
Efficient Non-interactive Proof Systems for Bilinear Groups∗†

Jens Groth‡ Amit Sahai§

February 8, 2010

Abstract

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have
played a significant role in the theory of cryptography. However, lack of efficiency has prevented them
from being used in practice. One of the roots of this inefficiency is that non-interactive zero-knowledge
proofs have been constructed for general NP-complete languages such as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reducing it to a circuit. The contribution of this
paper is a general methodology for constructing very simpleand efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of cryptography in recent
years and have been used to construct a plethora of protocols. This paper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-knowledge proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-interactive cryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptographic protocols based on bilinear groups.

Keywords: Non-interactive witness-indistinguishability, non-interactive zero-knowledge, common refer-
ence string, bilinear groups.

∗An extended abstract was presented at Advances in Cryptology – EUROCRYPT 2008, LNCS 4965, pages 415-432.
†Work presented and part of work done while participating in Securing Cyberspace: Applications and Foundations of Cryptog-

raphy and Computer Security, Institute of Pure and Applied Mathematics, UCLA, 2006.
‡University College London, e-mail:j.groth@ucl.ac.uk. Part of work done while at UCLA supported by NSF

ITR/Cybertrust grant 0456717.
§University of California Los Angeles, e-mail:sahai@cs.ucla.edu. This research was supported in part by NSF ITR and

Cybertrust programs (including grants 0627781, 0456717, 0716389, and 0205594), a subgrant from SRI as part of the Army Cyber-
TA program, an equipment grant from Intel, an Okawa ResearchAward, and an Alfred P. Sloan Foundation Research Fellowship.

0

1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable proofs have played a
significant role in the theory of cryptography. However, lack of efficiency has prevented them from being
used in practice. Our goal is to construct efficient and practical non-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishable (NIWI) proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. Their paper and subsequent work,e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK proofsexist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to interesting theoretical results, such as the construction
of public-key encryption secure against chosen ciphertextattack by Dolev, Dwork and Naor [DDN00], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. One drawback is that they were designed with a
general NP-complete language in mind,e.g. Circuit Satisfiability. In practice, we want to prove statements
such as “the ciphertextc encrypts a signature on the messagem” or “the three commitmentsca, cb, cc contain
messagesa, b, c soc = ab”. An NP-reduction of even very simple statements like thesegives us big circuits
containing thousands of gates and the corresponding NIZK proofs become very large.

While we want to avoid an expensive NP-reduction, it is stilldesirable to have a general way to express
statements that arise in practice instead of having to construct non-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-key cryptography protocols are based on finite abelian
groups. If we can capture statements that express relationsbetween group elements, then we can express
statements that come up in practice such as “the commitmentsca, cb, cc contain messages soc = ab” or
“the plaintext ofc is a signature onm”, as long as those commitment, encryption, and signature schemes
work over the same finite group. We will therefore construct NIWI and NIZK proofs forgroup-dependent
languages.

The next issue to address is where to find suitable group-dependent languages. We will look at state-
ments related to groups with a bilinear map, which have become widely used in the design of crypto-
graphic protocols. Not only have bilinear groups been used to give new constructions of such crypto-
graphic staples as public-key encryption, digital signatures, and key agreement (see [Pat05] and the ref-
erences therein), but bilinear groups have enabled the firstconstructions achieving goals that had never
been attained before. The most notable of these is the Identity-Based Encryption scheme of Boneh and
Franklin [BF03] (see also [BB04a, BB04b, Wat05]), and thereare many others, such as Attribute-Based En-
cryption [SW05, GPSW06], Searchable Public-Key Encryption [BCOP04, BSW06, BW06], and One-time
Double-Homomorphic Encryption [BGN05]. For an incompletelist of papers (currently over 200) on the
application of bilinear groups in cryptography, see [Bar06].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group. Please note that for notational convenience
we will follow the tradition of mathematics and use additivenotation1 for the binary operations inG1 and
G2. We have a probabilistic polynomial time algorithmG that takes a security parameter as input and outputs
(n, G1, G2, GT , e,P1,P2). In some cases,G1 = G2 andP1 = P2, in which case we write(n, G,GT , e,P).

∙ G1, G2, GT are descriptions of cyclic groups of ordern.

∙ The elementsP1,P2 generateG1 andG2 respectively.

1We remark that in the cryptographic literature it is more common to use multiplicative notation for these groups, since the
“discrete log problem” is believed to be hard in these groups, which is also important to us. In our setting, however, it will be much
more convenient to use multiplicative notation to refer to the action of the bilinear map.

1

∙ e : G1×G2 is a non-degenerate bilinear map soe(P1,P2) generatesGT and for alla, b ∈ ℤn we have
e(aP1, bP2) = e(P1,P2)

ab.

∙ We can efficiently compute group operations, compute the bilinear map and decide membership.

In this work, we develop a general set of highly efficient techniques for proving statements involving
bilinear groups. The generality of our work extends in two directions. First, we formulate our constructions
in terms of modules over commutative rings with an associated bilinear map. This framework captures all
known bilinear groups with cryptographic significance – forboth supersingular and ordinary elliptic curves,
for groups of both prime and composite order. Second, we consider all mathematical operations that can
take place in the context of a bilinear group - addition inG1 andG2, scalar point-multiplication, addition or
multiplication of scalars, and use of the bilinear map. We also allow both group elements and exponents to
be “unknowns” in the statements to be proven.

Since we cover all operations over the bilinear group, we canprove any statement formulated in terms
of the operations associated with the bilinear group. With our level of generality, it would for example be
easy to write down a short statement, using the operations above, that encodes “c is an encryption of the
value committed to ind under the product of the two keys committed to ina andb” where the encryptions
and commitments being referred to are existing cryptographic constructions based on bilinear groups. Log-
ical operations like AND and OR are also easy to encode into our framework using standard techniques in
arithmetization.

The proof systems we build arenon-interactive. This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficientwitness-indistinguishable proof systems, which
are of independent interest. We then show how to transform these into zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of our constructions in various settings (depending on
what type of bilinear group and cryptographic assumption isused).

The security of constructions arising from our framework can be based onanyof a variety of computa-
tional assumptions about bilinear groups (3 of which we discuss in detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables fromG1, G2 andℤn as described
in Figure 1. We construct efficient witness-indistinguishable proofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable proofs have perfect completeness and there are two
computationally indistinguishable types of common reference strings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to Section 2 for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we can give zero-
knowledge proofs for multi-scalar multiplication inG1 or G2 and for quadratic equations inℤn. We can
also give zero-knowledge proofs for pairing product equations withtT = 1. WhentT ∕= 1 we can still give
zero-knowledge proofs if we can findP1,Q1, . . . ,Pn,Qn such thattT =

∏n
i=1 e(Pi, Qi).

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general description of our
techniques. We will also offer three instantiations that illustrate the use of our techniques. We note that there
are many other possible instantiations.

The first instantiation is based on the composite order groups introduced by Boneh, Goh and Nissim
[BGN05]. Here we generate a composite order bilinear group(n, G,GT , e,P) wheren = pq. We can
write G = Gp × Gq, whereGp, Gq are the subgroups of prime orderp andq respectively. Boneh, Goh
and Nissim introduced the subgroup decision assumption, which says that it is hard to distinguish a random
element fromG from a random element fromGq. In this paper, we will demonstrate that assuming the
hardness of the subgroup decision problem there exists a witness-indistinguishable proof for satisfiability of
a set of equations from Figure 1 in the subgroupGp and the orderp subgroup ofGT .

2

Variables: a X1, . . . ,Xm ∈ G1 , Y1, . . . ,Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ ℤn.

Pairing product equation:

n∏

i=1

e(Ai,Yi) ⋅

m∏

i=1

e(Xi,ℬi) ⋅

m∏

i=1

n∏

j=1

e(Xi,Yj)
ij = tT ,

for constantsAi ∈ G1,ℬi ∈ G2, tT ∈ GT , ij ∈ ℤn.

Multi-scalar multiplication equation in G1: b

n′∑

i=1

yiAi +

m∑

i=1

biXi +

m∑

i=1

n′∑

j=1

ijyjXi = T1,

for constantsAi,T1 ∈ G1 andbi, ij ∈ ℤn.

Multi-scalar multiplication equation in G2:

n∑

i=1

aiYi +
m′∑

i=1

xiℬi +
m′∑

i=1

n∑

j=1

ijxiYj, = T2

for constantsℬi,T2 ∈ G2 andai, ij ∈ ℤn.

Quadratic equation in ℤn:

n′∑

i=1

aiyi +
m′∑

i=1

xibi +
m′∑

i=1

n′∑

j=1

ijxiyj, = t

for constantsai, bi, ij , t ∈ ℤn.

aWe list variables inℤn in two separate groups because we will treat them differently in the NIWI proofs. If we wish to
deal with only one group of variables inℤn we can add equations inℤn of the formx1 = y1, x2 = y2, etc.

bWith multiplicative notation, these equations would be multi-exponentiation equations. We use additive notation forG1

andG2, since this will be notationally convenient in the paper, but again stress that the discrete logarithm problem will typically
be hard in these groups.

Figure 1: Equations over groups with bilinear map.

Instantiation 2: SXDH. Let (p, G1, G2, GT , e,P1,P2) be a prime order bilinear group. The external
Diffie-Hellman (XDH) assumption is that the decisional Diffie-Hellman (DDH) problem is hard in one of the
groupsG1 or G2 [Sco02, BBS04, BGdMM05, GR04, Ver04]. The Symmetric XDH assumption is that the
DDH problem is hard in bothG1 andG2. We will construct a witness-indistinguishable proof for satisfiability
of a set of equations of the form given in Figure 1 under the SXDH assumption.

Instantiation 3: DLIN. The decisional linear assumption (DLIN) for a prime order bilin-
ear group (p, G,GT , e,P) introduced by Boneh, Boyen and Shacham [BBS04] states that given
(�P, �P, r�P, s�P, tP) for random�, �, r, s ∈ ℤp it is hard to tell whethert = r + s or t is random.
Assuming the hardness of the DLIN problem, we will constructa witness-indistinguishable proof for satisfi-
ability of a set of equations from Figure 1.

3

The instantiations illustrate the variety of ways bilineargroups can be constructed. We can choose prime
order groups or composite order groups, we can haveG1 = G2 andG1 ∕= G2, and we can make various
cryptographic assumptions. All three security assumptions have been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented here yield efficient witness-indistinguishable proofs.
In particular, the cost in proof size of each extra equation is constant and independent of the number of
variables in the equation. The size of the proofs, can be computed by adding the cost, measured in group
elements fromG1 or G2, of each variable and each equation listed in Figure 2. We refer to Section 7 for
more detailed tables.

Subgroup decision SXDH DLIN
Variable inG1 or G2 1 2 3
Variable inℤn or ℤp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication inG1 orG2 1 6 9
Quadratic equation inℤn orℤp 1 4 6

Figure 2: Number of group elements each variable or equationadds to the size of a NIWI proof.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-languages have non-
interactive proofs, however, did not yield efficient proofs. One cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction toe.g. Circuit Satisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigatedNIZK proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of inefficiency since their techniques give efficient proofs
for Circuit Satisfiability, but to use their proofs one must still make an NP-reduction to Circuit Satisfiability
thus limiting the applications. We stress that while [GOS06b, GOS06a] used bilinear groups, their application
was to build proof systems for Circuit Satisfiability. Here,we devise entirely new techniques to deal with
general statements about equations in bilinear groups,withouthaving to reduce to an NP-complete language.

Addressing the issue of avoiding an expensive NP-reductionwe have works by Boyen and Waters [BW06,
BW07] that suggest efficient NIWI proofs for statements related to group signatures. These proofs are based
on bilinear groups of composite order and rely on the subgroup decision assumption.

Groth [Gro06] was the first to suggest a general group-dependent language and NIZK proofs for state-
ments in this language. He investigated satisfiability of pairing product equations and only allowed group
elements to be variables. He looked at the special case of prime order groupsG,GT with a bilinear map
e : G × G → GT and, based on the decisional linear assumption [BBS04], constructed NIZK proofs for
such pairing product equations. However, even for very small statements, the very different and much more
complicated techniques of Groth yield proofs consisting ofthousands of group elements (whereas ours would
be in the tens). Our techniques are much easier to understand, significantly more general, and vastly more
efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.
We note that there have been many earlier works (starting with [GMR89]) dealing with efficientinterac-

tivezero-knowledge protocols for a number of algebraic relations. Here, we focus onnon-interactiveproofs.
We also note that even for interactive zero-knowledge proofs, no set of techniques was known for dealing
with general algebraic assertions arising in bilinear groups, as we do here.

4

Inefficient Efficient
Circuit Satisfiability Example: [KP98] [GOS06b, GOS06a]
Group-dependent language[Gro06] (restricted case) This work

Figure 3: Classification of NIZK proofs according to usefulness.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-interactive proofs for simple statements and then com-
bine many of them to get more powerful proofs. The main building block in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which has little expressive power on its own. Our
approach is the opposite: we directly construct proofs for very expressive languages; as such, our techniques
are very different from previous work.

The way we achieve our generality is by viewing the groupsG1, G2, GT as modules over the ringℤn.
The ringℤn itself can also be viewed as aℤn-module. We therefore look at the more general question of sat-
isfiability of quadratic equations overℤn-modulesA1, A2, AT with a bilinear map, see Section 3 for details.
Since many bilinear groups with various cryptographic assumptions and various mathematical properties can
be viewed as modules we are not bound to any particular bilinear group or any particular assumption.

Given modulesA1, A2, AT with a bilinear map, we construct new modulesB1, B2, BT , also equipped
with a bilinear map, and we map the elements inA1, A2, AT into B1, B2, BT . The latter modules will
typically be larger thereby giving us room to hide the elements of A1, A2, AT . More precisely, we devise
commitment schemes that map variables fromA1, A2 to the modulesB1, B2. The commitment schemes are
homomorphic both with respect to the module operations and also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved mathematically, but
we will try to present some high level intuition here. (We give more detailed intuition later in Section 6, where
we present our main proof system). The main idea is the following: because our commitment schemes are
homomorphicandwe equip them with a bilinear map, we can take the equation that we are trying to prove,
and just replace the variables in the equation with commitments to those variables. Of course, because the
commitment schemes are hiding, the equations will no longerbe valid. Intuitively, however, we can extract
out the additional terms introduced by the randomness of thecommitments: if we give away these terms in the
proof, then this would be aconvincingproof of the equation’s validity (again, because of the homomorphic
properties). But, giving away these terms might destroy witness indistinguishability. Suppose, however, that
there is only one “additional term” introduced by substituting the commitments. Then, because it would be
the unique value which makes the equation true, giving it away would preserve witness indistinguishability!
In general, we are not so lucky. But if there are many terms, that means that these terms are not unique, and
because of the nice algebraic environment that we work in, wecan randomize these terms so that the equation
is still true, but so that we effectively reduce to the case ofthere being a single term being given away with a
unique value.

1.4 Applications

Independently of our work, Boyen and Waters [BW07] have constructed non-interactive proofs that they use
for group signatures (see also their earlier paper [BW06]).These proofs can be seen as examples of the NIWI
proofs in instantiation 1.

Subsequent to the announcement of our work, several papers have built upon it: Chandran, Groth and
Sahai [CGS07] have constructed ring-signatures of sub-linear size using the NIWI proofs in the first in-
stantiation, which is based on the subgroup decision problem. Groth and Lu [GL07] have used the NIWI
and NIZK proofs from instantiation 3 to construct a NIZK proof for the correctness of a shuffle. Groth

5

[Gro07] has used the NIWI and NIZK proofs from instantiation3 to construct a fully anonymous group sig-
nature scheme. Belenkiy, Chase, Kohlweiss and Lysyanskaya[BCKL08] have used instantiations 2 and 3
to construct non-interactive anonymous credentials. Green and Hohenberger [GH08] use instantiation 3 in a
universally composable adaptive oblivious transfer protocol. Also, by attaching NIZK proofs to semantically
secure public-key encryption in any instantiation we get anefficient non-interactive verifiable cryptosystem.
Boneh [Bon06] has suggested using this for optimistic fair exchange [Mic03], where two parties use a trusted
but lazy third party to guarantee fairness.

1.5 Roadmap

The main result is the NIWI proof that can be found in Section 7. Sections 3, 4, 5 and 6 explain the structure
of the NIWI proof, which goes through modules, commitments,a description of the common reference string,
and an explanation of how the NIWI proof works. For a concreteillustration of the steps, we refer the reader
to Instantiation 1 in Section 8. Other instantiations are given in Sections 9 and 10. In many cases, our NIWI
proofs can also be used as NIZK proofs, which we discuss in Section 11.

2 Non-interactive Witness-Indistinguishable Proofs

NOTATION. We writey = A(x; r) when the algorithmA, on inputx and randomnessr, outputsy. We write
y ← A(x) for the process of picking randomnessr uniformly at random and settingy = A(x; r). More
generally, we writey ← S for samplingy from the setS according to some probability distribution onS,
using the uniform distribution as the default when nothing else is specified.

We writea ← A; b ← B(a); . . . for running the experiment wherea is chosen fromA, thenb is chosen
from B, which may depend ona, etc. This yields a probability distribution over the outputs and we write

Pr
[
a← A; b← B(a); . . . : C(a, b, . . .)

]
for the probability of the conditionC(a, b, . . .) being satisfied after

running the experiment.
The security of our schemes is governed by a security parameter k, which can be used to scale up the

security. Given two functionsf, g : ℕ → [0, 1] we writef(k) ≈ g(k) when∣f(k) − g(k)∣ = O(k−c) for
every constantc. We say thatf is negligiblewhenf(k) ≈ 0 and that it isoverwhelmingwhenf(k) ≈ 1. We
say that two families of probability distributions{S1(k)}k∈ℕ, {S2(k)}k∈ℕ are indistinguishable when they
are the same for all sufficiently largek ∈ ℕ, and we say they are computationally indistinguishable if for all
non-uniform polynomial time adversariesA we have

Pr
[
y ← S1(k) : A(1

k, y) = 1
]
≈ Pr

[
y ← S2(k) : A(1

k, y) = 1
]
.

GROUP DEPENDENT LANGUAGES. Let R be an efficiently computable ternary relation. For triplets
(gk, x,w) ∈ R we call gk the setup,x the statement andw the witness. Given somegk we letL be the
language consisting of statements inR. For a relation that ignoresgk this is of course the standard definition
of an NP-language. We will be more interested in the case where gk describes a bilinear group, though.

NON-INTERACTIVE PROOFS. A non-interactive proof system for a relationR with setup consists of four
probabilistic polynomial time algorithms: a setup algorithmG, a common reference string (CRS) generation
algorithmK, a proverP and a verifierV . The setup algorithm outputs a setup(gk, sk). In our paper,gk
will be a description of a bilinear group. The setup algorithm may output some related informationsk, for
instance the factorization of the group order. A cleaner case, however, is whensk is just the empty string,
meaning the protocol is built on top of the group without knowledge of any trapdoors. The CRS generation
algorithm takes(gk, sk) as input and produces a common reference string�. The prover takes as input
(gk, �, x,w) and produces a proof�. The verifier takes as input(gk, �, x, �) and outputs 1 if the proof is

6

acceptable and 0 if rejecting the proof. We call(G,K, P, V) a non-interactive proof system forR with setup
G if it has the completeness and soundness properties described below.

PERFECT COMPLETENESS. A non-interactive proof is complete if an honest prover canconvince an honest
verifier whenever the statement belongs to the language and the prover holds a witness testifying to this fact.
We say(G,K, P, V) is perfectly complete if for all adversariesA we have2

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x,w) ← A(gk, �);� ← P (gk, �, x,w) :

V (gk, �, x, �) = 1 if (gk, x,w) ∈ R
]
= 1.

PERFECT SOUNDNESS. A non-interactive proof is sound if it is impossible to prove a false statement. We
say(G,K, P, V) is perfectly sound if for all adversariesA we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x, �) ← A(gk, �) : V (gk, �, x, �) = 0 if x /∈ L

]
= 1.

PERFECTLco-SOUNDNESS. In the standard definition of soundness given above, the adversary tries to create
a valid proof forx ∈ L̄. Groth, Ostrovsky and Sahai [GOS06b, Gro06] generalized standard soundness to
co-soundness, which says that it is impossible to create a valid proof for a statementx ∈ Lco, whereLco is a
language that may depend ongk and�. Standard soundness is a special case of co-soundness withLco = L̄,
but co-soundness can be used to capture other interesting cases as well: Instantiation 1 in Section 8 offers an
example where co-soundness captures the fact that soundness holds in the orderp subgroups ofG andGT .

We say(G,K, P, V) is perfectlyLco-sound if for all adversariesA we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk); (x, �) ← A(gk, �) : V (gk, �, x, �) = 0 if x ∈ Lco

]
= 1.

COMPOSABLE WITNESS INDISTINGUISHABILITY. A statement may have many possible witnesses. A non-
interactive proof is witness indistinguishable if the proof does not reveal which of those witnesses the prover
has used. We will use a strong definition of witness indistinguishability called composable witness indistin-
guishability. We introduce a reference string simulatorS that generates a simulated CRS and require that the
adversary cannot distinguish a real CRS from a simulated CRS. We also require that on a simulated CRS there
is no information whatsoever to distinguish the different witnesses that might have been used to construct the
proof.

We say(G,K, P, V) is composable witness indistinguishable, if there is a probabilistic polynomial time
simulatorS, such that for all non-uniform polynomial time adversariesA we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk) : A(gk, �) = 1

]

≈ Pr
[
(gk, sk)← G(1k);� ← S(gk, sk) : A(gk, �) = 1

]
,

and for all adversariesA we have

Pr
[
(gk, sk)← G(1k);� ← S(gk, sk); (x,w0, w1)← A(gk, �);� ← P (gk, �, x,w0) : A(�) = 1

]

= Pr
[
(gk, sk)← G(1k);� ← S(gk, sk); (x,w0, w1)← A(gk, �);� ← P (gk, �, x,w1) : A(�) = 1

]
,

where we require(gk, x,w0), (gk, x,w1) ∈ R.

COMPOSABLE ZERO-KNOWLEDGE. A zero-knowledge proof, is a proof that shows the statementis true, but
does not reveal anything else. Traditionally, this is defined by having a simulator(S1, S2) that can simulate

2Since the probability is exactly1, the definition quantifies over allgk in the support ofG and all(gk, x, w) ∈ R.

7

respectively the CRS and the proof. The first part of the simulator outputs a simulated CRS and a simulation
trapdoor� , and the second part of the simulator uses the simulation trapdoor to simulate proofs for statements
without knowing the corresponding witnesses. The standarddefinition of (multi-theorem) zero-knowledge
then says that real proofs on a real CRS should be computationally indistinguishable from simulated proofs
on a simulated CRS.

We will obtain a strong notion of zero-knowledge, called composable zero-knowledge [Gro06]. Com-
posable zero-knowledge implies standard zero-knowledge [Gro06] and has the advantage that it is simpler
to work with, since it separates the computational indistinguishability into two separate parts addressing re-
spectively the CRS and the proofs. In composable zero-knowledge, the real CRS and the simulated CRS are
computationally indistinguishable. Moreover, the adversary,even when it gets access to the secret simulation
key� , cannot distinguish real proofs from simulated proofs on a simulated CRS.

We say(G,K, P, V) is composable zero-knowledge if there exists a probabilistic polynomial time simu-
lator (S1, S2) so for all non-uniform polynomial time adversariesA we have

Pr
[
(gk, sk)← G(1k);� ← K(gk, sk) : A(gk, �) = 1

]

≈ Pr
[
(gk, sk)← G(1k); (�, �)← S1(gk, sk) : A(gk, �) = 1

]
,

and for all adversariesA we have

Pr
[
(gk, sk)← G(1k); (�, �) ← S1(gk, sk); (x,w) ← A(gk, �, �);� ← P (gk, �, x,w) : A(�) = 1

]

= Pr
[
(gk, sk)← G(1k); (�, �) ← S1(gk, sk); (x,w) ← A(gk, �, �);� ← S2(gk, �, �, x) : A(�) = 1

]
,

whereA outputs(gk, x,w) ∈ R.

3 Modules with Bilinear Maps

Let (ℛ,+, ⋅, 0, 1) be a finite commutative ring. Recall that anℛ-moduleA is an abelian group(A,+, 0)
where the ring acts on the group such that

∀r, s ∈ ℛ ∀x, y ∈ A : (r + s)x = rx+ sx ∧ r(x+ y) = rx+ ry ∧ r(sx) = (rs)x ∧ 1x = x.

A cyclic groupG of ordern can in a natural way be viewed as aℤn-module. We will observe that all
the equations in Figure 1 can be viewed as equations overℤn-modules with a bilinear map. To generalize
completely, letℛ be a finite commutative ring and letA1, A2, AT be finiteℛ-modules with a bilinear map
f : A1 ×A2 → AT . We will consider quadratic equations over variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2

of the form
n∑

j=1

f(aj , yj) +
m∑

i=1

f(xi, bi) +
m∑

i=1

n∑

j=1

ijf(xi, yj) = t.

In order to simplify notation, let us forx1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

x⃗ ⋅ y⃗ =
n∑

i=1

f(xi, yi).

The equations can now be written as

a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

8

We note for future use that due to the bilinear properties off , we have for any matrixΓ ∈ Matm×n(ℛ) and
for anyx⃗ ∈ Am

1 , y⃗ ∈ An
2 that x⃗ ⋅ Γy⃗ = Γ⊤x⃗ ⋅ y⃗.

Let us now return to the equations in Figure 1 and see how they can be recast as quadratic equations over
ℤn-modules with a bilinear map.

Pairing product equations: Defineℛ = ℤn, A1 = G1, A2 = G2, AT = GT , f(x, y) = e(x, y) and we
can rewrite3 the pairing product equation as(A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G1: Defineℛ = ℤn, A1 = G1, A2 = ℤn, AT = G1, f(X , y) = yX and
we can rewrite the multi-scalar multiplication equation asA⃗ ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1.

Multi-scalar multiplication in G2: Defineℛ = ℤn, A1 = ℤn, A2 = G2, AT = G2, f(x,Y) = xY and we
can rewrite the multi-scalar multiplication equation asa⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2.

Quadratic equation in ℤn: Defineℛ = ℤn, A1 = ℤn, A2 = ℤn, AT = ℤn, f(x, y) = xy mod n and we
can rewrite the quadratic equation inℤn asa⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

We will therefore first focus on the more general problem of constructing non-interactive composable
witness-indistinguishable proofs for satisfiability of quadratic equations overℛ-modulesA1, A2, AT (using
additive notation for all modules) with a bilinear mapf .

4 Commitment from Modules

In our NIWI and NIZK proofs we will commit to the variablesx1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2. We do
this by mapping them into otherℛ-modulesB1, B2 and making the commitments in those modules.

Let us for now just consider how to commit to elements from oneℛ-moduleA. The public key for the
commitment scheme will describe anotherℛ-moduleB andℛ-linear maps� : A → B andp : B → A.
Operations in the module and computation of the map� will be efficiently computable butp is hard to
compute.4 The public key will also contain elementsu1, . . . , um̂ ∈ B. To commit tox ∈ A we pick
r1, . . . , rm̂ ←ℛ at random and compute the commitment

c := �(x) +

m̂∑

i=1

riui.

Our commitment scheme will have two types of commitment keys.

Hiding key: A hiding key is of the form(B, �, p, u1, . . . , um̂) where�(A) ⊆ ⟨u1, . . . , um̂⟩. The commitment
c := �(x) +

∑m̂
i=1 riui therefore perfectly hides the elementx whenr1, . . . , rm̂ are chosen at random

fromℛ.

Binding key: A binding key is of the form(B, �, p, u1, . . . , um̂) where∀i : p(ui) = 0 and�∘p is non-trivial.
The commitmentc := �(x) +

∑m̂
i=1 riui therefore contains the non-trivial informationp(c) = p(�(x))

aboutx. In particular, if� ∘ p is the identity map onA, then the commitment is perfectly binding tox.

Computational indistinguishability: The main assumption that we will be making throughout this paper is
that the distribution of hiding keys and the distribution ofbinding keys are computationally indistin-
guishable. Witness-indistinguishability of our NIWI proofs and later the zero-knowledge property of
our NIZK proofs will rely on this property.

3We use multiplicative notation here, because, usuallyGT is written multiplicatively in the literature. When we workwith the
abstract modules, however, we will use additive notation.

4There are scenarios where a secret key will makep efficiently computable and� ∘ p is the identity map. In this case the
commitment scheme is a cryptosystem withp being the decryption operation.

9

The treatment of commitments using the language of modules generalizes several previous works dealing
with commitments over bilinear groups, including [BGN05, GOS06b, GOS06a, Gro06, Wat06].

Since we will often be committing to many elements at a time let us define some convenient notation.
Given elementsx1, . . . , xm ∈ A we will write c⃗ := �(x⃗) +Ru⃗ with R ∈ Matm×m̂(ℛ) for making commit-
mentsc1, . . . , cm computed asci := �(xi) +

∑m̂
j=1 rijuj .

5 Setup

In our NIWI and NIZK proofs the setup and the common referencestring are

gk = (ℛ, A1, A2, AT , f) � = (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗,H1, . . . ,H�).

Part of the common reference string specifiesB1, �1, p1, u1, . . . , um̂ andB2, �2, p2, v1, . . . , vn̂ that are
commitment keys forA1 andA2. We note that many of these components may be given implicitly instead of
being described explicitly in the common reference string.

Another part of the common reference string specifies a thirdℛ-moduleBT together withℛ-linear maps
�T : AT → BT andpT : BT → AT and a bilinear mapF : B1 × B2 → BT . We require that the maps are
commutative as described in Figure 4 below and with the exception of pT that they are efficiently computable.

A1 × A2 → AT

f
�1 ↓↑ p1 �2 ↓↑ p2 �T ↓↑ pT

B1 × B2 → BT

F

∀x ∈ A1 ∀y ∈ A2 : F (�1(x), �2(y)) = �T (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(y)) = pT (F (x, y))

Figure 4: Modules and maps between them.

For notational convenience, we define forx⃗ ∈ Bn
1 , y⃗ ∈ Bn

2 that

x⃗ ∙ y⃗ =
n∑

i=1

F (xi, yi).

Due to the bilinear properties ofF we have for all vectors and matrices with appropriate dimensions

x⃗ ∙ Γy⃗ = Γ⊤x⃗ ∙ y⃗.

The final part of the common reference string is a set of matricesH1, . . . ,H� ∈ Matm̂×n̂(ℛ) that all
satisfy u⃗ ∙ Hiv⃗ = 0. The exact number of matricesH1, . . . ,H� that is needed, depends on the concrete
setting. In many cases, we need no matrices at all and we have� = 0, but there are also cases where they are
needed as we shall see in Instantiation 3 in Section 10.

There will be two different settings of interest to us.

Soundness setting:In the soundness setting, we have binding commitment keys. This meansp1(u⃗) = 0⃗ and
p2(v⃗) = 0⃗, and the maps�1 ∘ p1 and�2 ∘ p2 are non-trivial. We will also want�T ∘ pT to be non-trivial.

10

Witness-indistinguishability setting: In the witness-indistinguishability setting we have hiding commit-
ment keys, so�1(A1) ⊆ ⟨u1, . . . , um̂⟩ and�2(A2) ⊆ ⟨v1, . . . , vn̂⟩. We also require thatH1, . . . ,H�

generate theR-module of all matricesH ∈ Matm̂×n̂(ℛ) so u⃗ ∙Hv⃗ = 0. As we will see in the next
section, these matrices play a role in the randomization of the NIWI proofs.

Computational indistinguishability: The (only) computational assumption this paper is based on is that
the two settings can be set up in a computationally indistinguishable way. The instantiations show
that there are many ways to get such computationally indistinguishable soundness and witness-
indistinguishability setups.

6 Proving that Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t, (1)

with constants⃗a ∈ An
1 , b⃗ ∈ Am

2 ,Γ ∈ Matm×n(ℛ), t ∈ AT . We will first consider the case of a single
quadratic equation of the above form. The first step in our NIWI proof will be to commit to all the variables
x⃗, y⃗. The commitments are of the form

c⃗ = �1(x⃗) +Ru⃗ , d⃗ = �2(y⃗) + Sv⃗, (2)

with R ∈ Matm×m̂(ℛ), S ∈ Matn×n̂(ℛ). The prover’s task is to convince the verifier that the commitments
containx⃗ ∈ Am

1 , y⃗ ∈ An
2 that satisfy the quadratic equation. (Note that for all equations we will use these

same commitments.)

Intuition. Before giving the construction let us give some intuition. In the previous sections, we have
carefully set up our commitments so that the commitments themselves also “behave” like the values being
committed to: they also belong to modules (theB modules) equipped with a bilinear map (the mapF , also
implicitly used in the∙ operation). Given that we have done this, a natural idea is totake the quadratic
equation (1), and “plug in” the commitments (2) in place of the variables; let us evaluate:

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗.

After some computations, where we expand the commitments (2), make use of the bilinearity of∙, and
rearrange terms (the details can be found in the proof of Theorem 1) we get

(
�1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) + �1(x⃗) ∙ Γ�2(y⃗)

)

+�1(⃗a) ∙ Sv⃗ +Ru⃗ ∙ �2(⃗b) + �1(x⃗) ∙ ΓSv⃗ +Ru⃗ ∙ Γ�2(y⃗) +Ru⃗ ∙ ΓSv⃗.

By the commutative properties of the maps, the first group of three terms is equal to�T (t), if Equation 1 holds.
Looking at the remaining terms, note thatu⃗ and v⃗ are part of the common reference string and therefore
known to the verifier. Using the fact that bilinearity implies that for any⃗x, y⃗ we have⃗x ∙ Γy⃗ = Γ⊤x⃗ ∙ y⃗, we
can sort the remaining terms so that they match eitheru⃗ or v⃗ to get (again see the proof of Theorem 1 for
details)

�T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+

(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗. (3)

Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume that we’re working in
a symmetric case whereA1 = A2, andB1 = B2, andu⃗ = v⃗ and, so, the above equation can be simplified
further to get:

�T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSu⃗+ S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
.

11

Now, suppose the prover gives to the verifier as his proof�⃗ =
(
R⊤�2(⃗b) + R⊤Γ�2(y⃗) + R⊤ΓSu⃗ +

S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)
)

. The verifier would then check that the followingverification equationholds:

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗.

Suppose further�1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps onA1, A2, AT . It is easy to see that the
proof is convincing in the soundness setting, because in that setting we have thatp1(u⃗) = 0⃗. Then the verifier
would know (but not be able to compute) that by applying the mapsp1, p2, pT we get

a⃗ ∙ p2(d⃗) + p1(c⃗) ∙ b⃗+ p1(c⃗) ∙ Γp2(d⃗) = t+ p1(u⃗) ∙ p2(�⃗) = t.

This gives us soundness, sincex⃗ := p1(c⃗) andy⃗ := p2(d⃗) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the witness-

indistinguishability setting, the commitments are perfectly hiding. Therefore, in the verification equation,
nothing except for⃗� holds any information about⃗x and y⃗ (except for the information that can be inferred
from the quadratic equation itself). So, let’s consider twocases:

1. Suppose that⃗� is the unique value so that the verification equation is valid. In this case, we trivially
have witness indistinguishability, since the uniqueness means that any witness would lead to the same
value for�⃗.

2. The simple case above might seem too good to be true, but let’s see what it means if it isn’t true. If two
values�⃗ and �⃗′ both satisfy the verification equation, then just subtracting the equations shows that
u⃗∙ (�⃗− �⃗′) = 0. On the other hand, recall that in the witness indistinguishability setting, the⃗u vectors
generate the entire space where�⃗ or �⃗′ live, and furthermore we know that the matricesH1, . . . ,H�

generate allH such that⃗u ∙ Hu⃗ = 0. Therefore, let’s chooser1, . . . , r� at random, and consider
the distribution�⃗′′ = �⃗ +

∑�
i=1 riHiu⃗. We thus obtain the same distribution on�⃗′′ that satisfies the

verification equation regardless of whether we started from�⃗ or �⃗′ or any other proof.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For the general non-
symmetric case, instead of having just�⃗ for the u⃗ part of Equation 3, we would also have a proof�⃗ for the v⃗
part. In this case, we would also have to make sure that this split does not reveal any information about the
witness. What we will do is to randomize the proofs such that they get a uniform distribution on all⃗�, �⃗ that
satisfy the verification equation. If we pickT ← Matn̂×m̂(ℛ) at random we have that⃗� + T u⃗ completely
randomizes⃗�. The part we add in⃗� can be “subtracted” from⃗� by observing that

�T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗ = �T (t) + u⃗ ∙
(
�⃗ − T⊤v⃗

)
+

(
�⃗ + T u⃗

)
∙ v⃗.

This leads to a uniform distribution of proofs for the general non-symmetric case as well.
Having explained the intuition behind the proof system, we proceed to a formal description and proof of

security properties.

Proof: PickT ← Matn̂×m̂(ℛ), r1, . . . , r� ←ℛ at random. Compute

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑

i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗

and return the proof(�⃗, �⃗).

12

Verification: Return 1 if and only if

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

Perfect completeness of our NIWI proof will follow from the following theorem no matter whether we
are in the soundness setting or the witness-indistinguishability setting.

Theorem 1 Givenx⃗ ∈ Am
1 , y⃗ ∈ An

2 , R ∈ Matm×m̂(ℛ), S ∈ Matn×n̂(ℛ) satisfying

c⃗ = �1(x⃗) +Ru⃗ , d⃗ = �2(y⃗) + Sv⃗ , a⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t,

we have for all choices ofT, r1, . . . , r� that the proofs⃗�, �⃗ constructed as above will be accepted.

Proof. The commutative property of the linear and bilinear maps gives us�1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) +
�1(x⃗) ∙ Γ�2(y⃗) = �T (t). For any choice ofT, r1, . . . , r� we have

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗

= �1(⃗a) ∙
(
�2(y⃗) + Sv⃗

)
+

(
�1(x⃗) +Ru⃗

)
∙ �2(⃗b) +

(
�1(x⃗) +Ru⃗

)
∙ Γ

(
�2(y⃗) + Sv⃗)

)

= �1(⃗a) ∙ �2(y⃗) + �1(x⃗) ∙ �2(⃗b) + �1(x⃗) ∙ Γ�2(y⃗)

+Ru⃗ ∙ �2(⃗b) +Ru⃗ ∙ Γ�2(y⃗) +Ru⃗ ∙ ΓSv⃗ + �1(⃗a) ∙ Sv⃗ + �1(x⃗) ∙ ΓSv⃗

= �T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+

(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗

= �T (t) + u⃗ ∙
(
R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗

)
+

�∑

i=1

ri(u⃗ ∙Hiv⃗)− u⃗ ∙ T⊤v⃗

+T u⃗ ∙ v⃗ +
(
S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗)

)
∙ v⃗

= �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗

□

Theorem 2 In the soundness setting, where we havep1(u⃗) = 0⃗ andp2(v⃗) = 0⃗, a valid proof implies

p1(�1(⃗a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�2(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)).

Proof. An acceptable proof⃗�, �⃗ satisfies�(a)∙ d⃗+ c⃗∙ �2(⃗b)+ c⃗∙Γd⃗ = �T (t)+ u⃗∙ �⃗+ �⃗∙ v⃗. The commutative
property of the linear and bilinear maps gives us

p1(�1(⃗a)) ⋅p2(d⃗)+p1(c⃗) ⋅p2(�2(⃗b))+p1(c⃗) ⋅Γp2(d⃗) = pT (�T (t))+p1(u⃗) ⋅p2(�⃗)+p1(�⃗) ⋅p2(v⃗) = pT (�T (t)).

□

Observe as a particularly interesting case that when�1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps on
A1, A2 andAT respectively, then this meansx⃗ := p1(c⃗) andy⃗ := p2(d⃗) give us a satisfying solution to the
equation⃗a ⋅ y⃗ + x⃗ ⋅ y⃗ + x⃗ ⋅ Γy⃗ = t. In this case, the theorem says that the proof is perfectly sound in the
soundness setting. In the case where they are not the identity maps it is still possible to have co-soundness,
see Instantiation 1 8 for an example.

Theorem 3 In the witness-indistinguishable setting where�1(A1) ⊆ ⟨u1, . . . , um̂⟩, �2(A2) ⊆ ⟨v1, . . . , vn̂⟩
and H1, . . . ,H� generate all matricesH so u⃗ ∙ Hv⃗ = 0, all satisfying witnesses⃗x, y⃗, R, S yield proofs
�⃗ ∈ ⟨v1, . . . , vn̂⟩

m̂ and �⃗ ∈ ⟨u1, . . . , um̂⟩
n̂ that are uniformly distributed conditioned on the verification

equation�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

13

Proof. Since�1(A1) ⊆ ⟨u1, . . . , um̂⟩ and �2(A2) ⊆ ⟨v1, . . . , vn̂⟩ there existsA,B,X, Y so �1(⃗a) = Au⃗,
�1(x⃗) = Xu⃗ and�2(⃗b) = Bv⃗, �2(y⃗) = Y v⃗. We have⃗c = (X + R)u⃗ andd⃗ = (Y + S)v⃗. The proof is(�⃗, �⃗)
given by

�⃗ = S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗ =
(
S⊤A+ S⊤Γ⊤X + T

)
u⃗

�⃗ = R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗))− T⊤v⃗ +

�∑

i=1

riHiv⃗

=
(
R⊤B +R⊤ΓY +R⊤ΓS − T⊤

)
v⃗ +

(�∑

i=1

riHi

)
v⃗.

We chooseT at random, so we can think of⃗� being a uniformly random variable given by⃗� = Θv⃗ for a
randomly chosen matrixΘ. We can think of⃗� as being written⃗� = Πv⃗, whereΠ is a random variable that
depends onΘ.

By perfect completeness all satisfying witnesses yield proofs where�1(⃗a)∙d⃗+c⃗∙�2 (⃗b)+c⃗∙Γd⃗−�T (t)−�⃗∙
v⃗ = u⃗∙ �⃗ = u⃗∙Πv⃗. Conditioned on the random variableΘ we therefore have that any two possible solutions
�⃗, �⃗′ satisfyu⃗∙(Π−Π′)v⃗ = 0. SinceH1, . . . ,H� generate all matricesH sou⃗∙Hv⃗ = 0 we can write this as

Π = Π′+
∑�

i=1 riHi. In constructing⃗� we form it as
(
R⊤B+R⊤ΓY +R⊤ΓS−T⊤

)
v⃗+

(∑�
i=1 riHi

)
v⃗

for randomly chosenr1, . . . , r� ∈ ℛ. We therefore get a uniform distribution over all�⃗ that satisfy the
equation conditioned on⃗�. Since�⃗ is uniformly chosen, we conclude that for any witness we get auniform
distribution over(�⃗, �⃗) conditioned on it being an acceptable proof. □

6.1 Linear Equations

As a special case, we will consider the proof system whena⃗ = 0 andΓ = 0. In this case the equation is
simply

x⃗ ⋅ b⃗ = t.

The scheme can be simplified in this case by choosingT = 0 in the proof, which gives⃗� := 0⃗ and �⃗ :=
R⊤�2(⃗b) +

∑�
i=1 riHiv⃗. Theorem 1 still applies withT = 0. Theorem 2 saysp1(c⃗) ⋅ p2(�2(⃗b)) = pT (�T (t)),

which will give us soundness. Finally, we have the followingtheorem.

Theorem 4 In the witness-indistinguishable setting where�1(A1) ⊆ ⟨u1, . . . , um̂⟩, �2(A2) ⊆ ⟨v1, . . . , vn̂⟩
andH1, . . . ,H� generate all matricesH sou⃗ ∙Hv⃗ = 0, all satisfying witnesses⃗x, y⃗, R, S yield the uniform
distribution of the proof⃗� ∈ ⟨v1, . . . , vn̂⟩m̂ conditioned on the verification equationc⃗ ∙ �2(⃗b) = �T (t)+ u⃗∙ �⃗
being satisfied.

Proof. As in the proof of Theorem 3 we can write⃗� = Πv⃗. Any witness gives a proof that satisfies

c⃗ ∙ �1(⃗b)− �T (t) = u⃗ ∙ �⃗ = u⃗ ∙Πv⃗.

SinceH1, . . . ,H� generate all matricesH so u⃗ ∙Hv⃗ = 0 we have thatΠ has a uniform distribution over all
matricesΠ satisfying the verification equation. □

6.2 The Symmetric Case

An interesting special case is whenB := B1 = B2, m̂ ≥ n̂ with u1 = v1, . . . , um̂ = vm̂ and for allx, y ∈ B
we haveF (x, y) = F (y, x). We call this the symmetric case. In the symmetric case, we can simplify the

14

scheme by just padding⃗� with zeroes in the end to extend the length tom̂, call this vector⃗�′, and reveal the
proof �⃗ = �⃗ + �⃗′. In the verification, we check that

�1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗.

Theorem 1 and Theorem 3 still hold in this setting. With respect to soundness we have the following theorem.

Theorem 5 In the soundness setting, where we havep1(u⃗) = 0⃗ a valid proof implies

p1(�1(a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)).

Proof. An acceptable proof⃗� satisfies�1(⃗a) ∙ d⃗ + c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗. The commutative
property of the linear and bilinear maps gives us

p1(�1(⃗a)) ⋅ p2(d⃗) + p1(c⃗) ⋅ p2(�(⃗b)) + p1(c⃗) ⋅ Γp2(d⃗) = pT (�T (t)) + p1(u⃗) ⋅ p2(�⃗) = pT (�T (t)).

□

We can simplify the computation of the proof in the symmetriccase. We have

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑

i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗,

and extend� to �′ by padding it withm̂ − n̂ 0’s. Another way to accomplish this padding is by paddingT
with m̂− n̂ 0-rows andS with m̂− n̂ 0-columns and eachHi with m̂− n̂ 0-columns. We then have

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓS′u⃗− (T ′)⊤u⃗+

�∑

i=1

riH
′
iu⃗+ (S′)⊤�1(⃗a) + (S′)⊤Γ⊤�1(x⃗) + T ′u⃗.

Since the map is symmetric we haveu⃗ ∙ (T ′ − (T ′)⊤)u⃗ = 0, so we can simplify the proof as

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) + (S′)⊤�1(⃗a) + (S′)⊤Γ⊤�1(x⃗) +R⊤ΓS′u⃗+

�′∑

i=1

riH
′
iu⃗.

7 NIWI Proof for Satisfiability of a Set of Quadratic Equation s

We will now give the full composable NIWI proof for satisfiability of a set of quadratic equations in a module
with a bilinear map. The proof will haveLco-soundness, where

Lco =
{
{(⃗ai, b⃗i,Γi, ti)}

N
i=1

∣∣∣∀x⃗, y⃗∃i : p1(�1(⃗ai)) ⋅ y⃗ + x⃗ ⋅ p2(�2(⃗bi)) + x⃗ ⋅ Γiy⃗ ∕= pT (�T (ti))
}
.

Observe as an important special case that�1 ∘ p1, �2 ∘ p2, �T ∘ pT are the identity maps onA1, A2 andAT ,
thenLco = L̄-soundness making soundness andLco-soundness the same notion.

The cryptographic assumption we make is that the common reference string is created by one of two
algorithmK or S and that their outputs are computationally indistinguishable. The first algorithm outputs a
common reference string that specifies a soundness setting,whereas the second algorithm outputs a common
reference string that specifies a witness-indistinguishability setting.

Setup: (gk, sk) := ((ℛ, A1, A2, AT , f), sk)← G(1
k).

15

Soundness string:� := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗,H1, . . . ,H�)← K(gk, sk).

Witness-indistinguishability string: � := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗,H1, . . . ,H�) ←
S(gk, sk).

Proof: The input consists ofgk, �, a list of quadratic equations{(⃗ai, b⃗i,Γi, ti)}
N
i=1 and a satisfying witness

x⃗ ∈ Am
1 , y⃗ ∈ An

2 .

Pick at randomR ← Matm×m̂(ℛ) andS ← Matn×n̂(ℛ) and commit to all the variables asc⃗ :=
x⃗+Ru⃗ andd⃗ := y⃗ + Sv⃗.

For each equation(⃗ai, b⃗i,Γi, ti) make a proof as described in Section 6. In other words, pickTi ←
Matn̂×m̂(ℛ) andri1, . . . , ri� ←ℛ and compute

�⃗i := R⊤�2(⃗bi) +R⊤Γi�2(y⃗) +R⊤ΓiSv⃗ − T⊤
i v⃗ +

�∑

j=1

rijHj v⃗

�⃗i := S⊤�1(⃗ai) + S⊤Γ⊤
i �1(x⃗) + Tiu⃗.

Output the proof(c⃗, d⃗, {(�⃗i, �⃗i)}Ni=1).

Verification: The input isgk, �, {(⃗ai, b⃗i,Γi, ti)}
N
i=1 and the proof(c⃗, d⃗, {(�⃗i, �⃗i)}).

For each equation check

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + c⃗ ∙ Γid⃗ = �T (ti) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

Output 1 if all the checks pass, else output 0.

Theorem 6 The protocol given above is a NIWI proof for satisfiability ofa set of quadratic equations with
perfect completeness, perfectLco-soundness and composable witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1.
Consider a proof(c⃗, d⃗, {(�⃗i, �⃗i)}) on a soundness string. Definex⃗ := p1(c⃗), y⃗ := p2(d⃗). It follows from

Theorem 2 that for each equation we have

p1(�1(⃗ai)) ⋅ y⃗+ x⃗ ⋅p2(�2(⃗bi))+ x⃗ ⋅Γiy⃗ = p1(�1(⃗ai)) ⋅p2(d⃗)+p1(c⃗) ⋅p2(�2(⃗bi))+p1(c⃗) ⋅Γip2(d⃗) = pT (�T (ti)).

This means we have perfectLco-soundness.
Our computational assumption is that soundness strings andwitness-indistinguishability strings are com-

putationally indistinguishable. Consider now a witness-indistinguishability string�. The commitments are
perfectly hiding, so they do not reveal the witnessx⃗, y⃗ that the prover uses in the commitmentsc⃗, d⃗. Theorem
3 says that in each equation either of two possible witnessesyields the same distribution on the proof for that
equation. A straightforward hybrid argument then shows that we have perfect witness-indistinguishability.
□

Proof of knowledge. We observe that ifK outputs an additional secret piece of information� that makes
it possible to efficiently computep1 andp2, then it is straightforward to compute the witnessx⃗ = p1(c⃗) and
y⃗ = p2(d⃗), so the proof is a perfect proof of knowledge.

16

Proof size. The size of the common reference string ism̂ elements inB1 andn̂ elements inB2 in addition
to the description of the modules, the maps andH1, . . . ,H�. The size of the proof ism + Nn̂ elements in
B1 andn+Nm̂ elements inB2.

Typically, m̂ andn̂ will be small, giving us a proof size that isO(m + n +N) elements inB1 andB2.
The proof size may thus be smaller than the description of thestatement, which can be of size up toNn
elements inA1, Nm elements inA2, Nmn elements inℛ andN elements inAT .

7.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of quadratic equations over
bilinear groups. As we described in Section 3, there are fourdifferent types of equations corresponding to
the following four combinations ofℤn-modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X ,Y) = e(X ,Y).

Multi-scalar multiplication in G1: A1 = G1, A2 = ℤn, AT = G1, f(X , y) = yX .

Multi-scalar multiplication in G2: A1 = ℤn, A2 = G2, AT = G2, f(x,Y) = xY.

Quadratic equations inℤn: A1 = ℤn, A2 = ℤn, AT = ℤn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars and group elements.
We first commit to all the variables and then make the NIWI proofs that correspond to the types of equations
that we are looking at. It is important that we use the same commitment schemes and commitments for all
equations, i.e., for instance we only commit to a scalarx once and we use the same commitment in the proof
whetherx is involved in is a multi-scalar multiplication inG2 or a quadratic equations inℤn. The use of the
same commitment in all the equations is necessary to ensure aconsistent choice ofx throughout the proof.
As a consequence of this we use the same moduleB′

1 to commit tox in both multi-scalar multiplication in
G2 and quadratic equations inℤn. We therefore end up with at most four different modulesB1, B

′
1, B2, B

′
2

to commit to respectivelyX , x,Y, y variables.

8 Instantiation 1: Subgroup Decision

STATEMENT. The setupgk = (n, G,GT , e,P) defines the ringℤn and modulesℤn, G,GT and bilinear maps
corresponding to respectively multiplication inℤn, scalar-multiplication inG, and the pairinge : G ×G →
GT .

The statement will consist of a set of equations, which are either quadratic equations inℤn, multi-scalar
multiplication equations inG, or pairing product equations. The equations are over exponent variables
x1, . . . , xm ∈ ℤn and group element variablesY1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework this corresponds toℛ = ℤn, A1 = G,A2 = G,AT =
GT , f(x, y) = e(x, y) and equations of the form(A⃗ ⋅ Y⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G: Using our framework this corresponds toℛ = ℤn, A1 = ℤn, A2 =
G,AT = G2, f(x,Y) = xY and equations of the form⃗a ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T .

Quadratic equation in ℤn: Using our framework this corresponds toℛ = ℤn, A1 = ℤn, A2 = ℤn, AT =
ℤn, f(x, y) = xy mod n and equations of the form⃗x ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

17

COMMITMENT. We will use two related commitment schemes to commit to elements in respectivelyℤn

andG. In both cases, we use theℤn-moduleG for the commitments. The commitment key, consists of an
elementU ∈ G. In a hiding key,U is a generator ofG. In a binding key,U has orderq and thus only generates
the orderq subgroup ofG. The subgroup decision assumption tells us that the two types of commitment key
U are indistinguishable.

Let us describe how to commit to a group elementY using randomnesss ∈ ℤn by defining

�(Z) := Z p(Z) := �Z giving us C := �(Y) + sU ,

where� = 1 mod p and� = 0 mod q. If U generatesG, then the commitmentC := �(Y) + sU hides
Y perfectly. On the other hand, ifU has orderq, thenp(U) = �U = O andp(C) = �C = �Y definesY
uniquely in the orderp subgroupGp of G.

To commit to an exponentx ∈ ℤn using randomnessr we define

�′(z) = zP p′(zP) := �z giving us C := xP + rU .

WhenU generatesG the commitment is perfectly hiding ofx. On the other hand, ifU has orderq, then
p′(U) = 0 and the commitment determinesp′(C) = �x ∈ ℤn.

SETUP. The setup and the common reference string together specify(n, G,GT , e,P,U), which is sufficient
to describe the entire setup since the other parts of the common reference string will be given implicitly.

With the notation in the paper we haveB = B1 = B2 = G andBT = GT . The bilinear mapF is
F (X ,Y) := e(X ,Y). In the witness-indistinguishability setup we use a hidingkeyU that generatesG and
consequentlye(U ,U) generatesGT . The only solutionH ∈ Mat1×1(ℛ) to e(U ,HU) = 1 is therefore the
trivial H = 0, so we do not need to include any matricesH1, . . . ,H� in the common reference string.

For pairing equations, we define

�T (z) := z pT (z) := z�.

The map�T ∘ pT projects elements to the orderp subgroup ofGT . The first commutative property
e(�(X), �(Y)) = �T (e(X ,Y)) from Figure 4 is trivial, and since� = 1 mod p, � = 0 mod q we have
�2 = � mod n giving us the second commutative propertye(p(X), p(Y)) = e(�X , �Y) = e(X ,Y)� =
pT (e(X ,Y)).

For multi-scalar multiplication equations, we define

�̂T (Z) := F (�′(1), �2(Z)) = e(P,Z) p̂T (e(P,Z)) := �Z.

This gives us the required commutative propertiese(�′(x), �(Y)) = e(xP,Y) = e(P, xY) = �̂T (xY) and
p′(xP)p(Y) = (�x)(�Y) = �xY = p̂T (e(xP,Y)).

For quadratic equations inℤn we define

�′T (z) := F (�′1(1), �
′
2(z)) = e(P,P)z p′T (e(P,P)

z) := �z.

We have the commutative propertiese(�′(x), �′(y)) = e(xP, yP) = e(P,P)xy = �′T (xy) and
p′(xP)p′(yP) = (�x)(�y) = �xy = p′T (e(xP, yP)).

PROOF. We will now give a NIWI proof for satisfiability of a set of quadratic equations of the three types
described above. Our NIWI proof isLco-sound, whereLco is the language of sets of quadratic equations over
ℤn that are unsatisfiable in the orderp subgroups ofℤn, G andGT . A valid proof therefore guarantees the
simultaneous satisfiability of all the equations in the order p subgroups ofℤn, G andGT . The reason that we
do not get full soundness is thatU has orderq on a soundness string, which prevents interference with the
orderp subgroups but does enable interference in the orderq subgroups.

18

Setup: (gk, sk) := ((n, G,GT , e,P), (p,q)) ← G(1
k), wheren = pq.

Soundness string:On input(gk, sk) return� := U whereU := rpP for randomr ∈ ℤ
∗
n
.

Witness-indistinguishability string: On input(gk, sk) return� := U whereU := rP for randomr ∈ ℤ
∗
n
.

NIWI proof: On input(n, G,GT , e,P,U), a set of equations and a witnessx⃗, Y⃗ do:

1. Commit to the exponentsx1, . . . , xm ∈ ℤn and the group elementsY1, . . . ,Yn ∈ G by comput-
ing

Ci := xiP + riU Di := Yi + siU

for randomly chosen⃗r ∈ ℤ
m
n
, s⃗ ∈ ℤ

n
n
.

2. For each pairing product equation(A⃗ ⋅ Y⃗)(Y⃗ ⋅ΓY⃗) = tT make a proof as described in section 6.2

� := s⃗⊤A⃗+ s⃗⊤(Γ + Γ⊤)Y⃗ + s⃗⊤Γs⃗U =

n∑

i=1

siAi +

n∑

i=1

n∑

j=1

(ij + ji)siYj +

n∑

i=1

n∑

j=1

ijsisjU .

3. For each multi-scalar multiplication equationa⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T the proof is

� : = r⃗⊤ℬ⃗ + r⃗⊤ΓY⃗ + r⃗⊤Γs⃗U + s⃗⊤a⃗P + s⃗⊤Γx⃗P

=

m∑

i=1

riℬi +

m∑

i=1

n∑

j=1

riijYj +

m∑

i=1

n∑

j=1

ijrisjU +

n∑

i=1

si(ai +

m∑

j=1

ijxj)P.

4. For each quadratic equationx⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤn we have

� := r⃗⊤b⃗P+r⃗⊤(Γ+Γ⊤)x⃗P+r⃗⊤Γr⃗U = (
m∑

i=1

ribi+
m∑

i=1

m∑

j=1

(ij+ji)rixj)P+
m∑

i=1

m∑

j=1

ijrirjU .

Verification: On input(n, G,GT , e,P,U), a set of equations and a proofC⃗, D⃗, {�i}
N
i=1 do:

1. For each pairing product equation(A⃗ ⋅ Y⃗)(Y⃗ ⋅ΓY⃗) = tT with proof� check that
∏n

i=1 e(Ai,Di) ⋅∏n
i=1

∏n
j=1 e(Di,Dj)

ij = tT e(U , �).

2. For each multi-scalar multiplication⃗a ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T with proof � check that∏n
i=1 e(aiP,Di) ⋅

∏m
i=1 e(Ci,ℬi) ⋅

∏m
i=1

∏n
j=1 e(Ci,Dj)

ij = e(P,T)e(U , �).

3. For each quadratic equationx⃗ ⋅ b⃗ + x⃗ ⋅ Γx⃗ = t in ℤn with proof � check that
∏m

i=1 e(Ci, biP) ⋅∏m
i=1

∏m
j=1 e(Ci, Cj)

ij = e(P,P)te(U , �).

Theorem 7 The NIWI proof given above has perfect completeness, perfect Lco-soundness and composable
witness-indistinguishability.

Proof. Perfect completeness follows from Theorem 1. PerfectLco-soundness follows from Theorem 2 since
the various maps of the form� ∘ p map to the orderp subgroups ofℤn, G andGT . The subgroup decision
problem gives us that we cannot distinguish whetherU has orderq or ordern so the two types of com-
mon reference strings are computationally indistinguishable. On a witness-indistinguishability string, the
commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorem 3. □

SIZE. The size of the NIWI proof ism + n + N group elements inG, wherem is the number of variables
in x⃗, n is the number of variables in⃗Y andN is the number of equations.

19

9 Instantiation 2: SXDH

STATEMENT. The setupgk = (p, G1, G2, GT , e,P1,P2) defines the ringℤp and modulesℤp, G1, G2, GT

and bilinear maps corresponding to respectively multiplication inℤp, scalar-multiplication inG1 andG2,
and the pairinge : G1 ×G2 → GT .

The statement will consist of a set of equations, which are either quadratic equations inℤp, multi-scalar
multiplication equations inG1 orG2, or pairing product equations. The equations are over exponent variables
x1, . . . , xm′ , y1, . . . , yn′ ∈ ℤp and group element variablesX1, . . . ,Xm ∈ G1 andY1, . . . ,Yn ∈ G2.

Pairing product equations: Using our framework this corresponds toℛ = ℤp, A1 = G1, A2 = G2, AT =

GT , f(x, y) = e(x, y) and equations of the form(A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G1: Using our framework this corresponds toℛ = ℤp, A1 = G1, A2 =

ℤp, AT = G1, f(X , y) = yX and equations of the form⃗A ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1.

Multi-scalar multiplication in G2: Using our framework this corresponds toℛ = ℤp, A1 = ℤp, A2 =

G2, AT = G2, f(x,Y) = xY and equations of the form⃗a ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2.

Quadratic equation in ℤp: Using our framework this corresponds toℛ = ℤp, A1 = ℤp, A2 = ℤp, AT =

ℤp, f(x, y) = xy mod p and equations of the form⃗a ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

COMMITMENT. Consider a cyclic groupG of prime orderp. With entry-wise addition we get theℤp-module
B := G2. The commitment key is of the form

u1 = (P,Q) := (P, �P) u2 = (U ,V),

where� ← ℤ
∗
p

is chosen at random. We can chooseu2 = (U ,V) in two different ways:u2 := tu1 or
u2 := tu1 − (O,P) for a randomt ∈ ℤ

∗
p
. The former choice ofu2 gives a perfectly binding commitment

key, whereas the latter choice ofu2 gives a perfectly hiding commitment key. The two types of commitment
keys are computationally indistinguishable under the DDH assumption.

Let us now describe how to commit to an elementX ∈ G using randomnessr1, r2 ∈ ℤp:

�(Z) := (O,Z) p(Z1,Z2) := Z2 − �Z1 c := �(X) + r1u1 + r2u2.

On a binding key whereu2 = tu1 we have that� ∘ p is the identity map onG andp(u1) = p(u2) = O. The
commitmentc = ((r1 + r2t)P, (r1 + r2t)Q + X) corresponds to an ElGamal encryption ofX . If u1 and
u2 are linearly independent we have thatu1, u2 is a basis forB = G2 and therefore�(G) ⊆ ⟨u1, u2⟩. In a
hiding keyu1 andu2 are linearly independent and we therefore have a perfectly hiding commitment.

Commitment to an exponentx ∈ ℤp using randomnessr ∈ ℤp works as follows:

u := u2 + (O,P) �′(z) := zu p′(z1P, z2P) := z2 − �z1 c := �′(x) + ru1.

On a hiding key we haveu = tu1 sou ∈ ⟨u1⟩, which implies�′(ℤp) ⊆ ⟨u1⟩. A hiding key therefore gives
us a perfectly hiding commitment scheme. On a binding key�′ ∘ p′ is the identity map andp′(u1) = 0 so the
commitment scheme is perfectly binding, and in fact the commitmentc = ((r + xt)P, (r + xt)Q + xP) is
an ElGamal encryption ofxP.

SETUP. The common reference string is of the form(u1, u2, v1, v2), where(u1, u2) is a commitment key for
the groupG1 implicitly defining maps�1, p1, �′1, p

′
1 as described above, and(v1, v2) is a commitment key for

G2 implicitly defining maps�2, p2, �′2, p
′
2 as described above.

20

We haveB1 = G2
1, B2 = G2

2 and we defineBT := G4
T with addition being entry-wise multiplication.

The mapF is defined as follows:

F : G2
1 ×G2

2 → G4
T (

(
X1

X2

)
,

(
Y1
Y2

)
) 7→

(
e(X1,Y1) e(X1,Y2)
e(X2,Y1) e(X2,Y2)

)
.

On a witness-indistinguishability string, we have hiding commitment keysu1, u2 andv1, v2 so the two
pairs of vectors are linearly independent. The four elements F (u1, v1), F (u1, v2), F (u2, v1), F (u2, v2) are
linearly independent in the witness-indistinguishability scenario. This implies that⃗u ∙Hv⃗ = 0 only has the
trivial solution whereH is the2× 2 matrix with 0-entries. Therefore, the common reference string does not
need to include any matricesH1, . . . ,H� for the pairing product equations. The same holds true for the other
types of equations, we do not need any matricesH1, . . . ,H� in the common reference string.

For pairing product equations we define the maps�T : GT → G4
T andpT : G4

T → GT as follows

�T : z 7→

(
1 1
1 z

)
, pT (

(
z11 z12
z21 z22

)
) 7→ z22z

−�1

12 (z21z
−�1

11)−�2 .

The mappT corresponds to first ElGamal decrypting down the columns using �1 whereu1 = (P1, �1P1)
and then ElGamal decrypting the resulting row by using�2 wherev1 = (P2, �2P2). We note that�T ∘ pT is
the identity map. The maps areℛ-linear and satisfy the two commutative properties in Figure 4.

For multi-scalar multiplications inG1, we will need maps̃�T : G1 → G4
T and p̃T : G4

T → G1. For
multi-scalar multiplications inG2 we will need mapŝ�T : G2 → G4

T andp̂T : G4
T → G2. The two cases are

symmetric, so we will just focus on multi-scalar multiplication inG2 here. We define

�̂T (Z) := F (�′1(1), �2(Z)) = F (u, (O,Z)) p̂T (z) := e−1(pT (z)),

wheree−1(e(P1,Z)) := Z. In the soundness settinĝ�T ∘ p̂T is the identity map onG2. To see that the
maps satisfy the two commutative properties, observeF (�′1(x), �2(Y)) = F (�′1(1), �2(xY)) = �̂T (xY) by
the linearity and bilinearity of the maps, andp′1(x1P1, x2P1)p2(Y1,Y2) = (x2 − �1x1)(Y2 − �2Y1) =
x2Y2 − �1x1Y2 − �2(x2Y1 − �1x1Y1) = p̂T (F ((x1P1, x2P2), (Y1,Y2))).

For quadratic equations inℤp we define the maps�′T : ℤp → G4
T andp′T : G4

T → ℤp as follows

�′T (z) := F (�′1(1), �
′
2(z)) = F (u, v)z p′T (z) := loge(P1,P2)(pT (z)).

In the soundness setting�′T ∘ p
′
T is the identity map onℤp. To see that the maps satisfy the two commutative

properties, observeF (�′1(x), �
′
2(y)) = F (�′1(1), �2(xy)) = �′(xy) by the linearity and bilinearity of the maps,

andp′1(x1P1, x2P1)p
′
2(y1P2, y2P2) = (x2 −�1x1)(y2 − �2y1) = x2y2 − �1x1y2 − �2(x2y1 − �1x1y1) =

p′T (F ((x1P1, x2P2), (y1P2, y2P2))).

PROOF. Having described the details of the common reference string above, we can now give the full NIWI
proof.

Setup: gk := (p, G1, G2, GT , e,P1,P2)← G(1
k).

Soundness string:On inputgk return� := (u1, u2, v1, v2) whereu2 = t1u1 andv2 = t2v2 for random
t1, t2 ← ℤp.

Witness-indistinguishability string: On inputgk return� := (u1, u2, v1, v2) whereu2 = t1u1 − (O,P1)
andv2 = t2v1 − (O,P2) for randomt1, t2 ← ℤp.

NIWI proof: On inputgk, �, a set of equations and a witnessX⃗ , Y⃗, x⃗, y⃗ do:

21

1. Commit to the group elements⃗X ∈ Gm
1 and the exponents⃗x ∈ ℤ

m′

p
as

c⃗ := �1(X⃗) +Ru⃗ c⃗′ := �′1(x) + r⃗u1 where R← Matm×2(ℤp), r⃗ ← ℤ
m′

p
.

Commit to the group elements⃗Y ∈ Gn
2 and the exponents⃗y ∈ ℤ

n′

p
as

d⃗ := �2(Y⃗) + Sv⃗ d⃗′ := �′2(y) + s⃗v1 where S ← Matn×2(ℤp), s⃗← ℤ
n′

p
.

2. For each pairing product equation(A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(Y⃗ ⋅ ΓY⃗) = tT make a proof as described in
section 6. Writing it out we have forT ← Mat2×2(ℤp) the following proof

�⃗ := R⊤�2(ℬ⃗) +R⊤Γ�2(Y⃗) + (R⊤ΓS − T⊤)v⃗

�⃗ := S⊤�1(A⃗) + S⊤Γ⊤�1(X⃗) + T u⃗

For each linear equation⃗A ⋅ Y⃗ = tT we use�⃗ := S⊤�1(A⃗). There is a direct correspondence
betweenS⊤A⃗ = p1(�⃗) and �⃗ = �1(S

⊤A⃗). The proof �⃗ can therefore be communicated by
sendingS⊤A⃗, which consists of two group elements.
For each linear equation⃗X ⋅ ℬ⃗ = tT we use⃗� := R⊤�2(ℬ⃗). As above, the proof can be commu-
nicated by sending the two group elementsR⊤ℬ⃗.

3. For each multi-scalar multiplication equation⃗A ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1 in G1 the proof is for
randomT ← Mat1×2(ℤp)

�⃗ := R⊤�′2(⃗b) +R⊤Γ�′2(y⃗) + (R⊤Γs⃗− T⊤)v1

� := s⃗⊤�1(A⃗) + s⃗⊤Γ⊤�1(X⃗) + T u⃗

For each linear equation⃗A ⋅ y⃗ = T1 the proof is� := s⃗⊤�1(A⃗). There is a direct correspondence
between⃗s⊤A⃗ = p1(�⃗) and�⃗ = �1(s⃗

⊤A⃗). The proof� can therefore be communicated by sending
s⃗⊤A⃗, which consists of one group element.
For each linear equation⃗X ⋅ b⃗ = T1 the proof is�⃗ := R⊤�′2(⃗b). As above, the proof can be
communicated by sending the two field elementsR⊤b⃗.

4. For each multi-scalar multiplication equationa⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 in G2 the proof is for
randomT ← Mat2×1(ℤp)

� := r⃗⊤�2(ℬ⃗) + r⃗⊤Γ�2(Y⃗) + (r⃗⊤ΓS − T⊤)v⃗

�⃗ := S⊤�′1(⃗a) + S⊤Γ⊤�′1(x⃗) + Tu1

For each linear equation⃗a ⋅ Y⃗ = T2 the proof is�⃗ := S⊤�′1(⃗a). There is a direct correspondence
betweenS⊤a⃗ = p′1(�⃗) and�⃗ = �′1(S

⊤a⃗). The proof⃗� can therefore be communicated by sending
S⊤A⃗, which consists of two field elements.
For each linear equation⃗x ⋅ ℬ⃗ = T2 the proof is� := r⃗⊤�2(ℬ⃗). As above, the proof can be
communicated by sending the single group elementr⃗⊤ℬ⃗.

5. For each quadratic equationx⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp the proof is for randomT ← ℤp

� := r⃗⊤�′2(⃗b) + r⃗⊤Γ�′2(y⃗) + (r⃗⊤Γs⃗− T)v1

� := s⃗⊤�′1(⃗a) + s⃗⊤Γ⊤�′1(x⃗) + Tu1

For each linear equation⃗a ⋅ y⃗ = t we use� := s⃗⊤�′1(⃗a). There is a direct correspondence between
s⃗⊤a⃗ = p′1(�) and� = �′1(s⃗

⊤a⃗). The proof� can therefore be communicated by sendings⃗⊤a⃗,
which consists of one field element.
For each linear equation⃗x ⋅ b⃗ = t we use� := r⃗⊤�′2(⃗b). As above, the proof can be communicated
by sending the single field elementr⃗⊤b⃗.

22

Verification: On input(gk, �), a set of equations and a proofc⃗, d⃗, c⃗′, d⃗′, {�⃗i, �⃗i}
N
i=1 do:

1. For each pairing product equation(A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(Y⃗ ⋅ ΓY⃗) = tT with proof (�⃗, �⃗) check that

�1(A⃗) ∙ d⃗+ c⃗ ∙ �2(ℬ⃗) + c⃗ ∙ Γd⃗ = �T (tT) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

2. For each multi-scalar equation⃗A ⋅ y⃗ + X⃗ ⋅ b⃗+ X⃗ ⋅ Γy⃗ = T1 in G1 with proof (�⃗, �) check that

�1(A⃗) ∙ d⃗
′ + c⃗ ∙ �′2(⃗b) + c⃗ ∙ Γd⃗′ = �̃T (T1) + u⃗ ∙ �⃗ + F (�, v1).

3. For each multi-scalar equationa⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 in G2 with proof (�, �⃗) check that

�′1(⃗a) ∙ d⃗+ c⃗′ ∙ �2(ℬ⃗) + c⃗′ ∙ Γd⃗ = �̂T (T2) + F (u1, �) + �⃗ ∙ v⃗.

4. For each quadratic equationa⃗ ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t in ℤp with proof (�, �) check that

�′1(⃗a) ∙ d⃗
′ + c⃗′ ∙ �′2(⃗b) + c⃗′ ∙ Γd⃗′ = �′T (t) + F (u1, �) + F (�, v1).

Theorem 8 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the SXDH
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since the� ∘
p maps are identity maps onℤp, G1, G2 andGT . The SXDH assumption gives us that the two types of
common reference strings are computationally indistinguishable. On a witness-indistinguishability string,
the commitments are perfectly hiding and we get perfect witness-indistinguishability from Theorem 3. □

SIZE. The modules we work in areB1 = G2
1 andB2 = G2

2, so each element in a module consists of two
group elements from respectivelyG1 andG2. Table 5 lists the cost of all the different types of equations.

Assumption: SXDH G1 G2 ℤp

Variablesx ∈ ℤp,X ∈ G1 2 0 0
Variablesy ∈ ℤp,Y ∈ G2 0 2 0
Pairing product equations 4 4 0
- Linear equation:A⃗ ⋅ Y⃗ = tT 2 0 0
- Linear equation:X⃗ ⋅ ℬ⃗ = tT 0 2 0
Multi-scalar multiplication equations inG1 2 4 0
- Linear equation:A⃗ ⋅ y⃗ = T1 1 0 0
- Linear equation:X⃗ ⋅ b⃗ = T1 0 0 2
Multi-scalar multiplication equations inG2 4 2 0
- Linear equation:⃗a ⋅ Y⃗ = T2 0 0 2
- Linear equation:⃗x ⋅ ℬ⃗ = T2 0 1 0
Quadratic equations inℤp 2 2 0
- Linear equation:⃗a ⋅ y⃗ = t 0 0 1
- Linear equation:⃗x ⋅ b⃗ = t 0 0 1

Figure 5: Cost of each variable and equation measured in elements fromG1, G2 andℤp.

23

10 Instantation 3: DLIN

STATEMENT. The setupgk = (p, G,GT , e,P) describes threeℤp-modulesℤp, G andGT . The statement
will consist of a set of equations, which are either quadratic equations inℤp, multi-scalar multiplication
equations inG, or pairing product equations. The equations are over exponent variablesx1, . . . , xm inℤp

and group element variablesY1, . . . ,Yn ∈ G.

Pairing product equations: Using our framework this corresponds toℛ = ℤp, A1 = G,A2 = G,AT =

GT , f(x, y) = e(x, y) and equations of the form(A⃗ ⋅ Y⃗)(X⃗ ⋅ ΓY⃗) = tT .

Multi-scalar multiplication in G: Using our framework this corresponds toℛ = ℤp, A1 = ℤn, A2 =

G,AT = G2, f(x,Y) = xY and equations of the form⃗a ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T .

Quadratic equation in ℤn: Using our framework this corresponds toℛ = ℤp, A1 = ℤn, A2 = ℤn, AT =

ℤn, f(x, y) = xy mod p and equations of the form⃗x ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

COMMITMENT. We will now describe how to commit to elements inℤp or group elements inG. The
commitments will belong to theℤp-moduleB = G3 formed by entry-wise addition. The commitment key
is of the form

u1 := (U ,O,P) = (�P,O,P) u2 := (V,O,P) = (�P,O,P) u3 = (W1,W2,W3),

where�, � ← ℤ
∗
p
. The vectoru3 can be chosen as eitheru3 := ru1 + su2 or u3 := ru1 + su2 − (O,O,P)

giving respectively a binding key and a hiding key. The DLIN assumption is that it is hard to tell whether
three elementsrU , sV, tP have the property thatt = r+ s, which implies that the two types of commitment
keys are computationally indistinguishable.

For committing toY ∈ G using randomness(s1, s2, s3)← ℤ
3
p

we define

�(Z) := (O,O,Z) p(Z1,Z2,Z3) := Z3 −
1

�
Z1 −

1

�
Z2 giving usc := �(Y) +

3∑

i=1

siui.

On a hiding keyu1, u2, u3 are linearly independent so they form a basis forB = G3 and therefore�(G) ⊆
⟨u1, u2, u3⟩ so the commitment scheme is perfectly hiding. On a binding key we have� ∘ p is the identity
map andp(u1) = p(u2) = p(u3) = O so the commitment is perfectly binding, and in factc = ((s1 +
rs3)U , (s2 + ss3)V, (s1 + s2 + (r + s)s3)P + Y) is a linear encryption [BBS04] ofY with p being the
decryption algorithm. The commitment scheme described here coincides with the scheme of [Wat06]. We
note that the different, and less efficient, commitment scheme of [Gro06] can be similarly described in our
language of modules.

To commit to an exponentx ∈ ℤp using randomnessr1, r2 ∈ ℤp we use

�′(z) := zu p′(z1P, z2P, z3P) := z3 −
1

�
z1 −

1

�
z2 giving us c := xu+ r1u1 + r2u2,

whereu := u3 + (O,O,P). On a hiding key, we have thatu = ru1 + su2 so �′(ℤp) ⊆ ⟨u1, u2⟩ and the
commitment scheme is perfectly hiding. On a binding key,�′ ∘ p′ is the identity map onℤp andp′(u1) =
p′(u2) = 0 so the commitmentc = ((r1 + rx)U , (r2 + sx)V, (r1 + r2 + x(r + s))P + xP) is perfectly
binding.

SETUP. The common reference string is of the form(u1, u2, u3), which implicitly defines maps�, p, �′, p′

and commitment schemes inB = G3 as described above.

24

We use the moduleBT := G9
T with addition corresponding to entry-wise multiplication. We use two

different bilinear mapsF, F̃ . The mapF̃ is defined as follows:

F̃ : G3 ×G3 → G9
T (

⎛
⎝
X1

X2

X3

⎞
⎠ ,

⎛
⎝
Y1
Y2
Y3

⎞
⎠) 7→

⎛
⎝

e(X1,Y1) e(X1,Y2) e(X1,Y3)
e(X2,Y1) e(X2,Y2) e(X2,Y3)
e(X3,Y1) e(X3,Y2) e(X3,Y3)

⎞
⎠ .

The symmetric mapF is defined by

F (x, y) :=
1

2
F̃ (x, y) +

1

2
F̃ (y, x).

For pairing product equations we define

�T (z) :=

⎛
⎝

1 1 1
1 1 1
1 1 z

⎞
⎠

pT (

⎛
⎝

z11 z12 z13
z21 z22 z23
z31 z32 z33

⎞
⎠) := (z33z

−1/�
13 z

−1/�
23)(z31z

−1/�
11 z

−1/�
21)−1/�(z32z

−1/�
12 z

−1/�
22)−1/� .

The mappT corresponds to first decrypting down the columns using the decryption key�, � for the linear
encryption scheme [BBS04] and then decrypting along the resulting row. We note that�T ∘ pT is the identity
map. BothF̃ andF satisfy the two commutative properties in Figure 4.

Some computation shows that the nine elementsF̃ (ui, uj) are linearly independent in the witness-
indistinguishability setting. This implies that⃗u ∙̃ Hu⃗ only has the trivial solution whereH is the3 × 3
matrix with 0-entries. On the other hand, the mapF has non-trivial solutions to⃗u ∙Hu⃗ corresponding to the
identitiesF (ui, uj) = F (uj , ui). Some computation shows that the matrices

H1 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ H2 =

⎛
⎝

0 0 1
0 0 0
−1 0 0

⎞
⎠ H3 =

⎛
⎝

0 0 0
0 0 1
0 −1 0

⎞
⎠

form a basis for the matricesH sou⃗ ∙Hu⃗ = 0. Since these matrices are fixed, we do not need to define them
explicitly in the common reference string.

We will now look at the case of multi-scalar multiplication inG. We define

�̃T (Z) := F̃ (�′(1), �2(Z)) = F̃ (u, (O,O,Z)) �̂T (Z) := F (�′(1), �2(Z)) = F (u, (O,O,Z))

p̃T (z) = p̂T (z) := e−1(pT (z)) where e−1(e(P,Z)) := Z.

In the soundness setting̃� ∘ p̃T and �̂T ∘ p̂T are the identity maps onG. F̃ satisfies the
two commutative properties, since by the linear and bilinear properties give F̃ (�′(x), �(Y)) =
F̃ (�′(1), �(xY)) = �̃T (xY) andp′(x1P, x2P, x3P)p(Y1,Y2,Y3) = (x3−

1
�x1−

1
�x2)(Y3−

1
�Y1−

1
�Y2) =

p̃T (F̃ ((x1P, x2P, x3P), (Y1,Y2,Y3)). F also satisfies the two commutative properties, since the bilinear-
ity gives usF (�′(x), �(Y)) = F (�′(1), �(xY)) = �̂T (xY) andp′(x)p(y) = 1

2p
′(x)p(y) + 1

2p
′(y)p(x) =

1
2 p̃T (F̃ (x, y)) + 1

2 p̃T (F̃ (y, x)) = p̂T (F (x, y)).
In the witness-indistinguishability setting(u1, u2) ∙̃Hu⃗ = 0 only has the trivial solution whereH is the

2 × 3 matrix containing 0-entries, whereasH1 =

(
0 1 0
−1 0 0

)
generates the matricesH so (u1, u2) ∙

Hu⃗ = 0.

25

Finally, we have the case of quadratic equations inℤp. We define

�̃′T (z) := F̃ (�′(1), �′(z)) �′T (z) := F (�′(1), �′(z)) p′T (z) := loge(P,P)(pT (z)).

On a soundness string̃�′T ∘ p
′
T and�′T ∘ p

′
T are the identity maps onℤp.

F̃ satisfies the commutative properties from Figure 4, since bythe linear and bilinear properties
F̃ (�′(x), �′(y)) = F̃ (�′(1), �′(xy)) = �̃T (xy) andp′(x1P, x2P, x3P)p

′(y1P, y2P, y3P) = (x3 −
1
�x1 −

1
�x2)(y3 −

1
�y1 −

1
� y2) = pT (F̃ ((x1P, x2P, x3P), (y1P, y2P, y3P)). F also satisfies the two commuta-

tive properties, since the bilinearity gives usF (�′(x), �′(y)) = F (�′(1), �′(xy)) = �′T (xy) andp′(x)p′(y) =
1
2p

′(x)p′(y) + 1
2p

′(y)p′(x) = 1
2p

′
T (F̃ (x, y)) + 1

2p
′
T (F̃ (y, x)) = p′T (F (x, y)).

For F̃ we only have the trivial matricesH, whereas forF we have the non-trivial basisH1 =(
0 1
−1 0

)
.

PROOF. Having described the modules, maps and matrices that are implicitly given by the common reference
string above, we are now ready to give the full NIWI proof.

Setup: gk := (p, G,GT , e,P) ← G(1
k).

Soundness string:On inputgk return� := (u1, u2, u3), whereu1 = (�P,O,P), u2 = (O, �P,P), u3 =
ru1 + su2 for random�, � ← ℤ

∗
p

andr, s← ℤp.

Witness-indistinguishability string: On inputgk return� := (u1, u2, u3), whereu1 = (�P,O,P), u2 =
(O, �P,P), u3 = ru1 + su2 − (O,O,P) for random�, � ← ℤ

∗
p

andr, s← ℤp.

Proof: For notational convenience letv⃗ = (u1, u2). On inputgk, �, a set of equations and a witnessx⃗, Y⃗
do:

1. Commit to the exponents⃗x ∈ ℤ
m
p

and the group elements⃗Y ∈ Gn as

c⃗ := �′(x⃗) +Rv⃗ d⃗ := �(Y⃗) + Su⃗

for randomly chosenR← Matm×2(ℤp), S ← Matn×3(ℤp).

2. For each pairing product equation(A⃗ ⋅ Y⃗)(Y⃗ ⋅ ΓY⃗) = tT make a proof as described in section 6
using the symmetric mapF and randomr1, r2, r3 ← ℤp.

�⃗ := S⊤�(A⃗) + S⊤(Γ + Γ⊤)�(Y⃗) + S⊤ΓSu⃗+

3∑

i=1

riHiu⃗.

For each linear equation⃗A ⋅ Y⃗ = tT we use the asymmetric map̃F to get the proof

�⃗ := S⊤�(A⃗).

The reason we use the asymmetricF̃ for the linear equation is that there are no non-trivial matri-
cesH sou⃗ ∙̃Hu⃗ = 0, which simplifies the proof. Observe that�⃗ = �(S⊤A⃗) = S⊤�(A⃗) and vice
versap(�⃗) = S⊤A⃗ is easily computable in this special setting, since�(A) = (O,O,A). We can
therefore just reveal the proof�⃗ := p(�⃗) = S⊤A⃗, which consists of only three group elements.

3. For each multi-scalar multiplication equationa⃗ ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T2 we use the symmetric
mapF . There is one matrixH1 that generates allH sov⃗ ∙Hv⃗. The proof is for randomr1 ← ℤp

�⃗ := R⊤�(ℬ⃗) +R⊤Γ�(Y⃗) + (S′)⊤�′(⃗a) + (S′)⊤Γ⊤�′(x⃗) +R⊤ΓS′u⃗+ r1H1u⃗.

26

For each linear equation⃗a ⋅ Y⃗ = T we use the asymmetric map̃F to get the proof

�⃗ := S⊤�′(⃗a).

It suffices to reveal the value⃗� = S⊤a⃗. Since�⃗ determines⃗� uniquely, this does not compro-
mise the perfect witness-indistinguishability we have on witness-indistinguishability strings. The
verifier can compute⃗� = �′(�⃗). The proof now consists of only 3 elements inℤp.

For each linear equation⃗x ⋅ ℬ⃗ = T we useF̃ to get the proof

� := R⊤�(ℬ⃗).

We can use⃗� = R⊤ℬ⃗ as the proof, since it allows the verifier to compute�⃗ = �(�⃗). The proof
therefore consists of only 2 group elements.

4. For each quadratic equationx⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp we use the symmetric mapF . There is one
matrixH1 that generates allH so v⃗ ∙Hv⃗. The proof is for randomr1 ← ℤp

�⃗ := R⊤�′(⃗b) +R⊤(Γ + Γ⊤)�′(x) +R⊤ΓRv⃗ + r1H1v⃗.

For each linear equation⃗x ⋅ b⃗ = t we use the asymmetric map̃F to get the proof⃗� := R⊤�′(⃗b).
It suffices to reveal just⃗� = R⊤b⃗, from which the verifier can compute⃗� = �′(�⃗).

Verification: On input(gk, �), a set of equations and a proofc⃗, d⃗, {�⃗i}
N
i=1 do:

1. For each pairing product equation(A⃗ ⋅ Y⃗)(Y⃗ ⋅ ΓY⃗) = tT with proof �⃗ check that

�(A⃗) ∙ d⃗+ d⃗ ∙ Γd⃗ = �T (tT) + u⃗ ∙ �⃗.

For each linear equation⃗A ⋅ Y⃗ = tT with proof �⃗ check

�(A⃗) ∙̃ d⃗ = �T (tT) + �(�⃗) ∙̃ u⃗ .

2. For each multi-scalar multiplication⃗a ⋅ Y⃗ + x⃗ ⋅ ℬ⃗ + x⃗ ⋅ ΓY⃗ = T with proof �⃗ check that

�′(⃗a) ∙ d⃗+ c⃗ ∙ �(ℬ⃗) + c⃗ ∙ Γd⃗ = �̂T (T) + u⃗ ∙ �⃗.

For each linear equation⃗a ⋅ Y⃗ = T with proof �⃗ check

�′(⃗a) ∙̃ d⃗ = �̂T (T) + �′(�⃗) ∙̃ u⃗.

For each linear equation⃗x ⋅ ℬ⃗ = T with proof �⃗ check

c⃗ ∙̃ �(ℬ⃗) = �̂T (T) + v⃗ ∙̃ �(�⃗).

3. For each quadratic equationx⃗ ⋅ b⃗+ x⃗ ⋅ Γx⃗ = t in ℤp with proof �⃗ check that

c⃗ ∙ �′(⃗b) + c⃗ ∙ Γc⃗ = �′T (t) + v⃗ ∙ �⃗.

For each linear equation⃗x ⋅ b⃗ = t with proof �⃗ check

c⃗ ∙̃ �′(⃗b) = �′T (t) + v⃗ ∙̃ �′(�⃗).

27

Theorem 9 The protocol is a NIWI proof with perfect completeness, perfect soundness and composable
witness-indistinguishability for satisfiability of a set of equations over a bilinear group where the DLIN
problem is hard.

Perfect completeness follows from Theorem 1. Perfect soundness follows from Theorem 2 since the�∘p maps
are identity maps onℤp, G andGT . The DLIN assumption gives us that the two types of common reference
strings are computationally indistinguishable. On a witness-indistinguishability string, the commitments are
perfectly hiding and we get perfect witness-indistinguishability from Theorem 5. □

SIZE. The module we work in isB = G3, so each element in the module consists of three group elements
from G. In some of the linear equations, we can computep(�⃗) efficiently and we have�(p(�⃗)) = �⃗ which
gives us a shorter proof. Table 6 list the cost of all the different types of equations.

Assumption: DLIN G ℤp

Variablesx ∈ ℤp,Y ∈ G 3 0
Pairing product equations 9 0
- Linear equation:A⃗ ⋅ Y⃗ = tT 3 0
Multi-scalar multiplication equations 9 0
- Linear equation:⃗a ⋅ Y⃗ = T 0 3
- Linear equation:⃗x ⋅ ℬ⃗ = T 2 0
Quadratic equations inℤp 6 0
- Linear equation:⃗x ⋅ b⃗ = t 0 2

Figure 6: Cost of each variable and equation measured in elements fromℤp andG.

11 Zero-Knowledge

We will now show that in many cases it is possible to make zero-knowledge proofs for satisfiability of
quadratic equations. An obvious strategy is to use our NIWI proofs directly, however, one could imagine
such proofs might not be zero-knowledge because the zero-knowledge simulator might not be able to compute
any witness for satisfiability of the equations. It turns outthat the strategy is better than it seems at first sight
though; we will often be able to modify the set of quadratic equations into an equivalent set of quadratic
equations where a witness can be found and which has the same distribution of proofs.

We will consider the case whereA1 = ℛ, A2 = AT , f(r, y) = ry. We remark that it is quite common
to haveA1 = ℛ; in bilinear groups both multi-scalar multiplication equations in G1, G2 and quadratic
equations inℤn have this structure.

The first stage of the simulatorS1 will output a witness-indistinguishability string and a simulation trap-
door � that makes it possible to trapdoor open the commitments inB1. More precisely,� = s⃗ ∈ ℛm̂ so
�1(1) = �1(0) + s⃗⊤u⃗. Definec := �1(1), which is a commitment to� = 1. The idea in the simulation is that
we can rewrite the statement as

a⃗i ⋅ y + f(−�, ti) + x⃗ ⋅ b⃗i + x⃗ ⋅ Γy⃗ = 0.

We have introduced a new variable� and by choosing all variables to be0 gives a satisfying witness. In the
simulation, the simulatorS2 will use the trapdoor information� to openc to 0 and it can now use the NIWI
proof from Section 7.

Setup: (gk, sk) := ((ℛ, A1, A2, AT , f), sk)← G(1
k), whereA1 = ℛ andA2 = AT .

28

Soundness string:� := (B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗,H1, . . . ,H�)← K(gk, sk).

NIZK proof: This protocol is exactly the same as in the NIWI proof, we do not even need to rewrite the
equations. The input consists ofgk, �, a list of quadratic equations{(⃗ai, b⃗i,Γi, ti)}

N
i=1 and a satisfying

witness⃗x, y⃗.

Pick at randomR ← Matm×m̂(ℛ) andS ← Matn×n̂(ℛ) and commit to all the variables asc⃗ :=
�1(x⃗) +Ru⃗ andd⃗ := �2(y⃗) + Sv⃗.

For each equation(⃗ai, b⃗i,Γi, ti) make a proof as described in Section 6. In other words, pickTi ←
Matn̂×m̂(ℛ) andri1, . . . , ri� ←ℛ and compute

�⃗i := R⊤�2(⃗bi) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤
i v⃗ +

�∑

j=1

rijHj v⃗

�⃗i := S⊤�1(⃗ai) + S⊤Γ⊤�1(x⃗) + Tiu⃗.

Output the proof(c⃗, d⃗, {(�⃗i, �⃗i)}Ni=1).

Verification: The input isgk, �, {(⃗ai, b⃗i,Γi, ti)}
N
i=1 and the proof(c⃗, d⃗, {(�⃗i, �⃗i)}).

For each equation check

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + c⃗ ∙ Γid⃗ = �T (ti) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

Output 1 if all the checks pass, else output 0.

Simulation string: (�, �) := ((B1, B2, BT , F, �1, p1, �2, p2, �T , pT , u⃗, v⃗,H1, . . . ,H�), s⃗) ← S1(gk, sk),
where�1(1) = �1(0) + s⃗⊤u⃗.

Simulated proof: The input consists ofgk, � and a list of quadratic equations{(⃗ai, b⃗i,Γi, ti)}
N
i=1 and the

simulation trapdoor� = s⃗.

Rewrite each equation asa⃗i ⋅ y⃗ + x⃗ ⋅ b⃗i + f(�,−ti) + x⃗ ⋅ Γiy⃗ = 0. Definex⃗ := 0⃗, y⃗ := 0⃗ and� = 0 to
get a witness that satisfies all the modified equations.

Pick at randomR ← Matm×m̂(ℛ) andS ← Matn×n̂(ℛ) and commit to all the variables asc⃗ :=
0⃗ +Ru⃗ andd⃗ := 0⃗ + Sv⃗. We also usec := �1(1) = �1(0) + s⃗⊤u⃗ and append it to⃗c.

For each modified equation(⃗ai, b⃗i,−ti,Γi, 0) make a proof as described in Section 6. Return the
simulated proof{(c⃗, d⃗, �⃗i, �⃗i)}Ni=1.

Theorem 10 The protocol described above is a composable NIZK proof for satisfiability of pairing product
equations with perfect completeness, perfectLco-soundness and composable zero-knowledge.

Proof. Perfect completeness on a soundness string follows from theperfect completeness of the NIWI proof.
The simulator knows an opening ofc := �1(1) to c = �1(0) +

∑m̂
i=1 siui. It therefore knows a witness

0⃗, 0⃗, � = 0 for satisfiability of all the modified equations. It therefore outputs a proof{(c⃗, d⃗, �⃗i, �⃗i)}Ni=1 such
that for alli we have

�1(⃗ai) ∙ d⃗+ c⃗ ∙ �2(⃗bi) + F (�1(1),−�2(ti)) + c⃗ ∙ Γid⃗ = �T (0) + u⃗ ∙ �⃗i + �⃗i ∙ v⃗.

The commutative property of the maps gives usF (�1(1), �2(ti)) = �T (f(1, ti)) = �T (ti), so the NIZK proofs
satisfy the equations the verifier checks. Perfect completeness on a simulation string now follows from the
perfect completeness of the NIWI proof as well.

29

PerfectLco-soundness follows from the perfectLco-soundness of the NIWI proof.
We will now show that on a simulation string we have perfect zero-knowledge. The commitments

c⃗, d⃗ and c = �1(1) are perfectly hiding and therefore have the same distribution whether we use witness
x⃗, y⃗, � = 1 or 0⃗, 0⃗, � = 0. Theorem 3 now tells us that the proofs�⃗i, �⃗i made with either type of opening
of c⃗, d⃗, c are uniformly distributed over all possible choices of{(�⃗i, �⃗i)}Ni=1 that satisfy the equations
�1(⃗ai) ∙ d⃗+ c⃗ ∙ b⃗i + c⃗ ∙ Γd⃗ = �T (t). We therefore have perfect zero-knowledge on a simulation string. □

Since the NIZK proof is exactly the same as the NIWI proof, there is no additional cost associated with
getting composable zero-knowledge for full quadratic equations. If we look at linear equations, there are two
cases to consider. On a linear equation of the formx⃗ ⋅⃗b = t, the simulator can rewrite it as⃗x ⋅⃗b+f(−�, t) = 0,
which is a linear equation of the same form. The shorter NIWI proofs for this type of linear equations can
therefore also be perfectly simulated on a simulation string. NIWI proofs for linear equations of the form
a⃗ ⋅ y⃗ = t on the other hand cannot be simulated as easily, because if the simulator rewrites the equation as
a⃗ ⋅ y⃗ + (−�, t) = 0, then it is no longer a linear equation. To get composable zero-knowledge for the latter
type of linear equation, the prover can instead use the NIWI proof for the full quadratic equation.

11.1 NIZK Proofs for Bilinear Groups

Let us now consider bilinear groups and the four types of quadratic equations given in Figure 1. If we set
up the common reference string such that we can trapdoor openrespectively�′1(1) and�′2(1) to 0 then multi-
scalar multiplication equations and quadratic equations in ℤn are of the form for which we can get a perfect
simulation.

In the case of pairing product equations we do not know how to get zero-knowledge, since even with the
trapdoors we may not be able to compute a witness. We do observe though that in the special case, where all
tT = 1 the choice ofX⃗ = O⃗, Y⃗ = O⃗ is a satisfactory witness. Since we also use the witnessX⃗ = O⃗, Y⃗ = O⃗
in the other types of equations, the simulator can use this witness in the simulation. In the special case where
all tT = 1 we can therefore make NIZK proofs for satisfiability of a set of quadratic equations.

In another special case where we have a pairing product equation with tT =
∏n

i=1 e(Pi,Qi) for some
knownPi,Qi there is another technique that can be useful to get zero-knowledge. In this case, we can add
the equations�Zi− �Qi = O to the set of multi-scalar multiplication equations inG2 and rewrite the pairing
product equation as(A⃗ ⋅ Y⃗)(X⃗ ⋅ ℬ⃗)(P⃗ ⋅ Z⃗)(X⃗ ⋅ ΓY⃗) = 1. This gives us pairing product equations of the
type where we can make zero-knowledge proofs. We can therefore also make zero-knowledge proofs for
a set of quadratic equations over a bilinear group if all the pairing product equations havetT of the form
tT =

∏n
i=1 e(Pi,Qi) for some knownPi,Qi.

The case of pairing product equations points to a couple of differences between witness-indistinguishable
proofs and zero-knowledge proofs using our techniques. NIWI proofs can handle any targettT , whereas zero-
knowledge proofs can only handle special types of targettT . Furthermore, iftT ∕= 1 the size of the NIWI
proof for this equation is constant, whereas the NIZK proof for the same equation may be larger.

We conclude our discussion of NIZK proofs with Figure 7 and Figure 8 that give the costs for proving the
satisfiability of a set of quadratic equations in the SXDH andDLIN instantiations. For the subgroup decision
instantiation, NIZK proofs for sets of quadratic equationswhere alltT = 1 are the same as those given in
Table 1.

12 Conclusion and an Open Problem

Our main contribution in this paper is the construction of efficient non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated with many different types of bilinear groups and
the security of our proofs can be based on many different types of intractability assumptions. We have given

30

Assumption: SXDH G1 G2 ℤp

Variablesx ∈ ℤp,X ∈ G1 2 0 0
Variablesy ∈ ℤp,Y ∈ G2 0 2 0
Pairing product equations withtT = 1 4 4 0
- Linear equation:A⃗ ⋅ Y⃗ = 1 2 0 0
- Linear equation:X⃗ ⋅ ℬ⃗ = 1 0 2 0
Multi-scalar multiplication equations inG1 2 4 0
- Linear equation:A⃗ ⋅ y⃗ = T1 1 0 0
- Linear equation:X⃗ ⋅ b⃗ = O 0 0 2
Multi-scalar multiplication equations inG2 4 2 0
- Linear equation:⃗a ⋅ Y⃗ = O 0 0 2
- Linear equation:⃗x ⋅ ℬ⃗ = T2 0 1 0
Quadratic equations inℤp 2 2 0
- Linear equation:⃗a ⋅ y⃗ = t 0 0 1
- Linear equation:⃗x ⋅ b⃗ = t 0 0 1

Figure 7: Cost of each variable and equation in an NIZK proof in the SXDH instantiation.

Assumption: DLIN G ℤp

Variablesx ∈ ℤp,Y ∈ G 3 0
Pairing product equations withtT = 1 9 0
- Linear equation:A⃗ ⋅ Y⃗ = 1 3 0
Multi-scalar multiplication equations 9 0
- Linear equation:⃗a ⋅ Y⃗ = O 0 3
- Linear equation:⃗x ⋅ ℬ⃗ = T 2 0
Quadratic equations inℤp 6 0
- Linear equation:⃗x ⋅ b⃗ = t 0 2

Figure 8: Cost of each variable and equation in an NIZK proof in the DLIN instantiation.

three concrete examples of instantiations based on respectively the subgroup decision assumption, the SXDH
assumption and the DLIN assumption.

We have been interested in bilinear groups and have in our instantiations based the modules on bilinear
groups. Our techniques generalize beyond bilinear groups though; we do for instance not require the modules
to be cyclic as is the case for bilinear groups. It is possiblethat other types of modules with a bilinear map
exist, which are not constructed from bilinear groups. The existence of such modules might lead to efficient
NIWI and NIZK proofs based on entirely different intractability assumptions. We leave the construction of
such modules with a bilinear map as an interesting open problem.

Acknowledgements

We gratefully acknowledge Brent Waters for a number of helpful ideas, comments, and conversations related
to this work. In particular, our module-based approach can be seen as formalizing part of the intuition
expressed by Waters that the Decisional Linear Assumption,Subgroup Decision Assumption in composite-
order groups, and SXDH can typically be exchanged for one another. (We were inspired by previously such

31

connections made by [GOS06a, Wat06].) It would be interesting to see if this intuition can be made formal
in other settings, such as Traitor Tracing [BSW06] or Searchable Encryption [BW06]. We thank Dan Boneh
for his encouragement and for suggesting using our techniques to get fair exchange. We also thank Ghadafi,
Smart, and Warinschi [GSW09] for their helpful feedback regarding earlier online versions of this paper,
observing and correcting some errors in Instantiations 2 and 3.

References

[Bar06] Paulo Barreto. The pairing-based crypto lounge, 2006. Available at
http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. InEUROCRYPT, volume 3027 ofLecture Notes in Computer Science, pages
223–238, 2004.

[BB04b] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, volume 3152 ofLecture Notes in Computer Science, pages 443–459, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. InCRYPTO, volume
3152 ofLecture Notes in Computer Science, pages 41–55, 2004.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss,and Anna Lysyanskaya. P-
signature and non-interactive anonymous credentials. InTCC, volume 4948 ofLec-
ture Notes in Computer Science, pages 356–374, 2008. Full paper available at
http://eprint.iacr.org/2007/384.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. InEUROCRYPT, volume 3027 ofLecture Notes in Computer
Science, pages 506–522, 2004.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.SIAM
Journal of Computing, 32(3):586–615, 2003.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its ap-
plications. InSTOC, pages 103–112, 1988.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros,and Fabian Monrose. Correlation-resistant
storage via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417,
2005. Available athttp://eprint.iacr.org/2005/417.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating2-DNF formulas on ciphertexts. In
TCC, volume 3378 ofLecture Notes in Computer Science, pages 325–341, 2005.

[Bon06] Dan Boneh. Personal communication, 2006.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. InEUROCRYPT, volume 4004 ofLecture Notes in Computer
Science, pages 573–592, 2006.

[BW06] Xavier Boyen and Brent Waters. Compact group signatures without random oracles. InEU-
ROCRYPT, volume 4004 ofLecture Notes in Computer Science, pages 427–444, 2006.

32

[BW07] Xavier Boyen and Brent Waters. Full-domain subgrouphiding and constant-size group signa-
tures. InPKC, volume 4450 ofLecture Notes in Computer Science, pages 1–15, 2007.

[CGS07] Nishanth Chandran, Jens Groth, and Amit Sahai. Ringsignatures of sub-linear size without
random oracles. InICALP, volume 4596 ofLecture Notes in Computer Science, pages 423–
434, 2007.

[Dam92] Ivan Damgård. Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. InEUROCRYPT, volume 658 ofLecture Notes in Computer
Science, pages 341–355, 1992.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography.SIAM Journal
of Computing, 30(2):391–437, 2000.

[DDP02] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-optimal
characterization of two NP proof systems. InRANDOM, volume 2483 ofLecture Notes in
Computer Science, pages 179–193, 2002.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiplenon-interactive zero knowledge proofs
under general assumptions.SIAM Journal of Computing, 29(1):1–28, 1999.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer.
In ASIACRYPT, volume 5350 ofLecture Notes in Computer Science, pages 179–197, 2008.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based verifiability. InASI-
ACRYPT, volume 4833 ofLecture Notes in Computer Science, pages 51–67, 2007.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proofs.SIAM Journal of Computing, 18(1):186–208, 1989.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In CRYPTO, volume 4117 ofLecture Notes in Computer Science, pages 97–111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-knowledge for NP.
In EUROCRYPT, volume 4004 ofLecture Notes in Computer Science, pages 339–358, 2006.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. InACM CCS, pages 89–98, 2006.

[GR04] Steven D. Galbraith and Victor Rotger. Easy decisionDiffie-Hellman groups.London Mathe-
matical Society Journal of Computation and Mathematics, 7:201–218, 2004.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. InASIACRYPT, volume 4248 of Lecture
Notes in Computer Science, pages 444–459, 2006. Full paper available at
http://www.brics.dk/∼jg/NIZKGroupSignFull.pdf.

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. InASIACRYPT,
volume 4833 ofLecture Notes in Computer Science, pages 164–180, 2007. Full paper available
athttp://www.brics.dk/∼jg/CertiSignFull.pdf.

[GSW09] Essam Ghadafi, Nigel P. Smart, and Bogdan Warinschi.Groth–sahai proofs revisited. Cryp-
tology ePrint Archive, Report 2009/599, 2009.

33

[KP98] Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof system for NP
with general assumptions.Journal of Cryptology, 11(1):1–27, 1998.

[Mic03] Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. InPODC,
pages 12–19, 2003.

[Pat05] Kenneth G. Paterson. Cryptography from pairings. In I.F. Blake, G. Seroussi, and N.P. Smart,
editors,Advances in Elliptic Curve Cryptography, volume 317 ofLondon Mathematical Soci-
ety Lecture Note Series, pages 215–251. Cambridge University Press, 2005.

[Sco02] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple to-
ken and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. Available at
http://eprint.iacr.org/2002/164.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, volume
3494 ofLecture Notes in Computer Science, pages 457–473, 2005.

[Ver04] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems.Journal of Cryptology, 17(4):277–296, 2004.

[Wat05] Brent Waters. Efficient identity-based encryptionwithout random oracles. InEUROCRYPT,
volume 3494 ofLecture Notes in Computer Science, pages 114–127, 2005.

[Wat06] Brent Waters. New techniques for slightly 2-homomorphic encryption, 2006. Manuscript.

34

A Quick Reference to Notation

Bilinear groups.
G1, G2, GT : cyclic groups with bilinear mape : G1 ×G2 → GT .
P1,P2: generators of respectivelyG1 andG2.
Group order: prime orderp or composite ordern.

Modules with bilinear map.
ℛ: finite commutative ring(ℛ,+, ⋅, 0, 1).
A1, A2, AT , B1, B2, BT : ℛ-modules.
f, F : bilinear mapsf : A1 ×A2 → AT andF : B1 ×B2 → BT .

x⃗ ⋅ y⃗ :=
n∑

i=1

f(xi, yi) , x⃗ ∙ y⃗ :=
n∑

i=1

F (xi, yi).

Properties that follows from bilinearity:

x⃗ ⋅My⃗ = M⊤x⃗ ⋅ y⃗ , x⃗ ∙My⃗ = M⊤x⃗ ∙ y⃗.

Commutative diagram of maps in setup.

A1 × A2 → AT

f
�1 ↓↑ p1 �2 ↓↑ p2 �T ↓↑ pT

B1 × B2 → BT

F

Commutative properties:

F (�1(x), �2(y)) = �T (f(x, y)) , f(p1(x), p2(x)) = pT (F (x, y)).

Equations.
(Secret) variables:⃗x ∈ Am

1 , y⃗ ∈ An
2 .

(Public) constants:⃗a ∈ An
1 , b⃗ ∈ Am

2 ,Γ ∈Matm×n(ℛ), t ∈ AT .
Equations:⃗a ⋅ y⃗ + x⃗ ⋅ b⃗+ x⃗ ⋅ Γy⃗ = t.

Commitments.
Commitment keys:⃗u ∈ Bm̂

1 , v⃗ ∈ Bn̂
2 .

Commitments:
c⃗ := �1(x⃗) +Ru⃗ ∈ Bm

1 , d⃗ := �2(y⃗) + Sv⃗ ∈ Bn
2 .

NIWI proofs.
Additional setup information:H1, . . . ,H� so u⃗ ∙Hiv⃗ = 0.
Randomness in proofs:T ← Matn̂×m̂(ℛ), r1, . . . , r� ←ℛ.
Proofs:

�⃗ := R⊤�2(⃗b) +R⊤Γ�2(y⃗) +R⊤ΓSv⃗ − T⊤v⃗ +

�∑

i=1

riHiv⃗

�⃗ := S⊤�1(⃗a) + S⊤Γ⊤�1(x⃗) + T u⃗

Verification: �1(⃗a) ∙ d⃗+ c⃗ ∙ �2(⃗b) + c⃗ ∙ Γd⃗ = �T (t) + u⃗ ∙ �⃗ + �⃗ ∙ v⃗.

35

