) = t + p1 (i) ® pa(7) = L.

—

This gives us soundness, since= p;(¢) andy := po(d) satisfy the equations.

The remaining problem is to get witness-indistinguishighil Recall that in the witness-
indistinguishability setting, the commitments are patfebiding. Therefore, in the verification equation,
nothing except forr holds any information about and i (except for the information that can be inferred
from the quadratic equation itself). So, let's consider tases:

1. Suppose that is the unique value so that the verification equation is vdlidthis case, we trivially
have witness indistinguishability, since the uniquenesams that any witness would lead to the same
value for.

2. The simple case above might seem too good to be true, lsugdet what it means if itisn't true. If two
values® and 7’ both satisfy the verification equation, then just subtrarthe equations shows that
e (7 —7') = 0. On the other hand, recall that in the witness indistingaliglity setting, thei vectors
generate the entire space wherer 7’ live, and furthermore we know that the matricls, . .. , H,,
generate allf such thatii ¢ Hi = 0. Therefore, let's choosey,...,r, at random, and consider
the distribution®” = 7 + .7, r;H;u. We thus obtain the same distribution 8fi that satisfies the
verification equation regardless of whether we started ffoon7’ or any other proof.

Thus, for the symmetric case we obtain a witness indistsitable proof system. For the general non-
symmetric case, instead of having jastor the « part of Equation 3, we would also have a prﬁcfbr thev
part. In this case, we would also have to make sure that thisdsies not reveal any information about the
witness. What we will do is to randomize the proofs such thayiget a uniform distribution on afi, g that
satisfy the verification equation. If we pick <— Mat; ., (R) at random we have that+ T'a completely
randomized. The part we add il can be “subtracted” fron® by observing that

() FideR+Oed=ip(t) +de <7?—TTU> n <§+Tﬁ) ..

This leads to a uniform distribution of proofs for the geth@@n-symmetric case as well.
Having explained the intuition behind the proof system, wacped to a formal description and proof of
security properties.

Proof: PickT' < Matsx(R),71,...,r, < R atrandom. Compute

n
7 = R'ua(B)+ R Tua(@) + R'TST—T 5+ riH;v
=1

0 = STu(@)+ ST (@) +Ta

and return the proafd, 7).
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Verification: Return 1 if and only if

— —.

(@) ed+Ceuy(b) +CoTd=1p(t) +ie7+0e7

Perfect completeness of our NIWI proof will follow from thellowing theorem no matter whether we
are in the soundness setting or the witness-indistinghibtyasetting.

Theorem 1 Givenz € A", i € Ay, R € Mat,,,x»(R), S € Mat, 4 (R) satisfying
C=u@+Ri , d=w@+St , a@-g+i-b+7-Tj=t,

we have for all choices d&f,ry, ..., r, that the proofsrt, g constructed as above will be accepted.

—.

Proof. The commutative property of the linear and bilinear mapsgs:, (@) e i2(7) + t1(Z) ® t2(b) +
11(Z) @ I'a(3f) = vp(t). For any choice of’,rq, ..., 7, we have
(@) ed+Teuy(b)+celd
— u(@)e (LQ(gj) + 517) + (L (@) + Rﬁ) o 15(b) + (Ll(f) + Rﬁ) ol (LQ(gj) + 517))

= 01(@) » 12(§) + 11(Z) ® 12(B) + 11 () @ T2 (7)
+Ri ® 15(b) + R @ T'uy(i]) + Rt @ T'ST + 11(@) ® ST+ 11(Z) e ['ST

-,

= () +Te (RTa(®) + R'Tus(g) + RTTST) + (ST0 (@) + ST (@) o 7

-,

U
= ur(t)+ue (RTLQ( ) + R Tu(¥) +RTF517) +Zr, (@o Hit) — o T'¥
i=1

+Tie i+ (ST(@) + ST (@) o0

= )+ der+0ei

—

Theorem 2 In the soundness setting, where we hav@i) = 0 andp, (%) = 0, a valid proof implies

-

p1(01(@)) - p2(d) + p1(@) - p2(12(b)) + p1(@) - Tpa(d)

Proof. An acceptable proct, § satisfies.(a) e d -+ e 15 (b) +ZeT'd = v (t) + i e 7 + f o 7. The commutative
property of the linear and bilinear maps gives us

—
~
—
o~
N—
S~—

-, —

p1(01(@)) p2(d) +p1(€) - p2(12(6)) +p1(8) - Tp2(d) = pr(er(t)) +p1(@) - p2(7) +p1(6) - p2(V) = pr(er(t)).

O
Observe as a particularly interesting case that whenp+, 12 o ps, 11 o pr are the identity maps on
Ay, A2 and A respectively, then this meats:= p;(¢) andy := pg(cf) give us a satisfying solution to the
equationa - y + ¥ - ¥ + Z - I'y = t. In this case, the theorem says that the proof is perfectipdan the
soundness setting. In the case where they are not the idemdjps it is still possible to have co-soundness,
see Instantiation 1 8 for an example.

Theorem 3 In the witness-indistinguishable setting wheyéA,) C (uy, ..., us), t2(A2) C (v1,...,v4)
and Hy, ..., H, generate all matriced? sou ¢ Hv' = 0, all satisfying witnesses, i, R, S yield proofs
7€ (vy,...,vp)" andd € (uq,...,us)" that are uniformly distributed conditioned on the verifioat

equation:; (@) e d + e 1a(b) + Ce T'd = i (t) + T e 7+ 0 o 7.
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Proof. Sincet1(A1) C (u1,...,us) andwa(As) C (vy,...,v;) there existsd, B, X, Y so;(ad) = Ad,

11(%) = Xu andwy(b) = BU,12(y) = Y. We haver = (X + R)iandd = (Y + S)v The proof is(7, 6)
given by

g

ST (@) + ST 0 (8) + Tt = (sTA +STrTX + T)U

#=RT15(b)+ R'Tiy(§) + R'TSE) =T 5+ Y riH;o

- (RTB +R'TY +R'TS — TT)17+ (zn: rH) 7.
i=1

We choose€l’ at random, so we can think ﬁfbeing a uniformly random variable given lz?y: Ov for a
randomly chosen matri®. We can think oft as being writtert = T1v, wherell is a random variable that
depends 01®.

By perfect completeness all satisfying witnesses yieldfsrashere., (@) ed+ceus (b)+celd—up(t)—fe
v =uew = wellv. Conditioned on the random varialtewe therefore have that any two possible solutions
T, satisfyﬁo(H—H’)U = 0. SinceHy, ..., H, generate all matriceH soie H7 = 0 we can write this as

I =1'+3"7 | r;H;. In constructingz we form it as(RTB +R'TY +R'DS — TT> T+ ( S riH; )V
for randomly chosem, ...,r; € R. We therefore get a uniform distribution over allthat satisfy the
equation conditioned of. Sinced is uniformly chosen, we conclude that for any withess we gatitorm

distribution over(@j 7) conditioned on it being an acceptable proof. O
6.1 Linear Equations

As a special case, we will consider the proof system wien 0 andI” = 0. In this case the equation is
simply

Z-b=t.
The scheme can be simplified in this case by chooging 0 in the proof, which give ed = § and7 :=
RT15(b) + So7_, riH;v. Theorem 1 still applies witli’ = 0. Theorem 2 says; (¢) - pa2(12(b)) = prler(t)),
which will give us soundness. Finally, we have the followthgorem.
Theorem 4 In the witness-indistinguishable setting wheyéA,) C (uy, ..., us), ta(A2) C (v1,...,v4)
andHy,. .., H, generate all matrice$! sou e Hv = 0, all satisfying witnesses, i/, R, S yield the uniform
distribution of the proof? € (v1,...,v;)™ conditioned on the verification equatiai® 1o (b) = vp(t) + T e 7

being satisfied.

Proof. As in the proof of Theorem 3 we can write= I1¢. Any witness gives a proof that satisfies

-,

Cou(b) —up(t) =tuem =uellv.

SinceHy, ..., H, generate all matriceH sou e Hv = 0 we have thatl has a uniform distribution over all
matricesll satisfying the verification equation. d

6.2 The Symmetric Case

An interesting special case is whéh:= B; = By, m > nwithu; = vy,...,u3 = vz andforallz,y € B
we haveF'(z,y) = F(y,z). We call this the symmetric case. In the symmetric case, westaplify the
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scheme by just paddin@with zeroes in the end to extend the lengthitocall this vector?’, and reveal the
proof ¢ = 7 + 6'. In the verification, we check that

—,

1 (@) @ d+Ceuy(b) +Cold = 1p(t) + e .
Theorem 1 and Theorem 3 still hold in this setting. With respe soundness we have the following theorem.

Theorem 5 In the soundness setting, where we hamgi) = 0 a valid proof implies

pi(t1(a)) - p2(d) + p1(@) - p2(e(b)) + p1(@) - Tp2(d) = pr(er(t)).

-,

Proof. An acceptable proof satisfies.; (@) e d + ¢ 13(b) + ¢e I'd = 1(t) + @ . The commutative
property of the linear and bilinear maps gives us

- —,

p1(1(@)) - p2(d) + p1(@) - p2(2(b)) + p1(&) - Tpa(d) = pr(er(t)) + p1(@) - p2(8) = pr(er(t)).

O
We can simplify the computation of the proof in the symmetase. We have
. n
7 = Rup(b)+ R Tu@)+RTST-TT5+ ) rHi
i=1
6 = STu@+S'T"u(@) +7Ta,

and extend to ¢’ by padding it withi — 72 0's. Another way to accomplish this padding is by padding
with m — n 0-rows andS with mm — n 0-columns and eacH; with m — 7 0-columns. We then have

n
¢:=RT15(b) + R'Tua(§) + R'TS"a — (T") i+ riHjii + (S') a(@) + (8) T T 0 (&) + 1"
=1
Since the map is symmetric we haie (T’ — (T') " )i = 0, so we can simplify the proof as

—.

¢ := R 13(b) + R Tua(if) + (5) "1 (@) + (8) T T0a (%) + RTTSiT + ZTZHH

7 NIWI Proof for Satisfiability of a Set of Quadratic Equation s

We will now give the full composable NIWI proof for satisfidiby of a set of quadratic equations in a module
with a bilinear map. The proof will haveé..-soundness, where

Leo = {{(d@,Bi, Tus t) Y V2, 30 £ pr((@)) - 5+ & - pali(5)) + 7 Taff # pr(er()) }

Observe as an important special case thatp;, ts o ps, 17 o pr are the identity maps oA, A, and A,
thenL., = L-soundness making soundness @pgsoundness the same notion.

The cryptographic assumption we make is that the commomerefe string is created by one of two
algorithm K or S and that their outputs are computationally indistinguddaThe first algorithm outputs a
common reference string that specifies a soundness setiggeas the second algorithm outputs a common
reference string that specifies a witness-indistinguiityaketting.

Setup: (gk> Sk) = ((R7 A17A2>AT7f)73k7) — g(lk)
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Soundness string: o := (By, Ba, Br, F, 11, p1, t2, D2, i1, 01, U, U, H1, . .., Hy) < K(gk, sk).

Witness-indistinguishability string: o := (B, Ba, By, F,t1,p1, 2,2, t7, 01,6, U, Hy, ..., Hy)
S(gk, sk).

Proof: The input consists ajk, o, a list of quadratic equationga;, Z_);-, i, )}y, and a satisfying witness
Tre AT",y € A3,
Pick at randomR < Mat,,x»(R) andS < Mat,x;(R) and commit to all the variables as:=
¥+ Ruandd := y + Sv.
For each equatio(a;, Ei,PZ-,tZ-) make a proof as described in Section 6. In other words, Pjck-

Mat;,xri, (R) @andryy, . . ., 74 <= R and compute
. n
# = Rlu(b) + R Tua(§) + R'TuST— T, 5+ Y riyHyo
j=1
0; = STu(a@)+ 8T u(@) + T

Output the proof, d, { (7, 0;)} ., ).

Verification: The input isgk, o, {(a@;, b;, T's, ;) }Y., and the proof &, d, {(7;,6;)}).
For each equation check

—

01 (@) o d+ o) +CoTyd = 1r(t;) +Te7; +0; 0 7.
Output 1 if all the checks pass, else output 0.

Theorem 6 The protocol given above is a NIWI proof for satisfiabilityao$et of quadratic equations with
perfect completeness, perfdgt,-soundness and composable witness-indistinguishability

Proof. Perfect completeness follows from Theorem 1.
Consider a proofc, d, {(7;, 0;)}) on a soundness string. Defifie= p;(¢), 7 := p2(d). It follows from
Theorem 2 that for each equation we have

- -

p1(01(@;)) -G+ F pa(ea(by)) +3- 57 = p1(11(@;)) - p2(d) +p1 (&) - p2(2(b:)) +p1(@) - Tipa(d) = pr(er(t;)).

This means we have perfeEt,-soundness.

Our computational assumption is that soundness strings/aindss-indistinguishability strings are com-
putationally indistinguishable. Consider now a witnasdistinguishability stringr. The commitments are
perfectly hiding, so they do not reveal the witnesg that the prover uses in the commitme&ti Theorem
3 says that in each equation either of two possible witnegstds the same distribution on the proof for that
equation. A straightforward hybrid argument then shows W have perfect witness-indistinguishability.
O

Proof of knowledge. We observe that if{ outputs an additional secret piece of informatgotihat makes
it possible to efficiently computg; andp-, then it is straightforward to compute the witness- p;(¢) and

—

i = p2(d), so the proof is a perfect proof of knowledge.
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Proof size. The size of the common reference stringrislements inB; andn elements inBy in addition
to the description of the modules, the maps &hd. .., H,. The size of the proof is» + N7 elements in
B; andn + Nm elements inBs.

Typically, 7 and7n will be small, giving us a proof size that 8(m + n + N) elements inB; and B,.
The proof size may thus be smaller than the description oktament, which can be of size up i
elements ind;, Nm elements inrd;, Nmn elements inR and NV elements inA;.

7.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs fortsdiability of a set of quadratic equations over
bilinear groups. As we described in Section 3, there are ddterent types of equations corresponding to
the following four combinations df.,,-modules:

Pairing product equations: Ay = Gy, Ay = G, Ap = Gp, f(X,)) = e(X,)).

Multi-scalar multiplication in Gi: Ay = G1,As = Zn, Ar = Gy, f(X,y) = yX.
Multi-scalar multiplication in Ga: Ay = Zn, As = Go, Ar = Go, f(z,)) = x).
Quadratic equations inZy: A; = Zy, Ay = Zn, Ap = Zy, f(2,y) = zy mod n.

The common reference string will specify commitment schetmeaespectively scalars and group elements.
We first commit to all the variables and then make the NIWI fsdbat correspond to the types of equations
that we are looking at. It is important that we use the samenaibment schemes and commitments for all
equations, i.e., for instance we only commit to a scalance and we use the same commitment in the proof
whetherz is involved in is a multi-scalar multiplication i&'s or a quadratic equations #,. The use of the
same commitment in all the equations is necessary to enstorséstent choice of throughout the proof.
As a consequence of this we use the same moByl® commit tox in both multi-scalar multiplication in
G and quadratic equations #,. We therefore end up with at most four different modul&s B/, B, B)

to commit to respectivelyt’, z, ), y variables.

8 Instantiation 1: Subgroup Decision

STATEMENT. The setugk = (n, G, Gr, e, P) defines the rin@,, and module&,,, G, G and bilinear maps
corresponding to respectively multiplicationiy,, scalar-multiplication in=, and the pairing : G x G —
Gr.

The statement will consist of a set of equations, which areeuadratic equations i, multi-scalar
multiplication equations inG, or pairing product equations. The equations are over exgowvariables
z1,...,Tm € Zy and group element variablgs, ..., ), € G.

Pairing product equations: Using our framework this corresponds®= Z,, 41 = G, 4, = G, Ay =
Gr, f(z,y) = e(z,y) and equations of the foryd - V)(X - T'Y) = tr.

Multi-scalar multiplication in  G: Using our framework this corresponds ® = Zy, A1 = Zy, Az =
G, Ar = Gy, f(x,Y) = 2 and equations of the for@- Y + ¥ - B+ 2Z-TY =T.

Quadratic equation in Z,: Using our framework this corrgsponds?ﬁoz Tn, A1 = Zin, As = Zin, Ap =
Zny, f(z,y) = zy mod n and equations of the form- b+ & - T'y = ¢.
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CoMMITMENT. We will use two related commitment schemes to commit to el@min respectivelyZ,,
andG. In both cases, we use tlg,-moduleG for the commitments. The commitment key, consists of an
element/ € G. Inahiding keyl/ is a generator of. In a binding keyl/ has ordery and thus only generates
the orderq subgroup ofz. The subgroup decision assumption tells us that the twastgpeommitment key
U are indistinguishable.

Let us describe how to commit to a group elem@nising randomness € Z,, by defining

W(Z2):=2 p(2):=A2 giving us C:=uY)+sU,

where\ = 1 mod p and\ = 0 mod q. If & generates7, then the commitment := +()) + s/ hides
Y perfectly. On the other hand, #f has orderq, thenp(i/) = X4 = O andp(C) = A\C = \) defines)
uniquely in the ordep subgroupGy, of G.

To commit to an exponent € Z,, using randomnesswe define

J(z)=2P  pP(zP):=Xz givingus C:=2zP +rlU.

Whenl/ generategr the commitment is perfectly hiding of. On the other hand, & has order, then
p'(U) = 0 and the commitment determing4C) = Az € Z,,.

SETUP. The setup and the common reference string together specity, G, e, P,U), which is sufficient
to describe the entire setup since the other parts of the commeierence string will be given implicitly.
With the notation in the paper we hav¢ = By = By = GG and By = Gp. The bilinear mapt is
F(X,)Y) :=e(X,)). In the witness-indistinguishability setup we use a hidieg !/ that generate& and
consequently:(U,U) generatessr. The only solutiond € Mat;«1(R) to e(U, HU) = 1 is therefore the
trivial H = 0, so we do not need to include any matridés . .., H,, in the common reference string.
For pairing equations, we define

ip(z) ==z pr(z) = 2"

The mapur o pr projects elements to the order subgroup ofGp. The first commutative property
e(t(X),(Y)) = wr(e(X,Y)) from Figure 4 is trivial, and sincé& = 1 mod p, A\ = 0 mod q we have
A2 = X mod n giving us the second commutative propeetp(X),p())) = e(AX,\Y) = e(X, V) =
pr(e(X,Y)).

For multi-scalar multiplication equations, we define
ir(2) = F('(1),2(2) = e(P,Z)  pr(e(P,2)) = AZ.

This gives us the required commutative propertig$(z),())) = e(zP,Y) = e(P,zY) = ir(z)) and
P'(@P)p(Y) = (Az)(AY) = Az = pr(e(zP, ).
For quadratic equations ifi,, we define

vp(2) = F (1 (1), 15(2)) = e(P, P)* pr(e(P,P)?) = Az.

We have the commutative properties.’(z),/(y)) = e(zP,yP) = e(P,P)* = u.(zy) and

P (@P)p (yP) = (Ax)(A\y) = Azy = pir(e(zP,yP)).

PrRooOE We will now give a NIWI proof for satisfiability of a set of qdeatic equations of the three types
described above. Our NIWI proof Is.,-sound, wherd..,, is the language of sets of quadratic equations over
Zy, that are unsatisfiable in the ordersubgroups of,,, G andGr. A valid proof therefore guarantees the
simultaneous satisfiability of all the equations in the onlsubgroups o%,,, G andGr. The reason that we

do not get full soundness is thdthas ordeigq on a soundness string, which prevents interference with the
orderp subgroups but does enable interference in the ajdmrbgroups.
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setup: (gk, sk) := (n,G,Gr,e,P), (p,q)) + G(1¥), wheren = pq.
Soundness string: On input(gk, sk) returno := U wherel{ := rpP for randomr € Z%.

Witness-indistinguishability string: On input(gk, sk) returno := U whereld := rP for randomr € Z;;

NIWI proof: Oninput(n, G,Gr,e, P,U), a set of equations and a witnegs) do:
1. Commit to the exponents, ..., z,, € Z, and the group elemendg, ..., ), € G by comput-
ing
Ci =x;P+rU D; =YV + s;U
for randomly chosem € Z7}, 5 € Z.
2. For each pairing product equatiod - V) () - T')) = ¢t make a proof as described in section 6.2

¢ = §T./I+ §T(F + FT)J_} + §TF§U = Z s;Ai + Z Z(%‘j + ’yji)Siyj + Z Z’}/Z’jsiS’ju

i—1 i=1 j=1 im1 j=1
3. For each multi-scalar multiplication equatiBn)y + - B+ #-T'Y = T the proof is

b: = “T1§+ FTFJ7 + 7 TaU + 5 aP + s TP

= ZTZB + Z Zn’y”y] + Z Z%ms]u + Z si(a; + Z’y”m]

=1 j=1 =1 j=1

4. For each quadratic equati@n b + 7 - I'Z = t in Z,, we have

¢ =7 GP+7T (D4T )P+ Tild = an +ZZ (vij +ji)riz;) P+szwm

=1 j=1 i=1 j=1

Verification: On input(n, G, Gr,e, P,U), a set of equations and a pradfD, {¢:}Y, do:

1. For each pairing product equatiad - ) (Y- TY) = t1 with proof ¢ check thaf [, e(A;, D;) -
[T IT = e(Di, Dy)Y = tre(U, ¢).

2. For each multi-scalar multiplicatiod - Y+7-B+Z-TY = T with proof ¢ check that
[Tiey e(aiP, Di) - [T, e(Ci Bi) - T H?:l e(Ci, D;) = e(P, T)el, §).

3. For each quadratic equatigh b + 7 - IT'Z = ¢ in Z,, with proof ¢ check thaf [\", e(Ci, b;P) -
[T IT2 e(Ci €)Y = e(P,P) e, ¢).

Theorem 7 The NIWI proof given above has perfect completeness, pdrfgesoundness and composable
witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1. Perfggtsoundness follows from Theorem 2 since
the various maps of the forme p map to the ordep subgroups o, G andGr. The subgroup decision
problem gives us that we cannot distinguish whetidnas orderq or ordern so the two types of com-
mon reference strings are computationally indistinguitdha On a witness-indistinguishability string, the
commitments are perfectly hiding and we get perfect witiiedsstinguishability from Theorem 3. O

Size. The size of the NIWI proof isn + n + N group elements id7, wherem is the number of variables
in &, n is the number of variables {# and NV is the number of equations.
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9 Instantiation 2: SXDH

STATEMENT. The setuk = (p,G1, G2, G, e, P1, P2) defines the ringZ, and modules.,, G1, G2, Gt
and bilinear maps corresponding to respectively multgian in Z,, scalar-multiplication inG; and Go,
and the pairing : G; x Gy — Gr.

The statement will consist of a set of equations, which greeeguadratic equations if,, multi-scalar
multiplication equations id-; or GGo, or pairing product equations. The equations are over exorariables
Ti,- s T/ Y1, - -, Yns € Lp and group element variablés, ..., &, € Gy and), ..., YV, € Gs.

Pairing product equations: Using our framework this corresponds®= Zy, A1 = G1, Ay = Gy, Ar =
Gr, f(z,y) = e(z,y) and equations of the forad - Y)(X' - B)(X - TY) = tr.

Multi-scalar multiplication in  G: Using our framework this corresponds ® = Zp, A; = G1, 42 =
Zp, A = G1, f(X,y) = yX and equations of the fordd - 7+ X - b+ X - I'j = T;.

Multi-scalar multiplication in  G»: Using our framework this corresponds ® = Zp, Ay = Zp, Az =
Ga, Ap = Gy, f(x,Y) = z) and equations of the for@- Y + - B+ 7-TY = T;.

Quadratic equation in Zy: Using our framework this corresponds®= Z,, A1 = Zp, A2 = Zp, A1 =
Zop, f(2,y) = zy mod p and equations of the for@- j + # - b+ & - I'j = t.

ComMITMENT. Consider a cyclic grouf of prime orderp. With entry-wise addition we get tH&,-module
B := G?. The commitment key is of the form

up = (P, Q) := (P,aP) ug = U, V),

wherea « Zjg is chosen at random. We can choase= (U, V) in two different ways:uy := tu; or
up = tuy — (O, P) for arandomt € Z;. The former choice ofi; gives a perfectly binding commitment
key, whereas the latter choice @f gives a perfectly hiding commitment key. The two types of odiment
keys are computationally indistinguishable under the DBsLaption.

Let us now describe how to commit to an elem&ht G using randomness, ry € Zp:

u(2):=(0,2) p(21,22) =29 — a2 c:=u(X) + riug + rous.

On a binding key wheres = tu; we have that o p is the identity map oz andp(uy) = p(uz) = O. The
commitmentc = ((ry + r2t)P, (r1 + rot)Q + X) corresponds to an ElGamal encryptionf If u; and
ug are linearly independent we have that u, is a basis forB = G? and therefore(G) C (u1,uz). In a

hiding keyu; andu, are linearly independent and we therefore have a perfetigdhcommitment.
Commitment to an exponentc Z, using randomness ¢ Z, works as follows:

u:=ug + (O, P) J(z2) == zu P (1P, 22P) := 20 — az1 c:=1(x) +ru;.

On a hiding key we have = tu; sou € (uy), which implies.’(Zy) C (u1). A hiding key therefore gives
us a perfectly hiding commitment scheme. On a bindingkey' is the identity map ang’(u;) = 0 so the
commitment scheme is perfectly binding, and in fact the citmentc = ((r + xt)P, (r + xt)Q + zP) is
an ElGamal encryption afP.

SETUP. The common reference string is of the fofm , us, vy, v2), where(uy, uz) is a commitment key for
the groupG; implicitly defining maps1, p1, ¢}, p} as described above, afd , v,) is a commitment key for
G+ implicitly defining mapsa, p2, t5, p, as described above.
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We haveB; = G2, B, = G and we defineBr := G4 with addition being entry-wise multiplication.
The mapF' is defined as follows:

petxasa (5 ). (30 @30

On a witness-indistinguishability string, we have hidirggronitment keysu,, us andwvy, v2 S0 the two
pairs of vectors are linearly independent. The four eleméltt, v1), F(ui,ve), F(ug,v1), F(uz,vs) are
linearly independent in the witness-indistinguishapitenario. This implies thate H7 = 0 only has the
trivial solution whereH is the2 x 2 matrix with 0-entries. Therefore, the common referendagioes not
need to include any matricé$,, . .., H,, for the pairing product equations. The same holds true ®other
types of equations, we do not need any matrilgs. . . , I, in the common reference string.

For pairing product equations we define the mapsGr — G4 andpr : G4 — Gr as follows

11 211 212 —a —a
AR = 2992750 (29127700 ) 792,
T < 1 2 ; pT( 291 299 ) 22419 ( 21411 )

The mappy corresponds to first EIGamal decrypting down the columnsgusi whereu; = (Py, a1P;)
and then ElGamal decrypting the resulting row by usiagvherev; = (P2, aaP2). We note thatr o pr is
the identity map. The maps afe-linear and satisfy the two commutative properties in Fégdwr

For multi-scalar multiplications ii7;, we will need maps$r : G; — G+ andpr : G5 — G;. For
multi-scalar multiplications irz2 we will need mapgr : Go — G4T andprp : G% — (9. The two cases are
symmetric, so we will just focus on multi-scalar multipliican in G here. We define

ir(2) = F(11(1),12(2)) = F(u, (0, Z)) pr(2) = e (pr(2)),

wheree~!(e(Py, Z)) := Z. In the soundness settirig o pr is the identity map orGGs. To see that the
maps satisfy the two commutative properties, obsérd (z),:2(Y)) = F(/i(1),12(zY)) = ir(zY) by
the linearity and bilinearity of the maps, apll(z1P1, zoP1)p2(V1,Y2) = (22 — anz1) (Vo — adh) =
2o — a121Ya — a2V — a1z V1) = pr(F (1P, 22P2), (V1,D2))).

For quadratic equations ifi, we define the maps;. : Z, — G4 andp/. : G} — Zj, as follows

vr(2) = F(11(1),15(2)) = F(u,v)* pr(2) = 10ge(p, p,) (P (2))-

In the soundness settinf o p/- is the identity map ofZ,,. To see that the maps satisfy the two commutative
properties, observe' (/) (x), t5(y)) = F(/}(1),2(xy)) = ¢ (zy) by the linearity and bilinearity of the maps,
andp) (v1P1, 22P1)p5(y1P2, ¥2P2) = (22 — c121)(y2 — aay1) = Tay2 — a121y2 — Qa(T2y1 — a121y1) =
Pr(F((z1P1, 22P2), (y1P2, y2P2))).

PrROOF Having described the details of the common referencegséiove, we can now give the full NIWI
proof.

Setup: gk := (p, G1, G2, Gr,e, Py, P2) + G(1F).

Soundness string: On input gk returno := (uq, ug, vy, v2) Whereus = tyu; andve = tove for random
t1,t9 < Zp.

Witness-indistinguishability string: On inputgk returno := (uq, ug, vy, v2) Whereus = tyuy — (O, Py)
andvy = tav; — (O, Po) for randomty, ty « Zp.

NIWI proof: On inputgk, o, a set of equations and a witness), 7, iy do:
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1. Commit to the group elements € GT* and the exponents € Zg’ as
Z=u(X)+Ra @ :=i(z)+7Fu where R < Mat,,x2(Zp), T Z;”/.
Commit to the group elemengs € G4 and the exponent$ € Zg' as
d:=0)+856 d:=dy)+5n  where S Matyx2(Zp), 5+ ZL.

2. For each pairing product equati¢d - Y)(X - B)(Y - I'Y) = tr make a proof as described in
section 6. Writing it out we have fdF' <— Matay2(Zp,) the following proof

7 = RwuB)+R'Twu)+(R'TS—TN7
0 = STu(A)+STTTu(X)+Ta

For each linear equatiod - ) = t7 we usef := ST, (A). There is a direct correspondence
betweensT A = p,(d) andd = ., (ST.A). The proofd can therefore be communicated by
sendingST/f, which consists of two group elements.
For each linear equatiof’ - B = ¢ we usew := R 15(B). As above, the proof can be commu-
nicated by sending the two group elemeRtss.

3. For each multi-scalar multiplication equatigh 7+ X - b+ X - I'j = 7 in G; the proof is for
randomT” <— Mat; x2(Zp)

7 = RSB+ R TLH@H) + (R T8—T Ny
0 = T (A)+5 Ty (X)+Ta

For each linear equatiad - j = 7; the proof isf := 5" 11 (A). There is a direct correspondence
betweers” A = p;(0) andd = 11 (5T A). The proofd can therefore be communicated by sending
5T A, which consists of one group element.
For each linear equatlon’ b = 7 the proof is@ := R/ (q) As above, the proof can be
communicated by sending the two field elemeRis.
4. For each multi-scalar multiplication equatiGn Y + 7 - B + - TY = T in G the proof is for
randomT" <— Matay1(Zp)
= 7 (B)+7 Twu))+ (F' TS -T7)7
0 = STN(@)+STT4(@) + Tu
For each linear equation- Y =T the proof s = ST/, (@). There is a direct correspondence
betweens @ = p/(f) andd = /(ST a@). The proofd can therefore be communicated by sending
ST A, which consists of two field elements.
For each linear equatiod - B = T the proof ist := 1 15( #) As above, the proof can be
communicated by sending the single group elenteiff.

5. For each quadratic equatian b+Z-TZ=tin Zy the proof is for randon?” < Z,

= 7hb) + 7 D) + (FT 15— T)o

0 = @) +5TTNE) +Tw
For each linear equatiai: g = t we usef) := 57/ (@). There is a direct correspondence between
§'a = pj(#) and® = /(57 @). The proofd can therefore be communicated by sendifig,
which consists of one field element.
For each linear equatioft b = t we user := FTL’Q(q). As above, the proof can be communicated
by sending the single field elementb.
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Verification: On input(gk, o), a set of equations and a pradfl, @, ', {7;, 6;} ., do:

—

1. For each pairing product equatied - Y)(X - B)() - T')) = ¢ with proof (7, 0) check that

—,

1(A) ed+cewy(B)+celd=1p(ty) +Te7+0ed.
2. For each multi-scalar equatiof- 7 + X - b+ X - I'j = T; in G4 with proof (7, §) check that
n(A)ed +Zeiy(b)+ceTd = ip(T7) + e+ F(6,v).

3. For each multi-scalar equatian Y + & - B + & - I'Y = T3 in G, with proof (r, §) check that

/(@) ed+ 7 e 1(B)+ & eTd = vp(Tz) + Fluy,m) + O e .

+

4. For each quadratic equatian i + Z - b+ Z- I'y = t in Zy, with proof (7, #) check that

—,

(@) ed +7 eiy(b)+7 oTd = ilp(t) + F(uy,w) + F(0,v1).

Theorem 8 The protocol is a NIWI proof with perfect completeness, gutrfoundness and composable
witness-indistinguishability for satisfiability of a set equations over a bilinear group where the SXDH
problem is hard.

Perfect completeness follows from Theorem 1. Perfect suessl follows from Theorem 2 since the

p maps are identity maps df,, G1, G2 andGr. The SXDH assumption gives us that the two types of
common reference strings are computationally indistisigaile. On a witness-indistinguishability string,
the commitments are perfectly hiding and we get perfectegirindistinguishability from Theorem 3. [J

SizE. The modules we work in ar8; = G? and B, = G2, so each element in a module consists of two
group elements from respectively; andG,. Table 5 lists the cost of all the different types of equation

Assumption: SXDH
Variablesr € Zp, X € Gy

Variablesy € Zp,Y € Go

Pairing product equations

- Linear equation:A - Y = tp

- Linear equation:t’ - B = tr
Multi-scalar multiplication equations i,
- Linear equation:A - 7 = T;

- Linear equation:¥ - b = 7;

Multi-scalar multiplication equations i,
- Linear equation - Y = T3

- Linear equation? - B = T»

Quadratic equations i,

- Linear equationz - i =t

- Linear equation® - b = ¢

coNvNOoOOBRMRORNONLMONR
convkRrONOOBNODBNOLR
PP OONONOOOO OO o

Figure 5: Cost of each variable and equation measured ireglesnromG, G andZp,.
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10 Instantation 3: DLIN

STATEMENT. The setugk = (p, G, Gr, e, P) describes thre&,-modulesZ,, G andG7. The statement
will consist of a set of equations, which are either quadratjuations irnZ,, multi-scalar multiplication
equations inG, or pairing product equations. The equations are over exgovariablesey, . .., z,, inZp
and group element variablgs, ..., ), € G.

Pairing product equations: Using our framework this corresponds® = Zy, A1 = G, Ay = G, Ar =
Gr, f(z,y) = e(z,y) and equations of the forfad - Y)(X - TY) = .

Multi-scalar multiplication in G: Using our framework this corresponds ® = Zp, A1 = Zyn, Ay =
G, Ap = Go, f(2,Y) = 2Y and equations of the for@- Y + - B+ -TY = T.

Quadratic equation in Zy: Using our framework this corresponds®= Z,, A1 = Zy, Ay = Zn, AT =
Zon, f(z,y) = zy mod p and equations of the ford@- b+ & - I'j = .

ComMITMENT. We will now describe how to commit to elementsZip, or group elements it;. The
commitments will belong to th&,-module B = G* formed by entry-wise addition. The commitment key
is of the form

up = (U,O,P) = (aP,(’),P) U = (V,O,P) = (BP,O,'P) us = (Wl,WQ,Wg),

whereq, § < Zj,. The vectoru can be chosen as eithes := ru; + sug Or uz := ruy + suz — (0,0, P)
giving respectively a binding key and a hiding key. The DLI86amption is that it is hard to tell whether
three elementsl/, sV, tP have the property that= r + s, which implies that the two types of commitment
keys are computationally indistinguishable.

For committing ta) € G using randomness, sa, s3) Zf, we define

3
U(2)=(0,0,2)  p(Z1,29,23) = Z3 — 531 - %Zz giving usc := «(Y) + Zszuz
=1

On a hiding keyuy, us, u3 are linearly independent so they form a basisBor= G and therefore(G) C
(u1,us,us) so the commitment scheme is perfectly hiding. On a bindingvke have. o p is the identity
map andp(u1) = p(uz) = p(usz) = O so the commitment is perfectly binding, and in fact ((s; +
rs3)U, (s2 + ss3)V, (s1 + s2 + (r + s)s3)P + V) is a linear encryption [BBS04] o) with p being the
decryption algorithm. The commitment scheme described beincides with the scheme of [Wat06]. We
note that the different, and less efficient, commitment sehef [Gro06] can be similarly described in our
language of modules.

To commit to an exponent € Z, using randomness, 7 € Zp We use

1 1 ..
J(2) == zu P (21P, 2P, 23P) i= 23 — —21 — Bzg giving us c¢:= zu + riu1 + rous,
o

whereu := uz + (O, O, P). On a hiding key, we have that = ru; + suz S0 (Zp) C (u1,u2) and the
commitment scheme is perfectly hiding. On a binding kéy, p’ is the identity map orZ, andp’(u;) =
p'(uz2) = 0 so the commitment = ((r; + rz)U, (ro + sx)V, (r1 + r2 + x(r + s))P + zP) is perfectly
binding.

SETUP. The common reference string is of the fofmy , us, u3), which implicitly defines maps, p, ./, p’
and commitment schemes Ih = G* as described above.
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We use the modul&; := G9T with addition corresponding to entry-wise multiplicatiolVe use two
different bilinear mapg", F'. The mapF' is defined as follows:

N Xy Wi e(X1, 1) e(X1,)2) e(X1,)s)
F:G*xG — Gy (| X |, Yo |)—=| e(X,D1) e(X2,)2) e(X,)3) |.
X3 Vs e(X3, V1) e(X3,)h) e(X3,)s)

The symmetric mag is defined by

1~ 1~

F($7y) = _F(x7y) + _F(ywx)
For pairing product equations we define

2 2
tr(z) = ( )

sz Al Vo ~1/8 Vo ~1/8 1o ~1/p

—1/a _— —1/a _— — -1/ _— —

pr(| 221 222 223 |) = (23320y “aay ) (zsreny ) Caar D) T (2o Mgy 1) TP
231 232 233

H}_.H
— e
N = e

The mappr corresponds to first decrypting down the columns using tlveygéon keyca, 5 for the linear
encryption scheme [BBS04] and then decrypting along thdtieg row. We note thatr o pr is the identity
map. BothF and satisfy the two commutative properties in Figure 4.

Some computation shows that the nine elemdﬁai,uj) are linearly independent in the witness-
indistinguishability setting. This implies that'e Hi only has the trivial solution wherél is the3 x 3
matrix with 0-entries. On the other hand, the nfapas non-trivial solutions t@ e Hu corresponding to the
identities F'(u;, u;) = F(uj,u;). Some computation shows that the matrices

0 1 0 0 01 0 0 O
H = -1 00 Hy = 0 00 Hy3=| 0 0 1
0 0 O -1 0 0 0 -1 0

form a basis for the matriced sow e Hu = 0. Since these matrices are fixed, we do not need to define them
explicitly in the common reference string.
We will now look at the case of multi-scalar multiplicatiamd;. We define

r(2):=F(/(1),(2) = Fu,(0,0,2))  ip(2):=F({(1),12(Z)) = Fu (0,0, 2))

pr(z) = pr(z) :== e Hpr(2)) where e L(e(P,2)) = 2.

In the soundness setting o pr and iz o pr are the identity maps orG. _ F satisfies the
two commutative properties, since by the linear and bilingaoperties give F'( ’( (YY) =
F( /( ), ((zY)) = tr(xY) andp' (z1P, 2o P, 23P)p(V1, Vo, V3) = (w3 — g21 — 522) (V3 — V1 — 5d2) =
pr(F((z1P, 22 P, z3P), (M1, Vs, Vs)). F also satisfies the two commutative properties, since tlieehil-
ity gives usF(¢/(z),u(Y)) = F(/(1),u(2Y)) = ir(zY) andp'(@)p(y) = 30/ (@)p(y) + 39 (y)p(z) =
3Pr(F(2,)) + 5pr(F(y, 2)) = pr(F(z,y)).

In the witness-indistinguishability settiri@,u2) ® Hi = 0 only has the trivial solution wher# is the
0 10

10 0 generates the matricd$ so (uj,usy) e

2 x 3 matrix containing O-entries, where#s = (
Hu=0.

25



Finally, we have the case of quadratic equationjnWe define

Up(2) = F(/(1).0(2)  p(z):=FE 1),/ () Pr(z) = logepp)(pr(2)).

On a soundness string. o p/. and¢/. o p/. are the identity maps df,.
I’ satisfies the commutative properties from Figure 4, sincethigy linear and bilinear properties
P/ (), (y) = F((1),/(zy)) = wr(zy) andp'(z1P, 2P, z3P)p (11 P, y2 P, ysP) = (23 — Loy —
%332)(113 — 2y — %y2) = pr(F((z1P, 22P, x3P), (11 P, y2P,ysP)). F also satisfies the two commuta-
tive properties, since the bilinearity gives ¢/ (x), ./ (y)) = F(/ (1), (zy)) = /r(xzy) andp'(z)p'(y) =
3P/ (@) (y) + 50/ ()0 (2) = 57 (F(2,9)) + 570 (F(y, 7)) = pp(F(2,y)).

For F' we only have the trivial matrice¢/, whereas forF" we have the non-trivial basi$l; =

0 1
(50)

PrROOF Having described the modules, maps and matrices that alieitly given by the common reference
string above, we are now ready to give the full NIWI proof.

Setup: gk := (p, G, Gr,e,P) < G(1F).

Soundness string: On inputgk returno := (u1, us,us), whereu; = (aP,O,P),us = (O, P, P),us =
ruy + sug for randome, 8 < Zy, andr, s < Zy.

Witness-indistinguishability string: On inputgk returno := (uq,us, us), whereu; = (aP, O, P),uy =
(O, BP,P),us = rus + suz — (0,0, P) for randoma, 3 < Zy, andr, s < Zy.

Proof: For notational convenience lét= (u;,u2). On inputgk, o, a set of equations and a witnegs)
do:

1. Commit to the exponents € Z7' and the group elemend € G" as
¢:=/(Z)+ RV d:= )+ Sa

for randomly chosetR <— Mat,, x2(Zp), S < Mat,, «3(Zp).

2. For each pairing product equati¢d - Y)() - I'))) = t7 make a proof as described in section 6
using the symmetric map and randonmry, ra, 13 < Zp.

3
¢:=S8Tu(A)+STC+TT)(Y)+STSa+ > riH;i.
i=1
For each linear equatiod - ) = ¢t we use the asymmetric madpto get the proof
0 :=STu(A).

The reason we use the asymmefﬁctor the linear equation is that there are no non-trivial matr
cesH soii s Hii = 0, which simplifies the proof. Observe that= (ST A) = ST .(A) and vice
versap(f) = ST A'is easily computable in this special setting, sincd) = (O, 0, A). We can
therefore just reveal the pro&f:: p(§) = ST A, which consists of only three group elements.

3. For each multi-scalar multiplication equatian) + - B + - I'Y = 75 we use the symmetric
mapF. There is one matriXl; that generates all sov'e Hv. The proof is for random; « Z,

¢:=R"W(B)+R'T(Y)+ (8@ + ($)' T/ (@) + R'TS'T + r Hydi.
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For each linear equatiaf- Y = T we use the asymmetric md?)to get the proof

—

6:=S"/(@).

It suffices to reveal the valué — STa. Sinced determineSE uniguely, this does not compro-
mise the perfect witness-indistinguishability we have dmess-indistinguishability strings. The
verifier can computé = ./(¢). The proof now consists of only 3 elementsZp.

For each linear equatioft- B = T we useF to get the proof

—.

7 := R"u(B).

—,

We can use,f_{ = R B as the proof, since it allows the verifier to compéte= t(¢). The proof
therefore consists of only 2 group elements.

4. For each quadratic equatian b+Z-TZ=tin Zp wWe use the symmetric mag. There is one
matrix f{; that generates alil sov e Hv. The proof is for random, < Z,

¢:=R"/(b)+ R (C+T")(x)+ R TRT+ r  H,7.
For each linear equatlaﬁ b = t we use the asymmetric m&ﬁ)to get the prooﬁr RTL/(_‘).
It suffices to reveal jusb = R b, from which the verifier can compute= ¢ (gb)

Verification: On input(gk, o), a set of equations and a pravf, {gbi}f\il do:

1. For each pairing product equatied - Y)() - TY) = ¢ with proof ¢ check that

-,

W(A)ed+deTd=up(ty) + T ed.

For each linear equatiod - ) = t; with proof ¢ check

-, - —,

(A)ed=1p(tr) + t(p) .
2. For each multi-scalar multiplicatian- Y+7 - B+z-TY =T with proof¢ check that

V(@) ed+CeuB)+celd=r(T)+ 1 o ¢.

For each linear equation- ) = 7 with proof ¢ check

3. For each quadratic equatian b+Z-TZ=tin Zp With proofqgcheck that

—.

Col(b)+ColC=p(t)+Teg.

For each linear equatiafi- b = ¢ with proof ¢ check



Theorem 9 The protocol is a NIWI proof with perfect completeness, gmrsoundness and composable
witness-indistinguishability for satisfiability of a set equations over a bilinear group where the DLIN
problem is hard.

Perfect completeness follows from Theorem 1. Perfect smesgifollows from Theorem 2 since the maps
are identity maps off,, G andG7. The DLIN assumption gives us that the two types of commoeregice
strings are computationally indistinguishable. On a vagmdistinguishability string, the commitments are
perfectly hiding and we get perfect witness-indistingalsitity from Theorem 5. O

Size. The module we work in i3 = G3, so each elemengin the module consists of thjee group etemen
from G. In some of the linear equations, we can computg) efficiently and we have(p(¢)) = ¢ which
gives us a shorter proof. Table 6 list the cost of all the dzffie types of equations.

Assumption: DLIN

Variablesr € Zy,,) € G

Pairing product equations

- Linear equation:4 - Y = ¢
Multi-scalar multiplication equation
- Linear equationi - V=T

- Linear equationz - B =T
Quadratic equations Ay,

- Linear equation - b = ¢

@
N
5

U7
O ON O O W wvw
N OO WwWwOOOoOOo

Figure 6: Cost of each variable and equation measured iregiesnfromZ, andG.

11 Zero-Knowledge

We will now show that in many cases it is possible to make k@m@wledge proofs for satisfiability of
guadratic equations. An obvious strategy is to use our NIYgb{s directly, however, one could imagine
such proofs might not be zero-knowledge because the zenat&dge simulator might not be able to compute
any witness for satisfiability of the equations. It turns thatt the strategy is better than it seems at first sight
though; we will often be able to modify the set of quadratici@&gpns into an equivalent set of quadratic
equations where a witness can be found and which has the ssimigution of proofs.

We will consider the case wherg, = R, As = Ap, f(r,y) = ry. We remark that it is quite common
to have.4; = R; in bilinear groups both multi-scalar multiplication egjoas in G, G5 and quadratic
equations irZ, have this structure.

The first stage of the simulatst; will output a witness-indistinguishability string and ansilation trap-
door 7 that makes it possible to trapdoor open the commitmeni8;inMore precisely;y = § € R™ so
11(1) = 11(0) + 5" . Definec := +1(1), which is a commitment t6 = 1. The idea in the simulation is that
we can rewrite the statement as

@-y+ f(=0,t;) +Z-bi+2-TF=0.

We have introduced a new varialdleand by choosing all variables to Begives a satisfying witness. In the
simulation, the simulatofs will use the trapdoor informatiom to openc to 0 and it can now use the NIWI
proof from Section 7.

Setup: (gk, sk) := ((R, A1, As, Ar, f), sk) < G(1¥), where4d; = R and Ay = Ar.
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Soundness string: o := (By, Ba, Br, F, 11, p1, t2, D2, i1, 01, U, U, H1, . .., Hy) < K(gk, sk).

NIZK proof: This protocol is exactly the same as in the NIWI proof, we doewen need to rewrite the
equations. The input consists g#, o, a list of quadratic equation§a;, b;, I';,;)}, and a satisfying
witnessz, /.

Pick at randomR <— Mat,,x.»(R) and.S < Mat,,«;(R) and commit to all the variables as:=
11(Z) + Rd andd := 15(y) + Sv.
For each equatio(a;, Ei,PZ-,tZ-) make a proof as described in Section 6. In other words, Pjck-

Matﬁxm(R) andr;q,. .. y Tin < ‘R and compute
7i = R'u(bi)+ R Twa(f) + R'TST—T,' 7 + ZT”H 0
7=1
0; = STu(a)+ ST (Z)+ Ty

Output the proof, d, {(7;, ;) }.,).

Verification: The input isgk, o, {(a@;, b;, T, ;) }Y., and the proofz, d, {(7;,6;)}).
For each equation check

-

11 (@) @ d+ Go1y(b;) + CoTyd = vp(t;) + o7+ 0; @ 7.

Output 1 if all the checks pass, else output 0.

Simulation String: (0-77—) = ((BlaB2>BT7F>L1>p1>L2>p27LTva7g767H1>'"7H77)7§) A Sl(gk78k)!
whereu; (1) = 11(0) + 57 4.

Simulated proof: The input consists ofk, o and a list of quadratic equatioq$a, Ez-,l“i,ti)}iNzl and the
simulation trapdoot- = s.
Rewrite each equation &- 7+ 7 - b; + f (8, —t;) + & - I;f = 0. Definez := 0,7 := 0 andd = 0 to
get a witness that satisfies all the modified equations.
Pick at randomR < Mat,,x.»(R) andS < Mat,x;(R) and commit to all the variables as:=
04 Ri andd := 0 4 S7. We also use := ¢1(1) = +1(0) + 5" and append it t@.
For each maodified equatlo(ul,bz, —t;,I';,0) make a proof as described in Section 6. Return the
simulated proof (¢, d, 7;, 6;) 1Y, .

Theorem 10 The protocol described above is a composable NIZK proofdtisfability of pairing product
equations with perfect completeness, perfegtsoundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows frompetfect completeness of the NIWI proof.
The simulator knows an opening of:= ¢1(1) to ¢ = ¢;(0) + S s;u;. It therefore knows a witness
0,0,6 = 0 for satisfiability of all the modified equations. It theredasutputs a proof (¢, d, 7;, 6;) }Y., such
that for alli we have

01 (T@;) @ d + T 1a(b;) + F(11(1), —t2(t;)) + o Tid = 1p(0) + T o 7 + 0; 0 7.

The commutative property of the maps givesUs; (1), t2(t;)) = tr(f(1,t;)) = ¢r(t;), so the NIZK proofs
satisfy the equations the verifier checks. Perfect compdsie on a simulation string now follows from the
perfect completeness of the NIWI proof as well.
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PerfectL.,-soundness follows from the perfekt,-soundness of the NIWI proof.

We will now show that on a simulation string we have perfeabgdenowledge. The commitments
c, dandc = t1(1) are perfectly hiding and therefore have the same distdhutvhether we use witness
7,7,0 = 10r0,0,6 = 0. Theorem 3 now tells us that the proafs 0; made with either type of opening

of &d,c are uniformly distributed over all possible choices {df?;,;)}Y , that satisfy the equations

t1(d;) e cf+ Ceb; + ¢eI'd = up(t). We therefore have perfect zero-knowledge on a simulatiamgs [
Since the NIZK proof is exactly the same as the NIWI proofréhie no additional cost associated with
getting composable zero-knowledge for full quadratic éigua. If we look at linear equations, there are two
cases to consider. On a linear equation of the fdrin= ¢, the simulator can rewrite it a§5+f(—5, t) =0,
which is a linear equation of the same form. The shorter NIV@bfs for this type of linear equations can
therefore also be perfectly simulated on a simulation gtriNIWI proofs for linear equations of the form
a - ij = t on the other hand cannot be simulated as easily, because sfrttulator rewrites the equation as
a-y+ (—d,t) = 0, then itis no longer a linear equation. To get composable-krowledge for the latter
type of linear equation, the prover can instead use the NiMfdor the full quadratic equation.

11.1 NIZK Proofs for Bilinear Groups

Let us now consider bilinear groups and the four types of ratedequations given in Figure 1. If we set
up the common reference string such that we can trapdoorregeectively.; (1) and:, (1) to 0 then multi-
scalar multiplication equations and quadratic equatiar,j are of the form for which we can get a perfect
simulation.

In the case of pairing product equations we do not know hovwetagro-knowledge, since even with the
trapdoors we may not be able to compute a witness. We do abdeugh that in the speC|aI case, Where all
tT = 1 the choice of¥ = (9 y Oisa satisfactory witness. Since we also use the WltneSSO y 0]
in the other types of equations, the simulator can use thrsass in the simulation. In the special case where
all t7 = 1 we can therefore make NIZK proofs for satisfiability of a sejeadratic equations.

In another special case where we have a pairing productiequaith ¢t = [[;", e(P;, Q;) for some
knownP;, Q; there is another technigue that can be useful to get zersdkdge. In this case, we can add
the equations Z;, — §Q; = O to the set of multi-scalar multiplication equationgia and rewrite the pairing
product equation a4 - Y)(X - B)(P - Z)(X - TY) = 1. This gives us pairing product equations of the
type where we can make zero-knowledge proofs. We can therafeo make zero-knowledge proofs for
a set of quadratic equations over a bilinear group if all theipg product equations haveg of the form
tr = [[;—, e(Pi, Q;) for some knowrP;, Q;.

The case of pairing product equations points to a couplefigrdnces between witness-indistinguishable
proofs and zero-knowledge proofs using our techniques. Iphdbfs can handle any target, whereas zero-
knowledge proofs can only handle special types of tatgetFurthermore, it # 1 the size of the NIWI
proof for this equation is constant, whereas the NIZK praofthe same equation may be larger.

We conclude our discussion of NIZK proofs with Figure 7 anglufe 8 that give the costs for proving the
satisfiability of a set of quadratic equations in the SXDH &idN instantiations. For the subgroup decision
instantiation, NIZK proofs for sets of quadratic equatiavisere allt; = 1 are the same as those given in
Table 1.

12 Conclusion and an Open Problem
Our main contribution in this paper is the construction dicefnt non-interactive cryptographic proofs for

use in bilinear groups. Our proofs can be instantiated wigdmyndifferent types of bilinear groups and
the security of our proofs can be based on many differentstgbentractability assumptions. We have given
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Assumption: SXDH

Variablesz € Zp, X € Gy

Variablesy € Zp,Y € G

Pairing product equations withr = 1

- Linear equation:A - Y = 1

- Linear equation:¥ - B = 1

Multi-scalar multiplication equations i,
- Linear equation:A - 7 = T;

- Linear equation¥ - b = O

Multi-scalar multiplication equations i@,
- Linear equation - Y = O

- Linear equation@ - B = T3

Quadratic equations i,

- Linear equationi - f =t

- Linear equation - b = ¢

N
o

coNvOoOOBRORNMONDMOND
coNvRkrONOOBNODBNOSR

P POONMNONMNOOOOOODO

Figure 7: Cost of each variable and equation in an NIZK pradhe SXDH instantiation.

Q

Assumption: DLIN

Variablesr € Zp,Y € G

Pairing product equations witlr = 1
- Linear equation:4 - Y = 1
Multi-scalar multiplication equations
- Linear equationz - Y = O

- Linear equation - B =T
Quadratic equations i,

- Linear equationi - b = ¢

N oo woo ooy

O ONO O W oW

Figure 8: Cost of each variable and equation in an NIZK praodhe DLIN instantiation.

three concrete examples of instantiations based on réaggdhe subgroup decision assumption, the SXDH
assumption and the DLIN assumption.

We have been interested in bilinear groups and have in otaritigtions based the modules on bilinear
groups. Our techniques generalize beyond bilinear grdwqagyh; we do for instance not require the modules
to be cyclic as is the case for bilinear groups. It is posdifdd other types of modules with a bilinear map
exist, which are not constructed from bilinear groups. Tkistence of such modules might lead to efficient
NIWI and NIZK proofs based on entirely different intractitiyi assumptions. We leave the construction of
such modules with a bilinear map as an interesting open @mabl
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A Quick Reference to Notation

Bilinear groups.
G1, Go, Gr: cyclic groups with bilinear map : G; x Gy — Gr.
P1,P2: generators of respectivelyf; andGs.
Group order: prime ordgs or composite orden.

Modules with bilinear map.
R: finite commutative rind R, +, -, 0, 1).
Al, AQ, AT, B, By, Br: R-modules.
f, F: bilinear mapsf : A1 x Ay — Ay andF : By x By — Br.

n n
Foy=Y flwny) ,  Fey:=)Y Flwiu).
i=1 i=1
Properties that follows from bilinearity:
Z-Mj=M'Z-§ , TeMyj=DM'Tey.

Commutative diagram of maps in setup.

Al X A2 — AT

f
1 4t P 12 41 p2 vr 41 pr
B1 X BQ — BT
F
Commutative properties:
F(u(z),2(y) = wr(f(z,y)  ,  fou(e),pa(x)) = pr(F(z,y)).

Equations.
(Secret) variablest € A",y € AY.
(Public) constantsd € A7, b € AT, T € Matmxn(R),t € Ap.
Equations@ -+ #- b+ Z - ['j = t.

Commitments.
Commitment keysii € B, ¢ € BY.
Commitments:

=u(@+RieB" , d:=uwuf)+S7e By
NIWI proofs.

Additional setup informationfiy, ..., H, sou e H;7 = 0.
Randomness in proofd < Mat;x(R), r1,...,m < R.
Proofs: . U

# = Rlup(b)+ R Twu() + R'TST-T 5+ rHi

=1

0 = STu@@) +S'T7u(@ +Ta

Verification: 11 (@) e d + G e 13(b) + Ce I'd = vp(t) + e 7+ 0 o 7.
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