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Abstra
t

Re
ently, Tanaka proposed an identity based non-intera
tive key sharing

s
heme based on the intra
tability of integer fa
torization and dis
rete log-

arithm. The proposed identity based non-intera
tive key sharing s
heme is

similar to the well-known Maurer-Ya
obi publi
 key distribution s
heme but

the 
omputational 
omplexity for private key generation 
an be signi�
antly

redu
ed. It is also 
laimed that the proposed identity based non-intera
tive

key sharing s
heme is \
ollusion-atta
k free", i.e., se
ure against 
ollusion at-

ta
ks. In this paper, we analyze the se
urity of the \
ollusion-atta
k free"

identity based non-intera
tive key sharing s
heme. First, we show that, with-

out 
olluding with other users, a single user 
an re
over some of the se
ret

information of the private key generator. Then we show that a small group of

users 
an 
ollude to re
over all of the se
ret information held by the private

key generator. Thus, the \
ollusion-atta
k free" identity based non-intera
tive

key sharing s
heme 
an be 
ompletely 
ompromised by 
ollusion atta
ks.

Key words: identity based 
ryptosystem, non-intera
tive key sharing, inte-

ger fa
torization, dis
rete logarithm, 
ollusion atta
k,

1 Introdu
tion

Identity based publi
 key 
ryptosystem is a paradigm proposed by Shamir [14℄ in 1984.

In su
h a 
ryptosystem, a user's publi
 key 
an be 
hosen as the user's identity, thus

key management 
an be greatly simpli�ed in 
omparison with 
erti�
ates management

in traditional publi
 key infrastru
ture (PKI). Following Shamir's proposal, eÆ
ient

solutions for the related notions of identity based signature and identi�
ation s
hemes

were qui
kly found, e.g., [5, 6℄, however, identity based en
ryption remained to be

a mu
h more 
hallenging problem until 2001 when Boneh and Franklin [2℄ proposed
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to use bilinear maps (the Weil or Tate pairing) over supersingular ellipti
 
urves to

a
hieve an elegant identity based en
ryption s
heme.

Prior to the invention of the Boneh-Franklin identity based en
ryption s
heme,

many resear
hers had proposed a variety of solutions for identity based en
ryption,

e.g., [3, 17, 15, 9, 7℄, most notably the Maurer-Ya
obi publi
 key distribution s
heme

[9℄. Unfortunately, almost none of the proposed solutions were fully satisfa
tory.

Some solutions require enormous 
omputing power for private key generation. Other

solutions require tamper resistant hardware, or they are vulnerable to user 
ollusions.

In the Maurer-Ya
obi publi
 key distribution s
heme, a user's private key is the

dis
rete logarithm of the user's identity (or a modi�
ation of user's identity) modulo a

large 
omposite number. To generate a private key, a trusted authority 
alled private

key generator (PKG) needs to solve more than two, say three dis
rete logarithms

modulo large prime moduli p; q and r of whi
h the produ
t n = pqr is intra
table

to fa
tor, and then synthesizes the dis
rete logarithms using the Chinese Remainder

Theorem. Hen
e, it is not only extremely diÆ
ult to generate ea
h user's private key,

but also the size of parameters is strongly restri
ted.

Re
ently, Tanaka proposed an identity based non-intera
tive key sharing s
heme

[16℄, whi
h 
an be turned into an ElGamal-like [4℄ publi
-key 
ryptosystem. Tanaka's

identity based non-intera
tive key sharing s
heme is similar to the Maurer-Ya
obi

publi
 key distribution s
heme [9℄ in
luding its modi�ed version [8℄ and Murakami-

Kasahara's s
heme [11℄, but the private key generation is essentially di�erent from

that in the Maurer-Ya
obi s
heme. In Tanaka's s
heme, ea
h user's private key 
an be

generated by solving two simple dis
rete logarithm problems for prime moduli p and

q, respe
tively, and then synthesizing the dis
rete logarithms by a linear 
ombination

without using the Chinese Remainder Theorem, where p and q are sele
ted so that the

Pohlig-Hellman algorithm [12℄ assisted by the index 
al
ulus [1℄ 
an be applied easily

but it is intra
table to apply the Pollard's fa
toring algorithm [13℄ and its modi�ed

algorithm [18℄. It is shown in [16℄ that the 
omputational 
omplexity for private

key generation 
an be remarkably redu
ed in 
omparison with that in the Maurer-

Ya
obi publi
 key distribution s
heme. Moreover, it is also 
laimed in [16℄ that the

proposed identity-based non-intera
tive key sharing s
heme is \
ollusion atta
k free",

i.e., se
ure against 
ollusion atta
ks.

In this paper, we analyze the se
urity of the \
ollusion-atta
k free" identity based

non-intera
tive key sharing s
heme proposed by Tanaka. First, we show that, without


olluding with other users, a single user 
an re
over some of the se
ret information

of the private key generator. Then we show that a small group of users 
an 
ollude

to re
over all of the se
ret information held by the private key generator. Thus,

the \
ollusion-atta
k free" identity based non-intera
tive key sharing s
heme 
an be


ompletely 
ompromised by 
ollusion atta
ks. The rest of the paper is organized

as follows. In Se
tion 2, we provide an overview of Tanaka's identity based non-

intera
tive key sharing s
heme and the 
orresponding identity based en
ryption. We

identify an error in the private key generation of Tanaka's s
heme and provide a
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revision for the private key generation. In Se
tion 3, we present 
ollusion atta
ks

on Tanaka's identity based non-intera
tive key sharing s
heme and show that the

identity based non-intera
tive key sharing s
heme 
an be 
ompletely 
ompromised.

We 
on
lude in se
tion 4.

2 Non-intera
tive Key Sharing and Identity based

En
ryption

In this se
tion, we provide a brief des
ription of Tanaka's identity based non-intera
tive

key sharing s
heme and the 
orresponding identity based en
ryption. We also point

out an error in the private key generation of Tanaka's s
heme and provide a revision

for the private key generation.

Set-up: A trusted authority, 
alled private key generator (PKG), sele
ts two large

primes p and q of about the same size su
h that p� 1 = �
 and q � 1 = �Æ, where

�, � are large primes and 
, Æ are b-smooth integers. The prime numbers p, q, �

and � should also satisfy the 
ondition that fa
toring pq and �� are 
omputationally

infeasible. Then the private key generator 
omputes the produ
t n = pq of the sele
ted

primes p and q, determines an element g that is primitive in both multipli
ative groups

of integers modulo p and q, and publishes n as the system parameter.

Key generation: Given an identity ID

i

of user i, the private key generator 
om-

putes two integers x

i

and y

i

satisfying the following equations

ID

�

i

= g

�x

i

= g

x

i

�

mod p; (1)

ID

�

i

= g

�y

i

= g

y

i

�

mod q; (2)

where g

�

= g

�

mod p and g

�

= g

�

mod q. Equations (1) and (2) have unique solutions

x

i

2 Z

p�1

and y

i

2 Z

q�1

for any ID

i

be
ause g is a primitive element in both Z

�

p

and

Z

�

q

. Note that the order of g

�

in Z

�

p

, whi
h is equal to 
, is b-smooth, the integer x

i


an be 
omputed using the Pohlig-Hellman algorithm [12℄. Likewise, the integer y

i


an be 
omputed using the Pohlig-Hellman algorithm sin
e the order of g

�

in Z

q

is

also b-smooth. Let �(n) denote the order of g in Z

�

n

, that is �(n) = l
m(p� 1; q� 1).

Also let

L

1

=

�(n)

p� 1

=

�(n)

�


; (3)

and

L

2

=

�(n)

q � 1

=

�(n)

�Æ

: (4)

Then the private key generator 
omputes the private key, denoted by d

i

, of user i as

follows

d

i

= �L

1

x

i

+ �L

2

y

i

mod �(n): (5)
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The private key generator may deliver the private key d

i

to user i through a se
ure

out-of-band 
hannel.

It should be remarked that d

i

is not ne
essarily a dis
rete logarithm of ID

i

(or a

modi�
ation of ID

i

) modulo n.

Non-Intera
tive Key Sharing: Let ID

A

and ID

B

denote the identities of two

users A and B respe
tively. It is stated in [16℄ that x

A

; y

A

and x

B

; y

B

satisfy the

following equations

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod n (6)

ID

�L

2

y

A

B

= ID

�L2y

B

A

mod n (7)

Multiplying both sides of (6) and (7) results in the following equation

ID

d

A

B

= ID

d

B

A

mod n (8)

Equation (8) indi
ates that user A 
an share a 
ommon key, K

AB

= ID

d

A

B

mod n,

with user B by using the identity ID

B

of user B and the private key d

A

of user

A. Likewise, user B 
an share a 
ommon key, K

BA

= ID

d

A

B

mod n = K

AB

, with

user A by using the identity ID

A

of user A and the private key d

B

of user B. It is

interesting to noti
e that the 
ommon key sharing K

AB

= ID

d

A

B

mod n is similar to

the de
rypting pro
ess of RSA publi
 key 
ryptosystem.

Identity Based En
ryption: It is straightforward to turn the non-intera
tive

key sharing s
heme into identity based en
ryption. Assume that user A wants to send

a message m 2 Z

�

n

to user B. User A sele
ts a random number R; 0 < R < n and


omputes

C

1

= ID

R

A

mod n

C

2

= m � ID

Rd

A

B

mod n

Then user A sends the 
iphertext C = (C

1

; C

2

) to user B. User B de
rypts the


iphertext C using B's private key d

B

as follows.

C

2

� C

�d

B

1

= m � ID

d

A

R

B

� ID

�d

B

R

A

mod n

= m �K

R

AB

�K

�R

BA

mod n

= m:

Remarks: At the end of this se
tion, we would like to point out an error in the

private key generation of the non-intera
tive key sharing s
heme as des
ribed above.

In fa
t, equations (6) and (7) may not be satis�ed. By (1) and (2), it is 
lear that

the following two equations are satis�ed.

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod p
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ID

�L

2

y

A

B

= ID

�L2y

B

A

mod q

However, the following equations may not be satis�ed.

ID

�L

1

x

A

B

= ID

�L

1

x

B

A

mod q (9)

ID

�L

2

y

A

B

= ID

�L2y

B

A

mod p (10)

To explain the reason, let's assume that g
d(�; Æ) = 2. Then L

1

= (q � 1)=2 and

L

2

= (p� 1)=2. Also assume that the Legendre symbols of ID

A

and ID

B

satisfy the

following 
onditions

�

ID

A

p

�

= 1;

�

ID

A

q

�

= �1;

�

ID

B

p

�

= �1:

By (1),

�

ID

A

p

�

�

=

�

ID

A

�

p

�

=

�

g

p

�

�x

A

= 1

Sin
e g is a primitive element in Z

�

p

, (

g

p

) = �1, whi
h implies that x

A

must be even.

Similar, it 
an be proved that x

B

is an odd integer. By Euler's 
riterion,

ID

A

L

1

= ID

A

(q�1)

2

=

�

ID

A

q

�

= �1 mod q:

Hen
e,

ID

A

�L

1

x

B

=

�

ID

A

q

�

�x

B

= �1 mod q

Other the other hand,

ID

B

�L

1

x

A

=

�

ID

B

q

�

�x

A

= 1 mod q;

whi
h indi
ates that equation (9) 
an not be satis�ed. Similarly, it 
an be proved

that equation (10) 
an not be satis�ed, either.

It is easy to verify that equations (6) and (7) 
an be satis�ed if g
d(
; Æ) = 2 and

the Jo
obi symbols

�

ID

A

n

�

and

�

ID

B

n

�

are equal to 1. Based on this observation, the

private key generation 
an be revised as follows: 1) sele
t two primes p = 1+�
 and

q = 1+ �Æ su
h that g
d(
; Æ) = 2; and 2) repla
e the the identity ID

i

of ea
h user i

by by ID

i

+ a

i

mod n, where a

i

is the least positive integer su
h that

�

ID

i

+a

i

n

�

= 1.

We also observe that, if L

1

and L

2

as de�ned by equations (3) and (4) are repla
ed

by L

0

1

= q�1 = �Æ and L

0

2

= p�1 = �
, then equations (6) and (7) are satis�ed. So,

the private key generation, i.e., equation (5), 
an be revised, alternatively, as follows

d

0

i

= ��Æx

i

+ ��
y

i

mod �(n): (11)

With the revision, user A and user B 
an share a 
ommon key as ID

d

0

A

B

= ID

d

0

B

A

mod n.

In the following se
tion, we show that the identity based non-intera
tive key shar-

ing and en
ryption are vulnerable regardless of whether the private key generation is

based on (5) or (11).
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3 Analysis of Non-Intera
tive Key Sharing

In this se
tion, we analyze the se
urity of the non-intera
tive key sharing s
heme

des
ribed in Se
tion 2. Dependent on whether 
 is equal to Æ, our analysis is 
arried

out in two 
ases. In the 
ase when 
 6= Æ, we show that a single user 
an fa
tor

the modulus n by exploiting the information embedded in his/her private key. In

the 
ase when s
 = Æ, we show that a small group of users 
an 
ollude to fa
tor the

modulus n. After fa
toring modulus n, we show that two users 
an 
ollude to re
over

the generator g. In the following, we fo
us our analysis on the private key generation

de�ned by equation (5). It is straightforward to extend our analysis to the revised

private key generation des
ribed by equation (11).

3.1 Fa
toring Modulus n

Let 


0

= 
= g
d(
; Æ) and Æ

0

= Æ= g
d(
; Æ). By (5), the private key d

A

of user A 
an

be expressed as

d

A

= ��(Æ

0

x

A

+ 


0

y

A

) mod �(n):

Let �

A

= Æ

0

x

A

+ 


0

y

A

mod �(n). If x

A

and y

A

are modeled as independent and

identi
ally distributed random variables in Z

p�1

and Z

q�1

respe
tively, then �

A


an

be treated as a random variable in Z

�(n)

. Thus, the probability that �

A

is relatively

prime to 
 is approximately �(
)=
, whi
h is greater than 1=(6 log log 
) (see page

65 of [10℄). For simpli
ity, we assume that the private key of user A satis�es the


onditions: g
d(
; �

A

) = 1 and g
d(Æ; �

A

) = 1. Then for any integer a satisfying

g
d(a; n) = 1, Fermat's theorem implies

a


d

A

= 1 mod p; (12)

and

a

Æd

A

= 1 mod q: (13)

Now, we show that modulus n 
an be fa
tored based on equations (12) and (13).

Depending on whether 
 is equal to Æ, we 
onsider the following two 
ases.

Case 1: 
 6= Æ. In this 
ase, there exist two b-smooth integers Q

1

and Q

2

su
h

that 
jQ

1

and ÆjQ

2

, but 
 - Q

2

and Æ - Q

1

, or equivalently,

a

Q

1

d

A

= 1 mod p; a

Q

2

d

A

= 1 mod q;

but

a

Q

1

d

A

6= 1 mod q; a

Q

2

d

A

6= 1 mod p:

Consequently, we have

pj(a

Q

1

d

A

� 1); q - (a

Q

1

d

A

� 1);

and

qj(a

Q

2

d

A

� 1); p - (a

Q

2

d

A

� 1):
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Therefore, modulus n 
an be fa
tored as

p = g
d(a

Q

1

d

A

� 1; n); q = g
d(a

Q

2

d

A

� 1; n):

Next, we show that Q

1

or Q

2


an be derived using the idea of Pollard's p � 1

fa
toring algorithm [13℄. Let q

1

; q

2

; � � � ; q

t

denote all the primes less than or equal to

b and let Q denote the least 
ommon multiple of all powers of q

1

; q

2

; � � � ; q

t

that are

less than or equal to n, that is

Q =

t

Y

i=1

q

l

i

i

;

where l

i

= blogn= log q

i


. Then 
jQ and ÆjQ, or equivalently,

a

Qd

A

= 1 mod n:

Sin
e 
 6= Æ, there exists a prime number q

i

; 1 � i � t and an integer 


i

, 1 � 


i

� l

i

su
h that Q=q




i

i

is divisible by either 
 or Æ, but not by both. Thus, Q=q




i

i

is equal

to either Q

1

or Q

2

. The prime number q

i

and the integer 


i

satisfy the following


onditions

a

q

�


i

i

Qd

A

6= 1 mod n; (14)

g
d(a

Qq

�


i

i

d

A

� 1; n) > 1: (15)

Based on (14) and (15), we 
an sear
h for q

i

and 


i

for 1 � i � t and 1 � 


i

� l

i

. we

have the following algorithm for sear
hing q

i

and 


i

, and 
onsequently for fa
toring

modulus n.

1. Sele
t a smoothness bound b.

2. Sele
t a random integer a, 2 � a � n� 1, and 
ompute z = g
d(a; n). If z � 2,

then return z and n=z.

3. For all prime numbers q

1

; q

2

; � � � ; q

t

less than or equal to b, 
ompute l

i

=

blogn= log q

i


; 1 � i � t, and Q =

Q

t

i=1

q

l

i

i

.

4. For ea
h integer i, 1 � i � t do the following:

(a) q  q

i

; l l

i

:

(b) For ea
h integer 
, 1 � 
 � l do the following:

i. Q Q=q.

ii. Compute z = a

Qd

A

� 1 mod n.

iii. If z 6= 0 and g
d(z; n) > 1, then return g
d(z; n) and n= g
d(z; n).

iv. If z 6= 0 and g
d(z; n) = 1, then Q q �Q and go to step 4.

7



On
e n is fa
tored, 
 and Æ 
an be 
omputed by 
 = g
d(Q; p�1) and Æ = g
d(Q; q�

1). The running time of the above fa
toring algorithm is O(b lnn= ln b) modular

multipli
ations. The running time may be redu
ed if user A 
an 
ollude with other

users. Note that user A 
an obtain �� by 
omputing the greatest 
ommon divisor of

d

A

and the private keys of other users. On
e �� is known, user A 
an obtain 
Æ by


omputing

n�1

��

, that is,

n� 1

��

=

(�
 + 1)(�Æ + 1)� 1

��

;

= 
Æ +




�

+

Æ

�

:

Thus, 
Æ = b

n�1

��


, under the 
ondition that 
 < �=2 and Æ < �=2, whi
h is usually

true. From the prime-power fa
torization of 
Æ, the smoothness bound b 
an be

pre
isely determined for 
 and Æ. Furthermore, Q 
an be repla
ed by 
Æ in step 3 of

the fa
toring algorithm des
ribed above. Sin
e the prime fa
tors of 
Æ are a subset

of those of Q, the sear
hing time for a prime number q and an integer 
 satisfying


jq

�



Æ but Æ - q

�



Æ or vi
e versa 
an be redu
ed when Q and its prime powers are

repla
ed by 
Æ and the prime powers of 
Æ, respe
tively.

Case 2: 
 = Æ. In this 
ase, the fa
toring algorithm developed for Case 1 
an

not be used to fa
tor modulus n sin
e any integer divisible by 
 is also divisible by

Æ. Consequently, for any integer v, g
d(a

vd

A

� 1; n) is either equal to 1 or equal to n.

Nevertheless, a single user, say user A again, 
an re
over 
 and Æ without 
olluding

with other users. As in Case 1, let Q =

Q

t

i=1

q

l

i

i

denote the least 
ommon multiple

of all powers of primes upper-bounded by b su
h that Q is less than or equal to n.

If q




i

i

; 1 � i � t; 1 � 


i

� l

i

, is a prime power in the prime-power fa
torization of 
,

then for any integer a relatively prime to n, the following 
onditions are satis�ed

a

q




i

�l

i

i

Qd

A

= 1 mod n; (16)

and

a

q




i

�l

i

�1

i

Qd

A

6= 1 mod n: (17)

Based on (16) and (17), user A 
an sear
h for all the prime powers in the prime-power

fa
torization of 
 and �.

To fa
tor modulus n, however, user A needs to 
ollude with a group of other users.

First, user A obtains the produ
t of � and �, denoted by V = ��, by 
omputing the

greatest 
ommon divisor of his/her private key d

A

and the private keys of other

users. After V = �� is known, user A 
an re
over 
 and Æ in an alternative way as


 = Æ =

q

b

n�1

��


. Then user A fa
tors V = �� by solving the following equations

(� + �)
 = n� 


2

V � 1

�� = V

8



On
e � and � are obtained, user A 
an fa
tor modulus n by 
omputing p = �
 + 1

and q = �Æ + 1.

3.2 Re
overing Generator g

After re
overing p and q, user A 
an 
ompute an element h 2 Z

�

n

whi
h is primitive

in both Z

�

p

and Z

�

q

. Furthermore, user A 
an determine two integers �

A

2 Z

p�1

and

�

A

2 Z

q�1

satisfying

ID

�

A

= h

��

A

mod p; (18)

ID

�

A

= h

��

A

mod q: (19)

Sin
e g is also a primitive element in both Z

�

p

and Z

�

q

, there exists two integers

�

1

2 Z

p�1

and �

2

2 Z

q�1

su
h that �

1

- (p� 1); �

2

- (q � 1), and

g = h

�

1

mod p; (20)

g = h

�

2

mod q: (21)

Note that there may not exist an integer � 2 Z

�(n)

su
h that � = �

1

mod (p� 1) and

� = �

2

mod (q � 1). Substituting (20) and (21) into (1) and (2) and 
omparing with

(18) and (19), we have

x

A

= �

�1

1

�

A

mod (p� 1);

and

y

A

= �

�1

2

�

A

mod (q � 1):

Thus, the private key of user A 
an be expressed as follows

d

A

= �L

1

�

�1

1

�

A

+ �L

2

�

�1

2

�

A

mod �(n) (22)

Likewise, the private key of user B 
an be des
ribed as

d

B

= �L

1

�

�1

1

�

B

+ �L

2

�

�1

2

�

B

mod �(n) (23)

Hen
e, user A 
an 
ollude with user B to solve for �

1

and �

2

based on equations (22)

and (23). On
e �

1

and �

2

are obtained, the primitive element g 
an be re
overed

based on (20) and (21) by the Chinese Remainder Theorem.

After re
overing all the se
rets information of the private key generator, i.e.,

p; q; �; �; 
; Æ and g, user A 
an 
ompute the private keys of all users. Therefore,

the identity based non-intera
tive key sharing s
heme proposed in [16℄ 
an be 
om-

promised 
ompletely.

9



4 Con
lusion

In this paper, we analyze the se
urity of the \
ollusion-atta
k free" identity based

non-intera
tive key sharing s
heme proposed in [16℄. The proposed identity based

non-intera
tive key sharing s
heme is very similar to the the Maurer-Ya
obi publi


key distribution s
heme, but the private key generation is mu
h more eÆ
ient than

that in the Maurer-Ya
obi publi
 key distribution s
heme. Unfortunately, we show

in this paper that the identity based non-intera
tive key sharing s
heme proposed

in [16℄ is vulnerable to 
ollusion atta
ks. Using the idea of Pollard's p � 1 fa
toring

algorithm, we show that a single user 
an re
over some of the se
ret information of the

private key generator without 
olluding with other users. We also show that a small

group of users 
an 
ollude to re
over all of the se
ret information held by the private

key generator. Thus, the \
ollusion-atta
k free" identity based non-intera
tive key

sharing s
heme 
an be 
ompletely 
ompromised by 
ollusion atta
ks.
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