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Abstract

Recently, Tanaka proposed an identity based non-interactive key sharing
scheme based on the intractability of integer factorization and discrete log-
arithm. The proposed identity based non-interactive key sharing scheme is
similar to the well-known Maurer-Yacobi public key distribution scheme but
the computational complexity for private key generation can be significantly
reduced. It is also claimed that the proposed identity based non-interactive
key sharing scheme is “collusion-attack free”, i.e., secure against collusion at-
tacks. In this paper, we analyze the security of the “collusion-attack free”
identity based non-interactive key sharing scheme. First, we show that, with-
out colluding with other users, a single user can recover some of the secret
information of the private key generator. Then we show that a small group of
users can collude to recover all of the secret information held by the private
key generator. Thus, the “collusion-attack free” identity based non-interactive
key sharing scheme can be completely compromised by collusion attacks.

Key words: identity based cryptosystem, non-interactive key sharing, inte-
ger factorization, discrete logarithm, collusion attack,

1 Introduction

Identity based public key cryptosystem is a paradigm proposed by Shamir [14] in 1984.
In such a cryptosystem, a user’s public key can be chosen as the user’s identity, thus
key management can be greatly simplified in comparison with certificates management
in traditional public key infrastructure (PKI). Following Shamir’s proposal, efficient
solutions for the related notions of identity based signature and identification schemes
were quickly found, e.g., [5, 6], however, identity based encryption remained to be
a much more challenging problem until 2001 when Boneh and Franklin [2] proposed



to use bilinear maps (the Weil or Tate pairing) over supersingular elliptic curves to
achieve an elegant identity based encryption scheme.

Prior to the invention of the Boneh-Franklin identity based encryption scheme,
many researchers had proposed a variety of solutions for identity based encryption,
e.g., [3, 17, 15, 9, 7], most notably the Maurer-Yacobi public key distribution scheme
[9]. Unfortunately, almost none of the proposed solutions were fully satisfactory.
Some solutions require enormous computing power for private key generation. Other
solutions require tamper resistant hardware, or they are vulnerable to user collusions.
In the Maurer-Yacobi public key distribution scheme, a user’s private key is the
discrete logarithm of the user’s identity (or a modification of user’s identity) modulo a
large composite number. To generate a private key, a trusted authority called private
key generator (PKG) needs to solve more than two, say three discrete logarithms
modulo large prime moduli p,q and r of which the product n = pgr is intractable
to factor, and then synthesizes the discrete logarithms using the Chinese Remainder
Theorem. Hence, it is not only extremely difficult to generate each user’s private key,
but also the size of parameters is strongly restricted.

Recently, Tanaka proposed an identity based non-interactive key sharing scheme
[16], which can be turned into an ElGamal-like [4] public-key cryptosystem. Tanaka’s
identity based non-interactive key sharing scheme is similar to the Maurer-Yacobi
public key distribution scheme [9] including its modified version [8] and Murakami-
Kasahara’s scheme [11], but the private key generation is essentially different from
that in the Maurer-Yacobi scheme. In Tanaka’s scheme, each user’s private key can be
generated by solving two simple discrete logarithm problems for prime moduli p and
q, respectively, and then synthesizing the discrete logarithms by a linear combination
without using the Chinese Remainder Theorem, where p and ¢ are selected so that the
Pohlig-Hellman algorithm [12] assisted by the index calculus [1] can be applied easily
but it is intractable to apply the Pollard’s factoring algorithm [13] and its modified
algorithm [18]. It is shown in [16] that the computational complexity for private
key generation can be remarkably reduced in comparison with that in the Maurer-
Yacobi public key distribution scheme. Moreover, it is also claimed in [16] that the
proposed identity-based non-interactive key sharing scheme is “collusion attack free”,
i.e., secure against collusion attacks.

In this paper, we analyze the security of the “collusion-attack free” identity based
non-interactive key sharing scheme proposed by Tanaka. First, we show that, without
colluding with other users, a single user can recover some of the secret information
of the private key generator. Then we show that a small group of users can collude
to recover all of the secret information held by the private key generator. Thus,
the “collusion-attack free” identity based non-interactive key sharing scheme can be
completely compromised by collusion attacks. The rest of the paper is organized
as follows. In Section 2, we provide an overview of Tanaka’s identity based non-
interactive key sharing scheme and the corresponding identity based encryption. We
identify an error in the private key generation of Tanaka’s scheme and provide a



revision for the private key generation. In Section 3, we present collusion attacks
on Tanaka’s identity based non-interactive key sharing scheme and show that the
identity based non-interactive key sharing scheme can be completely compromised.
We conclude in section 4.

2 Non-interactive Key Sharing and Identity based
Encryption

In this section, we provide a brief description of Tanaka’s identity based non-interactive
key sharing scheme and the corresponding identity based encryption. We also point
out an error in the private key generation of Tanaka’s scheme and provide a revision
for the private key generation.

SET-UP: A trusted authority, called private key generator (PKG), selects two large
primes p and ¢ of about the same size such that p — 1 = ay and ¢ — 1 = (36, where
a, (3 are large primes and v, § are b-smooth integers. The prime numbers p, ¢, «
and [ should also satisfy the condition that factoring pq and a3 are computationally
infeasible. Then the private key generator computes the product n = pq of the selected
primes p and ¢, determines an element ¢ that is primitive in both multiplicative groups
of integers modulo p and ¢, and publishes n as the system parameter.

KEY GENERATION: Given an identity I D; of user i, the private key generator com-
putes two integers x; and y; satisfying the following equations

ID{ = ¢*" = ¢5"  mod p, (1)
ID] = g™ = g% modyg, (2)

where g, = ¢® mod p and gg = ¢® mod ¢q. Equations (1) and (2) have unique solutions
x; € Zy—1 and y; € Z,_, for any ID; because g is a primitive element in both Z; and
Z,. Note that the order of g, in ZJ, which is equal to v, is b-smooth, the integer z;
can be computed using the Pohlig-Hellman algorithm [12]. Likewise, the integer y;
can be computed using the Pohlig-Hellman algorithm since the order of gg in Z, is
also b-smooth. Let A(n) denote the order of g in Z}, that is A(n) =lem(p —1,¢ —1).
Also let

£, =20 A 3)

p—1 oy

and An)  A)
L2:q_1:W. (4)

Then the private key generator computes the private key, denoted by d;, of user ¢ as
follows



The private key generator may deliver the private key d; to user ¢ through a secure
out-of-band channel.

It should be remarked that d; is not necessarily a discrete logarithm of ID; (or a
modification of 1D;) modulo n.

NON-INTERACTIVE KEY SHARING: Let ID4 and IDg denote the identities of two
users A and B respectively. It is stated in [16] that z4,y4 and zp,yp satisfy the
following equations

IDY*4 = [DS1*®  mod n (6)
ID3Pva = [DSEE - mod n (7)

Multiplying both sides of (6) and (7) results in the following equation
ID% = ID% modn (8)

Equation (8) indicates that user A can share a common key, K45 = ID% mod n,
with user B by using the identity I Dp of user B and the private key d4 of user
A. Likewise, user B can share a common key, K4 = ID%A mod n = K,p, with
user A by using the identity 1D, of user A and the private key dp of user B. It is
interesting to notice that the common key sharing K,p = ID%A mod n is similar to
the decrypting process of RSA public key cryptosystem.

IDENTITY BASED ENCRYPTION: It is straightforward to turn the non-interactive
key sharing scheme into identity based encryption. Assume that user A wants to send
a message m € Z; to user B. User A selects a random number R,0 < R < n and
computes

i = IDﬁ mod n
Cy, = m-IDEY modn

Then user A sends the ciphertext C' = (C,C3) to user B. User B decrypts the
ciphertext C' using B’s private key dg as follows.

Cy-C7"™ = m-IDWR. D" modn
= m-KE, Kz% modn
= m.
REMARKS: At the end of this section, we would like to point out an error in the
private key generation of the non-interactive key sharing scheme as described above.

In fact, equations (6) and (7) may not be satisfied. By (1) and (2), it is clear that
the following two equations are satisfied.

IDYM*4 = [DY" %5 mod p
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ID32a — [DBI?YE mod ¢

However, the following equations may not be satisfied.

DS 4 = DS mod ¢ (9)
IDEPYA = [DAEE mod p (10)

To explain the reason, let’s assume that ged(5,d0) = 2. Then L; = (¢ — 1)/2 and
Ly = (p—1)/2. Also assume that the Legendre symbols of ID4 and IDp satisfy the
following conditions

(1)1 (29 (2)--
(2 -(2)- ()"

Since g is a primitive element in 77, (%) = —1, which implies that 4 must be even.

Similar, it can be proved that xp is an odd integer. By Euler’s criterion,

ID,
q

By (1),

(¢—1)

ID,J** =ID, = = ( ) =—-1 modg.

Hence,
ID,\*"*
IDjobhos — (—A> =—1 modyg
q
Other the other hand,

IDg\ “™
IDp*1ea — <—B> =1 mod g,
q

which indicates that equation (9) can not be satisfied. Similarly, it can be proved
that equation (10) can not be satisfied, either.

It is easy to verify that equations (6) and (7) can be satisfied if ged(y, d) = 2 and
the Jocobi symbols (%) and ("%) are equal to 1. Based on this observation, the
private key generation can be revised as follows: 1) select two primes p = 1 + a7y and
q = 14 B3¢ such that ged(y,d) = 2; and 2) replace the the identity I D; of each user i
by by ID; + a; mod n, where a; is the least positive integer such that (% = 1.

We also observe that, if Ly and L, as defined by equations (3) and (4) are replaced
by L} =q—1= p6 and L, = p—1 = ary, then equations (6) and (7) are satisfied. So,
the private key generation, i.e., equation (5), can be revised, alternatively, as follows

d; = afdx; + faryy;  mod A(n). (11)

With the revision, user A and user B can share a common key as D% = IDZIB mod n.

In the following section, we show that the identity based non-interactive key shar-
ing and encryption are vulnerable regardless of whether the private key generation is
based on (5) or (11).



3 Analysis of Non-Interactive Key Sharing

In this section, we analyze the security of the non-interactive key sharing scheme
described in Section 2. Dependent on whether v is equal to 0, our analysis is carried
out in two cases. In the case when v # 0, we show that a single user can factor
the modulus n by exploiting the information embedded in his/her private key. In
the case when sy = ¢, we show that a small group of users can collude to factor the
modulus n. After factoring modulus n, we show that two users can collude to recover
the generator g. In the following, we focus our analysis on the private key generation
defined by equation (5). It is straightforward to extend our analysis to the revised
private key generation described by equation (11).

3.1 Factoring Modulus n

Let 7 = v/ ged(v,d) and 6" = 6/ ged(,d). By (5), the private key da of user A can
be expressed as
da = af(d'za +~'ya) mod \(n).

Let (4 = 0'za + 7'ya mod A(n). If x4 and y4 are modeled as independent and
identically distributed random variables in Z,_; and Z,_; respectively, then (4 can
be treated as a random variable in Z,(,). Thus, the probability that (4 is relatively
prime to 7 is approximately ¢(v)/v, which is greater than 1/(6loglog~y) (see page
65 of [10]). For simplicity, we assume that the private key of user A satisfies the
conditions: ged(y,(4) = 1 and ged(0,(4) = 1. Then for any integer a satisfying
ged(a,n) = 1, Fermat’s theorem implies

a’ =1 mod p, (12)

and
a’ =1 mod q. (13)

Now, we show that modulus n can be factored based on equations (12) and (13).
Depending on whether 7 is equal to ¢, we consider the following two cases.

Case 1: v # 6. In this case, there exist two b-smooth integers (); and (), such
that v|Q, and 6|Q2, but v{ Q- and & { Qy, or equivalently,

a®% =1 modp, a¥% =1 mody,

but
a® £1 modgq, a“% #£1 modp.

Consequently, we have
p|(aQ1dA _ 1), q )( (andA _ 1),

and
q|(a®% —1), pf(a® -1).



Therefore, modulus n can be factored as
p=ged(a® — 1, n), ¢=ged(a®? —1,n).

Next, we show that ) or ()2 can be derived using the idea of Pollard’s p — 1
factoring algorithm [13]. Let ¢, ¢o, - - -, ¢ denote all the primes less than or equal to
b and let () denote the least common multiple of all powers of ¢y, qs, - -, ¢q; that are
less than or equal to n, that is

t
Q=]]d"
i=1

where [; = |logn/logg;|. Then v|Q and §|Q, or equivalently,
a®¥ =1  modn.

Since v # 0, there exists a prime number ¢;,1 < i <t and an integer ¢;, 1 < ¢; < [;

such that @Q/q;* is divisible by either v or ¢, but not by both. Thus, Q/¢;* is equal

to either (); or ()3. The prime number ¢; and the integer ¢; satisfy the following
conditions .

a% '@ £ 1 modn, (14)

ged (a9 fda _ 1,n)> 1. (15)

Based on (14) and (15), we can search for ¢; and ¢; for 1 <i <tand 1 <¢; <l[;. we
have the following algorithm for searching ¢; and ¢;, and consequently for factoring
modulus n.

1. Select a smoothness bound b.

2. Select a random integer a, 2 < a < n — 1, and compute z = ged(a,n). If 2 > 2,
then return z and n/z.

3. For all prime numbers ¢,qs,---,q less than or equal to b, compute [; =
llogn/logg;],1 <i<t, and Q=[] q"

4. For each integer i, 1 < i <t do the following:

() ¢+ il < 1.
(b) For each integer ¢, 1 < ¢ <[ do the following:
i Q<+ Qg
ii. Compute z = a?% — 1 mod n.
iii. If z # 0 and ged(z,n) > 1, then return ged(z,n) and n/ ged(z,n).
iv. If 2 # 0 and ged(z,n) = 1, then Q + ¢ - @ and go to step 4.



Once n is factored, v and ¢ can be computed by v = ged(Q,p—1) and § = ged(Q, g —
1). The running time of the above factoring algorithm is O(blnn/Inbd) modular
multiplications. The running time may be reduced if user A can collude with other
users. Note that user A can obtain a8 by computing the greatest common divisor of
d4 and the private keys of other users. Once af is known, user A can obtain vd by

n—1

computing R that is,

n—1  (ay+1)(Bi+1)—-1
af af ’
v o0
= v+ =+ —.
WG+
Thus, v6 = L’;—’BIJ, under the condition that v < /2 and ¢ < «/2, which is usually

true. From the prime-power factorization of 70, the smoothness bound b can be
precisely determined for v and §. Furthermore, () can be replaced by v in step 3 of
the factoring algorithm described above. Since the prime factors of vd are a subset
of those of (), the searching time for a prime number ¢ and an integer c¢ satisfying
v¥|g~yd but 6 1 ¢~yd or vice versa can be reduced when @) and its prime powers are
replaced by 70 and the prime powers of v, respectively.

Case 2: v = §. In this case, the factoring algorithm developed for Case 1 can
not be used to factor modulus n since any integer divisible by ~ is also divisible by
§. Consequently, for any integer v, ged(a®® — 1, n) is either equal to 1 or equal to n.
Nevertheless, a single user, say user A again, can recover v and ¢ without colluding
with other users. As in Case 1, let QQ = Hle qf" denote the least common multiple
of all powers of primes upper-bounded by b such that @) is less than or equal to n.
If ;"1 <i<t1<¢ <l is a prime power in the prime-power factorization of ~,
then for any integer a relatively prime to n, the following conditions are satisfied

€i

a%' Qs — 1 mod n, (16)

and

ci—l

ali

lQda # 1 mod n. (17)

Based on (16) and (17), user A can search for all the prime powers in the prime-power
factorization of v and /.

To factor modulus n, however, user A needs to collude with a group of other users.
First, user A obtains the product of a and 3, denoted by V' = a3, by computing the
greatest common divisor of his/her private key d4 and the private keys of other
users. After V' = «af is known, user A can recover v and ¢ in an alternative way as

vy=0= L%J Then user A factors V = af3 by solving the following equations

(a+B)y = n—=7V—1
af =V



Once a and S are obtained, user A can factor modulus n by computing p = ay + 1
and ¢ = B + 1.

3.2 Recovering Generator g

After recovering p and ¢, user A can compute an element h € Z* which is primitive
in both Z; and Z;. Furthermore, user A can determine two integers p4 € Z,_ and
va € Zy 1 satisfying

ID% = h™4  mod p, (18)

ID% =h%"1  mod q. (19)

Since g is also a primitive element in both Z7 and Z;, there exists two integers
oy € Z,—y and 09 € Z,_y such that oy 1 (p —1),021 (¢ — 1), and

g=nh"" mod p, (20)

g=h® modgq. (21)

Note that there may not exist an integer o € Zy(,) such that o = oy mod (p — 1) and
0 = 09 mod (¢ — 1). Substituting (20) and (21) into (1) and (2) and comparing with
(18) and (19), we have

a=orlus mod (p—1)
and

_ -1
ya =0, va mod (¢ —1).

Thus, the private key of user A can be expressed as follows

ds = aLioy' pa+ BLaoy'va  mod A(n) (22)
Likewise, the private key of user B can be described as

dp = alLio7 ' up + BLyoy 'vg  mod A(n) (23)

Hence, user A can collude with user B to solve for 0, and o, based on equations (22)
and (23). Once o7 and oy are obtained, the primitive element g can be recovered
based on (20) and (21) by the Chinese Remainder Theorem.

After recovering all the secrets information of the private key generator, i.e.,
p,q,a, 3,7,0 and g, user A can compute the private keys of all users. Therefore,
the identity based non-interactive key sharing scheme proposed in [16] can be com-
promised completely.



4 Conclusion

In this paper, we analyze the security of the “collusion-attack free” identity based
non-interactive key sharing scheme proposed in [16]. The proposed identity based
non-interactive key sharing scheme is very similar to the the Maurer-Yacobi public
key distribution scheme, but the private key generation is much more efficient than
that in the Maurer-Yacobi public key distribution scheme. Unfortunately, we show
in this paper that the identity based non-interactive key sharing scheme proposed
in [16] is vulnerable to collusion attacks. Using the idea of Pollard’s p — 1 factoring
algorithm, we show that a single user can recover some of the secret information of the
private key generator without colluding with other users. We also show that a small
group of users can collude to recover all of the secret information held by the private
key generator. Thus, the “collusion-attack free” identity based non-interactive key
sharing scheme can be completely compromised by collusion attacks.
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