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Abstract. We investigate inductive methods for proving secrecy prop-
erties of network protocols, in a “computational” setting applying a
probabilistic polynomial-time adversary. As in cryptographic studies, our
secrecy properties assert that no probabilistic polynomial-time distin-
guisher can win a suitable game presented by a challenger. Our method
for establishing secrecy properties uses inductive proofs of computational
trace-based properties, and axioms and inference rules for relating trace-
based properties to non-trace-based properties. We illustrate the method,
which is formalized in a logical setting that does not require explicit
reasoning about computational complexity, probability, or the possible
actions of the attacker, by giving a modular proof of computational au-
thentication and secrecy properties of the Kerberos V5 protocol.

1 Introduction

Present-day Internet users and networked enterprises rely on key management and
related protocols that use cryptographic primitives. In spite of the staggering financial
value of, say, the total number of credit card numbers transmitted by SSL/TLS in a
day, we do not have correctness proofs that respect cryptographic notions of security for
many of these relatively simple distributed programs. In light of this challenge, there
have been many efforts to develop and use methods for proving security properties
of network protocols. Historically, most efforts used an abstract symbolic model, also
referred to as the Dolev-Yao model [30, 32, 23]. More recently, in part to draw stronger
conclusions from existing methods and proofs, several groups of researchers have taken
steps to connect the symbolic model to probabilistic polynomial-time computational
models accepted in cryptographic studies, e.g., [2, 6, 7, 14, 25, 3, 31, 19, 21, 33].

A fundamental problem in reasoning about secrecy, such as computational indis-
tinguishability of the key used in a protocol from a randomly chosen one, is that such
secrecy properties are not trace properties – indistinguishability over a set of possible
runs is not defined by summing the probability of indistinguishability on each run.
As a result, it does not appear feasible to prove computational secrecy properties by
induction on the steps of a protocol. A central contribution of this paper is a form of
trace-based property, called secretive, suitable for inductive and compositional proofs,
together with a form of standard cryptographic reduction proof which shows that any
attack on a secretive protocol yields an attack on cryptographic primitives used in
the protocol. This reduction method can be used to prove weaker security properties
than indistinguishability, from weaker security assumptions about primitives used in
the protocol. We give the cryptographic reduction in a precise form, by inductively



defining the operational behavior of a simulator that simulates the protocol to the pro-
tocol adversary, bringing several subtleties to light. An essential problem in defining
the simulator, which interacts with cryptographic primitives through the game used to
characterize their security, is that the simulator’s actions must be uniquely determined,
without knowing which of two possible secrets is the one actually used by the protocol.
We solve a non-trivial problem associated with protocol actions such as unpairing and
decryption by introducing a reasonable type-tagging assumption on the computational
implementation of the primitives, allowing the simulator to proceed in these cases.

We leverage the semantic proof that secretive protocols yield black-box reductions
by presenting an inductive method for showing that a protocol is secretive, formulated
in Computational Protocol Composition Logic (CPCL) [19, 21]. In the process, we
generalize a previous induction rule, so that only one core induction principle is needed
in the logic. We also extend previous composition theorems [18, 24] to the present
setting, and illustrate the power of the resulting system by giving modular formal
proofs of authentication and secrecy properties of Kerberos V5 and Kerberos V5 with
PKINIT. An inherent advantage of our approach is that induction proceeds only over
action sequences of the protocol program, as executed by honest protocol participants,
yet the conclusion is sound for protocol execution in the presence of an arbitrary
probabilistic polynomial-time attacker.

Our approach may be compared with equivalence-based methods, such as used
in [4] to derive computational properties of Kerberos V5 from a symbolic proof. In
equivalence-based methods [6, 31, 16, 26, 5], the behavior of a symbolic abstraction, un-
der symbolic attacks, must yield the same observable behavior as a computational ex-
ecution under computational (probabilistic polynomial-time) attack. For the standard
symbolic model, this appears to require strong cryptographic assumptions, although
perhaps weaker cryptographic assumptions can be accommodated by developing new
symbolic models. The approach that we advance in this paper involves high-level rea-
soning methods that do not involve probability or complexity, yet are sound when in-
terpreted over computational protocol execution and attack. In a sense, computational
soundness of a symbolic logic only requires an implicational connection between sym-
bolic reasoning and computational execution, whereas equivalence-based approaches
require a stronger correspondence. While we believe that both approaches have merit,
two specific technical points that distinguish the current state of each are (i) the need
to prove the absence of a “commitment problem,” in addition to symbolic security, in
[4], and (ii) the apparent open problem expressed in [4] of developing compositional
methods in that framework.

The Kerberos [28] protocol is widely used for authentication in a variety of settings.
The basic protocol has three sections, each involving an exchange between the client
and a different service. Our formal proof is modular, with the proof for each section
assuming a precondition and establishing a postcondition that implies the precondition
of the following section. In addition, the similarities between different two-step sections
of the protocol make it possible to construct template proofs that can be reused for
each two-step message exchange, further simplifying the development of the proof.

Section 2 describes the protocol process calculus and computational execution
model. A trace-based definition of “secretive protocols” and relevant computational
notions are explained in section 3. Axioms and proof rules appear in section 4, with
composition theorems developed in section 5 and applied in the proofs for Kerberos in
section 6. Conclusions appear in section 7.
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2 Syntax and Semantics

In this section, we review the relevant parts of the protocol programming language,
logic, and security model for key exchange developed in our earlier work [22, 17–19, 21].

2.1 Modeling Protocols

A simple protocol programming language is used to represent a protocol by a set
of roles, such as “Client”, or “Server”, each specifying a sequence of actions to be
executed by an honest participant (see [22, 17, 18]). Protocol actions include nonce
generation, encryption, decryption and communication steps (sending and receiving).
Every principal can be executing one or more copies of each role at the same time. We
use the word thread to refer to a principal executing one particular instance of a role.
Each thread X is identified by a pair (X̂, η), where X̂ is a principal and η is a unique
session identifier.

Syntax To illustrate the syntax of this language, we use it to describe the Kerberos
V5 protocol [28]. It involves trusted principals known as the Kerberos Authentication
Server (KAS) and the Ticket Granting Server (TGS). There are pre-shared long term
keys between the client and the KAS, the KAS and the TGS, and the TGS and the
application server. Mutual authentication and key establishment between the client
and the application server is achieved by using this chain of trust. Note that typically
the KAS shares long-term keys with a number of clients and the TGS with a number
of application servers.

Kerberos has four roles, one for each kind of participant - Client, KAS, TGS and
Server. The long-term shared keys are written here in the form ktype

X,Y where X and Y
are the principals sharing the key. The type appearing in the superscript indicates the
relationship between X and Y in the transactions involving the use of the key. There
are three types required in Kerberos: c → k indicates that X is acting as a client and
Y is acting as a KAS, t → k for TGS and KAS and s → t for application server and
TGS. Kerberos runs in three stages with the client role participating in all three. The
description of the roles is based on the A level formalization of Kerberos V5 in [12]. We
describe the formalization of the first stage here; the complete formalization is given
in Appendix E.

In the first stage, the client (C) generates a nonce (represented by new n1) and
sends it to the KAS (K) along with the identities of the TGS (T ) and itself. The
KAS generates a new nonce (AKey - Authentication Key) to be used as a session
key between the client and the TGS. It then sends this key along with some other
fields to the client encrypted (represented by the symenc actions) under two different
keys - one it shares with the client (kc→k

C,K ) and one it shares with the TGS (kt→k
T,K ). The

encryption with kt→k
T,K is called the ticket granting ticket (tgt). The client extracts AKey

by decrypting the component encrypted with kc→k
C,K and recovering its parts using the

match action.
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Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · · · ·

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , k
c→k
C,K ;

send Ĉ.tgt.enckc;

]K

In the second stage, the client gets a new session key (SKey - Service Key) and a
service ticket (st) to converse with the application server S which takes place in the
third stage. The control flow of Kerberos exhibits a staged architecture where once one
stage has been completed successfully, the subsequent stages can be performed multiple
times or aborted and started over for handling errors.

Protocol Execution Model We consider a standard two-phase execution model as in
[11]. In the initialization phase of protocol execution, we assign a set of roles to each
principal, identify a subset which is honest, and provide all entities with encryption
keys and random coins. In the execution phase, the adversary executes the protocol
by interacting with honest principals. We make the standard assumption that the
adversary has complete control over the network, i.e. it sends messages to the parties
and intercepts their answers, as in the accepted cryptographic model of [11]. The length
of keys, nonces, etc. as well as the running time of the protocol parties and the attacker
are polynomially bounded in the security parameter.

Informally, a trace is a record of all actions executed by honest principals and the
attacker during protocol execution. Since honest principals execute symbolic programs,
a trace contains symbolic descriptions of the actions executed by honest parties as well
as the mapping of bitstrings to variables. On the other hand, although the attacker
may produce and send arbitrary bitstrings, the trace only records the send-receive
actions of the attacker, and not its internal actions. The technical definition of a trace
includes, in addition, the random bits used by the honest parties, the adversary and
the distinguisher, as well as a few other elements that are used in defining semantics
of formulas over traces [19]. In section 3, we omit these additional fields and refer to a
trace as 〈e, λ〉, where e is a symbolic description of the trace and λ maps terms in e to
bitstrings.

In the computational implementation of protocol actions by honest parties, we
require that constructed terms carry certain type information. The type of a term
determines the operations that can be applied to it. In particular, nonces, ids and con-
stant strings cannot be unpaired or decrypted, pairs cannot be decrypted, encryptions
cannot be unpaired and encryption with one key cannot be decrypted with another.
This may, for example, be easily implemented as follows: nonces, ids and constant
strings are prefixed with tags indicating their types, pairs are prefixed with a ‘pair’ tag
and encryptions with key k are prefixed with an ‘encrypted with key k’ tag. However,
the adversary is not restricted in the same way–it can modify or spoof tags or produce
arbitrary untagged bitrings.
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Action Predicates:
a ::= Send(X, t) |Receive(X, t) |SymEnc(X, t, k) |SymDec(X, t, k) |New(X,n)
Formulas:

ϕ ::= a | t = t |Start(X) |Honest(X̂) |Possess(X, t) | Indist(X, t) |
GoodKeyAgainst(X, t) |ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V. ϕ | ∀V. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Actions]X ϕ

Table 1. Syntax of the logic

2.2 Computational PCL

Syntax The formulas of the logic are given in Table 1. Protocol proofs usually use
modal formulas of the form ψ[P ]Xϕ. The informal reading of the modal formula is
that if X starts from a state in which ψ holds, and executes the program P , then
in the resulting state the security property ϕ is guaranteed to hold irrespective of
the actions of an attacker and other honest principals. Many protocol properties are
naturally expressible in this form. Most formulas have the same intuitive meaning as
in the symbolic model [17, 18].

For every protocol action, there is a corresponding action predicate which asserts
that the action has occurred in the run. For example, Send(X, t) holds in a run where the
thread X has sent the term t. Action predicates are useful for capturing authentication
properties of protocols since they can be used to assert which principals sent and
received certain messages. SymEnc(X, t, k) and SymDec(X, t, k) respectively mean that
X encrypts or decrypts the term t with symmetric key k, while New(X,n) means X
generates fresh nonce n. Honest(X̂) means that the principal X̂ is acting honestly, i.e.,
the actions of every thread of X̂ precisely follows some role of the protocol. Start(X)
means that the threadX did not execute any actions in the past. Possess(X, t) meansX
possesses term t. This is “possess” in the symbolic sense of computing the term t using
Dolev-Yao rules. Indist(X, t) means that agentX cannot tell the bitstring representation
of the term t from another bitstring chosen at random from the same distribution. This
predicate captures a strong notion of cryptographic secrecy. The logical connectives
have standard interpretations. The only exception is the conditional implication (⇒),
which is related to a form of conditional probability and appears essential for reasoning
about cryptographic reductions (see [19] for further discussion).

Semantics Intuitively, a protocol Q satisfies a formula ϕ, written Q |= ϕ if for all
adversaries and sufficiently large security parameters, the probability that ϕ “holds”
is asymptotically close to 1 (in the security parameter). Technically, the probability
measure is represented using the cardinality of sets of traces. The meaning of a formula
ϕ on a set T of computational traces is a subset T ′ ⊆ T that respects ϕ in some specific
way. For example, an action predicate such as Send selects a set of traces in which a
send occurs. The semantics JϕK (T,D, ε) of a formula ϕ is inductively defined on the
set T of traces, with distinguisher D and tolerance ε. The distinguisher and tolerance
are not used in any of the clauses except for Indist and GoodKeyAgainst, where they
are used to determine whether the distinguisher has more than a negligible chance of
distinguishing the given value from a random value or winning an IND-CCA game,
respectively. Q |= ϕ if for all adversaries A, distinguishers D, and sufficiently large
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security parameters η, JϕK(T,D, ε) is an overwhelming subset of the set T of all possible
traces produced by the interaction of protocol Q and adversary A. In other words, the
probability | JϕK (T,D, ν(η)) | / | T |≥ 1− ν(η), where ν(.) is a negligible function, i.e.,
ν(.) is smaller than the inverse of every polynomial. The precise inductive semantics
for formulas is in [20] (see Appendix A for a summary).

In particular, the semantics of the predicate GoodKeyAgainst(X, k) is defined using
a standard cryptographic style game condition. It captures the intuition that a key
output by a secure key exchange protocol should be suitable for use in some applica-
tion protocol of interest (e.g. as a key for an IND-CCA secure encryption scheme) [21].
Formally, JGoodKeyAgainst(X, k)K(T,D, ε) is the complete set of traces T if the distin-
guisher D, who is given X’s view of the run has an advantage less than ε in winning
the IND-CCA game [8] against a challenger using the bitstring corresponding to term
k as the key, and ∅ otherwise. Here the probability is taken by choosing a uniformly
random trace t ∈ T (which includes the randomness of all parties, the attacker and the
distinguisher). The same approach can be used to define other game conditions based
on the application protocol.

A trace property is a formula ϕ such that for any set of protocol traces T , JϕK(T ) =S
t∈T JϕK ({t}). The distinguisher and tolerance are omitted since they are not used in

defining semantics for such predicates. Thus all action formulas, such as Send(X,m), are
trace properties whereas aggregrate properties such as Indist(X, k) and GoodKeyAgainst
(X, k) are not.

3 Secretive Protocols

In this section, we define a trace property of protocols and show that this property
implies computational secrecy and integrity. The computational secrecy properties in-
clude key indistinguishability and key usability for IND-CCA secure encryption. These
results are established first for the simple case when secrets are protected by pre-shared
“level-0” keys (Theorems 1-3), then generalized (Theorems 4-6) under the condition
that each key is protected by predecessor keys in an acyclic graph. The proofs use
standard cryptographic reductions.

Let s and K be the symbolic representations of a nonce and a set of keys associated
with a specific thread in a trace 〈e, λ〉. Define Λ(K) = {λ(k)|k ∈ K}.

Definition 1 (Secretive Trace). A trace 〈e, λ〉 is a secretive trace with respect to s
and K if the following properties hold for every thread belonging to honest principals:

– a thread which generates a new nonce r in e, with λ(r) = λ(s), ensures that r is
encrypted with a key k with bitstring representation λ(k) ∈ Λ(K) in any message
sent out.

– whenever a thread decrypts a message with a key k with λ(k) ∈ Λ(K), which was
produced by encryption with key k by an honest party, and parses the decryption,
it ensures that the results are encrypted with some key k′ with λ(k′) ∈ Λ(K) in any
message sent out.

To lift this definition of secretive traces to secretive protocols we need a way to
identify the symbol s and the set of symbols K in each protocol execution trace. We
do this by assuming functions s̄ and K̄ that map a trace to symbols in the trace
corresponding to s and the set of keys in K respectively. In applications, these mappings
will be induced by logical formulas.
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Definition 2 (Secretive Protocol). Given the mappings s̄ and K̄, A protocol Q is
a secretive protocol with respect to s and K if for all probabilistic poly-time adversaries
A and for all sufficiently large security parameters η, the probability that a trace t,
generated by the interaction of A with principals following roles of Q, is a secretive
trace with respect to s̄(t) and K̄(t) is overwhelmingly close to 1, the probability being
taken over all adversary and protocol randomness.

A level-0 key for a protocol execution is an encryption key which is only used as
a key but never as a payload. We use multi-party security definitions due to Bellare,
Boldyreva and Micali [8] applied to symmetric encryption schemes in the following
theorems. In [8], IND-CCA2 and the multi-party IND-CCA game are shown to be
asymptotically equivalent.

In all the proofs to do with secretive protocols, we implicitly look at the subset of
all traces that are secretive among all possible traces. Since the set of non-secretive
traces is a negligible subset of all traces, adversary advantages retain the same asymp-
totic behaviour - negligible advantages remain negligible and non-negligible advantages
remain non-negligible.

The general structure of the proofs of the secrecy theorems is by reduction of the
appropriate protocol secrecy game to a multi-party IND-CCA game. That is, given
protocol adversary A, we construct an adversary A′ against a multi-party IND-CCA
challenger which provides multi-party Left-or-Right encryption oracles Eki(LoR (·, ·, b))
parameterized by a challenge bit b and decryption oracles Dki(·) for all ki ∈ K (Fol-
lowing [8], LoR(m0,m1, b) is a function which returns mb).

The strategy of A′ is to provide a simulation of the secretive protocol to A by
using these oracles such that the capability of A to break the indistinguishability or
key usability of the nonce can be leveraged in some way to guess the challenge bit b
of the multi-party IND-CCA challenger. To this end, A′ employs a bilateral simulator
S which randomly chooses two bit-strings s0, s1 as alternate representations of the
putative secret s and then simulates execution of the protocol to the protocol adversary
A for both the representations.

The operational semantics of the bilateral simulator is outlined in table 3 and is
intuitively explained as follows: Every action in each thread is considered one by one,
scheduled in the same way as a usual protocol execution. We describe the pairing rule
below to illustrate the notations and the rest is similar.

. m′ . m′′ m := pair m′,m′′;

. m, lv(m) = pair(lv(m′), lv(m′′)), rv(m) = pair(rv(m′), rv(m′′))

The notation .m means the symbol m has been computationally evaluated according to
the semantics. The premise of the rule requires that the symbols m and m′ have already
been evaluated and we are considering the action m := pair m′,m′′. The functions lv
and rv map a symbol to its bit-string values corresponding to the representations s0
and s1 of s respectively. The function pair is the actual computational implemention
of pairing. What the conclusion of the rule tells us is that the lv(m) is evaluated by
pairing the bit-strings lv(m′) and lv(m′′) and similarly for rv(m).

Suppose m is a term explicitly constructed from s. As A1 is simulating a secretive
protocol, this term is to be encrypted with a key k in K to construct a message to
be sent out to A. In this case A1 asks the encryption oracle (lv(m), rv(m)) to be
encrypted by k. In addition, this pair of bitstrings is recorded and the result of the
query is logged in the set qdbk. If a message construction involves decryption with a key
in K, A1 first checks whether the term to be decrypted was produced by an encryption
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oracle by accessing the log qdbk- if not then the decryption oracle is invoked; if yes
then A1 uses the corresponding encryption query as the decryption. In the second case
the encryption query must have been of the form (m0,m1). Following the definition of
secretive protocol, terms constructed from this decryption will be re-encrypted with a
key in K before sending out. Thus we note here that all such replies will be consistent
to A with respect to any choice of b. The situation becomes different when encryption
or decryption of a term is required with s as the key. In this case A1 encrypts or
decrypts with s0. From the operational semantics point of view we will always have
lv(m) = rv(m) for any message m being sent out–hence the simulator will not enter a
reject state due to the send action.

In addition to term constructors, protocols also have deconstructors such as unpair-
ings and decryptions, and pattern matching actions. To have a consistent simulation
we need to ensure that the success of the decontruction and pattern matching actions
are independent of the challenge bit b, i.e. if there is a match for b = 0 then there
should also be a match for b = 1 and similarly for a mismatch; if the term for b = 0 can
be unpaired or decrypted then the corresponding operation also succeeds for the term
for b = 1 and vice versa for failure. It turns out that the type information carried by
terms (mentioned in section 2.1) ensures this consistency in an overwhelming number
of traces. This is stated in theorems 1 and 2.

Theorem 1 (Matching Deconstructions). If the bitstring representation of the
symbol m is a pair on one side of a bilateral simulation then it is a pair on the other
side also; similarly for encryption. Formally,

– If . m and lv(m) = pair(l0, l1) for some l0, l1, then rv(m) = pair(r0, r1) for some
r0, r1 and vice versa.

– If . m, . k and lv(m) = enc(l, lv(k)) for some l, then rv(m) = enc(r, lv(k)) for
some r and vice versa.

Theorem 2 (Matching Terms). If the bitstring representations of the symbols m
and m′ coincide on one side of a bilateral simulation, then with overwhelming probabil-
ity, they coincide on the other side too. Formally, the event E = ∃m,m′. [. m, . m′,
(lv(m) = lv(m′)) ⊕ (rv(m) = rv(m′))] occurs with probability negligible in the security
parameter.

Theorem 1 implies that deconstruction actions like unpairing and decryption can
be carried out consistently on both sides of the simulation. Theorem 2 states that in
all but negligible number of traces, matching actions would have consistent results on
both the ‘left’ and the ‘right’ sides–either success on both or failure on both. The proofs
are in Appendix B.

Theorem 3 (CCA security - level 1). Assume that a probabilistic poly-time adver-
sary interacts with a secretive protocol with respect to nonce s and a set of level-0 keys
K.

– In the case that s is never used as a key by the honest principals: the adversary
has negligible advantage at distinguishing s from random, after the interaction, if
the encryption scheme is IND-CCA secure. In other words, the protocol satisfies
key indistinguishability for s.

– In the case that honest principals are allowed to use s as a key: the adversary has
negligible advantage at winning an IND-CCA game against a symmetric encryption
challenger, using the key s, after the interaction if the encryption scheme is IND-
CCA secure. In other words, the protocol satisfies IND-CCA key usability for s.

8



Proof. Assume that a probabilistic poly-time adversary A interacts with a secre-
tive protocol with respect to nonce s and a set of level-0 keys K. We will show that
if A has non-negligible advantage at winning an IND-CCA game against a symmetric
encryption challenger, using the key s, after the interaction then we can construct ei-
ther a |K|-IND-CCA adversary A1 or an IND-CCA adversary A2 with non-negligible
advantages against the encryption scheme. In the first phase, A1 provides a bilateral
simulation of the protocol to A using the |K|-IND-CCA oracle according to the oper-
ational semantics of table 3.

Case 1 s not used as a key by honest principals: In the second phase, A1 chooses
a bit d′ and sends xd′ to A. If A replies that this is the actual nonce used, then A1

finishes by outputting d = d′, otherwise it outputs d = d̄′ and finishes. The advantage
of A1 against the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (1)

Note that this formulation is equivalent to the expression 2Pr[d = b]− 1 by algebraic
manipulations and the assumption Pr[b = 0] = Pr[b = 1] = 1/2.

Since A has a non-negligible advantage at distinguishing s from random, the quan-
tity on the RHS must be non-negligible. Therefore the advantage in the LHS must be
non-negligible and hence we are done.

Case 2 s used as a key by honest principals: In the second phase, A1 uniformly
randomly chooses a bit b′ and provides oracles Es0(LoR(·, ·, b′)) and Ds0(·) to A for an
IND-CCA game. A finishes by outputting a bit d′. If b′ = d′, A1 outputs d = 0 else
outputs d = 1. The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (2)

Observe that if b = 0 then s was consistently represented by s0 in messages sent to
A. Hence, the first probability is precisely the probability of A winning an IND-CCA
challenge with s as the key after interacting with a secretive protocol w.r.t. s and K. We
will now bound the second probability. We start by constructing a second adversary
A2 which has all the keys in K, randomly generates a nonce s1 and has access to
an encryption oracle Es0(LoR(·, ·, b1)) and a decryption oracle Ds0(·). It has a similar
behaviour towards A as A1 had except that when constructing terms with s, it uses s1
but when required to encrypt or decrypt using s, it queries Es0(LoR(·, ·, b1)) or Ds0(·).
In the second phase, A1 uses the oracles Es0(LoR(·, ·, b1)) and Ds0(·) to provide the
IND-CCA challenger to A. A finishes by outputting a bit d1. A2 outputs d1. We observe
here that if b = 1 for the earlier LoR oracle, it makes no difference to the algorithm A
whether it is interacting with A1 or A2. Thus we have:

(1/2)AdvIND−CCA,A2(η) = Pr[d1 = b1]− 1/2 = Pr[d = 0|b = 1]− 1/2 (3)

By the equations 2 and 3 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K|−IND−CCA,A1(η) + (1/2)AdvIND−CCA,A2(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done. ut

If a protocol is a secretive protocol with respect to nonce k and set of level-0 keys
K then we will call k a level-1 key for the protocol, protected by K. Now we state a
theorem establishing the integrity of encryptions done with level-1 keys. The security
definition INT-CTXT for ciphertext integrity is due to [10] and also referred to as
existential unforgeability of ciphertexts in [27].
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Theorem 4 (CTXT integrity - level 1). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of level-
0 keys K. During the protocol run, if an honest principal decrypts a ciphertext with
key s successfully, then with overwhelming probability the ciphertext was produced by
an honest principal by encryption with s if the encryption scheme is IND-CCA and
INT-CTXT secure.

The proof is outlined in Appendix C. We now extend theorems 3–4 to directed
key hierarchies. This extension is motivated by the fact that many key distribution
protocols (e.g. Kerberos) have key hierarchies with keys protected by lower level keys
in the hierarchy.

Definition 3 (Key Graph). Let K be the symbolic representations of nonces and
keys associated with a specific thread in a trace 〈e, λ〉. The key graph of K in a protocol
is a directed graph with keys in K as vertices. There is an edge from key k1 to k2 if the
protocol is secretive with respect to k2 and a key set which includes k1.

Definition 4 (Key Level). Consider a directed acyclic key graph. Keys at the root
are level 0 keys. The level of any other key is one more than the maximum level among
its immediate predecessors.

Definition 5 (Key Closure). For a set of keys K from a directed acyclic key graph,
we define its closure C(K) to be the union of sets of keys at the root which are prede-
cessors of each key in K.

Theorem 5 (CCA security - Key DAGs). Assume that a probabilistic poly-time
adversary interacts with a secretive protocol with respect to nonce s and a set of keys
K in a DAG of finite and statically bounded level.

– In the case that s is never used as a key by the honest principals: the adversary
has negligible advantage at distinguishing s from random, after the interaction, if
the encryption scheme is IND-CCA secure. In other words, the protocol satisfies
key indistinguishability for s.

– In the case that honest principals are allowed to use s as a key: the adversary has
negligible advantage at winning an IND-CCA game against a symmetric encryption
challenger, using the key s, after the interaction if the encryption scheme is IND-
CCA secure. In other words, the protocol satisfies IND-CCA key usability for s.

Theorem 6 (CTXT integrity). Assume that a probabilistic poly-time adversary in-
teracts with a secretive protocol with respect to nonce s and a set of keys K in a DAG of
finite, statically bounded levels. During the protocol run, if an honest principal decrypts
a ciphertext with key s successfully, then with overwhelming probability the ciphertext
was produced by an honest principal by encryption with s if the encryption scheme is
IND-CCA and INT-CTXT secure.

The proofs are outlined in Appendix C.

4 Proof System

In this section, we present a general induction rule, axiomatize the informal definition
of a secretive protocol given in section 3 and formulate axioms stating that secretive
protocols guarantee certain computational properties. The soundness proofs of these
axioms rely on the theorems in section 3.
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4.1 Establishing Secretive Protocols

We introduce the predicate Good(X,m, s,K) to assert that the thread X constructed
the term m in accordance with the rules allowing a secretive protocol with respect to
nonce s and set of keys K to send out m. Formally, JGood(X,m, s,K)K(T,D, ε) is the
collection of all traces t ∈ T where thread X constructs the term m in a ‘good’ way.
Received messages, data of atomic type different from nonce or key, nonces different
from s are all ‘good’ terms. Constructions that are ‘good’ consist of pairing or unpairing
good terms, encrypting good terms, encrypting any term with a key inK and decrypting
good terms with keys not in K. The following axioms are sound for this semantics:

G0 Good(X, a, s,K), if a is of an atomic type different from nonce

G1 New(Y, n) ∧ n 6= s ⊃ Good(X,n, s,K)

G2 [receive m; ]X Good(X,m, s,K)

G3 Good(X,m, s,K) [a]X Good(X,m, s,K), for all actions a

G4 Good(X,m, s,K) [match m as m′; ]X Good(X,m′, s,K)

G5 Good(X,m0, s,K) ∧ Good(X,m1, s,K) [m := pair m0,m1; ]X Good(X,m, s,K)

G6 Good(X,m, s,K) [m′ := symenc m, k; ]X Good(X,m′, s,K)

G7 k ∈ K [m′ := symenc m, k; ]X Good(X,m′, s,K)

G8 Good(X,m, s,K) ∧ k /∈ K [m′ := symdec m, k; ]X Good(X,m′, s,K)

Lemma 1. If Good(X,m, s,K) holds for a trace 〈e, λ, · · · , σ〉, then any bilateral simu-
lator with parameters s,K, executing symbolic actions e produces identical bitstring
representations for m on both sides of the simulation, i.e., we will have . m and
lv(m) = rv(m).

Proof. The proof is by induction on the construction of ‘good’ terms. The base cases
for received messages, data of atomic type different from nonce or key simply follows
from the operational semantics of the simulator. For encryption of a good term and
decryption with a key not in K, we use the fact that only the lv() of the key is used
in the operational semantics for encryption and decryption, hence the result also has
equal lv() and rv() values. The case for encryption of any term with a key in K follows
as the operational semantics for this case produces the same value for lv() and rv() in
the result. ut

The formula SendGood(X, s,K) asserts that all messages that thread X sends out
are good and Secretive(s,K) asserts that all honest threads only send out good mes-
sages. Formally,

SendGood(X, s,K) ≡ ∀m. (Send(X,m) ⊃ Good(X,m, s,K))

Secretive(s,K) ≡ ∀X. (Honest(X̂) ⊃ SendGood(X, s,K))

The axioms SG0− 2 are based on the definition of SendGood:

SG0 Start(X) [ ]X SendGood(X, s,K)

SG1 SendGood(X, s,K) [a]X SendGood(X, s,K), where a is not a send.

SG2 SendGood(X, s,K) [send m; ]X Good(X,m, s,K) ⊃ SendGood(X, s,K)

SG1 is obviously valid for nonce generation, message receipt, encryption and pair-
ing actions. Soundness for unpairing and decryption requires that consistency of de-
construction is ensured on both sides of the corresponding bilateral simulation - e.g.
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unpairing succeeds on one side iff it succeeds on the other. Theorem 1 ensures this con-
sistency. Similarly, soundness for matching actions follow from theorem 2. Soundness
of SG2 follows from the operational semantics of the simulator on a send action and
lemma 1.

The INDGOOD rule which follows states that if all honest threads executing some
basic sequence in the protocol locally construct good messages to be sent out, given
that they earlier also did so, then we can conclude Secretive(s,K).

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s,K) [P ]X Φ ⊃ SendGood(X, s,K)
Q ` Φ ⊃ Secretive(s,K)

(∗)

(∗): [P ]X does not capture free variables in Φ, K, s,

and Φ is a prefix closed trace formula.

This rule is an instance of a more general induction rule IND which is obtained
by replacing SendGood(X, s,K) by a general trace formula Ψ(X) and requiring that
Start(X) []X Ψ(X).

4.2 Relating Secretive Protocols to Good Keys

Now we relate the concept of a secretive protocol, which is trace-based, to complexity
theoretic notions of security. As defined in section 3, a level-0 key is only used as
a key. Note that this is a syntactic property and is evident from inspection of the
protocol roles. Typically, a long-term key shared by two principals is level-0. A nonce
is established to be a level-1 key when the protocol is proved to be a secretive protocol
with respect to the nonce and a set of level-0 keys. This concept is extended further to
define level-2 keys.

For a set of keys K of levels ≤ 1, recall from definition 5 that C(K) is the union
of all the level-0 keys in K and the union of all the level-0 keys protecting the level-1
keys in K. The formula InInitSet(X, s,K) asserts X is either the generator of nonce s
or a possessor of some key in C(K). GoodInit(s,K) asserts that all such threads belong
to honest principals. Formally,

InInitSet(X, s,K) ≡ ∃k ∈ C(K). Possess(X, k) ∨ New(X, s)

GoodInit(s,K) ≡ ∀X. (InInitSet(X, s,K) ⊃ Honest(X̂))

Our objective is to state that secrets established by Secretive Protocols, where possibly
the secrets are also used as keys, are good keys against everybody except the set of
people who either generated the secret or are in possession of a key protecting the
secret. The formula GoodKeyFor lets us state this. For level-0 keys which we want to
claim as being possessed only by honest principals we use the formula GoodKey.

GoodKeyFor(s,K) ≡ ∀X. (GoodKeyAgainst(X, s) ∨ InInitSet(X, s,K))

GoodKey(k) ≡ ∀X. (Possess(X, k) ⊃ Honest(X̂))

For protocols employing an IND-CCA secure encryption scheme, the soundness of the
following axiom follows from theorems 3 and 5:

GK Secretive(s,K) ∧ GoodInit(s,K)⇒ GoodKeyFor(s,K)
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If the encryption scheme is both IND-CCA and INT-CTXT secure then, the soundness
of the following axioms follow from theorems 4 and 6:

CTX0 GoodKey(k) ∧ SymDec(Z,Esym[k](m), k)⇒ ∃X. SymEnc(X,m, k), for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s,K) ∧ SymDec(Z,Esym[s](m), s)⇒ ∃X. SymEnc(X,m, s)

The proof system is summarized in Appendix D. The soundness theorem is proved
by showing that every axiom is a valid formula and that all proof rules preserve validity.
Proofs for selected axioms are given in Appendix C.

Theorem 7 (Soundness). ∀Q, ϕ. if Q ` ϕ then Q � ϕ

5 Compositional Reasoning for Secretive Protocols

In this section, we present composition theorems that allow secretive-ness proofs of
compound protocols to be built up from proofs of their parts. We consider three kinds of
composition operations on protocols—parallel, sequential, and staged—all based on the
previous work by [18, 24]. However, adapting that approach for reasoning about secrecy
requires new insights. One central concept in the compositional proof methods is the
notion of an invariant. An invariant for a protocol is a logical formula that characterizes
the environment in which it retains its security properties. While in [18] there is the
honesty rule HON for establishing invariants, reasoning about secretive-ness requires a
more general form of induction, captured in this paper by the IND rule. In addition,
to proving that a protocol step does not violate secretive-ness, we need to employ
derivations from earlier steps executed by the principal. In the technical presentation,
this history information shows up as preconditions in the secrecy induction of the
sequential and staged composition theorems. Instead of stating the theorems in terms
of the IND rule, we keep the focus on its specific instance INDGOOD to keep the
presentation more concretely geared towards secrecy.

Definition 6 (Parallel Composition). The parallel composition Q1 ⊗Q2 of proto-
cols Q1 and Q2 is the union of the sets of roles of Q1 and Q2.

The parallel composition operation allows modelling principals who simultaneously
engage in sessions of multiple protocols. The parallel composition theorem provides a
method for ensuring that security properties established independently for the con-
stituent protocols are still preserved in such a situation.

Theorem 8 (Parallel Composition). If Q1 ` Γ and Γ ` Ψ and Q2 ` Γ then
Q1 ⊗Q2 ` Ψ , where Γ denotes the set of invariants used in the proof of Ψ .

Definition 7 (Sequential Composition). A protocol Q is a sequential composition
of two protocols Q1 and Q2, if each role of Q is obtained by the sequential composition
of a role of Q1 with a role of Q2.

In practice, key exchange is usually followed by a secure message transmission
protocol which uses the resulting shared key to protect data. Sequential composition
is useful to model such compound protocols. Formally, the composed role P1;P2 is
obtained by concatenating the actions of P1 and P2 with the output parameters of P1

substituted for the input parameters of P2 (cf. [18]).
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Theorem 9 (Sequential Composition). If Q is a sequential composition of proto-
cols Q1 and Q2 then we can conclude Q ` Φ ⊃ Secretive(s,K) if the following conditions
hold for all P1;P2 in Q, where P1 ∈ Q1 and P2 ∈ Q2:

1. (Secrecy induction)
– ∀i.∀S ∈ BS(Pi). θPi ∧ SendGood(X, s,K) [S]X Φ ⊃ SendGood(X, s,K)

2. (Precondition induction)
– Q1 ⊗Q2 ` Start(X) ⊃ θP1 and Q1 ⊗Q2 ` θP1 [P1]X θP2

– ∀i.∀S ∈ BS(Pi). θPi [S]X θPi .

The final conclusion of the theorem is a statement that the composed protocol is
secretive with respect to s and K. The secrecy induction is similar to the INDGOOD

rule. It states that all basic sequences of the two roles only send out good messages.
This step is compositional since the condition is proved independently for steps of
the two protocols. One point of difference from the INDGOOD rule is the additional
precondition θPi . This formula usually carries some information about the history of
the execution, which helps in deciding what messages are good for X to send out.
For example, if θPi says that X has previously received the message m, then it is
easy to establish that m is a good message for X to send out again. The precondition
induction requires that the θPi ’s hold at each point where they are required in the
secrecy induction. The first bullet states the base case of the induction: θP1 holds at
the beginning of the execution and θP2 holds when P1 completes. The second bullet
states that the basic sequences of P1 and P2 preserve their respective preconditions.

Definition 8 (Staged Composition). A protocol Q is a staged composition of pro-
tocols Q1,Q2, . . . ,Qn if each role of Q is in RComp(〈R1, R2...Rn〉), where Ri is a role
of protocol Qi.

Consider the representation of sequential composition of n protocols as a directed
graph with edges fromQi toQi+1. The staged composition operation extends sequential
composition by allowing self loops and arbitrary backward arcs in this chain. This
control flow structure is common in practice, e.g., Kerberos [28], IEEE 802.11i [1], and
IKEv2 [13], with backward arcs usually corresponding to error handling or rekeying.
A role in this composition, denoted RComp(〈...〉) corresponds to a possible execution
path in the control flow graph by a single thread (cf. [24]). Note that the roles are built
up from a finite number of basic sequences of the component protocol roles.

Theorem 10 (Staged Composition). If Q is a staged composition of protocols Q1,
Q2, · · · , Qn, then we can conclude Q ` Φ ⊃ Secretive(s,K) if for all RComp(〈P1, P2,
· · · , Pn〉) ∈ Q:

1. (Secrecy induction)
– ∀i.∀S ∈ BS(Pi). θPi ∧ SendGood(X, s,K) [S]X Φ ⊃ SendGood(X, s,K)

2. (Precondition induction)
– Q1 ⊗Q2 · · · ⊗Qn ` Start(X) ⊃ θP1 and Q1 ⊗Q2 · · · ⊗Qn ` ∀i. θPi [Pi]X θPi+1

– ∀i.∀S ∈
S

j≥i BS(Pj). θPi [S]X θPi .

The secrecy induction for staged composition is the same as for sequential composi-
tion. However, the precondition induction requires additional conditions to account for
the control flows corresponding to backward arcs in the graph. The technical distinction
surfaces in the second bullet of the precondition induction. It states that precondition
θPi should also be preserved by basic sequences of all higher numbered components,
i.e., components from which there could be backward arcs to the beginning of Pi.
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SECakey : Hon(Ĉ, K̂, T̂ ) ⊃ (GoodKeyAgainst(X,AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂})

SECskey : Hon(Ĉ, K̂, T̂ , Ŝ) ⊃ (GoodKeyAgainst(X,SKey) ∨ X̂ ∈ {Ĉ, K̂, T̂ , Ŝ})

AUTHkas : ∃η. Send((K̂, η), Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[kc→k

C,K ](AKey.n1.T̂ ))

AUTHtgs : ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

SECclient
akey : [Client]C SECakey AUTHclient

kas : [Client]C Hon(Ĉ, K̂) ⊃ AUTHkas

SECkas
akey : [KAS]K SECakey AUTHtgs

kas : [TGS]T Hon(T̂ , K̂) ⊃ ∃n1. AUTHkas

SECtgs
akey : [TGS]T SECakey

AUTHclient
tgs : [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ AUTHtgs

SECclient
skey : [Client]C SECskey AUTHserver

tgs : [Server]S Hon(Ŝ, T̂ )

SECtgs
skey : [TGS]T SECskey ⊃ ∃n2, AKey. AUTHtgs

Table 2. Kerberos Security Properties

6 Analysis of Kerberos

Table 2 lists the security properties of Kerberos that we want to prove. The security
objectives are of two types: authentication and secrecy. The authentication objectives
take the form that a message of a certain format was indeed sent by some thread of
the expected principal. The secrecy objectives take the form that a putative secret
is a good key for certain principals. For example, AUTHclient

kas states that when C
finishes executing the Client role, some thread of K̂ indeed sent the expected message;
SECclient

akey states that the authorization key is good after execution of the Client role by
C; the other security properties are analogous. We abbreviate the honesty assumptions
by defining Hon(X̂1, X̂2, · · · , X̂n) ≡ Honest(X̂1) ∧ Honest(X̂2) ∧ · · ·Honest(X̂n).

The overall proof structure demonstrates an interleaving of authentication and
secrecy properties, reflecting the intuition behind the protocol design. We start with
proving some authentication properties based on the presumed secrecy of long-term
shared symmetric keys. As intended in the design, these authentication guarantees
enable us to prove the secrecy of data protected by the long-term keys. This general
theme recurs further down the protocol stages. Part of the data is used in subsequent
stages as an encryption key. The secrecy of this transmitted encryption key lets us
establish authentication in the second stage of the protocol. The transmitted key is
also used to protect key exchange in this stage - the secrecy of which depends on the
authentication established in the stage.

Theorem 11 (KAS Authentication). On execution of the Client role by a prin-
cipal, it is guaranteed with asymptotically overwhelming probability that the intended
KAS indeed sent the expected response assuming that both the client and the KAS
are honest. Similar result holds for a principal executing the TGS role. Formally,
KERBEROS ` AUTHclient

kas , AUTHtgs
kas.
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Proof Sketch. Authentication is achieved by the virtue of ciphertext integrity offered
by the symmetric encryption scheme. At a high level, we reason that a ciphertext
could have been produced only by one of the possessors of the corresponding key. As
an example, observe that in the first stage of Kerberos (described in section 2), the
client decrypts a ciphertext encrypted with a key shared only between itself and the
KAS (kc→k

C,K ). Hence it should be overwhelmingly probable that one of them did the
encryption. This reasoning is formally captured by the axiom CTX0. However, it is
still not obvious that the client itself did not produce the ciphertext! Some other thread
of the client could have potentially created the ciphertext which could have been fed
back to the thread under consideration as a reflection attack. We discount this case
by observing that the client role of Kerberos never encrypts with a key of type c→ k.
This property is an invariant of Kerberos proved by induction over all the protocol
role programs. The HON rule (explained in Appendix D) enables us to perform this
induction in the proof system. Thus, so far, we have reasoned that the encryption
was done by the KAS. We again observe that any role of Kerberos which does an
encryption of the specific form as in stage one also sends out a message of the intended
form (AUTHkas in table 2). This is also an invariant of Kerberos. We now have a high
level intuition of the entire proof.

The formal proof in Appendix F.2 follows this high level intuition. In course of exe-
cution of the Client role by principal Ĉ, it decrypts the message Esym[kc→k

C,K ](AKey.n1.T̂ ).
Using axiom CTX0, we derive that it was encrypted by one of the owners of kc→k

C,K - i.e.

either Ĉ, or K̂. Then, by using the invariant rule HON, we establish that no thread
of Ĉ does this (assuming Ĉ 6= K̂) - hence it must be some thread of K̂ (also, this
trivially holds if Ĉ = K̂). Once again we use the HON rule to reason that if an honest
thread encrypts a message of this form then it also sends out a message of the form
described in AUTHkas. The proof of AUTHtgs

kas is along identical lines. In Appendix
F.2, we first give a template proof for the underlying reasoning and then instantiate it
for both AUTHclient

kas and AUTHtgs
kas. In AUTHtgs

kas, the existential quatification over

n1 is there because T is oblivious to what n1 was used in the interaction between Ĉ
and K̂ but it can still infer that some n1 was used.

Theorem 12 (Authentication Key Secrecy). On execution of the Client role by
a principal, the Authentication Key is guaranteed to be good, in the sense of IND-
CCA security, assuming that the client, the KAS and the TGS are all honest. Similar
results hold for principals executing the KAS and TGS roles. Formally, KERBEROS `
SECclient

akey , SECkas
akey, SEC

tgs
akey.

Proof Sketch. This theorem states a form of secrecy property for the Authentication
Key AKey - specifically, that AKey is good for use as an encryption key in the sense
of the security model described in section 2.2. Observe that in the first stage, the KAS
sends out AKey encrypted under two different keys - kc→k

C,K and kt→k
T,K , and the client

uses AKey as an encryption key. As a first approximation we conjecture that in the
entire protocol execution, AKey is either protected by encryption with either of the
keys in K = {kc→k

C,K , k
t→k
T,K } or else used as an encryption key in messages sent to the

network by honest principals. This seems like a claim to be established by induction.
As a base case, we establish that the generator of AKey (some thread of the KAS)
satisfies the conjecture. The induction case is: whenever an honest principal decrypts
a ciphertext with one of the keys in K, it ensures that new terms generated from the
decryption are re-encrypted with some key in K in any message sent out. The results
(of the appropriate type) from such a decryption are however, allowed to be used as
encryption keys, which as you can note is the case in the first stage of the client.
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When we are reasoning from the point of view of the KAS (as in SECkas
akey), we

already know the initial condition - that the KAS sent out AKey encrypted under only
these keys. However, when arguing from the point of view of the client and the TGS
(as in SECclient

akey and SECtgs
akey), we need to have some authentication conditions estab-

lished first. These conditions are generally of the form that the KAS indeed behaved
in the expected manner. Reasoning from this premise, it turns out that our initial
conjecture is correct.

In the formal proof in Appendix F.3, we show that Kerberos is a secretive protocol
with respect to the nonce AKey and the set of keys K. The induction idea is captured,
in its simplest form, by the proof rule INDGOOD. However, as Kerberos has a staged
structure we use the staged composition theorem (theorem 10) which builds upon the
rule INDGOOD. The core of the proof is the secrecy induction which is an induction over
all the basic sequences of all the protocol roles. The authentication condition Φ is easily
derived from the KAS Authentication theorem (theorem 11). The staged composition
theorem allows us to facilitate the secrecy induction by obtaining inferences from the
information flow induced by the staged structure of Kerberos in a simple and effective
way. The secrecy induction is modular as the individual basic sequences are small in
themselves. Goodness of AKey now follows from theorem 3 (CCA security - level 1),
which is formally expressed by axiom GK.

Theorem 13 (TGS Authentication). On execution of the Client role by a prin-
cipal, it is guaranteed with asymptotically overwhelming probability that the intended
TGS indeed sent the expected response assuming that the client, the KAS and the TGS
are all honest. Similar result holds for a principal executing the Server role. Formally,
KERBEROS ` AUTHclient

tgs , AUTHserver
tgs .

Proof Sketch. The proof of AUTHserver
tgs can be instantiated from the template proof

used for theorem 11 and is formally done in Appendix F.2. The proof of AUTHclient
tgs

depends on the ‘goodkey’-ness of AKey established by theorem 12 and is much more
involved. We omit discussion of the proof due to space constraint but a formal proof
is given in Appendix F.4.

Theorem 14 (Service Key Secrecy). On execution of the Client role by a prin-
cipal, the Service Key is guaranteed to be good, in the sense of IND-CCA security,
assuming that the client, the KAS, the TGS and the application server are all honest.
Similar result holds for a principal executing the TGS role. Formally, KERBEROS `
SECclient

skey , SECtgs
skey.

Proof Sketch. The idea here is that the Service Key SKey is protected by level-0
key ks→t

S,T and level-1 key AKey. The proof of ‘Secretive’-ness proceeds along the same
line as for theorem 12 and uses derivations from theorem 13. Then we invoke axiom
GK for level-2 keys to establish KERBEROS ` SECclient

skey , SECtgs
skey. We omit detailed

discussion of this theorem in this paper.

Kerberos with PKINIT In the first stage of Kerberos with PKINIT [34], the KAS
establishes the authorization key encrypted with a symmetric key which in turn is sent
to the client encrypted with its public key. A fundamental difference in this setting with
respect to the purely symmetric key setting is that now we have to consider both public
and symmetric keys at level 0. This necessitates a definition and security analysis of a
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joint public-symmetric key game. We have formulated such a definition and extended
the proof system although due to shortage of space we do not include the results in
this paper. The extended proof system lets us prove all the syntactically analogous
properties of the PKINIT version.

For client Ĉ and KAS K̂ let us denote this symmetric key by kpkinit
C,K . Since the

structure of the rest of the protocol remains the same with respect to the level of formal-
ization in this paper [15], we can take advantage of the CPCL proofs for the symmetric
key version. In particular, the proofs for AUTHtgs

kas, AUTH
client
tgs and AUTHserver

tgs pro-
ceed identically. The proof of AUTHclient

kas is different because of the differing message
formats in the first stage. There is an additional step of proving the secrecy of kpkinit

C,K ,
after which the secrecy proofs of AKey and SKey are reused with only the induction
over the first stage of the client and the KAS being redone.

7 Conclusion

We formalize reasoning about secrecy by introducing axioms and rules for showing
that individual receive-send protocol steps respect secrecy of message parts, and an
induction rule for reasoning about arbitrarily many simultaneous protocol sessions.
These proof principles are shown sound for a probabilistic polynomial-time semantics
of protocol execution and attack.

We use the proof system consisting of computationally sound rules from the litera-
ture, combined with new axioms and rules presented here, to prove authentication and
secrecy properties of the Kerberos protocol. Our concise, modular proof provides as-
surance about the correctness of Kerberos, assuming that the cryptographic primitives
satisfy the technical conditions identified in this paper.
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23. F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security
protocol correct? In Proceedings of the 1998 IEEE Symposium on Security and
Privacy, pages 160–171, Oakland, CA, May 1998. IEEE Computer Society Press.

24. C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of ieee 802.11i and tls. In ACM Conference on Computer and
Communications Security, pages 2–15, 2005.

19



25. J. Herzog. Computational Soundness for Standard Assumptions of Formal Cryp-
tography. PhD thesis, MIT, 2004.

26. R. Janvier, L. Mazare, and Y. Lakhnech. Completing the picture: Soundness of
formal encryption in the presence of active adversaries. In Proceedings of 14th
European Symposium on Programming (ESOP’05), Lecture Notes in Computer
Science, pages 172–185. Springer-Verlag, 2005.

27. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In FSE, pages 284–299, 2000.

28. J. Kohl and B. Neuman. The kerberos network authentication service, 1991. RFC.
29. Z. Manna and A. Pnueli. Temporal verification of reactive systems: safety. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.
30. C. Meadows. A model of computation for the NRL protocol analyzer. In Proceed-

ings of 7th IEEE Computer Security Foundations Workshop, pages 84–89. IEEE,
1994.

31. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference - Proceedings of TCC
2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151. Springer-
Verlag, 2004.

32. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A. Roscoe. Modelling and
Analysis of Security Protocols. Addison-Wesley Publishing Co., 2000.

33. B. Warinschi. A computational analysis of the Needham-Schroeder(-Lowe) proto-
col. In Proceedings of 16th Computer Science Foundation Workshop, pages 248–
262. ACM Press, 2003.

34. L. Zhu and B. Tung. Public key cryptography for initial authentication in kerberos,
2006. Internet Draft.

20



A Computational Semantics

A.1 Computational Traces

Informally, a run is a record of all actions executed by honest principals and the attacker
during protocol execution. Since honest principals execute symbolic programs, a run
will contain symbolic description of actions executed by honest parties as well as the
mapping of bitstrings to variables. A run will also include arbitrary bitstrings that
attacker decides to save for the distinguishing phase. Since different coin tosses of the
attacker can yield same behavior, we will include the attacker randomness R explicitly
in the run. Computational trace contains two additional elements: randomness RT used
for testing indistinguishability and mapping σ which keeps track of values assigned to
quantified variables in the formula.

During the protocol execution, the adversary A may record any internal, private
message on a special knowledge tape. This tape is not read by any participant of the
protocol. Its content is used to decide if a given security formula is valid or not. We
write K for the list [(i1,m1), .., (in,mn)] of messages mk that A writes on its knowledge
tape. The messages are indexed by the number ik of actions already executed when mk

is written. This index is useful to remember a previous state of the knowledge tape.
At the end of the protocol execution, the adversary A outputs a pair of integers

(p1, p2) on an output tape. When the security formula is a modal formula θ[P ]Xϕ, these
two integers represents two positions in the protocol execution where the adversary
claims that the formula is violated, i.e. that θ is true in p1 but ϕ is false in p2, with P
between p1 and p2. Let O be this pair (p1, p2) of integers written on the output tape.

The symbolic trace of the protocol is the execution strand e ∈ ExecStrand which
lists, in the order of execution, all honest participant actions and the dishonest partic-
ipant’s send and receive actions. This strand contains two parts: Start(...) stores
the initialization data, and the rest is an ordered list of all exchanged messages and
honest participants’ internal actions.

Definition 9. (Computational Traces) Given a protocol Q, an adversary A, a security
parameter η, and a sequence of random bits R ∈ {0, 1}p(η) used by the honest principals
and the adversary, a run of the protocol is the tuple 〈e, λ,O,K, R〉 where e is the
symbolic execution strand, λ : V ar(e) → {0, 1}p(η) maps the symbolic terms in e to
bitstrings, O is the pair of integers written on the output tape, and K is the indexed
list of messages written on the knowledge tape. Finally, p(x) is a polynomial in x.

A computational trace is a run with two additional elements: RT ∈ {0, 1}p(η), a se-
quence of random bits used for testing indistinguishability, and σ : V ar(ϕ)→ {0, 1}p(η),
a substitution that maps formula variables to bitstrings. The set of computational traces
is

TQ(A, η) = {〈e, λ,O,K,R,RT , σ〉 |R,RT chosen uniformly}.

Definition 10. (Participant’s View) Given a protocol Q, an adversary A, a secu-
rity parameter η, a participant X̃ and a trace t = 〈e, λ,O,K, R,RT , σ〉 ∈ TQ(A, η),
V iewt(X̃) represents X̃ ′s view of the trace. It is defined precisely as follows:

If X̂ is honest, then V iewt(X̃) is the initial knowledge of X̃, a representation of
e|X̃ and λ(x) for any variable x in e|X̃ . If X̂ is dishonest, then V iewt(X̃) is the union

of the knowledge of all dishonest participants X̃ ′ after the trace t (where V iewt(X̃ ′) is
defined as above for honest participants) plus K, the messages written on the knowledge
tape by the adversary.
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The following three definitions are a prelude to setting up a semantics of the pred-
icate Indist(). Informally, based on some trace knowledge K, the distinguisher D is
trying to determine which of the two bitstrings corresponds to the symbolic term. One
of the bitstrings is going to be an actual bitstring representation of the term in the
current run, while the other is going to be a random bitstring of the same structure.
The order of the two bitstrings when presented to the distinguisher is the output of an
LR Oracle using a random selector bit.

Definition 11. (LR Oracle) The LR Oracle [9] is used to determine the order in which
two bitstrings are presented depending on the value of the selector bit, i.e. LR(s0, s1, b) =
〈sb, s1−b〉.

Definition 12. (Distinguishing test input) Let u be a symbolic term and σ be a substi-
tution that maps variables of u to bitstrings. We construct another bitstring f(u, σ, r),
whose symbolic representation is the same as that of u. Here, r is a sequence of bits
chosen uniformly at random. The function f is defined by induction over the structure
of the term u.

– Nonce u : f(u, σ, r) = r
– Name/Key u : f(u, σ, r) = σ(u)
– Pair u = 〈u1, u2〉 : f(〈u1, u2〉, σ, r1; r2) = 〈f(u1, σ, r1), f(u2, σ, r2)〉
– Encryption u = {v}nK : f({v}nK , σ, r1; r2) = E(f(v, σ, r1), σ(K), r2)

Definition 13. (Distinguisher) A distinguisher D is an polynomial algorithm which
takes as input a tuple 〈K, t, 〈s0, s1〉, R, η〉, consisting of knowledge K, symbolic term t,
two bitstrings s0 and s1, randomness R and the security parameter η, and outputs a
bit b′.

In order to define the semantics of the modal operator, we introduce operators Pre
and Post on sets of traces. Informally, for a strand P of a thread X̃ and the set of
traces T , Post(TP ) is going to correspond to runs from T in which P is a terminating
segment of the sequence of actions executed by X̃, while Pre(TP ) is corresponds to
runs from T , where X̃ is about to start executing actions in P .

Definition 14. (Splitting computational traces) Let T be a set of computational traces
and t = 〈e, λ,O,K,R,RT , σ〉 ∈ T . O = 〈p1, p2〉, e = InitialState(I); s, and s =
s1; s2; s3 with p1, p2 the start and end positions of s2 in s. Given a strand P executed
by participant X̃, we denote by TP the set of traces in T for which there exists a
substitution σ′ which extends σ to variables in P such that σ′(P ) = λ(s2 |X̃). The
complement of this set is denoted by T¬P and contains all traces which do not have
any occurrence of the strand P . We define the set of traces Pre(TP ) = {t[s← s1,K ←
K≤p1 , σ ← σ′] | t ∈ TP }, where K≤p is the restriction of the knowledge tape K to
messages written before the position p. We define the set of traces Post(TP ) = {t[s←
s1; s2,K ← K≤p2 , σ ← σ′] | t ∈ TP }.

The semantics of a formula ϕ on a set T of computational traces is a subset T ′ ⊆
T that respects ϕ in some specific way. For many predicates and connectives, the
semantics is essentially straightforward. For example, an action predicate such as Send
selects a set of traces in which a send occurs. However, the semantics of predicates
Indist and GoodKeyAgainst is inherently more complex.

Intuitively, an agent has partial information about the value of some expression if
the agent can distinguish that value, when presented, from a random value generated
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according to the same distribution. More specifically, an agent has partial information
about a nonce u if, when presented with two bitstrings of the appropriate length,
one the value of u and the other chosen randomly, the agent has a good chance of
telling which is which. There are technical issues associated with positive and negative
occurrences of the predicate. For positive occurrences of Indist, we should say that
no probabilistic polynomial-time algorithm has more than a negligible chance, where
as for ¬Indist(. . .) we want to say that there exists a probabilistic polynomial-time
distinguisher. In order to deal with these issued, semantics of a particular formula will
be defined with respect to two distinguishers: one for occurrences with positive polarity,
and one for occurrences with negative polarity. In the final definition of formula validity
we will universally quantify over all positive distinguishers and existentially quantify
over all negative distinguishers.

Conditional implication θ ⇒ ϕ is interpreted using the negation of θ and the
conditional probability of ϕ given θ. This non-classical interpretation of implication
seems to be essential for relating provable formulas to cryptographic-style reductions
involving conditional probabilities.

A.2 Inductive Definition of JϕK(T, D, ε)

We inductively define the semantics JϕK(T,D, ε) of a formula ϕ on the set T of traces,
with a pair of distinguishers D and tolerance ε. In predicates appearing with positive
(resp. negative) polarity D stands for the positive (resp. negative) distinguisher. The
distinguishers and tolerance are not used in any of the clauses except for Indist and
GoodKeyAgainst. In definition 15 below, the tolerance is set to a negligible function
of the security parameter and T = TQ(A, η) is the set of traces of a protocol Q with
adversary A.

– JSend(X̃, u)K(T,D, ε) is the collection of all 〈e, λ,O,K,R,RT , σ〉 ∈ T such that
some action in the symbolic execution strand e has the form send Ỹ , v with
λ(Ỹ ) = σ(X̃) and λ(v) = σ(u). Recall that σ maps formula variables to bitstrings
and represents the environment in which the formula is evaluated.

– Ja( · , · )K(T,D, ε) for other action predicates a is similar to Send(X̃, u).
– JHonest(X̂)K(T,D, ε) is the collection of all 〈e, λ,O,K,R,RT , σ〉 ∈ T where e =
InitialState(I); s and σ(X) is designated honest in the initial configuration I.
Since we are only dealing with static corruptions in this paper, the resulting set
is either the whole set T or the empty set φ depending on whether a principal is
honest or not.

– JStart(X̃)K(T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T where e = InitialState(I); s
and λ(s)|σ(X̃) = null. Intuitively, this set contains traces in which X̃ has executed
no actions.

– JContains(u, v)K(T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T such that
there exists a series of decryptions with {λ(k) | k ∈ Key} and projections (π1,π2)
constructing σ(v) from σ(u). This definition guarantees that the result is the whole
set T if v is a symbolic subterm of u.

– Jθ ∧ ϕK(T,D, ε) = JθK(T,D, ε) ∩ JϕK(T,D, ε).
– Jθ ∨ ϕK(T,D, ε) = JθK(T,D, ε) ∪ JϕK(T,D, ε).
– J¬ϕK(T,D, ε) = T \ JϕK(T,D, ε) .
– J∃x. ϕK(T,D, ε) =

S
β(JϕK(T [x← β], D, ε)[x← σ(x)])

with T [x← β] = {t[σ[x← β]] | t = 〈e, λ,O,K,R,RT , σ〉 ∈ T}, and β any bitstring
of polynomial size.
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– Jθ ⇒ ϕK(T,D, ε) = J¬θK(T,D, ε) ∪ JϕK(T ′, D, ε), where T ′ = JθK(T,D, ε). Note
that the semantics of ϕ is taken over the set T ′ given by the semantics of θ, as
discussed earlier in this section.

– Ju = vK(T,D, ε) includes all traces 〈e, λ,O,K,R,RT , σ〉 ∈ T such that σ(u) = σ(v).

– JIndist(X̃, u)K(T, ε,D) = T if

|{D(V iewt(σ(X̃)), u, LR(σ(u), f(u, σ, r), b), RD, η) = b | t ∈ T}|
|T | ≤ 1

2
+ ε

and the empty set φ otherwise. Here, the random sequence b; r;RD = RT , the
testing randomness for the trace t.

– Jθ[P ]X̃ϕK(T,D, ε) = T¬P ∪ J¬θK(Pre(TP ), D, ε) ∪ JϕK(Post(TP ), D, ε) with T¬P ,
Pre(TP ), and Post(TP ) as given by Definition 14.

Definition 15. A protocol Q satisfies a formula ϕ, written Q |= ϕ, if ∀A providing
an active protocol adversary, ∀DP providing a positive probabilistic-polynomial-time
distinguisher, ∃DN providing a negative probabilistic-polynomial-time distinguisher, ∃ν
giving a negligible function, ∃N, ∀η ≥ N ,

| JϕK(T,D, ν(η)) | / |T | ≥ 1− ν(η)

where D = (DP , DN ) and JϕK(T,D, ν(η)) is the subset of T given by the semantics of
ϕ and T = TQ(A, η) is the set of computational traces of protocol Q generated using
adversary A and security parameter η, according to Definition 9.
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B Operational Semantics of the Simulator
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m in the static list

. m, lv(m) = rv(m) = getval()

receive m;

. m, lv(m) = rv(m) = recv()

new n; n 6= s

. n, lv(n) = rv(n) = noncegen()

new s;

. s, lv(n) = s0, rv(n) = s1

. m′ . m′′ m := pair m′,m′′;

. m, lv(m) = pair(lv(m′), lv(m′′)), rv(m) = pair(rv(m′), rv(m′′))

. m′ m := fst m′;

. m, lv(m) = fst(lv(m′)), rv(m) = fst(rv(m′))

. m′ m := snd m′;

. m, lv(m) = snd(lv(m′)), rv(m) = snd(rv(m′))

. m′ m := enc m′, k; k ∈ K
. m, lv(m) = rv(m) = Ek(lv(m′), rv(m′)),

qdbk ← qdbk ∪ {lv(m)}, dec0k(lv(m)) = lv(m′), dec1k(lv(m)) = rv(m′)

. m′ m := dec m′, k; k ∈ K lv(m′) /∈ qdbk
. m, lv(m) = Dk(lv(m′))

. m′ m := dec m′, k; k ∈ K lv(m′) ∈ qdbk
. m, lv(m) = dec0k(lv(m′))

. m′ m := dec m′, k; k ∈ K rv(m′) /∈ qdbk
. m, rv(m) = Dk(rv(m′))

. m′ m := dec m′, k; k ∈ K rv(m′) ∈ qdbk
. m, rv(m) = dec1k(rv(m′))

. m′ m := enc m′, s;

. m, lv(m) = enc(lv(m′), keygen(s0)), rv(m) = enc(rv(m′), keygen(s0))

. m′ m := dec m′, s;

. m, lv(m) = dec(lv(m′), keygen(s0)), rv(m) = dec(rv(m′), keygen(s0))

. m′ . n m := enc m′, n; n /∈ K n 6= s

. m, lv(m) = enc(lv(m′), keygen(lv(n))), rv(m) = enc(rv(m′), keygen(rv(n)))

. m′ . n m := dec m′, n; n /∈ K n 6= s

. m, lv(m) = dec(lv(m′), keygen(lv(n))), rv(m) = dec(rv(m′), keygen(rv(n)))

. m . m′ match m as m′; (lv(m) = lv(m′))⊕ (rv(m) = rv(m′))

state = reject

. m send m; lv(m) 6= rv(m)

state = reject

Table 3. Operational Semantics of the Simulator with Parameters s,K
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new n; n /∈ {s} ∪ (K − C(K))

. n, lv(n) = rv(n) = noncegen()

new n; n ∈ {s} ∪ (K − C(K))

. n, lv(n) = noncegen(), rv(n) = noncegen()

. m′ m := enc m′, k; k ∈ C(K)

. m, lv(m) = rv(m) = Ek(lv(m′), rv(m′)),

qdbk ← qdbk ∪ {lv(m)}, dec0k(lv(m)) = lv(m′), dec1k(lv(m)) = rv(m′)

. m′ m := dec m′, k; k ∈ C(K) lv(m′) /∈ qdbk
. m, lv(m) = Dk(lv(m′))

. m′ m := dec m′, k; k ∈ C(K) lv(m′) ∈ qdbk
. m, lv(m) = dec0k(lv(m′))

. m′ m := dec m′, k; k ∈ C(K) rv(m′) /∈ qdbk
. m, rv(m) = Dk(rv(m′))

. m′ m := dec m′, k; k ∈ C(K) rv(m′) ∈ qdbk
. m, rv(m) = dec1k(rv(m′))

. m′ . n m := enc m′, n; n /∈ C(K)

. m, lv(m) = enc(lv(m′), keygen(lv(n))), rv(m) = enc(rv(m′), keygen(lv(n)))
(∗)

. m′ . n m := dec m′, n; n /∈ C(K)

. m, lv(m) = dec(lv(m′), keygen(lv(n))), rv(m) = dec(rv(m′), keygen(lv(n)))
(∗)

(*) Note that we are only using lv(n) as the key here.

Table 4. Extension and modification of the Operational Semantics with Parameters
s,K for Key DAGs

Definition 16 (∼=). For symbols m,m′, we write m ∼= m′ iff lv(m) = lv(m′)∧ rv(m) =
rv(m′).

Lemma 2. The following hold for any bilateral simulation with level-1 keys:

– If . m and lv(m) = pair(l0, l1) for some l0, l1, then rv(m) = pair(r0, r1) for some
r0, r1 and vice versa.

– If . m, . k and lv(m) = enc(l, lv(k)) for some l, then rv(m) = enc(r, lv(k)) for
some r and vice versa.

– If . m and lv(m) is tagged to be of type nonce then either lv(m) = rv(m) or,
lv(m) = s0 ∧ rv(m) = s1.

– In all other cases, if . m then lv(m) = rv(m)

Proof. The proof is by simultaneous induction on the following stronger propositions:

– If . m and lv(m) = pair(l0, l1) for some l0, l1, then either lv(m) = rv(m) or there
exists m′ such that m ∼= m′ and m′ is derived by a pair action.
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– If . m, . k and lv(m) = enc(l, lv(k)) for some l, then either lv(m) = rv(m) or there
exists m′, k′ such that m ∼= m′, k ∼= k′ and m′ is derived by an enc ·, k′ action.

– If . m and lv(m) is tagged to be of type nonce then either lv(m) = rv(m) or,
lv(m) = s0 ∧ rv(m) = s1.

– In all other cases, if . m then lv(m) = rv(m)

Theorem 15 (Matching Nonces - No Keying - Level 1). Let E be the event [. m
lv(m) = rv(m) = s0]. Pr[E] is negligible in the security parameter η if the encryption
scheme is IND-CCA secure.

Proof. Let Ei = E ∧ b = i for i ∈ {0, 1}. Assume on the contrary that Pr[E] is non-
negliglible in η. We will construct a |K|− IND−CCA adversary in the following way:

If E occurs then output b′ = 0 else output b′ uniformly randomly from {0, 1}.

Now, probability of winning the IND-CCA challenge is:

Pr[b′ = b] = Pr[b = 0].Pr[b′ = 0|b = 0] + Pr[b = 1].Pr[b′ = 1|b = 1]

=
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By assumption |E0|+|E1|
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|b=1| is negligible,

thereby implying |E0|
|b=0| is non-negligible, which together would imply, by (*), that the

probability of winning the IND-CCA challenge is non-negligibly over half.
Given b = 1, the ‘1-world’ is a consistent simulation with s1 as the secret with no

messages constructed from s0. Therefore, this side is information theoretically unaware
of s0 and hence the probability that rv(m) = s0 is bounded by max length of a trace

2length of a nonce . Now,
maximum length of a trace is polynomially bounded in η and length of a nonce is a
polynomial in η. Therefore this is a negligible quantity and hence we are done. ut

Theorem 16 (Matching Nonces - Keying - Level 1). Let E be the event [. m
lv(m) = rv(m) = s0]. Pr[E] is negligible in the security parameter η if the encryption
scheme is IND-CCA secure.

Proof. Let Ei = E ∧ b = i for i ∈ {0, 1}. Assume on the contrary that Pr[E] is non-
negliglible in η. We will construct a |K|-IND-CCA adversary in the following way:

If E occurs then output b′ = 0 else output b′ uniformly randomly from {0, 1}.
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By assumption |E0|+|E1|
|b=0|+|b=1| is non-negligible. We will prove that |E1|

|b=1| is negligible,

thereby implying |E0|
|b=0| is non-negligible, which together would imply, by (*), that the

probability of winning the IND-CCA challenge is non-negligibly over half.
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Given b = 1, the ‘1-world’ is a simulation with s1 as the secret with s0 used only
as a key. Assume |E1|

|b=1| is non-negligible. We will construct an IND-CCA adversary

against a challenger using keygen(s0) as a key with the assumption that the proba-
bility distribution of keygen(nonce) is the same as the probability distribution of the
key space. Consider an execution of the same protocol, only using the rv’s, which rep-
resents the secret s by the bitstring s1 and calls the oracles Es0(·, ·, b) and Ds0(·) for

encryptions and decryptions. Since |E1|
|b=1| is non-negligible, we must have the event [. m

match m as s; rv(m) = s0] occuring non-negligibly often. Therefore, the actual key
s0 is revealed non-negligibly often. That rv(m) for some such m is actually s0 can be
confirmed at the end by encrypting some string by using the oracle and attempting to
decrypt it with rv(m). Since only a polynomially many m are derived this is doable in
poly-time. Once the actual key is revealed, the IND-CCA game can be easily won. ut

Theorem 17 (Matching Nonces - No Keying). Let E be the event [. m lv(m) =
rv(m) = s0]. Pr[E] is negligible in the security parameter η if the encryption scheme is
IND-CCA secure.
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C Proofs of Some Theorems

Proof of theorem 4. Assume that a probabilistic poly-time adversary A interacts
with a secretive protocol with respect to nonce s and a set of level-0 keys K. Suppose
during the protocol run, an honest party decrypts a ciphertext with key s successfully
which was not produced by an honest party by encryption with s. We build a |K|-
IND-CCA adversary A1 against set of keys K in the lines of the proof of theorem 3.
However, this new A1 computes d in a different way. Recall that A1 uses x0 when
it intends to encrypt or decrypt using s. In the course of interaction with A, if A1

succeeds in decrypting a ciphertext with key x0 which was not produced at a previous
stage by A1 by encryption with x0, A1 outputs d = 0. Otherwise, it outputs d = 1.
The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (4)

Now, Pr[d = 0|b = 0] is the probability of A1 succeeding in decrypting a ciphertext
with key s which was not obtained through encryption by A1. Pr[d = 0|b = 1] is the
probability of A1 succeeding in decrypting a ciphertext with level-0 key x0 (as in this
case x0 was only used as a key). Therefore, using a similar idea as proof of theorem 3
we can build an INT-CTXT adversary A2 against x0. Therefore,

Pr[d = 0|b = 0] = Adv|K|−IND−CCA,A1(η) + AdvINT−CTXT,A2(η)

As the encryption scheme is both IND-CCA and INT-CTXT secure, both the prob-
abilities on the RHS must be negligible and hence the theorem.

Proof of theorem 5. We will prove this by induction over the maximum level of the
DAG of K. If K consists only of level 0 keys then the result follows from theorem 3.
Suppose the maximum level in the DAG of K is (n+ 1) and assume that the theorem
holds for maximum level n. Let K′ be the closure C(K) of the set of keys K.

Assume that a probabilistic poly-time adversary A interacts with a secretive pro-
tocol with respect to nonce s and the set of keys K. We will show that if A has
non-negligible advantage at s from a random bitstring of the same length, after the in-
teraction, then we can construct either a |K′|-IND-CCA adversary A1 to the encryption
scheme or contradict the induction hypothesis.

We will construct an adversaryA1 which has access to a multi-party LoR encryption
oracles Eki(LoR(·, ·, b)) and decryption oracles Dki(·) for all ki ∈ K′ parameterized by
a bit b chosen uniformly randomly. For keys si of level ≥ 0, A1 chooses random values
xi

0, x
i
1 and for s, A1 chooses random values x0, x1. A1 constructs messages to be sent

to A as follows:

– to encrypt the term f(s, s1, s2, ...) with ki ∈ K′, use response to oracle query
Eki(f(x0, x

1
0, x

2
0, ...), f(x1, x

1
1, x

2
1, ...), b).

– to encrypt f(s, s1, s2, ...) with si, use Exi
0
(f(x0, x

1
0, x

2
0, ...)).

Decryption operations are served analogously.
In the second phase, A1 chooses a bit d′ and sends xd′ to A. If A replies that this

is the actual nonce used, then A1 finishes by outputting d = d′, otherwise it outputs
d = d̄′ and finishes. The advantage of A1 against the |K|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1]

= (Pr[d = 0|b = 0]− 1/2) + (Pr[d = 1|b = 1]− 1/2) (5)
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The first probability in the RHS is precisely the probability of A breaking the
indistinguishability of x0 or equivalently of s. In the case when b = 1, the terms were
constructed in the following manner:

– encrypt f(s, s1, s2, ...) with ki ∈ K′: Eki(f(x1, x
1
1, x

2
1, ...)).

– encrypt f(s, s1, s2, ...) with si: Exi
0
(f(x0, x

1
0, x

2
0, ...)).

We observe here that A1 simulated the execution of another secretive protocol G′
with keys of level ≤ n - x1

0, x
2
0, ... protecting x0. This is because the root level keys no

longer protect the other keys in the DAG - we obtain a transformed DAG with the
roots of the earlier DAG removed, and hence of maximum level one less. Therefore, we
have:

Pr[d = 1|b = 1]− 1/2 = (1/2)AdvG′,A(η) (6)

By the equations 5 and 6 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K′|−IND−CCA,A1(η)− (1/2)AdvG′,A(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done.

Proof of theorem 5. We will again prove this by induction over the maximum level
of the DAG of K. If K consists only of level 0 keys then the result follows from theorem
3. Suppose the maximum level in the DAG of K is (n+1) and assume that the theorem
holds for maximum level n. Let K′ be the closure C(K) of the set of keys K.

Assume that a probabilistic poly-time adversary A interacts with a secretive pro-
tocol with respect to nonce s and the set of keys K. We will show that if A has
non-negligible advantage at winning an IND-CCA game against a symmetric encryp-
tion challenger, using the key s, after the interaction then we can construct either a
|K′|-IND-CCA adversary A1 or contradict the induction hypothesis.

We proceed as in the proof of theorem 3 to construct the adversary A1. The only
additional operation is that to encrypt or decrypt the term m with s, we use x0 as the
key.

In the second phase, A1 randomly chooses a bit b′ ← {0, 1}. A sends pairs of
messages m0,m1 to A1. A1 replies with Ex0(mb′). Decryption requests are also served
by decrypting with key x0 ciphertexts not obtained by a query in this phase. A finishes
by outputting a bit d′. If b′ = d′, A1 outputs d = 0 else outputs d = 1.

The advantage of A1 against the |K′|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (7)

The first probability is precisely the probability of A breaking the ‘good-key’-ness
of x0 or equivalently of s. In the case when b = 1, the terms were constructed in the
following manner:

– encrypt f(s, s1, s2, ...) with ki ∈ K′: Eki(f(x1, x
1
1, x

2
1, ...)).

– encrypt f(s, s1, s2, ...) with si: Exi
0
(f(x0, x

1
0, x

2
0, ...)).

– encrypt term m with s: Ex0(m).

We observe here that A1 simulated the execution of another secretive protocol G′
with keys of level ≤ n - x1

0, x
2
0, ... protecting x0. This is because the root level keys no

longer protect the other keys in the DAG - we obtain a transformed DAG with the
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roots of the earlier DAG removed, and hence of maximum level one less. Therefore, we
have:

Pr[d = 0|b = 1]− 1/2 = (1/2)AdvG′,A(η) (8)

By the equations 7 and 8 we have:

Pr[d = 0|b = 0]− 1/2 = Adv|K′|−IND−CCA,A1(η) + (1/2)AdvG′,A(η)

As the probablity in the LHS is non-negligible, at least one of the advantages in the
RHS must be non-negligible and hence we are done.

Proof of theorem 6. We will prove this by induction over the maximum level of the
DAG of K. If K consists only of level 0 keys then the result follows from theorem 4.
Suppose the maximum level in the DAG of K is (n+ 1) and assume that the theorem
holds for maximum level n. Let K′ be the closure C(K) of the set of keys K. Suppose
during the protocol run, an honest party decrypts a ciphertext with key s successfully
which was not produced by an honest party by encryption with s.

We build a |K′|-IND-CCA adversary A1 against set of keys K′ along the lines of the
proof of theorem 5. In the course of interaction with A, if A1 succeeds in decrypting a
ciphertext with key x0 which was not produced at a previous stage by A1 by encryption
with x0, A1 outputs d = 0. Otherwise, it outputs d = 1. The advantage of A1 against
the |K′|-IND-CCA challenger is:

Adv|K′|−IND−CCA,A1(η) = Pr[d = 0|b = 0]− Pr[d = 0|b = 1] (9)

Now, Pr[d = 0|b = 0] is the probability of A1 succeeding in producing a ciphertext
with key s which was not obtained through encryption by A1. Pr[d = 0|b = 1] is the
probability of A1 succeeding in decrypting a ciphertext with level-(n−1) key x0 (Same
argument as in proof of theorem 5 - the DAG reduces by one level) which was not
produced by encryption with x0. Therefore,

Pr[d = 0|b = 0] = Adv|K′|−IND−CCA,A1(η) + Pr[d = 0|b = 1]

As the encryption scheme is IND-CCA secure, the first probability on the RHS
must be negligible. The second probability is negligible due to the induction hypoth-
esis as the encryption scheme is both IND-CCA and INT-CTXT secure. Hence the
theorem.

Generalized Induction Principle. We present a generalized induction rule IND
below. Two instances of this rule—INDGOOD, described in the next subsection, and the
HON rule, developed in prior work (see Appendix D)—are used to establish invariants
in secrecy and authentication proofs respectively. The main idea is that if all honest
threads executing some basic sequence (or protocol step) in the protocol locally preserve
some property ψ(·), then we can conclude that ψ(·) holds in all states for all honest
agents. The rule is strengthened with the formula Φ which lets us plug in any required
assumptions. Note that a set of basic sequences (BS) of a role ρ is any partition of the
sequence of actions in a role such that if any sequence has a receive then it is only at
its beginning. This rule schema depends on the protocol. In the syntactic presentation
below, we use the notation ∀ρ ∈ Q. ∀P ∈ BS(ρ). ψ(X) [P ]X Φ ⊃ ψ(X) to denote a
finite set of formulas of the form ψ(X) [P ]X Φ ⊃ ψ(X) - one for each basic sequence P
in the protocol. For example, the first stage of Kerberos (as described in section 2.1)
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has three basic sequences - two of the client and one of the KAS. So there are three
formulas for the first stage. In addition, there are six more from the other stages.

IND
Start(X) [ ]X ψ(X) ∀ρ ∈ Q. ∀P ∈ BS(ρ). ψ(X) [P ]X Φ ⊃ ψ(X)

Q ` Φ ⊃ ∀X ′. (Honest(X̂ ′) ⊃ ψ(X ′))
(∗)

(*): Φ is a prefix closed trace property which shares no free variable with [P ]X and
ψ(X); ψ(X) is a trace property which shares no free variable with [P ]X except X.

A prefix closed formula Φ is a formula such that if a protocol trace t satisfies Φ
then any prefix of t also satisfies Φ. For example, the formula ¬Send(X,m) is prefix
closed. This is because if in any trace t, thread X has not sent the term m, it cannot
have sent m in any prefix of t. In general, the negation of any action formula is prefix
closed. Another example is ∀X. New(X, s) ⊃ X̂ = Â because this can be re-written as
∀X. ¬New(X, s) ∨ X̂ = Â which is a disjunction of the negation of an action formula
and an equality constraint.

Proof of theorem 7 (Soundness). Since the depth of any proof tree is constant
with respect to the security parameter, it is sufficient to prove that each axiom and
inference rule is sound.

IND : Let us denote Ψ ≡ ∀X ′.(Honest(X̂ ′) ⊃ ψ(X ′)). Suppose there is an algorithm
A which breaks Φ ⊃ Ψ . That is, the set T ′ = JΦK T ∩ J¬ΨK T is a non-negligible subset
of T , where T = TQ(A, η). We are going to assume the first premise to be valid and
show that the second premise is invalid.

Let Tst = J∀X. Start(X) [ ]X ψ(X)K T . Following the first premise, we know that
Tst is an overwhelming subset of T . Therefore the set T̃ = T ′ ∩ Tst is a non-negligible
subset of T . Consider a trace t ∈ T̃ : following the construction of the set T̃ , we have
¬ψ(Y ) true at the end of t for some thread Y , but ψ(Y ) true at any prefix of t where
Y has not started. Due to this, there has to be a basic sequence P executed by Y such
that ψ(Y ) is true before the sequence but false after it. Since there are a polynomial
number of (basic sequence, thread) pairs, there must be a pattern [π]χ which has this
property in a polynomial fraction of T̃ - and hence is a non-negligible subset of T . Let
us call this set T̃π.

We are going to show that the second premise of the rule is invalid by showing that
there is an algorithm A′ such that the complement of the semantics of ψ(χ) [π]χ Φ ⊃
ψ(χ) is a non-negligible subset of its set of traces. The algorithm A′ simulates A to the
very end. It then scans the trace for the pattern [π]χ such that ψ(χ) holds before the
pattern and ¬ψ(χ) after it - this can be done in polynomial time. If such a condition
occurs then it outputs markers corresponding to [π]χ else outputs random markers.
Note that A′ produces exactly the same set of traces as A does - i.e., TQ(A′, η) =
TQ(A, η) = T .

The size of the complement of Jψ(χ) [π]χ Φ ⊃ ψ(χ)K TQ(A′, η) is:

|T | − |T¬π ∪ J¬ψ(χ)K Pre(Tπ) ∪ JΦ ⊃ ψ(χ)K Post(Tπ)|
= |T | − |T¬π ∪ J¬ψ(χ)K Pre(Tπ) ∪ J¬ΦK Post(Tπ) ∪ Jψ(χ)K Post(Tπ)|
≥ |Tπ ∩ Jψ(χ)K Pre(Tπ) ∩ J¬ψ(χ)K Post(Tπ) ∩ JΦK Post(Tπ)|

≥
���Tπ ∩ T̃π ∩ JΦK Post(Tπ)

��� ≥
���T̃π ∩ JΦK Post(Tπ)

��� ≥
���T̃π ∩ JΦK Post(T̃π)

���
=
���T̃π

���
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which is a non-negligible fraction of |T | - hence the proof.

G0−G8 : These axioms readily follow from the semantics of the predicate Good.

INDGOOD : This is a specific instance of the rule IND obtained by putting ψ(X) ≡
SendGood(X, s,K).

SG0− SG2 : These axioms readily follow from the definition of the predicate SendGood.

GK : For level-0 keys K the axiom will be valid if in all the traces where s is pro-
tected with keys K by a secretive protocol and where all the keys in K are IND-CCA
secure against dishonest parties, no probabilistic poly-time distinguisher, given the
view of a principal other than the key-holders and the generator of s has non-negligible
advantage against an IND-CCA challenger using the bitstring corresponding to k as
the key.

For set of keys K of level ≤ 1, the axiom will be valid if in all the traces where s
is protected with keys K by a secretive protocol and where all the level-0 keys in K
are IND-CCA secure against dishonest parties and all the level-1 keys are protected by
level-0 keys which are again IND-CCA secure against dishonest parties, no probabilistic
poly-time distinguisher, given the view of a principal other than the holders of keys
in C(K) and the generator of s has non-negligible advantage against an IND-CCA
challenger using the bitstring corresponding to k as the key.

The validity of these statements follows from theorems 3 and 5.

CTX0 : For level-0 key k possessed only by honest principals, the axiom will be
valid if in an overwhelmingly large subset of all the traces where an honest principal
decrypts a message with key k, there was an honest principal who produced the mes-
sage by encrypting with k. The validity of this message follows straightforwardly from
the INT-CTXT [10] security of the encryption scheme.

CTXL : Here we consider symmetric encryption schemes that are both IND-CCA and
INT-CTXT secure. For level-0 keys K held by honest principals and nonce s protected
with keys K by a secretive protocol the axiom will be valid if in an overwhelmingly large
subset of all the traces where an honest principal decrypts a message with key s, there
was an honest principal who produced the message by encrypting with s. Analogously
for key DAGs. The validity of this follows from theorems 4 and 6.
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D Summary of Definitions, Axioms and Rules

D.1 Summary of New Definitions, Axioms and Rules

SendGood(X, s,K) ≡ ∀m. (Send(X,m) ⊃ Good(X,m, s,K))

Secretive(s,K) ≡ ∀X. (Honest(X̂) ⊃ SendGood(X, s,K))

InInitSet(X, s,K) ≡ ∃k ∈ C(K). Possess(X, k) ∨ New(X, s)

GoodInit(s,K) ≡ ∀X. (InInitSet(X, s,K) ⊃ Honest(X̂))

GoodKeyFor(s,K) ≡ ∀X. (GoodKeyAgainst(X, s) ∨ InInitSet(X, s,K))

GoodKey(k) ≡ ∀X. (Possess(X, k) ⊃ Honest(X̂))

G0 Good(X, a, s,K), if a is of an atomic type different from nonce or key

G1 New(Y, n) ∧ n 6= s ⊃ Good(X,n, s,K)

G2 [receive m; ]X Good(X,m, s,K)

G3 Good(X,m, s,K) [a]X Good(X,m, s,K), for all actions a

G4 Good(X,m, s,K) [match m as m′; ]X Good(X,m′, s,K)

G5 Good(X,m0, s,K) ∧ Good(X,m1, s,K) [m := m0.m1; ]X Good(X,m, s,K)

G6 Good(X,m, s,K) [match m as m0.m1; ]X Good(X,m0, s,K) ∧ Good(X,m1, s,K)

G7 Good(X,m, s,K) ∨ k ∈ K [m′ := symenc m, k; ]X Good(X,m′, s,K)

G8 Good(X,m, s,K) ∧ k /∈ K [m′ := symdec m, k; ]X Good(X,m′, s,K)

SG0 Start(X) [ ]X SendGood(X, s,K)

SG1 SendGood(X, s,K) [a]X SendGood(X, s,K), where a is not a send.

SG2 SendGood(X, s,K) [send m; ]X Good(X,m, s,K) ⊃ SendGood(X, s,K)

INDGOOD ∀ρ ∈ Q.∀P ∈ BS(ρ).

SendGood(X, s,K) [P ]X Φ ⊃ SendGood(X, s,K)
Q ` Φ ⊃ Secretive(s,K)

(∗)

(∗): [P ]X does not capture free variables in Φ, K, s, and Φ is a prefix closed trace formula.

If the encryption scheme is IND-CCA secure then:

GK Secretive(s,K) ∧ GoodInit(s,K)⇒ GoodKeyFor(s,K)

If the encryption scheme is both IND-CCA and INT-CTXT secure then:

CTX0 GoodKey(k) ∧ SymDec(Z,Esym[k](m), k)⇒ ∃X. SymEnc(X,m, k), for level-0 key k.

CTXL Secretive(s,K) ∧ GoodInit(s,K) ∧ SymDec(Z,Esym[s](m), s)⇒ ∃X. SymEnc(X,m, s)
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D.2 A Fragment of the Proof System from Earlier Papers

A representative fragment of the axioms and inference rules in the proof system are
collected in Table 5. For expositional convenience, we divide the axioms into three
groups.

The axioms about protocol actions state properties that hold in the state reached
by executing one of the actions in a state in which formula φ holds. Note that the a in
axiom AA1 is any one of the actions and a is the corresponding predicate in the logic.
Axiom A1 states that two different threads cannot generate the same nonce while
axiom A2 states that if a thread encrypts a message with a key, it possesses both the
message and the key.

The possession axioms reflect a fragment of Dolev-Yao rules for constructing or
decomposing messages while the encryption axioms symbolically model encryption.
The generic rules are used for manipulating modal formulas.

Axioms for protocol actions

AA1 φ[a]X a

AA2 Start(X)[ ]X ¬a(X)

AA3 ¬Send(X, t)[b]X¬Send(X, t) if σSend(X, t) 6= σb for all substitutions σ

ARP Receive(X, p(x))[match q(x) as q(t)]X Receive(X, p(t))

P1 Persist(X, t)[a]X Persist(X, t) , for Persist ∈ {Has,Send,Receive}
A1 New(X,n) ∧ New(Y, n) ⊃ X = Y

A2 SymEnc(X,m, k) ⊃ Possess(X, k) ∧ Possess(X,m)

Possession Axioms

ORIG New(X,x) ⊃ Possess(X,x)

TUP Possess(X,x) ∧ Possess(X, y) ⊃ Possess(X,x.y)

REC Receive(X,x) ⊃ Possess(X,x)

PROJ Has(X,x.y) ⊃ Possess(X,x) ∧ Possess(X, y)

Generic Rules

θ[P ]Xφ θ[P ]Xψ
θ[P ]Xφ ∧ ψ G1

θ′ ⊃ θ θ[P ]Xφ φ ⊃ φ′

θ′[P ]Xφ
′ G2

φ
θ[P ]Xφ

G3

Table 5. Fragment of the Proof System
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D.3 The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles of a
protocol. It is similar to the basic invariance rule of LTL [29]. The honesty rule is used
to combine facts about one role with inferred actions of other roles.

For example, suppose Alice receives a response from a message sent to Bob. Alice
may wish to use properties of Bob’s role to reason about how Bob generated his reply.
In order to do so, Alice may assume that Bob is honest and derive consequences from
this assumption. Since honesty, by definition in this framework, means “following one
or more roles of the protocol,” honest principals must satisfy every property that is a
provable invariant of the protocol roles.

Recall that a protocol Q is a set of roles, Q = {ρ1, ρ2, . . . , ρk}. If ρ ∈ Q is a role
of protocol Q, we write PεBS(ρ) if P is a continuous segment of the actions of role
ρ such that (a) P is the empty sequence; or (b) P starts at the beginning of ρ and
goes up to the first receive ; or (c) P starts from a receive action and goes up to
the next receive action; or (d) P starts from the last receive action and continues till
the end of the role. We call such a P a basic sequence of role ρ. The reason for only
considering segments starting from a read and continuing till the next read is that
if a role contains a send, the send may be done asynchronously without waiting for
another role to receive. Therefore, we can assume without loss of generality that the
only “pausing” states of a principal are those where the role is waiting for input. If a
role calls for a message to be sent, then we dictate that the principal following this role
must complete the send before pausing.

Since the honesty rule depends on the protocol, we write Q ` θ[P ]Xφ if θ[P ]Xφ is
provable using the honesty rule for Q and the other axioms and proof rules.

[ ]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P ]X φ

Q ` Honest(X̂) ⊃ φ
HON

no free variable
in φ except X
bound in [P ]X

In words, if φ holds at the beginning of every role of Q and is preserved by all its
basic sequences, then every honest principal executing protocol Q must satisfy φ. The
side condition prevents free variables in the conclusion Honest(X̂) ⊃ φ from becoming
bound in any hypothesis. Intuitively, since φ holds in the initial state and is preserved
by all basic sequences, it holds at all pausing states of any run.
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E Formal Description of Kerberos

Client = (C, K̂, T̂ , Ŝ, t) [

new n1;

send Ĉ.T̂ .n1;

receive Ĉ.tgt.enckc;

textkc := symdec enckc, k
c→k
C,K ;

match textkc as AKey.n1.T̂ ;

· · · stage boundary · · ·

new n2;

encct := symenc Ĉ, AKey;

send tgt.encct.Ĉ.Ŝ, n2;

receive Ĉ.st.enctc;

texttc := symdec enctc, AKey;

match texttc as SKey.n2.Ŝ;

· · · stage boundary · · ·

enccs := symenc Ĉ.t, SKey;

send st.enccs;

receive encsc;

textsc := symdec encsc, SKey;

match textsc as t;

]C

KAS = (K) [

receive Ĉ.T̂ .n1;

new AKey;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.T̂ , k
c→k
C,K ;

send Ĉ.tgt.enckc;

]K

TGS = (T, K̂) [

receive tgt.encct.Ĉ.Ŝ.n2;

texttgt := symdec tgt, kt→k
T,K ;

match texttgt as AKey.Ĉ;

textct := symdec encct, AKey;

match textct as Ĉ;

new SKey;

st := symenc SKey.Ĉ, ks→t
S,T ;

enctc := symenc SKey.n2.Ŝ, AKey;

send Ĉ.st.enctc;

]T

Server = (S, T̂ ) [

receive st.enccs;

textst := symdec st, ks→t
S,T ;

match textst as SKey.Ĉ;

textcs := symdec enccs, SKey;

match textcs as Ĉ.t;

encsc := symenc t, SKey;

send encsc;

]S
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F Proof of Kerberos Security Properties

F.1 Environmental Assumptions

Long term symmetric keys possessed by pairs of honest principals are possessed by
only themselves and are only used as keys, i.e. these are level-0 keys.

Γ0 : ∀X,Y, Z, type. Hon(X̂, Ŷ ) ∧ Possess(Z, ktype
X,Y ) ⊃ (Ẑ = X̂ ∨ Ẑ = Ŷ )

In the subsequent proofs, we will mainly use the following axioms and the honesty
rule (all described in Appendix D):

A1 New(X,n) ∧ New(Y, n) ⊃ X = Y

A2 SymEnc(X,m, k) ⊃ Possess(X, k) ∧ Possess(X,m)

F.2 Proofs of AUTHclient
kas , AUTHtgs

kas and AUTHserver
tgs

We first give a template proof of [Role]X Hon(X̂, Ŷ ) ⊃ ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ),

where Role decrypts the term Esym[ktype
X,Y ](M)r. Reference to equations by negative

numbers is relative to the current equation - e.g. (-1) refers to the last equation. Ref-
erence by positive numbers indicates the actual number of the equation.

Hon(X̂, Ŷ ), Γ0 GoodKey(ktype
X,Y ) (1)

Hypothesis [Role]X SymDec(X,Esym[ktype
X,Y ](M), ktype

X,Y ) (2)

CTX0, (−2,−1) [Role]X ∃Z. SymEnc(Z,M, ktype
X,Y ) (3)

Inst Z 7→ Z0, (−1) [Role]X SymEnc(Z0,M, ktype
X,Y ) (4)

A2, (−1) [Role]X Possess(Z0, k
type
X,Y ) (5)

Hon(X̂, Ŷ ), Γ0, (−1) [Role]X Ẑ0 = X̂ ∨ Ẑ0 = Ŷ (6)

(−4,−1) [Role]X ∃η. SymEnc((X̂, η),M, ktype
X,Y )

∨ ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (7)

Case 1 : X̂ = Ŷ

(−1) [Role]X ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (8)

Case 2 : X̂ 6= Ŷ

HON Honest(X̂0) ∧ X̂0 6= Ŷ0 ⊃ ¬SymEnc(X0,M0, k
type
X0,Y0

) (9)

Hon(X̂), (−1) [Role]X ¬∃η. SymEnc((X̂, η),M, ktype
X,Y ) (10)

(−4,−1) [Role]X ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (11)
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Instantiating for AUTHclient
kas :

[Client]C ∃η. SymEnc((K̂, η), (AKey, n1, T̂ ), kc→k
C,K ) (12)

HON Honest(X̂) ∧ SymEnc(X, (Key, n, T̂0), k
c→k
C0,X)

⊃ Send(X, Ĉ0, Esym[kt→k
T0,X ](Key, Ĉ0), Esym[kc→k

C0,X ](Key, n, T̂0))
(13)

Hon(K̂), (−2,−1) [Client]C ∃η. Send((K̂, η), Ĉ, Esym[kt→k
T,K ](AKey, Ĉ),

Esym[kc→k
C,K ](AKey, n1, T̂ )) (14)

(−1) AUTHclient
kas (15)

Instantiating for AUTHtgs
kas:

[TGS]T ∃η. SymEnc((K̂, η), (AKey, Ĉ), kt→k
T,K ) (16)

HON Honest(X̂) ∧ SymEnc(X, (Key, Ĉ0), k
t→k
Y,X )

⊃ ∃n. Send(X, Ĉ0, Esym[kt→k
Y,X ](Key, Ĉ0), Esym[kc→k

C0,X ](Key, n, Ŷ ))
(17)

Hon(K̂), (−2,−1) [TGS]T ∃η, n. Send((K̂, η), Ĉ, Esym[kt→k
T,K ](AKey, Ĉ),

Esym[kc→k
C,K ](AKey, n1, T̂ )) (18)

(−1) AUTHtgs
kas (19)

Instantiating for AUTHserver
tgs :

[Server]S ∃η. SymEnc((T̂ , η), (SKey, Ĉ), ks→t
S,T ) (20)

HON Honest(X̂) ∧ SymEnc(X, (Key, Ĉ0), k
s→t
Y,X )

⊃ ∃n,Key′. Send(X, Ĉ0, Esym[ks→t
Y,X ](Key, Ĉ0), Esym[Key′](Key, n, Ŷ ))

(21)

Hon(T̂ ), (−2,−1) [Server]S ∃η, n,Key′. Send((T̂ , η), Ĉ, Esym[ks→t
S,T ](SKey, Ĉ),

Esym[Key′](SKey, n, Ŝ)) (22)

(−1) AUTHserver
tgs (23)
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F.3 Proofs of SECclient
akey , SECkas

akey, SECtgs
akey

Proof Sketch. As the form of the secrecy induction suggests, we do an induction over
all the basic sequences of KERBEROS. The variables in the basic sequences are con-
sistently primed in the formal proof so that no unintentional variable binding occurs.
Broadly, the induction uses a combination of the following types of reasoning:

– The ‘good’-ness axioms (G∗) enumerated in the proof system section. The struc-
ture of Kerberos suggests that in many of the basic sequences the messages being
sent out are functions of messages received. A key strategy here is to use G2 to
derive that the message received is good and then proceed to prove that the mes-
sages being sent out are also constructed in a good way. Consider as an example
the sequence of actions by an application server thread [Server]S′ : S′ receives a
message Esym[SKey′](Ĉ′, t′) and sends out a message Esym[SKey′](t′). It is prov-
able, just by using the G∗ axioms that the later message is good if the former
message is good.

– Derivations from Φ: The structure of Φ is dictated by the structure of the basic
sequences we are inducing over. A practical proof strategy is starting the induc-
tion without figuring out a Φ at the outset and construct parts of the Φ as we
do induction over an individual basic sequence. In case of KERBEROS, these
parts are formulae that state that the generating thread of the putative secret
AKey did not perform certain types of action on AKey or did it in a restricted
form. The motivation for this structure of the Φ parts is that many of the basic
sequences generate new nonces and send them out unprotected or protected un-
der a set of keys different from K. The Φ parts tell us that this is not the way
the secret in consideration was sent out. For example consider one of the parts
Φ1 : ∀X,M. New(X,AKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,AKey)) - this
tells us that the generator of AKey did not send it out unprotected in the open.

– Derivations from the θ’s, that is, the preconditions. These are conditions which
are true at the beginning of the basic sequence we are inducing over with respect
to the staged control flow that KERBEROS exhibits. As before, a practical proof
strategy is to find out what precondition we need for the secrecy induction and
do the precondition induction part afterwards. Consider for example the end of
the first stage of the client thread [Client]C′ . We know that at the beginning of
the second stage the following formula always holds - Receive(C′, Ĉ′.tgt′.enc′kc)
from which we derive θ : Good(C′, tgt′, AKey,K). The reason this information is
necessary is that the second stage sends out tgt′ in the open - in order to reason
that this is good to send out we use the precondition θ.

41



Formal Proof. We formally prove the secrecy of the session key AKey with respect to
the set of keys K = {kc→k

C,K , k
t→k
T,K }. The assumed condition Φ is the conjunction of the

following formulae:

Φ1 : ∀X,M. New(X,AKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,AKey))

Φ2 : ∀X, Ĉ0, K̂0, T̂0, n. New(X,AKey) ∧ SymEnc(X,AKey.n.T̂0, k
c→k
C0,K0)

⊃ X̂ = K̂ ∧ Ĉ0 = Ĉ ∧ T̂0 = T̂

Φ3 : ∀X, Ŝ0, Ĉ0. New(X,AKey) ⊃ ¬SymEnc(X,AKey.Ĉ0, k
s→t
S0,X)

Observe that Φ is prefix closed. The predicate ContainsOpen(m,a) asserts that a
can be obtained from m by a series of unpairings only. Formally,

ContainsOpen(a, a) ∧ (ContainsOpen(m0.m1, a) ≡ ContainsOpen(m0, a) ∨ ContainsOpen(m1, a))

Now we present the formal proof of goodness:

Let, [Client1]C′ : [new n′1; send Ĉ′.T̂ ′.n′1; ]C′

[Client1]C′ New(C′, n′1) ∧ Send(C′, Ĉ′.T̂ ′.n′1) (1)

Φ1, (−1) [Client1]C′ n′1 6= AKey (2)

G1,G5, (−1) [Client1]C′ Good(C′, Ĉ′.T̂ ′.n′1, AKey,K) (3)

SG1-2, (−1) SendGood(C′, AKey,K) [Client1]C′ SendGood(C′, AKey,K) (4)

Let, [Client2]C′ : [receive Ĉ′.tgt′.enc′kc;

text′kc := symdec enc′kc, k
c→k
C′,K′ ;

match text′kc as AKey′.n′1.T̂ ′; ]C′

SG1 SendGood(C′, AKey,K) [Client2]C′ SendGood(C′, AKey,K) (5)

Precondition θ3 : Good(C′, tgt′, AKey,K)

Let, [Client3]C′ : [new n′2; enc
′
ct := symenc Ĉ′, AKey′;

send tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2; ]C′
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[Client3]C′ New(C′, n′2) ∧ Send(C′, tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2) (6)

Φ1, (−1) [Client3]C′ n′2 6= AKey (7)

G1, (−1) θ3 [new n′2; ]C′ Good(C′, tgt′, AKey,K) ∧ Good(C′, n′2, AKey,K)
(8)

G∗, (−1) θ3 [Client3]C′ Good(C′, tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2, AKey,K) (9)

SG1-2, (−1) θ3 ∧ SendGood(C′, AKey,K) [Client3]C′ SendGood(C′, AKey,K)
(10)

· · ·proof for following BS similar to (5) · · ·

SendGood(C′, AKey,K) [receive Ĉ′, st′, enc′tc;

text′tc := symdec enc′tc, AKey
′; match text′tc as SKey′.n′2.Ŝ′; ]C′

SendGood(C′, AKey,K) (11)

Precondition θ5 : Good(C′, st′, AKey,K)

· · ·proof for following BS similar to (13) · · ·
θ5 ∧ SendGood(C′, AKey,K) [

enc′cs := symenc Ĉ′.t′, SKey′;

send st′, enc′cs; ]C′

SendGood(C′, AKey,K) (12)

· · ·proof for following BS similar to (5) · · ·
SendGood(C′, AKey,K) [receive enc′sc;

text′sc := symdec enc′sc, SKey
′; match text′sc as t′; ]C′

SendGood(C′, AKey,K) (13)

Let, [KAS]K′ : [receive Ĉ′.T̂ ′.n′1;

new AKey′;

tgt′ := symenc AKey′.Ĉ′, kt→k
T ′,K′ ;

enc′kc := symenc AKey′.n′1.T̂ ′, k
c→k
C′,K′ ;

send Ĉ′.tgt′.enc′kc; ]K′

Case 1 : AKey′ = AKey

[KAS]K′New(K′, AKey) ∧ SymEnc(K′, AKey.n′1.T̂ ′, k
c→k
C′,K′) (14)

43



Φ2, (−1) [KAS]K′ Ĉ′ = Ĉ ∧ K̂′ = K̂ ∧ T̂ ′ = T̂ (15)

(−1) [KAS]K′kc→k
C′,K′ ∈ K ∧ kt→k

T ′,K′ ∈ K (16)

G∗, (−1) [KAS]K′ Good(K′, Ĉ′.tgt′.enc′kc, AKey,K) (17)

Case 2 : AKey′ 6= AKey

G2 [receive Ĉ′.T̂ ′.n′1; ]K′ Good(K′, Ĉ′.T̂ ′.n′1, AKey,K) (18)

G6, (−1) [receive Ĉ′.T̂ ′.n′1; ]K′ Good(K′, n′1, AKey,K) (19)

G∗, (−1) [KAS]K′ Good(Ĉ′.tgt′.enc′kc, AKey,K) (20)

SG1-2, (−4,−1) SendGood(K′, AKey,K) [KAS]K′ SendGood(K′, AKey,K) (21)

Let, [TGS]T ′ : [receive enc′ct1.enc
′
ct2.Ĉ′.Ŝ′.n

′
2;

text′ct1 := symdec enc′ct1, k
t→k
T ′,K′ ;

match text′ct1 as AKey′.Ĉ′;

text′ct2 := symdec enc′ct2, AKey
′;

match text′ct2 as Ĉ′;

new SKey′;

st′ := symenc SKey′.Ĉ′, ks→t
S′,T ′ ;

enc′tc := symenc SKey′.n′2.Ŝ′, AKey
′;

send Ĉ′.st′.enc′tc; ]T ′

G2,G6 [receive enc′ct1.enc
′
ct2.Ĉ′.Ŝ′.n

′
2; ]T ′ Good(T ′, n′2, AKey,K) (22)

[TGS]T ′ New(T ′, SKey′) ∧ SymEnc(T ′, SKey′.Ĉ′, ks→t
S′,T ′) (23)

Φ3, (−1) [TGS]T ′ SKey′ 6= AKey (24)

G1, (−1) [· · · ; new SKey′; ]T ′ Good(T ′, SKey′, AKey,K) (25)

G∗, (−4,−1) [TGS]T ′ Good(T ′, Ĉ′.st′.enc′tc, AKey,K) (26)

SG1-2, (−1) SendGood(T ′, AKey,K) [TGS]T ′ SendGood(T ′, AKey,K) (27)
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Let, [Server]S′ : [receive enc′cs1.enc
′
cs2;

text′cs1 := symdec enc′cs1, k
s→t
S′,T ′ ; match text′cs1 as SKey′.Ĉ′;

text′cs2 := symdec enc′cs2, SKey
′; match enc′cs2 as Ĉ′.t′;

enc′sc := symenc t′, SKey′;

send enc′sc; ]S′

Case 1: SKey′ ∈ K
G7, (−1) [· · · ; enc′sc := symenc t′, SKey′; ]S′ Good(S′, enc′sc, AKey,K) (28)

Case 2: SKey′ /∈ K (29)

G2,G6 [receive enc′cs1.enc
′
cs2; ]S′ Good(S′, enc′cs2, AKey,K) (30)

G6,G8, (−1) [· · · ; text′cs2 := symdec enc′cs2, SKey
′; match enc′cs2 as Ĉ′.t′; ]S′

Good(S′, t′, AKey,K) (31)

G7, (−1) [· · · ; enc′sc := symenc t′, SKey′; ]S′ Good(S′, enc′sc, AKey,K) (32)

(−4,−1) [Server]S′ Good(S′, enc′sc, AKey,K) (33)

SG1-2, (−1) SendGood(S′, AKey,K) [Server]S′ SendGood(S′, AKey,K) (34)

Theorem 10 Φ ⊃ Secretive(AKey,K) (35)

We can derive from AUTHclient
kas , the actions in [KAS]K and AUTHclient

tgs that:

KERBEROS ` [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ Φ

KERBEROS ` [KAS]K Hon(Ĉ, K̂, T̂ ) ⊃ Φ

KERBEROS ` [TGS]T Hon(Ĉ, K̂, T̂ ) ⊃ Φ

The only principals having access to a key in K are Ĉ, K̂ and T̂ . All keys in K are
level-0 as they are used only as keys. In addition, Φ2 assumes that some thread of K
generated AKey. Therefore, we have:

InInitSet(X,AKey,K) ≡ X̂ ∈ {Ĉ, K̂, T̂}

GoodInit(AKey,K) ≡ Hon(Ĉ, K̂, T̂ )

GoodKeyFor(AKey,K) ≡ GoodKeyAgainst(AKey,X) ∨ X̂ ∈ {Ĉ, K̂, T̂}

Therefore, by axiom GK, we have:

Secretive(AKey,K) ∧ Hon(Ĉ, K̂, T̂ )⇒ GoodKeyAgainst(X,AKey) ∨ X̂ ∈ {Ĉ, K̂, T̂}

Combining everything we have:

KERBEROS ` SECclient
akey , SECkas

akey, SEC
tgs
akey
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F.4 Proof of AUTHclient
tgs

This proof uses the secrecy property SECclient
akey which established the secrecy of AKey

among Ĉ, K̂ and T̂ assuming their honesty. At a high level, the client reasons that
since AKey is known only to Ĉ, K̂ and T̂ , the term Esym[AKey](SKey.n2.Ŝ) could
only have been computed by one of them. Some non-trivial technical effort is required
to prove that this encryption was indeed done by a thread of T̂ and not by any thread
of Ĉ or K̂, which could have been the case if e.g., there existed a reflection attack.
After showing that it was indeed a thread of T̂ who encrypted the term, we use the
honesty rule to show that it indeed sent the expected response to C’s message.

Again, reference to equations by negative numbers is relative to the current equation
- e.g., (-1) refers to the last equation. Reference by positive number indicates the actual
number of the equation.

[Client]C SymDec(C,Esym[AKey](SKey.n2.Ŝ), AKey) (1)

CTXL, (−1, 1) [Client]C ∃X. SymEnc(X,SKey.n2.Ŝ, AKey) (2)

Inst X 7→ X0, (−1) [Client]C SymEnc(X0, SKey.n2.Ŝ, AKey) (3)

(−1) [Client]C Possess(X0, AKey) (4)

SECclient
AKey , (−1) X̂0 = Ĉ ∧ X̂0 = K̂ ∧ X̂0 = T̂ (5)

HON Honest(X̂) ∧ SymEnc(X,Key′.n.Ŝ0,Key) ∧Key 6= kc→k
Z,X

⊃ ∃K̂0, Ĉ0. SymDec(X,Esym[kt→k
X,K0 ](Key.Ĉ0), k

t→k
X,K0)

∧ Send(X, Ĉ0.Esym[ks→t
S0,X ](Key′.Ĉ0).Esym[Key](Key′.n.Ŝ0))

(6)

Inst, (−4,−1) [Client]C SymDec(X0, Esym[kt→k
X0,K0 ](AKey.Ĉ0), k

t→k
X0,K0)

∧ Send(X0, Ĉ0.Esym[ks→t
S,X0 ](SKey.Ĉ0).Esym[AKey](SKey.n2.Ŝ))

(7)

CTX0, (−1) [Client]C ∃Y. SymEnc(Y,AKey.Ĉ0, k
t→k
X0,K0) (8)

Inst Y 7→ Y0, (−1) [Client]C SymEnc(Y0, AKey.Ĉ0, k
t→k
X0,K0) (9)

A2, (−1) [Client]C Possess(Y0, AKey) (10)

SECclient
AKey , (−1) Honest(Ŷ0) (11)

HON Honest(X̂) ∧ SymEnc(X,Key.Ŵ , kt→k
X,Z ) ⊃ New(X,Key) (12)

(−4,−1) [Client]C New(Y0, AKey) (13)

AUTHclient
kas New(X,AKey) ∧ SymEnc(X,AKey.Ŵ , kt→k

Y,Z )

⊃ Ŷ = T̂ ∧ Ẑ = K̂ ∧ Ŵ = Ĉ (14)

(9,−2,−1) X̂0 = T̂ ∧ K̂0 = K̂ ∧ Ĉ0 = Ĉ (15)

(7,−1) [Client]C ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

(16)
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G Formal Description of Kerberos with PKINIT

Client = (C, K̂, T̂ , Ŝ, t) [

new n1; new ñ1;

sigc := sign tC .ñ1, skC ;

send CertC .sigc.Ĉ.T̂ .n1;

receive encpkc.Ĉ.tgt.enckc;

textpkc := pkdec encpkc, dkC ;

match textpkc as CertK .sigk;

verify sigk, k.ck, vkK ;

c̃k := hash CertC .sigc.Ĉ.T̂ .n1, k;

match c̃k as ck;

textkc := symdec enckc, k;

match textkc as AKey.n1.tK .T̂ ;

· · · stage boundary · · ·

new n2;

encct := symenc Ĉ, AKey;

send tgt.encct.Ĉ.Ŝ, n2;

receive Ĉ.st.enctc;

texttc := symdec enctc, AKey;

match texttc as SKey.n2.Ŝ;

· · · stage boundary · · ·

enccs := symenc Ĉ.t, SKey;

send st.enccs;

receive encsc;

textsc := symdec encsc, SKey;

match textsc as t;

]C

KAS = (K) [

receive CertC .sigc.Ĉ.T̂ .n1;

verify sigc, tC .ñ1, vkC ;

new k; new AKey;

ck := hash CertC .sigc.Ĉ.T̂ .n1, k;

sigk := sign k.ck, skK ;

encpkc := pkenc CertK .sigk, pkC ;

tgt := symenc AKey.Ĉ, kt→k
T,K ;

enckc := symenc AKey.n1.tK .T̂ , k;

send encpkc.Ĉ.tgt.enckc;

]K

TGS = (T, K̂) [

receive tgt.encct.Ĉ.Ŝ.n2;

texttgt := symdec tgt, kt→k
T,K ;

match texttgt as AKey.Ĉ;

textct := symdec encct, AKey;

match textct as Ĉ;

new SKey;

st := symenc SKey.Ĉ, ks→t
S,T ;

enctc := symenc SKey.n2.Ŝ, AKey;

send Ĉ.st.enctc;

]T

Server = (S, T̂ ) [

receive st.enccs;

textst := symdec st, ks→t
S,T ;

match textst as SKey.Ĉ;

textcs := symdec enccs, SKey;

match textcs as Ĉ.t;

encsc := symenc t, SKey;

send encsc;

]S
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H Proof of PKINIT Security Properties

H.1 Environmental Assumptions

Long term symmetric keys possessed by pairs of honest principals are possessed by
only themselves and are only used as keys, i.e. these are level-0 keys.

Γ0 : ∀X,Y, Z, type. Hon(X̂, Ŷ ) ∧ Possess(Z, ktype
X,Y ) ⊃ (Ẑ = X̂ ∨ Ẑ = Ŷ )

H.2 Additional Axioms

A1 New(X,n) ∧ New(Y, n) ⊃ X = Y

A2 SymEnc(X,m, k) ⊃ Possess(X, k) ∧ Possess(X,m)

A3 New(X, k) ∧HASH[k](m) = HASH[k](m′) ⊃ m = m′

H.3 Proofs of AUTHclient
kas

[Client]C Verify(C,SIG[skK ](k.ck), vkK) (1)

(−1) [Client]C ∃η. Sign((K̂, η), k.ck, skK) (2)

Inst (K̂, η) 7→ K [Client]C Sign(K, k.ck, skK) (3)

HON Honest(X̂) ∧ Sign(X,n.m, skX) ∧ ¬Time(n) ⊃ New(X,n)∧
∃m′. m = HASH[k](m′) ∧ Hash(X,m′, k) (4)

(−2,−1) [Client]C New(K, k) ∧ ∃m′. ck = HASH[k](m′) ∧ Hash(K,m′, k)
(5)

[Client]C ck = HASH[k](CertC .sigc.Ĉ.T̂ .n1) (6)

A3, (−2,−1) [Client]C m′ = CertC .sigc.Ĉ.T̂ .n1 (7)

(−3,−1) [Client]C New(K, k) ∧ Hash(K,CertC .sigc.Ĉ.T̂ .n1, k) (8)

HON Honest(X̂) ∧ Hash(X,CertC0 .sigc0.Ĉ0.T̂0.n, k0) ⊃
∃t,Key. Send(X,Epk[pkC0 ](CertX .SIG[skX ](k0.

HASH[k0](CertC0 .sigc0.Ĉ0.T̂0.n)).Ĉ0.Esym[kt→k
T0,X ](Key.Ĉ0).

Esym[k0](Key.n.t.T̂0))) (9)

(−2,−1) [Client]C ∃t,Key. Send(K,Epk[pkC ](CertK .SIG[skK ](k.ck)).Ĉ.

Esym[kt→k
T,K ](Key.Ĉ).Esym[k](Key.n1.t.T̂ )) (10)
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The last equation establishes ˜AUTH
kas
client : [Client]C ∃tK , AKey. AUTHkas. In

section H.5, We will use ˜AUTH
kas
client to prove [Client]C GoodProtocol(k, {dkC}) and

GoodInit(k, {dkC}) ≡ Hon(Ĉ, K̂). Therefore, using axiom CTXL we can derive:

CTXL [Client]C SymDec(X,Esym[k](m), k)⇒ ∃Z. SymEnc(Z,m, k) (11)

Now we proceed to prove AUTHkas
client :

[Client]C SymDec(C,Esym[k](AKey.n1.tK .T̂ ), k) (12)

(11,−1) [Client]C ∃Z0. SymEnc(Z0, AKey.n1.tK .T̂ , k) (13)

Inst Z0 7→ Z, (−1) [Client]C SymEnc(Z,AKey.n1.tK .T̂ , k) (14)

HON Honest(X̂) ∧ SymEnc(X,Key.n.t.T̂0, k0) ⊃ New(X, k0) (15)

(−2,−1) [Client]C New(Z, k) (16)

A1, (−1) [Client]C Z = K (17)

HON Honest(X̂) ∧ Hash(X,CertC0 .sigc0.Ĉ0.T̂0.n, k0) ⊃

∃t,Key. SymEnc(X,Key.n.t.T̂0, k0) (18)

(−1) [Client]C ∃t,Key. SymEnc(K,Key.n1.t.T̂ , k) (19)

HON Honest(X̂) ∧ SymEnc(X,Key.n.t.T̂0, k0) ∧ SymEnc(X,Key′.n′.t′.T̂ ′0, k0)

⊃ Key = Key′ ∧ n = n′ ∧ t = t′ ∧ T̂0 = T̂ ′0 (20)

˜AUTH
client
kas , (−1) [Client]C Send(K,Epk[pkC ](CertK .SIG[skK ](k.ck)).Ĉ.

Esym[kt→k
T,K ](Key.Ĉ).Esym[k](AKey.n1.tK .T̂ )) (21)

(−1) AUTHclient
kas (22)

H.4 Proofs of AUTHtgs
kas and AUTHserver

tgs

We first give a template proof of [Role]X Hon(X̂, Ŷ ) ⊃ ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ),

where Role decrypts the term Esym[ktype
X,Y ](M)r. Reference to equations by negative

numbers is relative to the current equation - e.g. (-1) refers to the last equation. Ref-
erence by positive numbers indicates the actual number of the equation.
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Hon(X̂, Ŷ ), Γ0 GoodKey(ktype
X,Y ) (1)

Hypothesis [Role]X SymDec(X,Esym[ktype
X,Y ](M), ktype

X,Y ) (2)

CTX0, (−2,−1) [Role]X ∃Z. SymEnc(Z,M, ktype
X,Y ) (3)

Inst Z 7→ Z0, (−1) [Role]X SymEnc(Z0,M, ktype
X,Y ) (4)

A2, (−1) [Role]X Possess(Z0, k
type
X,Y ) (5)

Hon(X̂, Ŷ ), Γ0, (−1) [Role]X Ẑ0 = X̂ ∨ Ẑ0 = Ŷ (6)

(−4,−1) [Role]X ∃η. SymEnc((X̂, η),M, ktype
X,Y )

∨ ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (7)

Case 1 : X̂ = Ŷ

(−1) [Role]X ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (8)

Case 2 : X̂ 6= Ŷ

HON Honest(X̂0) ∧ X̂0 6= Ŷ0 ⊃ ¬SymEnc(X0,M0, k
type
X0,Y0

) (9)

Hon(X̂), (−1) [Role]X ¬∃η. SymEnc((X̂, η),M, ktype
X,Y ) (10)

(−4,−1) [Role]X ∃η. SymEnc((Ŷ , η),M, ktype
X,Y ) (11)

Instantiating for AUTHtgs
kas:

[TGS]T ∃η. SymEnc((K̂, η), (AKey, Ĉ), kt→k
T,K ) (12)

HON Honest(X̂) ∧ SymEnc(X,Key.Ĉ0, k
t→k
Y,X )

⊃ ∃k0, ck0, n, t. Send(X,Epk[pkC0 ](CertX .SIG[skX ](k0.ck0)).

Ĉ0.Esym[kt→k
Y,X ](Key.Ĉ0).Esym[k0](Key.n.t.Ŷ )) (13)

Hon(K̂), (−2,−1) [TGS]T ∃η, n1, k, ck, tK . Send((K̂, η), Epk[pkC ](CertK .SIG[skK ](k.ck)).

Ĉ.Esym[kt→k
T,K ](AKey.Ĉ).Esym[k](AKey.n1.tK .T̂ )) (14)

(−1) AUTHtgs
kas (15)
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Instantiating for AUTHserver
tgs :

[Server]S ∃η. SymEnc((T̂ , η), SKey.Ĉ, ks→t
S,T ) (16)

HON Honest(X̂) ∧ SymEnc(X,Key.Ĉ0, k
s→t
Y,X )

⊃ ∃n,Key′. Send(X, Ĉ0.Esym[ks→t
Y,X ](Key.Ĉ0).Esym[Key′](Key.n.Ŷ ))

(17)

Hon(T̂ ), (−2,−1) [Server]S ∃η, n,Key′. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).

Esym[Key′](SKey.n.Ŝ)) (18)

(−1) AUTHserver
tgs (19)

H.5 Proofs of SECclient
k , SECkas

k

The assumed condition Φ is the conjunction of the following formulae:

Φ0 : ∀X. New(X, k) ⊃ X̂ = K̂

Φ1 : ∀X,M. New(X, k) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,k))

Φ2 : ∀X, t. New(X, k) ⊃ ¬Sign(X, t.k, skX)

Φ3 : ∀X,Y, ck0. New(X, k) ∧ PkEnc(X,CertX .SIG[skX ](k.ck0), pkY ) ⊃ Ŷ = Ĉ

Φ4 : ∀X,m, key. New(X, k) ⊃ ¬SymEnc(X, k.m, key)

H.6 Proofs of SECclient
akey , SECkas

akey, SECtgs
akey

In this section we formally prove the secrecy of the session key AKey with respect
to the set of keys K = {k, kt→k

T,K }. The assumed condition Φ is the conjunction of the
following formulae:

Φ0 : ∀X. New(X,AKey) ⊃ X̂ = K̂

Φ1 : ∀X,M. New(X,AKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,AKey))

Φ2 : ∀X,m. New(X,AKey) ∧ SymEnc(X,AKey.m, k0) ⊃ k0 ∈ {k, kt→k
T,K }

Φ3 : ∀X, Ŝ0, Ĉ0. New(X,AKey) ⊃ ¬SymEnc(X,AKey.Ĉ0, k
s→t
S0,X)

Φ4 : ∀X, t. New(X,AKey) ⊃ ¬(Sign(X,M, skX) ∧ ContainsOpen(M,AKey))

Observe that Φ is prefix closed. The predicate ContainsOpen(m,a) asserts that a
can be obtained from m by a series of unpairings only. Formally,

ContainsOpen(a, a) ∧ (ContainsOpen(m0.m1, a) ≡ ContainsOpen(m0, a) ∨ ContainsOpen(m1, a))
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Now we present the formal proof of goodness:

Let, [Client1]C′ : [new n′1; new ñ′1;

sigc′ := sign t′C .ñ′1, skC′ ;

send CertC′ .sigc′.Ĉ′.T̂ ′.n′1; ]C′

[Client1]C′ New(C′, n′1) ∧ Send(C′, Ĉ′.T̂ ′.n′1) ∧ Sign(C′, t′C .ñ′1, skC′)
(1)

Φ1, Φ4, (−1) [Client1]C′ n′1 6= AKey ∧ ñ′1 6= AKey (2)

G1,G5,G11, (−1) [Client1]C′ Good(C′, CertC′ .sigc′.Ĉ′.T̂ ′.n′1, AKey,K) (3)

SG1-2, (−1) SendGood(C′, AKey,K) [Client1]C′ SendGood(C′, AKey,K)
(4)

Let, [Client2]C′ : [receive encp′kc.Ĉ′.tgt
′.enc′kc;

textp′kc := pkdec encp′kc, dkC′ ;

match textp′kc as CertK′ .sigk′;

verify sigk′, k′.ck′, vk′K ;

˜ck′ := hash CertC′ .sigc′.Ĉ′.T̂ ′.n′1, k
′;

match ˜ck′ as ck′;

text′kc := symdec enc′kc, k
′;

match text′kc as AKey′.n′1.t
′
K .T̂ ′; ]C′

SG1 SendGood(C′, AKey,K) [Client2]C′ SendGood(C′, AKey,K)
(5)

Precondition θ3 : Good(C′, tgt′, AKey,K)

Let, [Client3]C′ : [new n′2; enc
′
ct := symenc Ĉ′, AKey′;

send tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2; ]C′

[Client3]C′ New(C′, n′2) ∧ Send(C′, tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2) (6)

Φ1, (−1) [Client3]C′ n′2 6= AKey (7)

G1, (−1) θ3 [new n′2; ]C′ Good(C′, tgt′, AKey,K) ∧ Good(C′, n′2, AKey,K) (8)

G∗, (−1) θ3 [Client3]C′ Good(C′, tgt′.enc′ct.Ĉ′.Ŝ′.n
′
2, AKey,K) (9)

SG1-2, (−1) θ3 ∧ SendGood(C′, AKey,K) [Client3]C′ SendGood(C′, AKey,K)
(10)

52



· · ·proof for following BS similar to (5) · · ·

SendGood(C′, AKey,K) [receive Ĉ′, st′, enc′tc;

text′tc := symdec enc′tc, AKey
′; match text′tc as SKey′.n′2.Ŝ′; ]C′

SendGood(C′, AKey,K) (11)

Precondition θ5 : Good(C′, st′, AKey,K)

· · ·proof for following BS similar to (13) · · ·
θ5 ∧ SendGood(C′, AKey,K) [

enc′cs := symenc Ĉ′.t′, SKey′;

send st′, enc′cs; ]C′

SendGood(C′, AKey,K) (12)

· · ·proof for following BS similar to (5) · · ·
SendGood(C′, AKey,K) [receive enc′sc;

text′sc := symdec enc′sc, SKey
′; match text′sc as t′; ]C′

SendGood(C′, AKey,K) (13)

Let, [KAS]K′ : [receive CertC′ .sigc′.Ĉ′.T̂ ′.n′1;

verify sigc′, t′C .ñ
′
1, vkC′ ;

new k′; new AKey′;

ck′ := hash CertC′ .sigc′.Ĉ′.T̂ ′.n′1, k
′;

sigk′ := sign k′.ck′, skK′ ;

encp′kc := pkenc CertK′ .sigk′, pkC′ ;

tgt′ := symenc AKey′.Ĉ′, kt→k
T ′,K′ ;

enc′kc := symenc AKey′.n′1.tK′ .T̂ ′, k′;

send encp′kc.Ĉ′.tgt
′.enc′kc; ]K′

[KAS]K′ Sign(K′, k′.ck′, skK′) (14)

Φ4, (−1) [KAS]K′ k′ 6= AKey (15)

Case 1 : AKey′ = AKey

[KAS]K′ New(K′, AKey) ∧ SymEnc(K′, AKey.Ĉ′, kt→k
T ′,K′)

∧ SymEnc(K′, AKey.n′1.tK′ .T̂ ′, k′) (16)
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Φ2, (−1) [KAS]K′ k′ ∈ {k, kt→k
T,K } ∧ kt→k

T ′,K′ ∈ {k, kt→k
T,K } (17)

(−1) [KAS]K′ k′ ∈ K ∧ kt→k
T ′,K′ ∈ K (18)

G∗, (−1) [KAS]K′ Good(K′, encp′kc.Ĉ′.tgt
′.enc′kc, AKey,K) (19)

Case 2 : AKey′ 6= AKey

G2 [receive CertC′ .sigc′.Ĉ′.T̂ ′.n′1; ]K′ Good(K′, CertC′ .sigc′.Ĉ′.T̂ ′.n′1, AKey,K)
(20)

G6, (−1) [receive CertC′ .sigc′.Ĉ′.T̂ ′.n′1; ]K′ Good(K′, n′1, AKey,K) (21)

G∗, (−1) [KAS]K′ Good(encp′kc.Ĉ′.tgt
′.enc′kc, AKey,K) (22)

SG1-2, (−4,−1) SendGood(K′, AKey,K) [KAS]K′ SendGood(K′, AKey,K) (23)

Let, [TGS]T ′ : [receive enc′ct1.enc
′
ct2.Ĉ′.Ŝ′.n

′
2;

text′ct1 := symdec enc′ct1, k
t→k
T ′,K′ ;

match text′ct1 as AKey′.Ĉ′;

text′ct2 := symdec enc′ct2, AKey
′;

match text′ct2 as Ĉ′;

new SKey′;

st′ := symenc SKey′.Ĉ′, ks→t
S′,T ′ ;

enc′tc := symenc SKey′.n′2.Ŝ′, AKey
′;

send Ĉ′.st′.enc′tc; ]T ′

G2,G6 [receive enc′ct1.enc
′
ct2.Ĉ′.Ŝ′.n

′
2; ]T ′ Good(T ′, n′2, AKey,K) (24)

[TGS]T ′ New(T ′, SKey′) ∧ SymEnc(T ′, SKey′.Ĉ′, ks→t
S′,T ′) (25)

Φ3, (−1) [TGS]T ′ SKey′ 6= AKey (26)

G1, (−1) [· · · ; new SKey′; ]T ′ Good(T ′, SKey′, AKey,K) (27)

G∗, (−4,−1) [TGS]T ′ Good(T ′, Ĉ′.st′.enc′tc, AKey,K) (28)

SG1-2, (−1) SendGood(T ′, AKey,K) [TGS]T ′ SendGood(T ′, AKey,K) (29)
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Let, [Server]S′ : [receive enc′cs1.enc
′
cs2;

text′cs1 := symdec enc′cs1, k
s→t
S′,T ′ ; match text′cs1 as SKey′.Ĉ′;

text′cs2 := symdec enc′cs2, SKey
′; match enc′cs2 as Ĉ′.t′;

enc′sc := symenc t′, SKey′;

send enc′sc; ]S′

Case 1: SKey′ ∈ K
G7, (−1) [· · · ; enc′sc := symenc t′, SKey′; ]S′ Good(S′, enc′sc, AKey,K) (30)

Case 2: SKey′ /∈ K (31)

G2,G6 [receive enc′cs1.enc
′
cs2; ]S′ Good(S′, enc′cs2, AKey,K) (32)

G6,G8, (−1) [· · · ; text′cs2 := symdec enc′cs2, SKey
′; match enc′cs2 as Ĉ′.t′; ]S′

Good(S′, t′, AKey,K) (33)

G7, (−1) [· · · ; enc′sc := symenc t′, SKey′; ]S′ Good(S′, enc′sc, AKey,K) (34)

(−4,−1) [Server]S′ Good(S′, enc′sc, AKey,K) (35)

SG1-2, (−1) SendGood(S′, AKey,K) [Server]S′ SendGood(S′, AKey,K) (36)

Theorem 10 Φ ⊃ GoodProtocol(AKey,K) (37)

We can derive from AUTHclient
kas , the actions in [KAS]K and AUTHclient

tgs that:

PKINIT ` [Client]C Hon(Ĉ, K̂, T̂ ) ⊃ Φ

PKINIT ` [KAS]K Hon(Ĉ, K̂, T̂ ) ⊃ Φ

PKINIT ` [TGS]T Hon(Ĉ, K̂, T̂ ) ⊃ Φ

The only principals having access to a key in K are Ĉ, K̂ and T̂ . All keys in K are
level-0 as they are used only as keys. In addition, Φ0 assumes that some thread of K
generated AKey. Therefore, we have:

InInitSet(X,AKey,K) ≡ X̂ ∈ {Ĉ, K̂, T̂}

GoodInit(AKey,K) ≡ Hon(Ĉ, K̂, T̂ )

GoodKeyFor(AKey,K) ≡ GoodKeyAgainst(AKey,X) ∨ X̂ ∈ {Ĉ, K̂, T̂}

Therefore, by axiom GK, we have:

GoodProtocol(AKey,K)∧Hon(Ĉ, K̂, T̂ )⇒ GoodKeyAgainst(X,AKey)∨X̂ ∈ {Ĉ, K̂, T̂}

Combining everything we have:

PKINIT ` SECclient
akey , SECkas

akey, SEC
tgs
akey
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H.7 Proofs of SECclient
skey , SECtgs

skey

In this section we formally prove the secrecy of the session key SKey with respect to
the set of keys K = {AKey, ks→t

S,T }. The assumed condition Φ is the conjunction of the
following formulae:

Φ0 : ∀X. New(X,SKey) ⊃ X̂ = T̂

Φ1 : ∀X,M. New(X,SKey) ⊃ ¬(Send(X,M) ∧ ContainsOpen(M,SKey))

Φ2 : ∀X,m. New(X,SKey) ∧ SymEnc(X,SKey.m, k0) ⊃ k0 ∈ {AKey, ks→t
S,T }

Φ3 : ∀X, T̂0, Ĉ0. New(X,SKey) ⊃ ¬SymEnc(X,SKey.Ĉ0, k
t→k
T0,X)

Φ4 : ∀X, t. New(X,SKey) ⊃ ¬(Sign(X,M, skX) ∧ ContainsOpen(M,SKey))
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H.8 Proof of AUTHclient
tgs

We have derived in Appendix H.6 that on execution of the Client role by C, GoodProtocol(AKey,K)∧
GoodInit(AKey,K) holds where K = {kc→k

C,K , k
t→k
T,K }. Therefore, by axiom CTXL we can

derive that:

[Client]C SymDec(Z,Esym[AKey](m), AKey)⇒ ∃X. SymEnc(X,m,AKey) (1)

Now, the thread [Client]C decrypts the message Esym[AKey](SKey.n2.Ŝ). Hence we
proceed:

[Client]C SymDec(C,Esym[AKey](SKey.n2.Ŝ), AKey) (2)

(−1, 1) [Client]C ∃X. SymEnc(X,SKey.n2.Ŝ, AKey) (3)

Inst X 7→ X0, (−1) [Client]C SymEnc(X0, SKey.n2.Ŝ, AKey) (4)

(−1) [Client]C Possess(X0, AKey) (5)

SECclient
AKey , (−1) X̂0 = Ĉ ∧ X̂0 = K̂ ∧ X̂0 = T̂ (6)

Inst , AUTHclient
kas [Client]C New(K,AKey) ∧ ∀m. ¬SymEnc(K,m,AKey) (7)

(−4,−1) [Client]C ¬New(X0, AKey) (8)

HON Honest(X̂) ∧ SymEnc(X,Key′.n.Ŝ0,Key) ∧ ¬New(X,Key)

⊃ ∃K̂0, Ĉ0. SymDec(X,Esym[kt→k
X,K0 ](Key.Ĉ0), k

t→k
X,K0)

∧ Send(X, Ĉ0.Esym[ks→t
S0,X ](Key′.Ĉ0).Esym[Key](Key′.n.Ŝ0))

(9)

Inst, (−4,−1) [Client]C SymDec(X0, Esym[kt→k
X0,K0 ](AKey.Ĉ0), k

t→k
X0,K0)

∧ Send(X0, Ĉ0.Esym[ks→t
S,X0 ](SKey.Ĉ0).Esym[AKey](SKey.n2.Ŝ))

(10)

CTX0, (−1) [Client]C ∃Y. SymEnc(Y,AKey.Ĉ0, k
t→k
X0,K0) (11)

Inst Y 7→ Y0, (−1) [Client]C SymEnc(Y0, AKey.Ĉ0, k
t→k
X0,K0) (12)

HON Honest(X̂) ∧ SymEnc(X,Key.Ŵ , kt→k
X,Z ) ⊃ New(X,Key) (13)

(−4,−1) [Client]C New(Y0, AKey) (14)

AUTHclient
kas New(X,AKey) ∧ SymEnc(X,AKey.Ŵ , kt→k

Y,Z )

⊃ Ŷ = T̂ ∧ Ẑ = K̂ ∧ Ŵ = Ĉ (15)

(10,−2,−1) X̂0 = T̂ ∧ K̂0 = K̂ ∧ Ĉ0 = Ĉ (16)

(10,−1) [Client]C ∃η. Send((T̂ , η), Ĉ.Esym[ks→t
S,T ](SKey.Ĉ).Esym[AKey](SKey.n2.Ŝ))

(17)
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