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Abstrat

Reently, Tanaka proposed an identity based non-interative key sharing

sheme based on the intratability of integer fatorization and disrete log-

arithm. The proposed identity based non-interative key sharing sheme is

similar to the well-known Maurer-Yaobi publi key distribution sheme but

the omputational omplexity for private key generation an be signi�antly

redued. It is also laimed that the proposed identity based non-interative

key sharing sheme is \ollusion-attak free", i.e., seure against ollusion at-

taks. In this paper, we analyze the seurity of the \ollusion-attak free"

identity based non-interative key sharing sheme. First, we show that, with-

out olluding with other users, a single user an reover some of the seret

information of the private key generator. Then we show that a small group of

users an ollude to reover all of the seret information held by the private

key generator. Thus, the \ollusion-attak free" identity based non-interative

key sharing sheme an be ompletely ompromised by ollusion attaks.

Key words: identity based ryptosystem, non-interative key sharing, inte-

ger fatorization, disrete logarithm, ollusion attak,

1 Introdution

Identity based publi key ryptosystem is a paradigm proposed by Shamir [14℄ in 1984.

In suh a ryptosystem, a user's publi key an be hosen as the user's identity, thus

key management an be greatly simpli�ed in omparison with erti�ates management

in traditional publi key infrastruture (PKI). Following Shamir's proposal, eÆient

solutions for the related notions of identity based signature and identi�ation shemes

were quikly found, e.g., [5, 6℄, however, identity based enryption remained to be

a muh more hallenging problem until 2001 when Boneh and Franklin [2℄ proposed
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to use bilinear maps (the Weil or Tate pairing) over supersingular ellipti urves to

ahieve an elegant identity based enryption sheme.

Prior to the invention of the Boneh-Franklin identity based enryption sheme,

many researhers had proposed a variety of solutions for identity based enryption,

e.g., [3, 17, 15, 9, 7℄, most notably the Maurer-Yaobi publi key distribution sheme

[9℄. Unfortunately, almost none of the proposed solutions were fully satisfatory.

Some solutions require enormous omputing power for private key generation. Other

solutions require tamper resistant hardware, or they are vulnerable to user ollusions.

In the Maurer-Yaobi publi key distribution sheme, a user's private key is the

disrete logarithm of the user's identity (or a modi�ation of user's identity) modulo a

large omposite number. To generate a private key, a trusted authority alled private

key generator (PKG) needs to solve more than two, say three disrete logarithms

modulo large prime moduli p; q and r of whih the produt n = pqr is intratable

to fator, and then synthesizes the disrete logarithms using the Chinese Remainder

Theorem. Hene, it is not only extremely diÆult to generate eah user's private key,

but also the size of parameters is strongly restrited.

Reently, Tanaka proposed an identity based non-interative key sharing sheme

[16℄, whih an be turned into an ElGamal-like [4℄ publi-key ryptosystem. Tanaka's

identity based non-interative key sharing sheme is similar to the Maurer-Yaobi

publi key distribution sheme [9℄ inluding its modi�ed version [8℄ and Murakami-

Kasahara's sheme [11℄, but the private key generation is essentially di�erent from

that in the Maurer-Yaobi sheme. In Tanaka's sheme, eah user's private key an be

generated by solving two simple disrete logarithm problems for prime moduli p and

q, respetively, and then synthesizing the disrete logarithms by a linear ombination

without using the Chinese Remainder Theorem, where p and q are seleted so that the

Pohlig-Hellman algorithm [12℄ assisted by the index alulus [1℄ an be applied easily

but it is intratable to apply the Pollard's fatoring algorithm [13℄ and its modi�ed

algorithm [18℄. It is shown in [16℄ that the omputational omplexity for private

key generation an be remarkably redued in omparison with that in the Maurer-

Yaobi publi key distribution sheme. Moreover, it is also laimed in [16℄ that the

proposed identity-based non-interative key sharing sheme is \ollusion attak free",

i.e., seure against ollusion attaks.

In this paper, we analyze the seurity of the \ollusion-attak free" identity based

non-interative key sharing sheme proposed by Tanaka. First, we show that, without

olluding with other users, a single user an reover some of the seret information

of the private key generator. Then we show that a small group of users an ollude

to reover all of the seret information held by the private key generator. Thus,

the \ollusion-attak free" identity based non-interative key sharing sheme an be

ompletely ompromised by ollusion attaks. The rest of the paper is organized

as follows. In Setion 2, we provide an overview of Tanaka's identity based non-

interative key sharing sheme and the orresponding identity based enryption. We

identify an error in the private key generation of Tanaka's sheme and provide a
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revision for the private key generation. In Setion 3, we present ollusion attaks

on Tanaka's identity based non-interative key sharing sheme and show that the

identity based non-interative key sharing sheme an be ompletely ompromised.

We onlude in setion 4.

2 Non-interative Key Sharing and Identity based

Enryption

In this setion, we provide a brief desription of Tanaka's identity based non-interative

key sharing sheme and the orresponding identity based enryption. We also point

out an error in the private key generation of Tanaka's sheme and provide a revision

for the private key generation.

Set-up: A trusted authority, alled private key generator (PKG), selets two large

primes p and q of about the same size suh that p� 1 = � and q � 1 = �Æ, where

�, � are large primes and , Æ are b-smooth integers. The prime numbers p, q, �

and � should also satisfy the ondition that fatoring pq and �� are omputationally

infeasible. Then the private key generator omputes the produt n = pq of the seleted

primes p and q, determines an element g that is primitive in both multipliative groups

of integers modulo p and q, and publishes n as the system parameter.

Key generation: Given an identity ID

i

of user i, the private key generator om-

putes two integers x

i

and y

i

satisfying the following equations

ID

�

i

= g

�x

i

= g

x

i

�

mod p; (1)

ID

�

i

= g

�y

i

= g

y

i

�

mod q; (2)

where g

�

= g

�

mod p and g

�

= g

�

mod q. Equations (1) and (2) have unique solutions

x

i

2 Z

p�1

and y

i

2 Z

q�1

for any ID

i

beause g is a primitive element in both Z

�

p

and

Z

�

q

. Note that the order of g

�

in Z

�

p

, whih is equal to , is b-smooth, the integer x

i

an be omputed using the Pohlig-Hellman algorithm [12℄. Likewise, the integer y

i

an be omputed using the Pohlig-Hellman algorithm sine the order of g

�

in Z

q

is

also b-smooth. Let �(n) denote the order of g in Z

�

n

, that is �(n) = lm(p� 1; q� 1).

Also let

L

1

=

�(n)

p� 1

=

�(n)

�

; (3)

and

L

2

=

�(n)

q � 1

=

�(n)

�Æ

: (4)

Then the private key generator omputes the private key, denoted by d

i

, of user i as

follows

d

i

= �L

1

x

i

+ �L

2

y

i

mod �(n): (5)
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The private key generator may deliver the private key d

i

to user i through a seure

out-of-band hannel.

It should be remarked that d

i

is not neessarily a disrete logarithm of ID

i

(or a

modi�ation of ID

i

) modulo n.

Non-Interative Key Sharing: Let ID

A

and ID

B

denote the identities of two

users A and B respetively. It is stated in [16℄ that x

A

; y

A

and x

B

; y

B

satisfy the

following equations

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod n (6)

ID

�L

2

y

A

B

= ID

�L2y

B

A

mod n (7)

Multiplying both sides of (6) and (7) results in the following equation

ID

d

A

B

= ID

d

B

A

mod n (8)

Equation (8) indiates that user A an share a ommon key, K

AB

= ID

d

A

B

mod n,

with user B by using the identity ID

B

of user B and the private key d

A

of user

A. Likewise, user B an share a ommon key, K

BA

= ID

d

A

B

mod n = K

AB

, with

user A by using the identity ID

A

of user A and the private key d

B

of user B. It is

interesting to notie that the ommon key sharing K

AB

= ID

d

A

B

mod n is similar to

the derypting proess of RSA publi key ryptosystem.

Identity Based Enryption: It is straightforward to turn the non-interative

key sharing sheme into identity based enryption. Assume that user A wants to send

a message m 2 Z

�

n

to user B. User A selets a random number R; 0 < R < n and

omputes

C

1

= ID

R

A

mod n

C

2

= m � ID

Rd

A

B

mod n

Then user A sends the iphertext C = (C

1

; C

2

) to user B. User B derypts the

iphertext C using B's private key d

B

as follows.

C

2

� C

�d

B

1

= m � ID

d

A

R

B

� ID

�d

B

R

A

mod n

= m �K

R

AB

�K

�R

BA

mod n

= m:

Remarks: At the end of this setion, we would like to point out an error in the

private key generation of the non-interative key sharing sheme as desribed above.

In fat, equations (6) and (7) may not be satis�ed. By (1) and (2), it is lear that

the following two equations are satis�ed.

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod p
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ID

�L

2

y

A

B

= ID

�L2y

B

A

mod q

However, the following equations may not be satis�ed.

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod q (9)

ID

�L

2

y

A

B

= ID

�L2y

B

A

mod p (10)

To explain the reason, let's assume that gd(�; Æ) = 2. Then L

1

= (q � 1)=2 and

L

2

= (p� 1)=2. Also assume that the Legendre symbols of ID

A

and ID

B

satisfy the

following onditions

�

ID

A

p

�

= 1;

�

ID

A

q

�

= �1;

�

ID

B

p

�

= �1:

By (1),

�

ID

A

p

�

�

=

�

ID

A

�

p

�

=

�

g

p

�

�x

A

= 1

Sine g is a primitive element in Z

�

p

, (

g

p

) = �1, whih implies that x

A

must be even.

Similar, it an be proved that x

B

is an odd integer. By Euler's riterion,

ID

A

L

1

= ID

A

(q�1)

2

=

�

ID

A

q

�

= �1 mod q:

Hene,

ID

A

�L

1

x

B

=

�

ID

A

q

�

�x

B

= �1 mod q

Other the other hand,

ID

B

�L

1

x

A

=

�

ID

B

q

�

�x

A

= 1 mod q;

whih indiates that equation (9) an not be satis�ed. Similarly, it an be proved

that equation (10) an not be satis�ed, either.

It is easy to verify that equations (6) and (7) an be satis�ed if gd(; Æ) = 2 and

the Joobi symbols

�

ID

A

n

�

and

�

ID

B

n

�

are equal to 1. Based on this observation, the

private key generation an be revised as follows: 1) selet two primes p = 1+� and

q = 1+ �Æ suh that gd(; Æ) = 2; and 2) replae the the identity ID

i

of eah user i

by by ID

i

+ a

i

mod n, where a

i

is the least positive integer suh that

�

ID

i

+a

i

n

�

= 1.

We also observe that, if L

1

and L

2

as de�ned by equations (3) and (4) are replaed

by L

0

1

= q�1 = �Æ and L

0

2

= p�1 = �, then equations (6) and (7) are satis�ed. So,

the private key generation, i.e., equation (5), an be revised, alternatively, as follows

d

0

i

= ��Æx

i

+ ��y

i

mod �(n): (11)

With the revision, user A and user B an share a ommon key as ID

d

0

A

B

= ID

d

0

B

A

mod n.

In the following setion, we show that the identity based non-interative key shar-

ing and enryption are vulnerable regardless of whether the private key generation is

based on (5) or (11).

5



3 Analysis of Non-Interative Key Sharing

In this setion, we analyze the seurity of the non-interative key sharing sheme

desribed in Setion 2. Dependent on whether  is equal to Æ, our analysis is arried

out in two ases. In the ase when  6= Æ, we show that a single user an fator

the modulus n by exploiting the information embedded in his/her private key. In

the ase when s = Æ, we show that a small group of users an ollude to fator the

modulus n. After fatoring modulus n, we show that two users an ollude to reover

the generator g. In the following, we fous our analysis on the private key generation

de�ned by equation (5). It is straightforward to extend our analysis to the revised

private key generation desribed by equation (11).

3.1 Fatoring Modulus n

Let 

0

= = gd(; Æ) and Æ

0

= Æ= gd(; Æ). By (5), the private key d

A

of user A an

be expressed as

d

A

= ��(Æ

0

x

A

+ 

0

y

A

) mod �(n):

Let �

A

= Æ

0

x

A

+ 

0

y

A

mod �(n). If x

A

and y

A

are modeled as independent and

identially distributed random variables in Z

p�1

and Z

q�1

respetively, then �

A

an

be treated as a random variable in Z

�(n)

. Thus, the probability that �

A

is relatively

prime to  is approximately �()=, whih is greater than 1=(6 log log ) (see page

65 of [10℄). For simpliity, we assume that the private key of user A satis�es the

onditions: gd(; �

A

) = 1 and gd(Æ; �

A

) = 1. Then for any integer a satisfying

gd(a; n) = 1, Fermat's theorem implies

a

d

A

= 1 mod p; (12)

and

a

Æd

A

= 1 mod q: (13)

Now, we show that modulus n an be fatored based on equations (12) and (13).

Depending on whether  is equal to Æ, we onsider the following two ases.

Case 1:  6= Æ. In this ase, there exist two b-smooth integers Q

1

and Q

2

suh

that jQ

1

and ÆjQ

2

, but  - Q

2

and Æ - Q

1

, or equivalently,

a

Q

1

d

A

= 1 mod p; a

Q

2

d

A

= 1 mod q;

but

a

Q

1

d

A

6= 1 mod q; a

Q

2

d

A

6= 1 mod p:

Consequently, we have

pj(a

Q

1

d

A

� 1); q - (a

Q

1

d

A

� 1);

and

qj(a

Q

2

d

A

� 1); p - (a

Q

2

d

A

� 1):
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Therefore, modulus n an be fatored as

p = gd(a

Q

1

d

A

� 1; n); q = gd(a

Q

2

d

A

� 1; n):

Next, we show that Q

1

or Q

2

an be derived using the idea of Pollard's p � 1

fatoring algorithm [13℄. Let q

1

; q

2

; � � � ; q

t

denote all the primes less than or equal to

b and let Q denote the least ommon multiple of all powers of q

1

; q

2

; � � � ; q

t

that are

less than or equal to n, that is

Q =

t

Y

i=1

q

l

i

i

;

where l

i

= blogn= log q

i

. Then jQ and ÆjQ, or equivalently,

a

Qd

A

= 1 mod n:

Sine  6= Æ, there exists a prime number q

i

; 1 � i � t and an integer 

i

, 1 � 

i

� l

i

suh that Q=q



i

i

is divisible by either  or Æ, but not by both. Thus, Q=q



i

i

is equal

to either Q

1

or Q

2

. The prime number q

i

and the integer 

i

satisfy the following

onditions

a

q

�

i

i

Qd

A

6= 1 mod n; (14)

gd(a

Qq

�

i

i

d

A

� 1; n) > 1: (15)

Based on (14) and (15), we an searh for q

i

and 

i

for 1 � i � t and 1 � 

i

� l

i

. we

have the following algorithm for searhing q

i

and 

i

, and onsequently for fatoring

modulus n.

1. Selet a smoothness bound b.

2. Selet a random integer a, 2 � a � n� 1, and ompute z = gd(a; n). If z � 2,

then return z and n=z.

3. For all prime numbers q

1

; q

2

; � � � ; q

t

less than or equal to b, ompute l

i

=

blogn= log q

i

; 1 � i � t, and Q =

Q

t

i=1

q

l

i

i

.

4. For eah integer i, 1 � i � t do the following:

(a) q  q

i

; l l

i

:

(b) For eah integer , 1 �  � l do the following:

i. Q Q=q.

ii. Compute z = a

Qd

A

� 1 mod n.

iii. If z 6= 0 and gd(z; n) > 1, then return gd(z; n) and n= gd(z; n).

iv. If z 6= 0 and gd(z; n) = 1, then Q q �Q and go to step 4.

7



One n is fatored,  and Æ an be omputed by  = gd(Q; p�1) and Æ = gd(Q; q�

1). The running time of the above fatoring algorithm is O(b lnn= ln b) modular

multipliations. The running time may be redued if user A an ollude with other

users. Note that user A an obtain �� by omputing the greatest ommon divisor of

d

A

and the private keys of other users. One �� is known, user A an obtain Æ by

omputing

n�1

��

, that is,

n� 1

��

=

(� + 1)(�Æ + 1)� 1

��

;

= Æ +



�

+

Æ

�

:

Thus, Æ = b

n�1

��

, under the ondition that  < �=2 and Æ < �=2, whih is usually

true. From the prime-power fatorization of Æ, the smoothness bound b an be

preisely determined for  and Æ. Furthermore, Q an be replaed by Æ in step 3 of

the fatoring algorithm desribed above. Sine the prime fators of Æ are a subset

of those of Q, the searhing time for a prime number q and an integer  satisfying

jq

�

Æ but Æ - q

�

Æ or vie versa an be redued when Q and its prime powers are

replaed by Æ and the prime powers of Æ, respetively.

Case 2:  = Æ. In this ase, the fatoring algorithm developed for Case 1 an

not be used to fator modulus n sine any integer divisible by  is also divisible by

Æ. Consequently, for any integer v, gd(a

vd

A

� 1; n) is either equal to 1 or equal to n.

Nevertheless, a single user, say user A again, an reover  and Æ without olluding

with other users. As in Case 1, let Q =

Q

t

i=1

q

l

i

i

denote the least ommon multiple

of all powers of primes upper-bounded by b suh that Q is less than or equal to n.

If q



i

i

; 1 � i � t; 1 � 

i

� l

i

, is a prime power in the prime-power fatorization of ,

then for any integer a relatively prime to n, the following onditions are satis�ed

a

q



i

�l

i

i

Qd

A

= 1 mod n; (16)

and

a

q



i

�l

i

�1

i

Qd

A

6= 1 mod n: (17)

Based on (16) and (17), user A an searh for all the prime powers in the prime-power

fatorization of  and �.

To fator modulus n, however, user A needs to ollude with a group of other users.

First, user A obtains the produt of � and �, denoted by V = ��, by omputing the

greatest ommon divisor of his/her private key d

A

and the private keys of other

users. After V = �� is known, user A an reover  and Æ in an alternative way as

 = Æ =

q

b

n�1

��

. Then user A fators V = �� by solving the following equations

(� + �) = n� 

2

V � 1

�� = V

8



One � and � are obtained, user A an fator modulus n by omputing p = � + 1

and q = �Æ + 1.

3.2 Reovering Generator g

After reovering p and q, user A an ompute an element h 2 Z

�

n

whih is primitive

in both Z

�

p

and Z

�

q

. Furthermore, user A an determine two integers �

A

2 Z

p�1

and

�

A

2 Z

q�1

satisfying

ID

�

A

= h

��

A

mod p; (18)

ID

�

A

= h

��

A

mod q: (19)

Sine g is also a primitive element in both Z

�

p

and Z

�

q

, there exists two integers

�

1

2 Z

p�1

and �

2

2 Z

q�1

suh that �

1

- (p� 1); �

2

- (q � 1), and

g = h

�

1

mod p; (20)

g = h

�

2

mod q: (21)

Note that there may not exist an integer � 2 Z

�(n)

suh that � = �

1

mod (p� 1) and

� = �

2

mod (q � 1). Substituting (20) and (21) into (1) and (2) and omparing with

(18) and (19), we have

x

A

= �

�1

1

�

A

mod (p� 1);

and

y

A

= �

�1

2

�

A

mod (q � 1):

Thus, the private key of user A an be expressed as follows

d

A

= �L

1

�

�1

1

�

A

+ �L

2

�

�1

2

�

A

mod �(n) (22)

Likewise, the private key of user B an be desribed as

d

B

= �L

1

�

�1

1

�

B

+ �L

2

�

�1

2

�

B

mod �(n) (23)

Hene, user A an ollude with user B to solve for �

1

and �

2

based on equations (22)

and (23). One �

1

and �

2

are obtained, the primitive element g an be reovered

based on (20) and (21) by the Chinese Remainder Theorem.

After reovering all the serets information of the private key generator, i.e.,

p; q; �; �; ; Æ and g, user A an ompute the private keys of all users. Therefore,

the identity based non-interative key sharing sheme proposed in [16℄ an be om-

promised ompletely.
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4 Conlusion

In this paper, we analyze the seurity of the \ollusion-attak free" identity based

non-interative key sharing sheme proposed in [16℄. The proposed identity based

non-interative key sharing sheme is very similar to the the Maurer-Yaobi publi

key distribution sheme, but the private key generation is muh more eÆient than

that in the Maurer-Yaobi publi key distribution sheme. Unfortunately, we show

in this paper that the identity based non-interative key sharing sheme proposed

in [16℄ is vulnerable to ollusion attaks. Using the idea of Pollard's p � 1 fatoring

algorithm, we show that a single user an reover some of the seret information of the

private key generator without olluding with other users. We also show that a small

group of users an ollude to reover all of the seret information held by the private

key generator. Thus, the \ollusion-attak free" identity based non-interative key

sharing sheme an be ompletely ompromised by ollusion attaks.
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