
Bingo Voting: Secure and coercion-free voting

using a trusted random number generator

Jens-Matthias Bohli1⋆, Jörn Müller-Quade2, and Stefan Röhrich2

1 NEC Laboratories Europe, Network Research Division,
Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

2 Institut für Algorithmen und Kognitive Systeme / E.I.S.S.,
Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{bohli,muellerq,sr}@ira.uka.de

Abstract. It is debatable if current direct-recording electronic voting
machines can sufficiently be trusted for a use in elections. Reports about
malfunctions and possible ways of manipulation abound. Voting schemes
have to fulfill seemingly contradictory requirements: On one hand the
election process should be verifiable to prevent electoral fraud and on
the other hand each vote should be deniable to avoid coercion and vote
buying.
This work presents a new verifiable and coercion-free voting scheme
Bingo Voting, which is based on a trusted random number generator.
As a motivation for the new scheme two coercion/vote buying attacks
on voting schemes are presented which show that it can be dangerous to
let the voter contribute randomness to the voting scheme.
A proof-of-concept implementation of the scheme shows the practicality
of the scheme: all costly computations can be moved to a non time critical
pre-voting phase.

Keywords: secure electronic voting, coercion-free, receipt-free

1 Introduction

Elections have to meet a lot of requirements, e.g., the German constitution
speaks about the selection of the members of German House of Representatives
in general, direct, free, equal, and secret elections3. For security considerations
of voting protocols, mainly the last three properties are of interest: An election
should be free, i.e., nobody can be coerced to cast a certain vote, it should be
equal, i.e., nobody can influence the result more than with her own vote, and it
should be secret: no one is able to learn the votes of other people.

Traditional voting schemes using paper and ballot boxes cannot be trusted
to guarantee all these security properties. Ballot stuffing, miscounting, and the

⋆ Work done while the author was at Universität Karlsruhe (TH).
3 Grundgesetz Art. 38(1): “Die Abgeordneten des Deutschen Bundestages werden in

allgemeiner, unmittelbarer, freier, gleicher und geheimer Wahl gewählt.”

1



manipulation or destruction of votes during tallying are possible. Current voting
machines cannot be considered to be a secure solution as studies about machines
used in practice [Uni07, GHB+06] showed.

These problems led to an increasing interest in voting schemes which allow
the voter to verify that her vote was counted. However, such a proof should be
meaningful only for the direct recipient, because otherwise coercion and vote
buying become substantially simplified. Such schemes are called coercion-free or
receipt-free4.

An additional important requirement for voting schemes is usability. A scheme
must be convincing in a very direct way and one cannot expect all voters to use
electronic devices apart from the voting machine. This makes the design of a vot-
ing scheme even more difficult, because many cryptographic techniques cannot
be used to directly convince humans.

Our Contribution

In this work we propose a new voting scheme, called Bingo Voting due to the
use of a random number generator, comparable to a bingo cage. The new scheme
achieves:

– ballot casting assurance and universal verifiability, i.e., the voter can check if
her own vote is cast and counted as intended, and everyone is able to verify
that all votes are correctly counted as recorded on a bulletin board without
learning the content.

– depending on the binding property of the commitments used the scheme
offers either everlasting privacy or unconditional correctness.

– coercion-freeness, i.e., even if the voter deviates from the protocol she does
not gain any evidence which allows her to prove anything about the contents
of her vote.

Security properties like anonymity or eligibility (i.e., one vote per eligible
voter) are, in contrast to purely electronic voting schemes, easily obtained by
traditional methods. The authorization is handled in front of the voting booth
and an eligible voter may enter once to cast his vote. The voting machine reorders
the votes and has to be trusted in order to guarantee anonymity.

The voting scheme offers a very high usability. Only very limited capabilities
on the side of the voter are required. The voting process corresponds to the
voting with today’s voting machines: the voter has to press the button that is
assigned to the intended candidate. To ensure the correctness of her vote, the
voter only needs to check equality of two random numbers and check if her paper
receipt has been posted to a bulletin board. The scheme remains secure if not all
voters actually verify the process as long as the attacker cannot predict which
voter actually will be verifying.

The security properties listed above are achieved relative to very realistic
assumptions:

4 The term receipt-free might be misleading as the voter indeed obtains a receipt.

2



– a non interactive commitment scheme with some homomorphic properties is
needed, e.g., Pedersen commitments [Ped91]. If general zero-knowledge pro-
tocols are used in the post-voting phase, then these homomorphic properties
are not needed. Furthermore, if one is willing to use check samples instead
of giving proofs then even physical commitments, e.g., using strong boxes,
become possible.5

– A trusted random number generator is needed.
– If a voter should not only be able to detect cheating attempts, but also to

prove an electoral fraud, then the printed receipts should be difficult to forge.

To show the practical applicability of the new scheme it has been imple-
mented in Java as a proof-of-concept.

Furthermore we present two new coercion/vote-buying attacks on existing
schemes [Nef04, Rey05, MN06, Cha06] which strongly suggest that the voter
should not be trusted to contribute her own randomness. This gives an additional
motivation for the use of trusted random number generators.

2 Related Work

Several voting schemes have been proposed over the last years.
Protocols that require the user to provide random choices additional to the

actual vote [Nef04, Rey05, MN06] will be analyzed in the following section. These
protocols allow a practical attack which is overlooked in cryptographic models
as it exploits the limited memory of humans involved in the voting process. The
MarkPledge scheme of [AN06] does not associate the human generated random-
ness to a specific candidate and is not vulnerable to these attacks. However,
voters have to commit to random choices which introduces new assumptions or
makes the scheme impractical. ThreeBallot voting [Riv06] also demands addi-
tional random choices from the voter and, as already outlined in the paper, a
coercion attack becomes possible.

In Section 2.2 we will take a closer look at Punchscan [Cha06, PH06a] and
point out an attack if the choice of a layer (step E.1 in [PH06b]) is not done
before the voter receives her ballot (as it was the case in earlier versions of
Punchscan [PH06a]). This shows possible ways of coercion, when the voter has
to make decisions after getting unpredictable input. Examples for further pro-
tocols having the usage of cryptographic paper ballots in common are Prêt à
Voter [CRS05], Scratch & Vote [AR06], and Benaloh’s simple verifiable elec-
tions [Ben06].

2.1 Voting Schemes Using the Order of User Inputs

Neff [Nef04] proposed a voting scheme which is based on the temporal order
of the interaction between the voting machine and the user. Other schemes use

5 However, samples instead of proofs would weaken the coercion-freeness as a small
fraction of votes is opened.

3



the same idea, e.g., the scheme by Reynolds [Rey05]. Moran and Naor present a
scheme which ensures everlasting privacy [MN06] and they prove the coercion-
resistance of their scheme in a simulation-based model.

The basic concept behind these schemes is, that the voting machine commits
itself to some random values, e.g., by printing it on a receipt without showing
it to the voter. After the machine is committed, the voter casts her vote and
enters some randomness into the machine. This randomness is then used to
generate a proof that the vote will be counted for the chosen candidate. In
order to avoid coercion, the voter can also input random values for the other
candidates, but this is done before the voting machine is committed, so the
voting machine is able to produce fake proofs for these candidates. On a receipt
every candidate is printed with the corresponding user choices. Crucial for these
schemes is the order of the interaction, first the user enters dummy values for the
other candidates, then the voting machine commits, after this the voter enters
the random value for the real candidate, so that the machine cannot fake the
proof for the real vote.

A “Babble” Attack Because of the limited memory of the human brain there
may be the possibility of a vote-buying/coercion attack, if the scheme doesn’t
restrict the length of the random choices by the voter to very short lengths or
there is a large number of candidates. Suppose the attacker provides the voter
with an ear piece, i.e., a small radio receiver which allows the voter to listen to the
attacker in the voting booth. The adversary now remotely babbles a long stream
of random choices through the ear piece to the voter. The attacker coerces the
voter to vote for a special candidate and to enter the random values she hears
through the ear piece in the correct chronological order. Because the random
choices for the real vote are entered last (and this is required by the schemes)
the attacker can check if the random choice for the chosen candidate really was
sent after the choices used for the other candidates.

This attack requires that there are sufficiently many random choices such
that the voter can’t memorize and rearrange the random values. Even if the
voter had access to a pen and a paper in the booth the attack remains dangerous
as the attacker could observe the time the voter spends in the voting booth: For
very many or very long random values and an appropriate timing when this
information is sent over the ear piece it takes time to write down all the random
choices before starting to vote.

This attack might seem unrealistic and only a special case of using a video
camera to document the complete voting procedure of a coerced voter. But
because an ear piece can be very small and requires only one-way communication
(or no communication, if devices like a sealed audio-player with no user control
are used) we think this attack shouldn’t be ignored. Especially, the babble attack
points out, that coercion-free voting schemes should clearly state the amount of
isolation which is assumed in the voting booth, if there must be more protection
than preventing the attacker to see what happens there.

4



2.2 Punchscan

Paper ballot scheme Punchscan [Cha06, PH06a, PH06b] is a paper based
voting scheme that recently attracted attention. A Punchscan ballot consists
of two paper sheets that are attached one upon the other (see Figure 1 for
sample ballots). On the top page, the list of candidates is given, assigned to each
candidate is a letter in a random permutation. The upper sheet has several holes
through which letters from the lower sheet (in randomized order) are visible. To
vote, the voter will mark the letter assigned to her candidate such that the mark
is visible on both sheets. The voter can choose one layer of her ballot as a receipt
to take home. A system of published commitments and reveals allows the voter
to verify the tally without being able to prove what she voted for. For more
details, we refer to the Punchscan webpage [Cha06].

A Vote Buying Attack One way of vote buying is possible even though the
receipts do not reveal the actual vote. A vote buyer may offer a reward for
a certain top and bottom layer, respectively. Considering a contest with two
choices, say, YES or NO, a vote buyer interested in convincing people to vote
for NO might offer to pay for

– a top receipt where YES is assigned to the letter A and the left bullet is
marked, or

– a bottom receipt where A appears in the left bullet and is marked.

YES
NO

a b

b
a YES

NO

b a

b
a YES

NO

a b

a
b YES

NO

b a

a
b

Fig. 1. Possible Punchscan ballots for a two-candidate race.

Both layers together constitute a YES-vote. A voter who votes YES might hold
both layers together, a top and bottom layer that would entitle her for the
reward. However, she has to shred one of her papers. A voter for NO will have the
benefiting layers on separate ballots, thus, being able to choose the corresponding
receipt. To maximize the probability of the payment, voters are motivated to
vote with NO. By enumerating all possible ballots, see Figure 1, this becomes
obvious: only in the first possible ballot the voter can qualify for the reward by
voting YES. In the next two of the four possible ballots, the voter can qualify
for the reward by voting NO, and for the last ballot, it is impossible to produce
one of the rewarding layers. Voters following the attack unreservedly will vote
in favour of the coercer with probability of 1/2, vote against the coercer with
probability 1/4 and vote according to their own decision with probability 1/4.

5



The success probability and the effect of this attack diminishes when more
choices are available. Even though this attack is not published there is evidence
that this attack is known to the designers of Punchscan, because a change was
made which prevents this attack in [PH06b] in contrast to [PH06a]: In the first
step of the election phase the voter is required to state her choice (top receipt or
bottom receipt) before she can see the ballot. We think the above attack might
be the motivation behind this step, as a connection to chain voting as indicated
in [PH06b] does not seem obvious.

This attack may seem similar to a vote randomization attack in which a voter
should always mark the left bullet and which is still possible in the modified
version. But the attack described here increases the probability to vote for a
specific choice and therefore is much stronger.

3 Bingo Voting

3.1 Basic Idea

A basic idea for a verifiable vote is to have ballots with a unique serial number.
Each voter will cast her vote on the ballot and take a copy of the ballot home.
When the election result is published, all ballots are published such that every
voter can check that her vote is indeed counted for the intended candidate.
Unfortunately, this simple voting protocol paves the way for vote buying or
coercion. The voter can easily prove her vote by showing her ballot.

However, the voter were able to deny her vote if she could fabricate and
present a fake ballot that is published in the list of all votes. Such a fake ballot
can be imagined as the vote of another voter or a dummy vote—a vote that
appears in the list of votes but does not count.

To avoid problems that arise from the approach of swapping receipts with
other voters our scheme makes enough dummy votes available to give to every
voter a receipt for every (not elected) candidate in addition to the receipt for
the elected candidate. All the serial numbers will be printed on the same receipt,
each number printed next to the corresponding candidate in one line (see the
Vote Receipt in Figure 2 for an example). Thus, a vote is simply represented by
a number.

The tallying of the real votes taking into account the dummy votes will be
assured by means of cryptography. To achieve this the dummy votes will be
chosen out of a pool of random numbers that are committed before the election
starts. The voter must be assured, that her actual vote—the number of the real
ballot—is not a dummy vote. This is the case if the voter can actually witness
the random generation of the fresh number that will represent her vote, while
the dummy votes were previously determined and committed. In the polling
booth, the voter has only to check, that the fresh number appears on the receipt
as intended. The cryptographic proof that every ballot contains only one real
vote and that dummy votes do not count is published with the tally and can be
checked afterwards.

In the following, we describe the protocol in a more formal and detailed way.

6



3.2 Preliminaries

The scenario we assume in the following is a poll with ℓ candidates and n eligible
voters. To ease the description of the scheme we restrict to the case of a single
voting machine, but an extension to multiple machines is straightforward. In
the polling booth is a trusted random number generator (RNG) and the voting
machine available.

3.3 Pre-Voting Phase

Before election day, the voting machine will generate for every candidate Pi

n random numbers N i
j , yielding dummy vote pairs (N i

j , Pi) for the candidate.
Together, m = n · ℓ dummy votes are created for the candidates P1, . . . , Pℓ.
Unconditionally hiding commitments6 C1, . . . , Cm to the dummy vote pairs are
computed using random coins ri

j . The commitments Ci
j = commit((N i

j , Pi); r
i
j)

are shuffled and published on a bulletin board before the election starts. Addi-
tionally, the equal distribution of the committed dummy votes to the candidates
is proven without opening the commitments7.

3.4 Voting Phase

In the voting booth, a voter has to perform the following steps to cast a vote,
which are also shown in Figure 2:

1. The voter will first indicate her vote by pressing the according candidate’s
button on the voting machine.

2. Next the random number generator generates a fresh random number R.
3. The random number R is transferred to the voting machine and assigned to

the candidate of the voter’s choice.
For each other candidate, the voting machine will draw randomly one number
out of the pool of dummy votes for the respective candidate.
The machine will print out a receipt listing candidates and numbers: The
candidate that was voted is assigned the fresh random number R, for the
other candidates the respectively chosen dummy vote is shown. Figure 2
contains a sample receipt.

4. The voter has to verify that the number shown on the random number
generator is assigned to the party she intended to vote for. If this is not the
case, the voter has to protest immediately.8

5. The voter leaves the booth and takes out the receipt. For any outsider it is
impossible to recognize the fresh random number and therefore the vote this
ballot implies.

6 Unconditionally hiding commitments yield everlasting privacy. To achieve uncondi-
tional correctness unconditionally binding commitments would have to been used.

7 This can be done via randomized partial checking [JJR02] if the part of the commit-
ment containing the candidate can be opened without revealing the random number.

8 See also the discussion in Section 4.

7



P1

P2

P3

1234523134

6734252303

3422335718

Dummy Votes

P1

P2

P3

Voting Machine
Random

Number

Generator

7634875451

Vote Receipt
P1 1234523134

P2 7634875451

P3 3422335718

1. Vote

2. Generate random number

3. Print receipt

4. Compare receipt and

random number

Fig. 2. Voting phase

3.5 Post-Voting Phase

After the election the voting machine calculates the result and sends it together
with a proof of correctness to a public bulletin board. The published data consists
of four sections:

1. the final outcome of the poll;

2. a lexicographically sorted list of all receipts issued;
3. a list of all unused dummy vote/candidate pairs with the respective commit-

ment and reveal information;
4. non-interactive zero-knowledge proofs9 for the correctness, i.e., that the

dummy vote of every unopened commitment was indeed used on one re-
ceipt.

Now every voter can easily verify that her receipt is included in the list and
therefore was counted for the tally. Every voter can verify that the number of
remaining commitments is as expected (i.e., every vote for a candidate causes a
fresh random number, so one dummy vote isn’t needed. Therefore, if a candidate
has a votes and b voters were absent, the candidate should have n−a−b remaining
commitments.) and the reveal information leads to the given tally. Finally, the
non-interactive proof for the correctness of the receipts can be checked.

9 For efficiency reasons we will use “proofs” with 50% soundness in this paper as many
votes need to be manipulated to change the outcome of an election. To actually have
zero-knowledge proofs one would need several iterations.

8



In the following we describe a proof for the correctness of the receipts which
is efficient and uses standard shuffling techniques10 which are common in e-
voting protocols. For this, we need commitments with a special homomorphic
property: it should be possible to generate a new “masked” or re-randomized
version of a commitment, which is a new commitment to the old value (using
new randomness), and the correctness of this masking should be provable. Using
Pedersen commitments [Ped91] it is easy to generate such masked commitments
and to prove the equality of the old and new values.

The proof shows that all unopened (used) commitments are assigned to re-
ceipts. By a counting argument, the revealed unused commitments correspond to
the election result (and a constant offset for absent voters). It has the following
steps for every single receipt:

– A new commitment C to (R, P ) is generated, where P is the really chosen
candidate and R the output of the trusted RNG.

– The ℓ−1 commitments to dummy values used for this receipt and C are pub-
lished (without revealing). This list of commitments is called Cleft , everyone
can check that ℓ − 1 previous published commitments are used.

– The commitments are masked to new commitments to the same value and
shuffled. The new list Cmiddle is published.

– The last step is repeated with the commitments of Cmiddle , yielding a new
list Cright which is published.

– The commitments of Cright are revealed. The contents must equal the corre-
sponding numbers on the receipt.

– A random bit s is chosen11. If the bit s is 0, the association between the
commitments of Cleft and Cmiddle is published and the correctness of the
masking is proven without revealing the commitments of these lists12. If the
ith bit of s is 1 the according relation between commitments of Cmiddle and
Cright is proven.

Any manipulation in the proof for a single receipt affects at most ℓ votes
and is detected with a probability of 50% per manipulated receipt. If a higher
assurance is necessary (e.g., if the vote counts of the candidates are very close
to each other), the proof for the single receipts can be repeated to yield higher
soundness.

10 Commitments are shuffled and later revealed [Cha81]. To prove the correctness of
the shuffle we apply the method of randomized partial checking [JJR02] to every
single ballot.

11 The randomness and unpredictability for the voting authority is important for the
correctness property. It can be achieved by using a trusted random number generator
in public or by other means, some of them are discussed in [MN06]. The most
practical method probably would be using the Fiat-Shamir heuristic to handle the
secure hash of the whole transcript to that point as randomness, but solutions like
using physical sources or a coin flipping protocol are also possible.

12 For Pedersen Commitments this is simply done by publishing the random choices
used for the re-randomization.

9



Our scheme scales rather well, after the creation of nℓ dummy commitments
in the pre-voting phase, additionally q commitments are created for the real
votes. During the proof, qℓ commitments have to be masked twice to yield new
commitments to the same value.

4 Attacks, Assumptions and Security

Different assumptions are necessary: The main security goal is certainly to en-
sure correctness of the election result. The key assumption to ensure correctness
is a trusted random number generator attached to the voting machine. It should
provide some clearly evident form of randomness, we even recommend a me-
chanical device, similar to devices used in lotteries or to a bingo cage, and read
the random number by sensors.

In order to provide coercion protection, we must rely on the voting machine:
The voting machine must not be tampered with and must guarantee the secrecy
of votes. Likewise the voting booth has to be secured, e.g., no hidden cameras
may be able to surveil the voting (this would already be a threat for classical
elections).

Correctness RNG is uncorrupted

RNG is uncorrupted and

Coercion protection (voting machine is uncorrupted or

(voting machine is only passively corrupted and

actions on the voting machine/receipts are not linked to voters))

Table 1. Assumptions of Bingo Voting.

Before we discuss the security in more details, Table 1 summarizes the as-
sumptions.

4.1 Correctness

At the start of the election it is proven that each candidate has the same number
of dummy votes. For each vote a fresh random number is generated and associ-
ated with the candidate voted for. Hence for each vote for a specific candidate
one dummy vote for this candidate is left unused. A corrupted voting machine
could generate a fresh number to a candidate of its choice if the fresh random
number equals a dummy vote, but the probability for this equality is negligible
for a trusted random number generator13. The fresh number cannot be associ-
ated to another candidate, because this is checked by the voter in the booth.

13 For the correctness the random numbers need not be uniformly distributed. It is
sufficient if the attacker cannot predict the numbers.

10



Also no additional fresh numbers can be introduced as the zero-knowledge proof
guarantees ℓ − 1 dummy votes on each ballot.

Fraud should not only be detected, but there should be evidence of the fraud.
Assume the voting machine will cast a vote for a candidate that was not intended
by the voter, however, pretends to behave correctly. Our protocol makes this ev-
ident to the voter immediately in the polling booth: the number that is shown
on the RNG is not printed on the right place. In this case the voter can im-
mediately be given a possibility to cancel the previous vote and revote (This
will, however, need suitably more commitments to be prepared in the pre-voting
phase. Additional care has to be taken to avoid denial of service attacks by an
always complaining voter.). Each voter can check if her receipt appears on the
list of ballots which is published after the election. If a voter does not find her
receipt in the list, she must be able to complain. We intend therefore a trusted
printer, which uses unforgeable paper to allow the voter to prove that she indeed
has a valid receipt.

According to the definitions in [AN06] we achieve cast as intended by com-
paring and checking the receipt and the output of the random number generator
by the voter, the vote is recorded as cast can easily be checked through com-
parison with the public list of receipts, and the property counted as recorded

is achieved by the (public) proof at the end of the election, so that universal

verifiability is reached. Through the end-to-end and direct verification of “cast
as intended” and “recorded as cast” we achieve a non-immediate notion of bal-

lot casting assurance. For a really direct and immediate verification the public
list of receipts has to be updated with new votes and their proofs in real time.
This is possible (probably with the addition of some helper organisations like
the proposal for MarkPledge in [AN06]), but it would ease vote coercion attacks
by an attacker with access to a corrupted voting machine.

4.2 Coercion protection

The vote receipt cannot be used to prove anything about the contents of a vote to
a third party. The hiding property of the commitments in the published dummy
votes together with the information of the zero-knowledge proof does not allow
an adversary to distinguish the random number of the trusted random number
generator from the dummy votes which were stored in the voting machine and
published as a commitment. Therefore, the random number generator has to be
trusted for coercion protection, too, so that it doesn’t generate numbers which
can be recognized by an attacker.

In order to gain privacy and coercion protection you also have to trust the
voting machine. It mustn’t be actively corrupted, e.g., the addition of a secret
camera together with the recording of the votes would clearly violate privacy. As
with most voting machines, coercion attacks are also possible if you only change
the software of the machine, like adding a secret command to the software of the
voting machine, which is activated by some special keystrokes which a voter is
coerced to press, and which votes in favour of the attacker and records this.

11



However, another relevant attack can to a certain extend be prevented, even
if the adversary has access to the secret commitment information or passively
corrupted the voting machine (i.e., he learns every information the voting ma-
chine knows, but doesn’t change the voting machine or its software). The secrecy
of a vote can be maintained as long as the attacker cannot obtain the specific
receipt of the voter or otherwise link the voting process to an individual voter.
To protect voters from this some non-government organisations (NGOs) could
collect paper receipts to check on the correctness of the vote. If it is possible to
anonymously dispose the paper receipt the voter cannot be coerced afterwards
and the correctness of the vote will still be checked with a high probability unless
many of the NGOs are corrupted.

The concrete voting machine has to be designed very carefully in order to
avoid attacks comparable to side-channel attacks, e.g., the state of the voting
machine (like if it’s waiting for input or printing a receipt) should be hidden
from persons outside of the voting booth and the output of the random number
generator and the presentation of the receipt to the voter should be very close
in time. This avoids a kind of “reverse” babble attack where the voter is forced
to use a microphone and read the numbers presented to him.

5 Implementation

We implemented a proof-of-concept implementation in Java [Sun06]. Pedersen
commitments [Ped91] were used as described for the underlying commitment
scheme, therefore everlasting security is achieved. Our straightforward imple-
mentation in Java, which is not optimized for speed, needs about 0.6 seconds per
potential voter (assuming a voter participation of 80% and five candidates) for
all three phases together on a standard 3 GHz Pentium 4 CPU and a bit length of
1000 for the commitments. Most of the time consuming work, generation of and
calculations with the commitments, can be separated to the pre-voting phase,
where speed is not a very important factor. Also the output size is acceptable,
even including some debugging information, repeating many things and writing
the commitments as ASCII encoded decimal numbers under 10 KBytes per po-
tential voter are used. This enables a voter to download the whole information
needed to check the proof of her electoral district.

The prototype is mainly a demonstration for the feasibility of computation
time and size of the proofs, a more detailed system, especially with a real hard-
ware number generator for the voting booth, still has to be realized in order to
analyze the whole voting process from a systems perspective as done for other
schemes in [KSW05, RP05].

6 Outlook

Further research is also required to enhance the usability and reduce the ad-
ministrative requirements of voting schemes. Possibly, a combination of existing

12



schemes, like the scheme of Moran and Naor [MN06] and our Bingo Voting,
would be an improvement in this respect.

The combined scheme would have a user interface similar to our Bingo Voting
scheme. The voter’s only input is the choice of a candidate. After the voter
has chosen her candidate, a random number is generated by a trusted random
number generator and transferred to the voting machine. The machine prints a
receipt containing the name of each candidate with an associated random number
generated by the voting machine itself for the not elected candidates and the
number of the random number generator for the elected candidate. The voter
has to check if the number of her candidate corresponds to the output of the
random number generator. The voting machine commits to proof information
before the generation of the trusted random number by printing it on the receipt
and the voter has to check that it is done before the random number generator
is started. This information is used to generate proofs of the election result as
in [MN06].

This new scheme avoids the babble attack and even requires a slightly weaker
assumption for the printer compared to [MN06], because the commitment does
not have to be hidden from the voter. Still, it must be assumed, that the vot-
ing machine cannot exchange or generate the commitment after receiving the
trusted random number. Compared to Bingo Voting, this assumption avoids the
administrative effort of generating and storing the dummy votes. However, the
voter has to be more careful to detect message reordering attacks14 [KSW05]
which may affect the correctness property, while Bingo Voting isn’t vulnerable
to this kind of attacks to forge elections (but a coercion attack might be possible
through this corruption of the voting machine).

7 Conclusions

We have shown, that many voting protocols where the user needs to make de-
cisions beyond choosing one candidate are susceptible to coercion attacks. We
could reveal new coercion attacks to recently proposed voting protocols. To avoid
those attacks, we introduce the assumption of a trusted random number gener-
ator inside the polling booth. We have presented a protocol basing on a random
number generator, that makes it easy for the voter to vote and check correctness
of the vote and have demonstrated that implementing our scheme is practical.

An open problem remaining is to find a suitable and realistic model for the
treatment of voting protocols. Attacks like the babble attack are not covered by
any security model known to us, even enhancements of very strong simulation
based models to handle coercion ignore such a threat.

14 In such an attack a corrupted voting machine maliciously executes the protocol steps
with the human in the wrong order to be able to fake a vote.

13



References

[AN06] Ben Adida and C. Andrew Neff. Ballot Casting Assurance. In EVT ’06,
Proceedings of the First Usenix/ACCURATE Electronic Voting Technology
Workshop, August 1st 2006, Vancouver, BC, Canada, 2006. http://www.

usenix.org/events/evt06/tech/full_papers/adida/adida.pdf.
[AR06] Ben Adida and Ronald L. Rivest. Scratch & Vote: Self-Contained Paper-

Based Cryptographic Voting. In WPES ’06: Proceedings of the 5th ACM
workshop on Privacy in electronic society, pages 29–40. ACM Press, 2006.

[Ben06] Josh Benaloh. Simple Verifiable Elections. In EVT ’06, Proceedings of
the First Usenix/ACCURATE Electronic Voting Technology Workshop,
August 1st 2006, Vancouver, BC, Canada, 2006. http://www.usenix.

org/events/evt06/tech/full_papers/benaloh/benaloh.pdf.
[Cha81] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Communications of the ACM, 24(2):84–88, 1981.
[Cha06] David Chaum. Punchscan, 2006. http://punchscan.org/.
[CRS05] David Chaum, Peter Y.A. Ryan, and Steve Schneider. A Practical Voter-

Verifiable Election Scheme. In Sabrina De Capitani di Vimercati, Paul
Syverson, and Dieter Gollmann, editors, Computer Security – ESORICS
2005, volume 3679 of Lecture Notes in Computer Science, pages 118–139.
Springer, 2005.

[GHB+06] Rop Gonggrijp, Willem-Jan Hengeveld, Andreas Bogk, Dirk En-
gling, Hannes Mehnert, Frank Rieger, Pascal Scheffers, and Barry
Wels. Nedap/Groenendaal ES3 voting computer – a security analysis,
2006. http://www.wijvertrouwenstemcomputersniet.nl/images/9/91/

Es3b-en.pdf.
[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making Mix Nets Ro-

bust For Electronic Voting By Randomized Partial Checking. In USENIX
Security Symposium, pages 339–353, 2002.

[KSW05] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic Vot-
ing Protocols: A Systems Perspective. In Proceedings of the Fourteenth
USENIX Security Symposium (USENIX Security 2005), pages 33–50, Au-
gust 2005.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Voting
With Everlasting Privacy. In Cynthia Dwork, editor, Advances in Cryptol-
ogy – CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science,
pages 373–392. Springer, August 2006.

[Nef04] C. Andrew Neff. Practical high certainty intent verification for encrypted
votes. Draft at http://www.votehere.net/vhti/documentation/vsv-2.

0.3638.pdf, 2004.
[Ped91] Torben Pryds Pedersen. Non-interactive and Information-Theoretic Se-

cure Verifiable Secret Sharing. In Joan Feigenbaum, editor, Advances in
Cryptology – CRYPTO ’91: Proceedings, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer, 1991.

[PH06a] Stefan Popoveniuc and Ben Hosp. An Introduction to Punchscan. Threat
Analyses for Voting System Categories, A Workshop on Rating Voting
Methods, VSRW 06, June 2006. http://vote.cs.gwu.edu/vsrw2006/

papers/9.pdf.
[PH06b] Stefan Popoveniuc and Ben Hosp. An Introduction to Punch-

scan. IAVoSS Workshop On Trustworthy Elections, WOTE 2006,

14



2006. http://punchscan.org/papers/popoveniuc_hosp_punchscan_

introduction.pdf, online version dated 2006-10-15.
[Rey05] David J. Reynolds. A method for electronic voting with Coercion-free

receipt. FEE 2005, 2005. Presentation: http://www.win.tue.nl/~berry/
fee2005/presentations/reynolds.ppt.

[Riv06] Ronald L. Rivest. The ThreeBallot Voting System, October 2006. Draft
online available at time of writing http://theory.lcs.mit.edu/~rivest/

Rivest-TheThreeBallotVotingSystem.pdf.
[RP05] Peter Y. A. Ryan and Thea Peacock. Prêt à Voter: a Systems Perspec-

tive. Technical Report CS-TR-929, School of Computing Science, Univer-
sity of Newcastle, 2005. http://www.cs.ncl.ac.uk/research/pubs/trs/

papers/929.pdf.
[Sun06] Sun Microsystems. Java Platform, Standard Edition, 2006. http://java.

sun.com/.
[Uni07] University of California. Reports of top-to-bottom review of voting ma-

chines, 2007. http://www.sos.ca.gov/elections/elections_vsr.htm.

15


