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Abstract. We investigate the security of protocols with logarithmic communication complexity. We
show that for the security definitions with environment, i.e., Reactive Simulatability and Universal
Composability, computational security of logarithmic protocols implies statistical security. The same
holds for advantage-based security definitions as commonlyused for individual primitives. While
this matches the folklore that logarithmic protocols cannot be computationally secure unless they are
already statistically secure, we show that under realisticcomplexity assumptions, this folklore does
surprisinglynothold for the stand-alone model without auxiliary input, i.e., there are logarithmic pro-
tocols that are statistically insecure but computationally secure in this model. The proof is conducted
by showing how to transform an instance of an NP-complete problem into a protocol with two proper-
ties: There exists an adversary such that the protocol is statistically insecure in the stand-alone model,
and given such an adversary we can find a witness for the problem instance, hence yielding a com-
putationally secure protocol assuming the hardness of finding a witness. The proof relies on a novel
technique that establishes a link between cryptographic definitions and foundations of computational
geometry, which we consider of independent interest.
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1 Introduction

In this work, we investigate the security of cryptographic protocols with logarithmic communi-
cation complexity (logarithmic protocols for short). The central question we are aiming to solve
is the following: Are there logarithmic protocols that are computationally secure but not statis-
tically (information-theoretically) secure, i.e., can webase the security of logarithmic protocols
on suitable complexity assumptions? At first glance, the answer seems obviously negative and
constitutes a folklore in cryptography: If a protocol is notstatistically secure anyway, and if all
messages have logarithmic length, the protocol can be efficiently attacked by brute-force and
hence cannot be computationally secure. We investigate whether this folklore indeed withstands
a formal investigation. (Anticipating the answer: No, it does not in general.)

We consider the question in three different security models: security with environment, stand-
alone security and advantage-based security. Security with environment is a family of very strin-
gent security definitions, out of which the Reactive Simulatability framework and the Universal
Composability framework constitute the most prominent members. Because of strong compo-
sitionality results, security with environment has rapidly gained momentum in the last years.
Stand-alone security on the other hand does not entail such strong compositionality guarantees,
but it allows to derive suitable security guarantees for many cryptographic protocols for which
security with environment is too strong a notion. Stand-alone security thus still constitutes one of
the standard security notions in cryptography. Both security with environment and stand-alone
security define security by comparing a protocol with some ideal specification. This intuitively
guarantees that all properties enjoyed by the ideal specification are also fulfilled by the real
protocol. In contrast, advantage-based security notions define a particular concrete property the
protocol must satisfy. More precisely, one specifies a game and a well-defined goal, and then
requires that every adversary only attains that goal with a sufficiently small probability (the
so-called advantage). Stand-alone security is often seen as—and in fact was designed with the
intuition of being—the union of all security properties fulfilled by the ideal specification. In
other words, one expects a protocol to be stand-alone secureif for any advantage-based security
notion that is fulfilled by the ideal specification, the real protocol also fulfils this property.

In the case of security with environment and of advantage-based security, we show that the
folklore statement indeed holds true: For these notions, computational security implies statistical
security. In the case of security with environment we prove this by showing that adversaries that
randomly choose their communication are complete for logarithmic protocols, i.e., if there is
some (possibly unbounded) adversary breaking the protocol, then the adversary using randomly
selected messages also breaks the protocol. In the case of advantage-based security we analyse
the protocol in a game-theoretic setting and show that an optimal strategy can efficiently be
computed.

Most interestingly, and more surprisingly, we show that in the case of stand-alone security,
the folklore statementdoes not holdin the case without auxiliary input. We give a reduction that
allows to convert an instance of the NP-complete set cover problem into a protocol with the fol-
lowing property: If the set cover instance has a witness, then there exists a successful adversary
and the protocol is not statistically secure, and given suchan adversary, we can extract a wit-
ness for the set cover instance. The consequence is that if finding witnesses for set cover is hard
(more exactly, ifNP 6⊆ BPTIME(nO(log n)) in our specific case), finding a successful efficient
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adversary is hard, too. In order to show that it is not only hard to find an adversary, but even
that no efficient adversary exists, we additionally assume that efficiently computable sequences
of hard instances of some NP-problem exist. We then construct a protocol that uses one of these
instances for each security parameter. A successful efficient adversary would consequently be
able to solve infinitely many of the hard instances, yieldinga contradiction. Hence the resulting
protocol is computationally secure but not statistically secure. This argumentation also holds for
a uniform auxiliary input. However, in the case ofnonuniformauxiliary input (in the sense of
[Gol93]) the argument fails since we can encode the witness into the auxiliary input.

This separation has several interesting implications. First, it shows that the proof idea of
breaking any logarithmic protocol with brute force does notwork in general and that there are
cryptographic problems that are more than exponentially hard in the length of the communica-
tion. Second, since we showed that for advantage-based security notions computational implies
statistical security, it follows that stand-alone security is more that just the union of all advantage-
based security properties fulfilled by the ideal specification. This stands in contrast to the folklore
point of view mentioned above, and it can even be seen as evidence that the intuition underlying
the stand-alone model has not been fully met. Arguably the most interesting implication is the
third one: Another folklore theorem states that ifP = NP (or BPP = MA to be more exact),
cryptography becomes generally insecure in the sense that every statistically insecure protocol
is also computationally insecure. However, the intuition underlying this statement is similar to
the intuition of using a brute-force attack to break any logarithmic protocol. As we have shown
the latter intuition to be unsound, it may be that a similar approach might also show the first one
to be incorrect, i.e., it might be the case that even ifP = NP andBPP = MA, computationally
secure protocols exist that are not statistically secure.

Related Work. The paper that comes closest to our work is [Unr06]. There itwas shown that for
security with environment and polynomial-time protocols,statistical security and security with
respect to exponential-time adversaries coincide. This isanalogous to our result for the setting of
security with environment, only one level higher in the complexity hierarchy. Note however that
directly applying their technique to the setting of logarithmic protocols yields a weaker result
than the one we achieve when dealing with security with environment: For protocols that have
logarithmic communication complexityand run in logarithmic time, computational security with
environment implies statistical security with environment. However, the results in [Unr06] still
served as the inspiration for analysing the security of logarithmic protocols.

Additionally relevant for our work are the various securitymodels for dealing with crypto-
graphic primitives. The idea of using a simple ideal system as a specification for a cryptographic
system was first sketched for secure multi-party function evaluation, i.e., for the computation of
one output tuple from one tuple of secret inputs from each participant in [Yao82] and defined
(with different degrees of generality and rigorosity) in [GL90, Bea91, MR91, Can95, Can00,
Gol04]. These models are currently jointly denoted thestand-alone modelof cryptography. Ex-
tensions of this idea to specific reactive problems were firstgiven in [GM95, BCK98, CG99] but
without a detailed or general definition. In a similar way, construction of generic solutions for
large classes of reactive problems were proposed [GMW87, Gol98, HM00], but usually yield-
ing inefficient solutions and assuming that all parties takepart in all subprotocols. The currently
prevalent frameworks for dealing with reactive protocols are the Reactive Simulatability (RSIM)
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framework [PW01, BPW04] and the Universal Composability (UC) framework [Can01, Can05],
which both pursue the idea of augmenting the stand-alone model with an environment that es-
sentially ensures security in arbitrary surrounding contexts in which the protocol under consider-
ation is executed. Thissecurity with enviromentcan be shown to entail strong compositionality
guarantees and has proven successful in analyzing various cryptographic primitives and pro-
tocols.Advantage-based definitionsof cryptographic primitives have been playing a key role
from the very start in essentially all cryptographic definitions, e.g., semantic security [GM84],
CMA-security of signatures [GMR88], and many more.

Outline. In Section 2, we present the notation and security definitions used in the subsequent
sections. In Section 3 we give an intermediate result: If random variables of logarithmic length
are computationally indistinguishable, they are also statistically indistinguishable. In Section 4
we show that for logarithmic protocols, computational security with environment implies statis-
tical security with environment. In Section 5 we show that for stand-alone security, this does
not hold in general. We construct logarithmic protocols that are computationally stand-alone se-
cure without auxiliary input but not statistically stand-alone secure. In the presence of auxiliary
input, we show that if a logarithmic protocol is computationally stand-alone secure, it is also
statistically stand-alone secure. In Section 6 we show thatfor advantage-based security notions,
computational security implies statistical security.

2 Notation and Security Models

Notation. The real numbersare denotedR, the natural numbersby N = {1, 2, . . . }. The
statistical distancebetweenX andY we denote∆(X;Y ). Two families of random variables
{Xz}z∈Z and{Yz}z∈Z arestatistically indistinguishableif ∆(Xz;Yz) is negligible in|z|. The
families {Xz}z∈Z and{Yz}z∈Z arecomputationally indistinguishableif for any probabilistic
polynomial-time algorithmD the difference|Pr[D(z,Xz) = 1] − Pr[D(z, Yz) = 1]| is negli-
gible in |z|. A family {Xz}z∈Z is efficiently constructibleif there is a probabilistic polynomial-
time algorithmS such thatS(z) has distributionXz. If Z = N, we interpretz ∈ N as its unary
encoding1z.

If A andB are interactive Turing machines (ITMs), we write〈A,B〉 for the outputof B in
an execution ofA andB. We write〈〈A,B〉〉 for the pair consisting of the outputsof A andB. If
A andB take some inputx andy, we write〈A(x), B(y)〉 and〈〈A(x), B(y)〉〉.

For two vectorsx, y ∈ Rn, we write〈x, y〉 :=
∑

i xiyi for their inner product. Thel1-norm
of x we write‖x‖1 :=

∑

i|xi|. The l1-distanceis written d1(x, y) := ‖x − y‖1. For a matrix
S := (sij) ∈ Rm×n, let si· denote itsith row. Given two setsX,Y ⊆ Rn and a scalarα ∈ R,
we writeX + Y := {x + y : x ∈ X, y ∈ Y } andαX := {αx : x ∈ X}. A subsetX ⊆ Rn is
a halfspaceif it has the formX = {x : 〈c, x〉 ≤ b}, andX is called apolytopeif it is bounded
and the intersection of finitely many halfspaces.

Security models.An important class of security models are thesecurity models with envi-
ronment, its best-known representatives being the Reactive Simulatability (RSIM) framework
[BPW04] and the Universal Composability (UC) framework [Can05]. In the Reactive Simulata-
bility framework, we consider an execution of a protocolπ together with an adversaryA and
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an honest userH (also known as the environment). The sequence of all internal states ofH and
messages sent and received byH is called its view and writtenviewπ,A,H,k(H). Herek ∈ N is
the security parameter available to all machines. For a detailed definition we refer to [BPW04].
In the Reactive Simulatability framework, security is thendefined as follows:

Definition 1 (Reactive Simulatability (sketch)). A protocol π is as secure as a protocol
ρ with respect tocomputational universal reactive simulatabilityif for every polynomial-
time machineA (the adversary) there is a polynomial-time machineS (the simulator) such
that for every polynomial-time machineH (the honest user)

{

viewπ,A,H,k(H)
}

k∈N and
{

viewρ,S,H,k(H)
}

k∈N are computationally indistinguishable ink.
We speak ofstatisticaluniversal reactive simulatability if in the above definitionsA, H and

S are unbounded and statistical indistinguishability is used instead of computational indistin-
guishability.

Other variants of security models with environment exist, e.g. general reactive simulatability
where the simulator may depend on the honest user [BPW04], and UC security, which is similar
to Definition 1 but formulated in the UC framework [Can05].

Another very common security definition isstand-alone security. It is weaker than the se-
curity models with environment, and many useful protocols are only stand-alone secure. Since
there are many variants of stand-alone security (e.g., [Can95, Gol04]), we work with the follow-
ing generalised definition.

Definition 2 (Stand-Alone Security). Let π and ρ be ITMs. We say thatπ is as secure
as ρ with respect to computational stand-alone security with auxiliary input, if for every
polynomial-time ITMA (the adversary) there is a polynomial-time ITMS (the simulator)
such that for sequencesx and z of strings of polynomial length, the families of distributions
{

〈〈A(1k, zk), π(1k, xk)〉〉
}

k,zk,xk
and

{

〈〈S(1k, zk), ρ(1k , xk)〉〉
}

k,zk,xk
are computationally in-

distinguishable ink.
We speak ofstatistical stand-alone security with auxiliary inputif the above holds with un-

boundedA andS and statistical indistinguishability.
We speak ofcomputational/statistical stand-alone security withoutauxiliary input if A

and S do not get the additional inputzk (i.e. the distributions〈〈A(1k), π(1k, xk)〉〉 and
〈〈S(1k), ρ(1k, xk)〉〉 are compared).

Depending on the variant of stand-alone security we consider, the protocolsπ andρ do not only
incorporate the actual behaviour of all uncorrupted parties, but also mechanisms for delivering
messages, corrupting parties and—of specific importance for the ideal model—passing inputs to
the corrupted parties. In many definitions, the ideal protocol ρ is not allowed to be an arbitrary
protocol, but only a probabilistic function. This can be realised by requiringρ to receive only
one message (corresponding to the input from the simulator)and to send only one message (to
pass the output of the corrupted parties to the simulator). Our construction in Section 5 is of that
form.

Finally, one is often not interested in protocols that are indistinguishable from some ideal
protocol, but in protocols where the adversary is unable to achieve a specific goal with more
than a certain probability (the advantage of the adversary). Theseadvantage-baseddefinitions
can be capture by the following definition.
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Definition 3 (Advantage-Based Security).LetB be an ITM andγ a function. We say thatB is
γ-secure with respect to computational advantage-based security with auxiliary inputif for every
polynomial-time ITMA and for all sequencesx andz of strings of polynomial length, there is a
negligible functionµ such thatPr[〈A(1k, zk), B(1k, xk)〉 = 1] ≤ γ(k) + µ(k) for all k ∈ N.

We speak of statistical advantage-based security if the above holds with unboundedA.
We speak of advantage-based security without auxiliary input if A does not get the additional

input zk (i.e., the distribution〈A(1k), B(1k, xk)〉 is considered).

In this definition, the ITMB takes the role of both the protocol under consideration and the game
defining the desired security property. In the definition of,e.g., IND-CPA security,B would
expect two plaintexts fromA, encrypt one of them, and then output if the adversary guesses
correctly which plaintext was encrypted.

3 Indistinguishability of Logarithmic Random Variables

Before analysing more complex security notions, we start byinvestigating the indistinguisha-
bility of random variables. For random variables of logarithmic length, statistical and compu-
tational indistinguishability coincide. This fact will beuseful in the equivalence proofs for the
more complex security notions.

Theorem 4 (Indistinguishability of Logarithmic Random Var iables).Let Z ⊆ {0, 1}∗. Let
X = {Xz}z∈Z andY = {Yz}z∈Z be efficiently constructible families of random variables of
logarithmic length.

If X andY are computationally indistinguishable, then they are statistically indistinguish-
able.

Proof (sketch).If X andY are statistically distinguishable, there is a polynomialp such that
∆(Xz, Yz) ≥ 1

p for infinitely many lengths|z|. SinceXz andYz have a range of polynomial
size we can approximate the distribution ofXz andYz using a polynomial number of samples
with an expected error of1q whereq is an arbitrary polynomial. Given an explicit description
of the true distributions ofXz andYz, we can efficiently derive an optimal distinguisher: Upon
input x, determine whetherx is more likely when drawing fromXz or from Yz. If we use the
approximated distributions instead, the resulting efficient distinguisherD is not optimal any-
more, but for sufficiently largeq, the error introduced by the approximation is at most1

2p , so

|Pr[D(Xz) = 1]−Pr[D(Yz) = 1]| ≥ ∆(Xz, Yz)− 1
2p ≥ 1

2p infinitely often. ThusX andY are
computationally distinguishable. ut

4 Security with Environment

We show that for the security notions with environment (i.e., RSIM and UC) computational
security implies statistical security in the case of logarithmic protocols. These notions contain
two adversarial entities—the environment and the adversary. It is well-known that the latter
can be assumed to be a fixed machine that just forwards messages between environment and
protocol (the so-called dummy-adversary). For the environment, no such reduction is known in
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general. However, in the case of logarithmic communicationcomplexity, the set of all possible
communication traces has polynomial size, so the probability of randomly guessing a given
communication trace is noticeable. Then, if a (possibly unbounded) environmentE succeeds in
distinguishing the real and the ideal protocol, an environmentẼ that simply guesses all messages
thatE sends can be shown to be a successful distinguisher, too. This is captured in the following
lemma.1

Lemma 5. LetX andY be oracle Turing machines. LetA be an oracle. Assume bothX andY
call their oracle at mostr times, and that the total length of the answers given byA is at most
l. Assume further that all oracle queries and oracle answers can be extracted from the output of
X andY . LetÃ be the oracle that first uniformly choose anr-tupel(o1, . . . , or) of strings such
that the total length

∑

oi is at mostl, and then upon itsi-th activation responds withoi. Then
∆(XÃ;Y Ã) ≥ 2−O(l+r)∆(XA;Y A).

This lemma is proven by induction over the number of rounds.
The construction in this lemma represents the essentials ofthe definitions of Reactive Simu-

latability and UC (and probably other flavours of security with environment). The oracleA (or
Ã) represents the environment, whileX andY represent the real and the ideal protocol execu-
tion. More exactly, the machineX contains the complete real model, including adversary, real
protocol and the underlying network model, while all messages sent to the environment are re-
alised as oracle calls toA. Similarly, the machineY contains the simulator, the ideal protocol
and the underlying network model. In this light, Lemma 5 states that (independent of adversary
and simulator), we can replace any environment by an environment that randomly chooses its
messages, and which hence runs in probabilistic polynomialtime. Additionally exploiting that
the view of the environment has logarithmic length, and hence that computational and statisti-
cal indistinguishability of the views of the environment coincide by Theorem 4, we obtain the
following theorem:

Theorem 6 (Computational Implies Statistical Simulatability/UC). Let π and ρ be
polynomial-time protocols with logarithmic communication complexity. Assume thatπ is as se-
cure asρ with respect to computational universal Reactive Simulatability. Thenπ is as secure as
ρ with respect to statistical universal reactive simulatability. The same holds for general reactive
simulatability and for UC.

5 Stand-Alone Security

Surprisingly, the results of the preceding section do not apply to the stand-alone model (without
auxiliary input): Under realistic complexity assumptions, there are logarithmic protocols that are
statistically insecure, but computationally secure. (In this section, security always means stand-
alone security without auxiliary input.) The random adversary we used in the previous section
does not work in this case as illustrated by the following example: Consider the insecure coin-
toss protocol where Bob randomly chooses the outcome and sends it to Alice. An adversary

1 However, in the actual proof the factor by which the statistical distance is reduced is not the probability of guessing
a given communication, but instead3−r times that probability, wherer is the number of rounds. It would be
interesting to know whether this is an artifact of our proof,or whether this factor is indeed necessary.
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that randomlychooses its messages would—in the case of a corrupted Bob—choose arandom
outcome, which corresponds to Bob’s honest behaviour.

To prove the separation, we give a construction that transforms a yes-instance of the set cover
problem into a protocol with two properties: There exists anadversary such that the protocol is
statistically insecure, and given such an adversary we can find a witness for the set cover instance.
Consequently, such a protocol is computationally secure unless such witnesses can be found in
probabilistic polynomial time.

Definition 7 (Set Cover).Let n ∈ N, sij ∈ {0, 1} with i = 1, . . . ,m and j = 1, . . . , n and
d ≤ n. Let si· 6= 0 for all i = 1, . . . ,m. Then(n,m, S, d) is an instance of set cover (with
S := ((sij))). LetSj := {i : sij = 1}. Then(n,m, S, d) is a yes-instance of set cover if there is
a setC ⊆ {1, . . . , n} such that#C ≤ d and

⋃

j∈C Sj = {1, . . . ,m}.
Set cover is well-known to be NP-complete. To describe our construction in more detail, we
first define the class of good adversaries, namely those that perform an attack that cannot be
simulated.

Definition 8 (Good Adversaries).Letπ andρ andA be ITMs, and letε > 0. We callA ε-good
for (π, ρ) if for all ITMs S the statistical distance between〈〈A,π〉〉 and〈〈S, ρ〉〉 is bounded from
above byε. We callA good for(π, ρ) if A is ε-good for someε > 0. Strongly goodadversaries
are defined analogously, with〈A,π〉 and〈S, ρ〉 instead of〈〈A,π〉〉 and〈〈S, ρ〉〉.
Obviously, a protocolπ is statistically as secure as a protocolρ if and only if there is a negligi-
ble functionε such thatA(1k) is ε(k)-good for(π(1k), ρ(1k)). The stricter notion of strongly
good adversaries represents adversaries for which alreadythe protocol output (without the ad-
versary’s/simulator’s output) is distinguishable in the real and the ideal model. So intuitively, a
strongly good adversary breaks the correctness and not onlythe secrecy of the protocol. However,
the protocols we are going to construct will not keep any secrets from the adversary/simulator,
so good and strongly good adversaries coincide in this case.Our goal at this point is to transform
a given set cover instance into a protocol pair such that goodadversaries correspond to witnesses.
(At this point, we are interested in protocols that are not parametrised by the security parameter.
Later, a sequence of set cover instances will be used to construct a parametrised protocol.)

For our transformation, we interpret the property of being agood adversary geometrically.
With any protocolπ we associate the set of all probability distributions ofπ’s output when run
with different adversaries. We consider these distributions as points in an Euclidean space as
follows: for an ITM T whose output lies in the set{1, . . . , t}, we considerp := 〈A,T 〉 as a
vector inRt by settingpi := Pr[〈A,T 〉 = i]. This gives rise to the following definition:

Definition 9 (Adversary-Polytope).Theadversary-polytopeAT ⊆ Rt of the ITMT is defined
asAT := {〈A,T 〉 : A is an ITM}.
We can now reformulate strongly good adversaries geometrically: An adversaryA is strongly
good for(π, ρ) if 〈A,π〉 /∈ Aρ, and it is stronglyε-good ifd1(〈A,π〉,Aρ) ≥ 2ε. So the problem
of finding stronglyε-good adversaries corresponds to the following geometric problem: Given
two polytopesA andX (the adversary-polytopes of the real and the ideal protocolπ andρ), find
a point inA that is at leastε away fromX (w.r.t. thel1-norm). In particular, ifX is the set of
all pointsp with ‖p‖1 ≤ l (a higher dimensional octahedron, the so-called cross-polytope), an
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adversaryA is stronglyε-good if and only if‖〈A,π〉‖1 ≥ l + ε. So in this case, the question
whether stronglyε-good adversaries exist can be reduced to the problem of estimating the size
of Aπ (w.r.t. thel1-norm).2 However, estimating the size of a polytope is hard in general: Let a
set cover instance(n,m, S, d) be given. LetP∗ ⊆ Rn be the polytope defined by the following
inequalities:x ∈ P∗ if 0 ≤ xj ≤ 1,

∑

xj ≤ d, and for alli = 1, . . . ,m:
∑

xjsij ≥ 1. If
we associate a pointv ∈ {0, 1}n with a setC := {i : vi = 1}, it is easy to see that such
a point v is in P∗ if and only if C is a witness for the set-cover instance. Sincev ∈ [0, 1]n

is in {0, 1}n if and only if d1(v, u) = n
2 whereu := (1

2 , . . . , 1
2)T , andd1(v, u) ≤ n

2 for all
v ∈ [0, 1]n, if follows that‖P∗ − u‖1 ≥ n

2 if and only if (n,m, S, d) is a yes-instance, and any
point v ∈ P∗ with d1(v, u) ≥ n

2 gives us a witness for that set cover instance. Moreover, it turns
out that approximating‖P∗ − u‖1 up to an additive constant is already sufficient. Unfortunately
we cannot construct protocols that haveP∗ as their adversary-polytope (for some no-instances
(n,m, S, d), P∗ is empty, which cannot happen for adversary-polytopes). Fortunately, requiring
the equations definingP∗ to hold only approximately still allows to reduce the set cover instance
to it, and the resulting polytope can be constructed as an adversary-polytope as we will see below.

Definition 10 (Set Cover Polytope).Let ε ∈ (0, 1). Let P be a polytope. We callP an ε-set
cover polytope for(n,m, S, d) if the following holds:
– P ⊆ [0, 1]n.
– Letv ∈ {0, 1}n. If ‖v‖1 ≤ d and〈si·, v〉 ≥ 1 for all i = 1, . . . ,m, thenv ∈ P .
– Letv ∈ [0, 1]n. If ‖v‖1 > d + 1− ε or 〈si·, v〉 < ε for somei ∈ {1, . . . ,m}, thenv /∈ P .

Obviously,P as constructed above is anε-set cover polytope for anyε ∈ (0, 1).

Lemma 11 (Reducing Set Cover to Polytope 1-Norm).LetP be anε-set cover polytope and
let P ′ := P − 1

2u. Then there is aδ ∈ Ω(ε/poly(n)) such that
(i) If (n,m, S, d) is a yes-instance, then‖P ′‖1 = n

2 .
(ii) If (n,m, S, d) is a no-instance, then‖P ′‖1 ≤ n

2 − δ.
(iii) Moreover, given a vectorv ∈ Rn with d1(v, P ′) < δ and‖v‖1 > n

2 − δ, we can efficiently
compute a witness for(n,m, S, d).

Assume the real protocol has adversary-polytopeP ′ as in Lemma 11, and the adversary-polytope
of the ideal protocol is the cross-polytopeX = {x : ‖x‖1 ≤ n

2 − δ
2}. Then if (n,m, S, d) is a

yes-instance, by Lemma 11 there is av ∈ P ′ with ‖v‖1 = n
2 . SinceP ′ is the adversary-polytope

of the real protocol, there exists a stronglyδ-good adversary as seen above. Conversely, ifA is
a good adversary, we have〈A,π〉 ∈ P ′ and‖〈A,π〉‖1 ≥ n

2 − δ
2 . With black-box access toA,

we can efficiently sample the distribution〈A,π〉 with error δ
2 (w.r.t. thel1-norm). This gives a

point v satisfying the conditions of Lemma 11 (iii) and hence yieldsa witness for(n,m, S, d).
The results we achieved so far are summarised as follows:

Lemma 12 (informal). Assume that we can construct protocolsπ andρ such that the adversary-
polytope ofπ is anε-set cover polytope, and the adversary-polytope ofρ is a cross-polytope (of

2 Of course, since0 ∈ X and0 does not correspond to a valid probability distribution, the setX cannot be an
adversary-polytope. This problem can be solved by down-scaling A andS and embedding them into the subset
of Rn+1 corresponding to the set of probability distributions. We will ignore this issue in this proof outline and
pretend that all pointsv ∈ Rn correspond to valid probability distributions.
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(a) (b) (c) (d)
+ + =

Fig. 1. Polytopes for set cover instance(n,m, S, d) with n = m = 2, d = 1, S1 = {1, 2},
S2 = {1}. (a) PolytopeD enforcing the condition that the set cover consists of at most one set
(d = 1). (b) PolytopeS1 enforcing that the set cover contains setS1 orS2 (because1 is contained
in both). (c) PolytopeS2 enforcing that the set cover containsS1 (because2 is only contained in
S1). (d) PolytopePε = (1−2ε)D+εS1 +εS2 enforces all aforementioned conditions. The only
remaining square-vertex is(1, 0), corresponding to the only witnessC = {1} of (n,m, S, d).

suitable size). Then there is a stronglyδ-good adversary if(n,m, S, d) is a yes-instance, and
given a strongly good adversary we can efficiently compute a witness for(n,m, S, d).

Constructing the cross-polytope is easy: The cross-polytopeX inRn has2n verticesv1, . . . , v2n.
We construct the protocolρ as follows: Upon first activation,ρ expects ani ∈ {1, . . . , 2n} from
the adversary and then chooses its output according to the distributionvi. By choosing a suitable
distribution fori, the adversary can achieve any convex combination of thevi, so the adversary-
polytope is their convex combinationX. Sincei can be transmitted usingO(log n) bits, the
communication complexity ofρ is logarithmic.

Constructingπ is more difficult. In general, we cannot expect a set cover polytope to have a
polynomial number of vertices, so the approach used forρ fails. Instead, we have to investigate
in more detail which adversary-polytopes can be constructed. First, every polytope consisting of
a single point{v} can be constructed: the corresponding protocol chooses itsoutput according
to the probability distributionv (we call this the singleton-construction). Second, if we can
construct the polytopesP1, . . . , Pr, we can also construct the convex hullP of their union:
The corresponding protocol expects ani ∈ {1, . . . , r} from the adversary and then executes
the protocol having adversary-polytopePi (union-construction). This is a generalisation of the
construction ofX above. Third, we can also constructα1P1 + · · · + αrPr where

∑

αi = 1,
αi ≥ 0: The protocol randomly chooses ani with probabilityαi (sum-construction). In all cases
we assume that whenever the protocol makes a random choice, it informs the adversary about
the outcome of that choice.

To construct a set cover polytope, we first assume that we are able to construct poly-
topes for each defining inequality independently. That is, we assume that we can construct
the upper bound polytopeD := {v ∈ [0, 1]n : ‖v‖1 ≤ d} and thelower bound polytope
Si := {v ∈ [0, 1]n : 〈si·, v〉 ≥ 1}. The intersection of these polytopes isP∗ which we saw above
to be a set cover polytope. Unfortunately, we cannot make useof this fact, since we cannot
efficiently construct the intersection as an adversary-polytope. We instead define thecombined
polytopePε := (1−mε)D+

∑m
i=1 εSi which can be constructed fromD andSi using the sum-

construction. Since there are onlym+1 summands, the communication complexity isO(log m).
It is left to see thatPε is anε-set cover polytope.

Lemma 13. If 0 < ε ≤ 1
nm+1 thenPε is anε-set cover polytope.

9



The actual proof is by verifying all inequalities required by Definition 10. For the proof sketch,
we instead try to give some geometric motivation (see Figure1 for an example). First, since
the polytopesD andSi are enclosed in the unit cube[0, 1]n, so isPε (since the factors in the
construction ofPε add up to1). Furthermore, letv ∈ {0, 1}n be a cube-vertex that should not be
included inPε (either because‖v‖1 > d or because〈si·, v〉 < 1). Then in at least one summand
R of Pε (i.e.,D or one of theSi), the cube-vertexv is “cut off” by the inequality definingR. It
follows that in the sumPε that corresponding vertex is also cut off. Finally, if we chooseε small
enough, not too much is cut off, so all cube-vertices that must be contained inPε according to
Definition 10 are preserved. For a full geometric understanding of the construction, we suggest
to examine the example in Figure 1 or the interactive3D-example in [BU06].

It is left to show that we can constructD and Si as adversary-polytopes. We will only
sketch the construction ofD; the polytopeSi is constructed similarly. The vertices ofD are
V := {v ∈ {0, 1}n : ‖v‖1 ≤ d}. Again, D has an exponential number of vertices, so a
direct construction as done forX is not possible. However, each vertexv can be considered as
a word of lengthn and Hamming-weight at mostd. If we decomposev into its left and right
halvesvl andvr, we get two words of lengthn2 and weightsdl, d2 with dl + dr ≤ d. Thus
V =

⋃

i Vi × Vd−i wherei ranges (at most) over{0, . . . , d} andVi is the set of words of length
n
2 and weight at mosti. Since eachVi is again a set of the same structure asV , we can recursively
apply that decomposition and constructV from sets of words of length1. Furthermore, if we
again considerV as a subset ofRn, it is V =

⋃

i Vi + Vd−i if we embed then
2 -dimensional

setsVi andVd−i suitably intoRn. More exactly, the left summandVi is embedded intoRn as
Vi×Rn/2 and the right summandVd−i is embedded asRn/2×Vd−i. The recursion is preserved
when we take the convex hull, i.e.,conv V =

⋃

i conv Vi + conv Vd−i. SinceD = conv V
we found a recursive construction ofD from one-dimensional sets that uses only the unions
and sums. The one-dimensional sets have a constant number ofvertices and can therefore be
directly constructed. The unions can be handled using the union-construction. The sums however
cannot be implemented directly. The sum-construction doesnot allow to constructconv Vi +
conv Vd−i, but only 1

2 conv Vi + conv Vd−i. As a consequence, the resulting polytope is notD,
but D scaled by the factor2−O(log d) whereO(log d) is the depth of the recursion. However,
this problem is easily solved by accordingly scaling all other constructions. The communication
complexity for realisingD is O(log n) rounds, andO(log n) communication in each round
(the adversary has to choose the indexi in the union-construction). This gives communication
complexityO((log n)2) which isnot logarithmic. Summarising, we can construct a protocolπ
with O((log n)2) communication complexity that has adversary-polytopePε. With Lemma 12
we get:

Lemma 14 (informal). There are protocolsπ andρ with communication complexityO((log n)2)
such that the following holds: There is a stronglyΩ(1/poly(n))-good adversary if(n,m, S, d)
is a yes-instance, and given a strongly good adversary we canefficiently compute a witness for
(n,m, S, d).

The remaining problem is that the communication complexityof π is not logarithmic inn. This
can be remedied if we do not require thatn is the security parameter. Indeed, ifn := 2

√
log k,

thenO((log n)2) = O(log k). If we assume that solving NP-complete problems is hard evenin
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nO(log n)-time, it follows that solving set cover instances withn := 2
√

log k is hard inO(poly(k))-
time. By construction, the protocolsπ andρ share all information with the adversary. From this
it can be derived that an adversary is good for(π, ρ) if and only if it is strongly good. Combining
these observations with Lemma 14 and the NP-completeness ofset cover, we get the following
theorem:

Theorem 15. If NP 6⊆ BPTIME(nO(log n)), the following holds for allε > 0: There is no
efficient probabilistic algorithm that finds a good adversary for a pair of polynomial-time algo-
rithms with logarithmic communication complexity, even when they are guaranteed to have a
stronglykε-good adversary.

This result already almost separates statistical and computational security for logarithmic pro-
tocols. However, two problems still have to be solved. First, a separation not only requires that
it is hard to find a good polynomial-time adversary, but that such an adversary does not even
exist. Second, an adversary may not be good while still beingsuccessful in distinguishing the
real and the ideal protocol, because the simulator (which isalso computationally bounded) does
not simulate optimally. The second problem can be solved by showing that at least for the proto-
cols constructed here, there exists an efficient black-box simulator that simulatesperfectlyif the
adversary is not strongly good. To solve the first problem, however, we have to strengthen our
assumption:

Assumption 16. There exists a sequencefn of Boolean formulas computable in deterministic
polynomial time such that infinitely manyfn are satisfiable and such that for any probabilistic
Turing machineA that runs innO(log n)-time, the probabilityPr[fn(A(1n)) = 1] is negligible in
n.

We now construct protocols̃π and ρ̃ which on input the security parameterk computef2
√

log k ,
convert it into a set cover instance and then runπ or ρ, respectively, on this instance. As infinitely
manyfn are satisfiable, stronglyΩ(1/poly(2

√
log k))-good adversaries exist infinitely often by

Lemma 14. Sõπ is not statistically as secure asρ̃. However, if some polynomial-time adversary
was good for infinitely manyk, we could use Lemma 14 to find witnesses forfn with non-
negligible probability inn. This yields the following theorem:

Theorem 17 (Computational Does Not Imply Statistical Stand-Alone Security Without
Auxiliary Input). If Assumption 16 holds, computational stand-alone security without auxiliary
input does not imply statistical stand-alone security without auxiliary input for polynomial-time
protocols with logarithmic communication complexity.

It is easy to see that this result also holds in the case withuniform auxiliary input (in the sense
of [Gol93]). However, Theorem 17 does not cover the case withnonuniformauxiliary input.
This reason is that Assumption 16 cannot hold for nonuniformadversaries. In fact, if we allow a
nonuniform input it turns out that whenever a good (but potentially unbounded) adversary exists,
its strategy can be encoded into the auxiliary input. For details, see Appendix D.3. This yields
the following result:

Theorem 18 (Computational Implies Statistical Stand-Alone Security With Nonuniform
Auxiliary Input). Letπ andρ be polynomial-time ITMs such that the communication complexity
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and the length of the output ofπ andρ on input(1k, z) is logarithmic ink. If π is as secure asρ
with respect to computational stand-alone security with auxiliary input, thenπ is as secure asρ
with respect to statistical stand-alone security with auxiliary input.

6 Advantage-Based Security

In the case of advantage-based security, we show that statistical and computational security coin-
cide. The basic idea of our proof is as follows. A protocolB as in Definition 3 can be considered
as a one-player-gameGB , the adversaryA being the player. The payoff of the game is the output
of B. Then the expected payoff for a given adversaryA is the advantagePr[〈A,B〉 = 1]. Thus
an optimal strategy for the gameGB corresponds to an adversary with maximal advantage. If we
can show that a nearly optimal strategy forGB can be found in polynomial time, it follows that
for any successful adversary, there is a successful polynomial-time adversary, and thus statistical
and computational security coincide.

Two obstacles have to be overcome. First, in the advantage-based security definition,B has
an input, while in the game-theoretic setting, the concept of an external input to the game does
not exist. However, when inspecting the definition of advantage-based security, we see that the
input x is chosen jointly with the adversary, so we can assume it to bechosen by the adversary.
Since we assume a logarithmic bound onB’s communication complexity, there is a polynomial
n such that the length ofx is bounded bylog n. Moreover, we deal with a sequence of games,
parametrised by the security parameter, giving rise to the following definition:

Definition 19 (Game of a Protocol).LetB be an ITM. ThegameGB
k,n of the protocolB is the

following one-player game:
– First, player 1 may choose a stringx with |x| ≤ log n.
– Then, the game consists of the interaction〈A,B(1k, x)〉, where player 1 learns all messages

thatA receives, and may choose all message thatA sends.
– The payoff of the game is1 if B outputs1, and0 otherwise.

This of course does not yield a one-to-one correspondence between optimal adversaries and
(sequences of) optimal strategies anymore. A strategyµ incorporates an inputx, while the cor-
responding adversaryAG only implements the behaviourafter choosingx. Nevertheless, for an
adversaryAG corresponding to an optimal strategy, we get

max
|x|≤log n

Pr[〈AG(1k), B(1k, x)〉] ≥ max
A,|x|≤logn

Pr[〈A(1k), B(1k, x)〉]

since the maximum ranges over allx, in particular over the one thatµ would have chosen. (Here
we use thatµ can be assumed to be deterministic.) SinceB has logarithmic communication
complexity, the game tree ofGB

k,n has polynomial size. For one-player-games optimal strategies
can be found in polynomial-time in the size of the game tree, yielding the following result (both
in the case with and without auxiliary input):

Lemma 20 (informal). If we can efficiently compute the game tree ofGB
k,n, there is an opti-

mal polynomial-time adversary. Hence computational and statistical advantage-based security
coincide.
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The second obstacle is the fact that in general we cannot efficiently compute the game tree
of GB

k,n. We remedy this problem by sampling the probabilities in thegame tree yielding an
approximation. Ifµ is an optimal strategy for the approximated game, then the expected payoff
of µ in the original game is at most1p below the optimum wherep is a polynomial we may
choose. IfB is statisticallyγ-insecure, there is an adversaryA such that (omitting arguments)
Pr[〈A,B〉] ≥ γ + 1

q infinitely often for some polynomialq. By chosing e.g.,p := 2q, it follows

thatPr[〈AG, B〉] ≥ γ + 1
2q . SinceAG runs in polynomial time, computationalγ-insecurity of

B follows. Concluding, we have the following result:

Theorem 21 (Computational Implies Statistical Advantage-Based Security).Let B be a
polynomial-time ITM that upon input(1k, x) has logarithmic communication complexity ink
and reads only a prefix ofx of logarithmic length ink. Assume thatB is γ-secure for some func-
tion γ with respect to computational advantage-based security without auxiliary input. ThenB
is γ-secure with respect to statistical advantage-based security without auxiliary input The same
holds for advantage-based security with auxiliary input.
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A Correspondence Between Main Part and Appendix

To make the appendix more readable, we have repeated most of the definitions and theorems
from the main part of this paper in the appendix (sometimes ingreater detail). To make it easier
to find details and proofs for a definitions or theorem in the main part of the paper, we give the
correspondences between the main part and the appendix in the following table.

Main part Appendix
Definition 1 Definition 24 on page 17
Definition 2 Definition 31 on page 27
Definition 3 Definition 61 on page 47
Theorem 4 Theorem 23 on page 15
Lemma 5 Lemma 27 on page 24
Theorem 6 Theorems 29 and 30 on pages 24 and 26, resp.
Definition 7 Definition 35 on page 28
Definition 8 Definition 34 on page 28
Definition 9 Definition 33 on page 28
Definition 10 Definition 36 on page 29
Lemma 11 Lemma 37 on page 29
Lemma 12 No exact correspondence. Implicit in the proof of

Theorem 49 on 38
Lemma 13 Lemma 39 on page 30
Lemma 14 Theorem 49 on page 38
Theorem 15 Corollary 51 on page 40
Assumption 16 Assumption 52 on page 41
Theorem 17 Theorem 58 on page 44
Theorem 18 Theorem 60 on page 46
Definition 19 Definition 62 on page 47
Lemma 20 No exact correspondence. Implicitly contained in

the proof of Theorem 69 on page 52
Theorem 21 Theorem 69 on page 52

B Indistinguishability of Logarithmic Random Variables – D etails and Proofs

Before we can prove that for efficiently sampleable random variables of logarithmic length com-
putational and statistical indistinguishability coincide, we first need the following lemma that
states that the distributions of such random variables can be estimated sufficiently well.

Lemma 22 (Estimation of Random Variables).Let Z ⊆ {0, 1}∗. Let X = {Xz}z∈Z be an
efficiently constructible family of random variables of logarithmic length in|z|.

Then there exists a probabilistic polynomial-time algorithmSX with the following property:
Upon input(z, 1f ), the algorithmSX outputs the description of a probability distributioñX ,

with the property that∆(Xz; X̃) ≤ 1
f holds with probability at least1− 1

f .
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Proof. Let l(k) ≥ 1 be an efficiently computable logarithmic bound on the lengthof Xz for all
|z| = k. LetMk be the set of all strings of length at mostl(k). (Then we always haveXz ∈M|z|.)
Note that#Mk is polynomially bounded ink.

We defined the algorithmSX as follows: On input(z, 1f ), letn := 1
16 ·#M3

|z| ·f3 and choose
independent valuesx1, . . . , xn distributed according toXz. Let Px := #{i ≤ n : xi = x}/n
be the relative frequency ofx in our sample. Output the probabilities{Px}x∈M|z| as rational

numbers. (I.e., thePx define a distributionX̃ with Pr[X̃ = x] = Px.)
Obviously, we have

∑

x Px = 1, thusX̃ is a probability distribution.
Fix somez ∈ Z andf ∈ N. Sincen ·Px has(n, p)-binomial distribution forp := Pr[Xz =

x], we haveE[nPx] = np andVar[nPx] = np(1−p) ≤ n
4 . HenceE[Px] = p andVar[Px] ≤ 1

4n .
From this it follows that for anyz ∈ Z, it holds that

Pr
[

∃x ∈M|z| : |Px − Pr[Xz = x]| > 2
f ·#M|z|

]

≤
∑

x∈M|z|

Pr
[

|Px − Pr[Xz = x]| > 2
f ·#M|z|

]

≤
∑

x∈M|z|

Pr

[

∣

∣Px − E[Px]
∣

∣ ≥ 4
√

n

f ·#M|z|
·
√

Var[Px]

]

(∗)
≤

∑

x∈M|z|

f2 ·#M2
|z|

16n
=

f2 ·#M3
|z|

16n
=

1

f
.

Here(∗) is an application of Chebyshev’s inequality.
Therefore the following holds with probability at least1− 1

f :

∀x ∈M|z| : |Px − Pr[Xz = x]| ≤ 2

f ·#M|z|
. (1)

If (1) holds, we have

∆(X̃ ;Xz) = 1
2

∑

x∈M|z|

|Px − Pr[Xz = x]| ≤ 1
2 ·#M|z| ·

2

f ·#M|z|
=

1

f
.

Since (1) holds with probability at least1− 1
f , the lemma follows. ut

We can now prove that for efficiently sampleable random variables of logarithmic length
computational and statistical indistinguishability coincide.

Theorem 23 (Indistinguishability of Logarithmic Random Variables). LetZ ⊆ {0, 1}∗. Let
X = {Xz}z∈Z andY = {Yz}z∈Z be efficiently constructible families of random variables of
logarithmic length.

If X andY are computationally indistinguishable, then they are statistically indistinguish-
able.
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Proof. Assume thatX andY are computationally indistinguishable.
Let SX andSY be algorithms as in Lemma 22. We define a probabilistic polynomial-time

algorithm D as follows: On input(z, 1f , x), invoke dX ← SX(z, 1f ) anddY ← SY (z, 1f ).
ThendX anddY are the descriptions of some distributionsX̃ andỸ . If Pr[X̃ = x] ≥ Pr[X̃ = y],
return1, otherwise0.

Fork, f ∈ N, let

∆f (k) := max
z∈Z
|z|=k

∣

∣

∣
Pr[D(z, 1f(k),Xz) = 1]− Pr[D(z, 1f(k), Yz) = 1]

∣

∣

∣
.

We also define∆f for functionsf by ∆f (k) := ∆f(k)(k).
First we are going to show that for any functionf , we have

∆(Xz;Yz) ≤ ∆f (|z|) +
6

f(|z|) . (2)

For fixeddX anddY , let D∗(x) := 1 if Pr[X̃ = x] ≥ Pr[Ỹ = x], andD∗(x) := 0 otherwise.
First, fix somez ∈ Z. Assume that somedX anddY are given with∆(X̃ ;Xz) ≤ 1

f(|z|) and

∆(Ỹ ;Yz) ≤ 1
f(|z|) . We then have

∆(X̃ ; Ỹ ) = 1
2

∑

x

∣

∣

∣
Pr[X̃ = x]− Pr[Ỹ = x]

∣

∣

∣
= Pr[D∗(X̃) = 1]− Pr[D∗(Ỹ ) = 1]. (3)

However, we also have
∣

∣Pr[D∗(X̃) = 1]− Pr[D∗(Xz) = 1]
∣

∣ ≤ ∆(X̃;Xz) ≤ 1
f(|z|) , and analo-

gously forỸ andYz. By the triangle inequality we have∆(Xz ;Yz) ≤ ∆(Xz; X̃) + ∆(X̃; Ỹ ) +
∆(Ỹ ;Yz) ≤ ∆(X̃; Ỹ ) + 2

f(|z|) . Combining these inequalities with (3) we get

∆(Xz ;Yz) ≤ Pr[D∗(Xz) = 1]− Pr[D∗(Yz) = 1] +
4

f(|z|) . (4)

By construction,D(z, 1f(|z|), x) first choosesdX anddY usingSX andSY , and then outputs
D∗(x). We have∆(X̃ ;Xz) > 1

f(|z|) at most with probability 1
f(|z|) by definition ofSX , and

analogously for∆(Ỹ ;Yz). Therefore the conditions under which we showed (4) are fulfilled
with probability at least1− 2

f(|z|) . Consequently, we have

∆(Xz;Yz) ≤ Pr[D(z, 1f(|z|),Xz)]− Pr[D(z, 1f(|z|),Xz)] +
6

f(|z|) .

This shows (2). In particular, iff is superpolynomial and∆f is negligible, then∆(Xz, Yz) is
negligible in|z|.

For any polynomialp, D(z, 1p(|z|), x) runs in polynomial time in|z|, hence using the
computational indistinguishability ofXz and Yz, it follows that ∆p is negligible (otherwise
D(z, 1p(|z|), x) would be a distinguisher).

We now show that there is some superpolynomial functionf such that∆f is negligible. This
will show that∆(Xz ;Yz) is negligible in|z| and hence conclude the proof.

16



We say that a functionµ∗ asymptotically dominates a functionµ if for sufficiently largek,
we haveµ∗ ≥ µ. In [Bel02] it is shown that for any countable setN of negligible functions,
there exists a negligible functionµ∗ such that the functionµ∗ asymptotically dominatesµ for
anyµ ∈ N .

Let P be the set of all positive polynomials with integer coefficients. ThenP is countable,
so there exists a functionµ∗ such that for anyp ∈ P , the functionµ∗ asymptotically dominates
∆p.

Let f(k) := max{f ∈ N : ∆f (k) ≤ µ∗}. Then∆f ≤ µ∗ and therefore∆f is negligible.
Further, we show thatf is superpolynomial. For contradiction, assume thatf is not superpolyno-
mial. Then there exists a polynomialp ∈ P such thatf(k) < p(k) for infinitely manyk. Then,
we also have∆p(k) > µ∗(k) for infinitely manyk (by construction off ). This is a contradiction
to the fact thatµ∗ asymptotically dominates∆p. Thereforef is superpolynomial.

In a nutshell, there is a superpolynomial functionf such that∆f is negligible, and by (2) we
have∆(Xz;Yz) ≤ ∆f (|z|) + 1

f(|z|) , soXz andYz are statistically indistinguishable. ut

C Security with Environment – Details and Proofs

We first give definitional sketches of two popular variants ofsecurity with environment: Reactive
Simulatability (RSIM) and Universal Composability (UC). Since the full definitions of the un-
derlying machine model and network semantics, we refer the reader to [BPW04] for the RSIM
model and [Can05] for the UC model.

Definition 24 (Reactive Simulatability (sketch)).A protocolπ is as secure as a protocolρ with
respect tocomputational general reactive simulatabilityif for every polynomial-time machineA
(the adversary) and every polynomial-time machineH (the honest user) there is a polynomial-
time machineS (the simulator) such that

{

viewπ,A,H,k(H)
}

k∈N and
{

viewρ,S,H,k(H)
}

k∈N
are computationally indistinguishable.

A protocolπ is as secure as a protocolρ with respect tocomputational universal reactive
simulatabilityif for every polynomial-time machineA (the adversary) there is a polynomial-time
machineS (the simulator) such that for every polynomial-time machineH (the honest user)

{

viewπ,A,H,k(H)
}

k∈N and
{

viewρ,S,H,k(H)
}

k∈N
are computationally indistinguishable ink.

We speak aboutstatisticalgeneral/universal reactive simulatability if in the abovedefinitions
A, H andS are unbounded and statistical indistinguishability is used instead of computational
indistinguishability.

Definition 25 (Universal Composability (sketch)).A protocolπ is as secure as a protocolρ
with respect tocomputational UC, if for every polynomial-time machineA (the adversary) there
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is a polynomial-time machineS (the simulator) such that for every polynomial-time machine Z
(the environment) and every sequencez of strings of polynomial length,

{

EXECπ,A,Z(k, zk)
}

k∈N and
{

EXEC ρ,S,Z(k, zk)
}

k∈N
are computationally indistinguishable.

We speak aboutstatistical UCif in the above definitionA, Z and S are unbounded and
statistical indistinguishability is used instead of computational indistinguishability.

In this definition, we assumed that the output of the environment may be a string. Another
variant of UC that is often considered requires the environment to give a single bit as output.
These variants are equivalent [Can05, Section 4.3, “On environments with non-binary outputs”].
The definition of statistical UC is sketched in [Can05, Section 4.2, “On statistical and perfect
emulation”].

In order to capture all the above definitions of security withenvironment, we take a gener-
alised point of view that can capture both settings. For this, we consider the execution of the
real protocolπ (including the adversary) as an oracle Turing machineX that takes the environ-
ment/honest user as an oracle and outputs its view or output,respectively. Similarly, an oracle
Turing machineY represents the ideal protocolρ together with the simulator. Thus we can first
analyse the security of logarithmic protocols in an exact and simple setting in Lemma 26, and
then derive results for the more conventional settings of RSIM and UC in Theorems 29 and 30,
respectively.

Given two oracle Turing machinesX andY , we say that all oracle queries and oracle an-
swers can be extracted from the output ofX andY if the following holds: For everyn, there
is a functionfn such that for any oracleO, the following two conditions are fulfilled: (i) We
havefn(XO) = (i, o) wherei ando are the input and output ofO in then-th oracle query in an
execution ofXO. (ii) We havefn(Y O) = (i, o) wherei ando are the input and output ofO in
then-th oracle query in an execution ofY O.

Lemma 26. LetX andY be oracle Turing machines. LetA be an oracle. Assume bothX and
Y call their oracle at mostr times, and that the total length of the answers given byA is at most
l. Assume further that all oracle queries and oracle answers can be extracted from the output of
X andY .

LetD be some distribution on the set ofr-tupels of strings. Let̃A be the oracle that chooses
an r-tupel(o1, . . . , or) of strings according toD and in itsi-th activation responds withoi.

LetO ⊆ ({0, 1}∗)r be the set of allr-tupelsw satisfying that the total length
∑r

i=1 wi is at
mostl. Letpmin := min

w∈O PrD[w].

Then∆(XÃ;Y Ã) ≥ 3−rpmin ∆(XA;Y A).

Proof. If PrD[w] = 0 for somew ∈ O, we havepmin = 0 and the lemma is trivially fulfilled.
We can therefore assumePrD[w] 6= 0 for all w ∈ O.

To show the lemma, we first define some random variables. In an execution ofXA, let X
denote the output ofXA, let IX

n denote the input to the oracleA in then-th query, and letOX
n

denote the corresponding response ofA (with IX
n = OX

n = ⊥ if A is queried less thann times).
Let V X

n := (IX
1 , OX

1 , . . . , IX
n , OX

n ). ThenV X := V X
r is the view ofA.
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Analogously, we define the random variablesY , IY
n , OY

n , V Y
n andV Y for an execution of

Y A.
For executions ofXÃ andY Ã we augment the random variables with a tilde (e.g.,ÕY

n is the
n-th output ofÃ in an execution ofY Ã).

In the following we use the convention that0 · Pr[A|C] = 0, even ifPr[C] = 0 (and thus
Pr[A|C] is undefined). Similarly, we let0 ·∆(A|C;B|D) = 0 even ifPr[C] = 0 or Pr[D] = 0.
The main effect of this convention is that the Bayesian rulePr[A,C] = Pr[A|C] · Pr[C] holds
even ifPr[C] = 0.

For any finite sequencew of strings, let#w denote the number of elements ofw, and‖w‖
the total length of the strings. That is, ifw = (o1, . . . , on), we have#w = n and‖w‖ =
∑n

i=1|oi|.
Let o be a string. If#w < r and ‖w‖ + |o| ≤ l, let p(o|w) := Pr[W#w+1 =

o|(W1, . . . ,W#w
) = w] whereW is a random variable distributed according toD.

For#w = r and‖w‖ ≤ l, let αw := 1. For#w < r and‖w‖ ≤ l, let

αw := 1
3 min

o
p(o|w) · α

w‖o

where the minimum ranges over all stringso with ‖w‖ + |o| ≤ l. Herew‖o denotes the result
of appending the elemento to the sequencew.

By induction, it follows that

αλ = 3−r min
#w=r
‖w‖=l

r
∏

i=1

p
(

wi|(w1, . . . ,wi−1)
)

= 3−r min
#w=r
‖w‖=l

P (W = r) = 3−rpmin

whereW is again distributed according toD. Hereλ denotes the empty sequence.
For some (partial) viewv = (i1, o1, . . . , in, on), let w(v) := (o′1, . . . , o

′
n) whereo′i := λ if

oi = ⊥, ando′i := oi otherwise (i.e.,w(v) denotes the sequence of the outputs ofA or Ã in the
view v, where we assume the empty outputλ for thei-th query if there was noi-th query).

Let

Vn :=
{

v : Pr[V X
n = v] > 0, Pr[V Y

n = v] > 0, Pr[Ṽ X
n = v] > 0, Pr[Ṽ Y

n = v] > 0
}

and

VIn :=
{

(v, i) : Pr[V X
n−1 = v, IX

n = i] > 0, Pr[V Y
n−1 = v, IY

n = i] > 0,

Pr[Ṽ X
n−1 = v, ĨX

n = i] > 0, Pr[Ṽ Y
n−1 = v, ĨY

n = i] > 0
}

.

For anyv ∈ Vr and allx, it is P (X = x|V X = v) = P (X̃ = x|Ṽ X = v). The same holds
for Y instead ofX. So for allv ∈ Vr, it is

∆(X|V X = v; Y |V Y = v) = ∆(X̃ |Ṽ X = v; Ỹ |Ṽ Y = v). (5)

Here and in the followingA|B denotes the random variableA conditioned on the eventB.
Now fix some1 ≤ n ≤ r and assume that

∆(X̃ |Ṽ X
n = v′; Ỹ |Ṽ Y

n = v′) ≥ α
w(v′)∆(X|V Y

n = v′; Y |V Y
n = v′) (6)
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for all v′ ∈ Vn.

We try to bound∆(X̃|Ṽ X
n−1 = v, ĨX

n = i; Ỹ |Ṽ Y
n−1 = v, ĨY

n = i) from below for all
(v, i) ∈ VIn. First, we find that

∆(X|V X
n−1 = v, IX

n = i; Y |V Y
n−1 = v, IY

n = i)
(i)
= ∆(X,OX

n |V X
n−1 = v, IX

n = i; Y,OY
n |V Y

n−1 = v, IY
n = i)

= 1
2

∑

o,x

∣

∣

∣
Pr[X = x|V X

n−1 = v, IX
n = i, OX

n = o] · Pr[OX
n = o|V X

n−1 = v, IX
n = i]

− Pr[Y = x|V Y
n−1 = v, IY

n = i, OY
n = o] · Pr[OY

n = o|V Y
n−1 = v, IY

n = i]
∣

∣

∣

(ii)
=
∑

o

Pr[OX
n = o|V X

n−1 = v, IX
n = i]

·∆
(

X|V X
n−1 = v, IX

n = i, OX
n = o; Y |V Y

n−1 = v, IY
n = i, OY

n = o
)

(7)

Here (i) stems from the fact that by assumption, the oracle responses and thus in particularOX
n

andOY
n can be extracted fromX andY , respectively. We have (ii) becausePr[OX

n = o|V X
n−1 =

v, IX
n = i] = Pr[OY

n = o|V Y
n−1 = v, IY

n = i] (which again holds because then-th oracle answer
depends only on the oracle and its view so far).

From (7) we get that there is somêo (depending oni andv) such that the following three
inequalities hold:

Pr[V X
n−1 = v, IX

n = i, OX
n = ô] > 0, Pr[V Y

n−1 = v, IY
n = i, OY

n = ô] > 0, (8)

and

∆
(

X|V X
n−1 = v, IX

n = i, OX
n = ô; Y |V Y

n−1 = v, IY
n = i, OY

n = ô
)

≥ ∆(X|V X
n−1 = v, IX

n = i; Y |V Y
n−1 = v, IY

n = i). (9)

Since the total length of all query answers given byA is bounded byl by assumption, it is
‖w(v)‖ + |ô| ≤ l or ô = ⊥.

Since ô = ⊥ only if i = ⊥, and since(v, i) ∈ VIn, and using the fact that̃A when
activated outputs any strinĝo with ‖w(v)‖ + |ô| ≤ l with nonzero probability, we further have
Pr[Ṽ X

n−1 = v, ĨX
n = i, ÕX

n = ô] > 0 andPr[Ṽ Y
n−1 = v, ĨY

n = i, ÕY
n = ô] > 0. Combining this

with (8) we getv‖(i, ô) ∈ Vn. (Herev‖(i, ô) denotes the view resulting from appending(i, ô) to
v.)
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So in the casei 6= ⊥ we have

∆(X̃ |Ṽ X
n−1 = v, ĨX

n = i; Ỹ |Ṽ Y
n−1 = v, ĨY

n = i)
(i)
=
∑

o

Pr[ÕX
n = o|Ṽ X

n−1 = v, ĨX
n = i]

·∆
(

X̃|Ṽ X
n−1 = v, ĨX

n = i, ÕX
n = o; Ỹ |Ṽ Y

n−1 = v, ĨY
n = i, ÕY

n = o
)

(ii)
=

∑

o with
‖w(v)‖+|o|≤l

p(o|w(v))∆
(

X̃|Ṽ X
n−1 = v, ĨX

n = i, ÕX
n = o; Ỹ |Ṽ Y

n−1 = v, ĨY
n = i, ÕY

n = o
)

≥ p(ô|w(v))∆
(

X̃|Ṽ X
n−1 = v, ĨX

n = i, ÕX
n = ô; Ỹ |Ṽ Y

n−1 = v, ĨY
n = i, ÕY

n = ô
)

(6)

≥ p(ô|w(v))α(w(v),ô) ∆
(

X|V X
n−1 = v, IX

n = i, OX
n = ô; Y |V Y

n−1 = v, IY
n = i, OY

n = ô
)

≥ 3α
w(v) ∆

(

X|V X
n−1 = v, IX

n = i, OX
n = ô; Y |V Y

n−1 = v, IY
n = i, OY

n = ô
)

(9)

≥ 3α
w(v) ∆

(

X|V X
n−1 = v, IX

n = i; Y |V Y
n−1 = v, IY

n = i
)

. (10)

Here equality (i) is proven exactly like (7), and (ii) uses the fact thtÃ’s answers are distributed
according toD by construction. At this point, we used thati 6= ⊥, sinceĨX

n = ⊥ means that
there is non-th oracle query and thereforẽOX

n = ⊥.

In the casei = ⊥, i.e., in the case where non-th oracle query occurs, from̃IX
n = i it follows

thatÕX
n = i (and the same forY ), so we have

∆(X̃ |Ṽ X
n−1 = v, ĨX

n = i; Ỹ |Ṽ Y
n−1 = v, ĨY

n = i)

= ∆(X̃ |Ṽ X
n−1 = v, ĨX

n = i, ÕX
n = ⊥; Ỹ |Ṽ Y

n−1 = v, ĨY
n = i, ÕY

n = ⊥)
(6)

≥ α(w(v),λ)∆(X|V X
n−1 = v, IX

n = i, OX
n = ⊥; Y |V Y

n−1 = v, IY
n = i, OY

n = ⊥)

≥ 3α
w(v)∆(X|V X

n−1 = v, IX
n = i, OX

n = ⊥; Y |V Y
n−1 = v, IY

n = i, OY
n = ⊥)

= 3α
w(v)∆(X|V X

n−1 = v, IX
n = i; Y |V Y

n−1 = v, IY
n = i)

So (10) holds in all cases.
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We now want to bound∆(X̃|Ṽ X
n−1 = v; Ỹ |Ṽ Y

n−1 = v) from below for allv ∈ Vn−1. It is

∆(X̃ |Ṽ X
n−1 = v; Ỹ |Ṽ Y

n−1 = v)
(i)
= ∆(X̃, ĨX

n |Ṽ X
n−1 = v; Ỹ , ĨY

n |Ṽ Y
n−1 = v)

= 1
2

∑

x,i

∣

∣Pr[X̃ = x|Ṽ X
n−1 = v, ĨX

n = i] · Pr[ĨX
n = i|Ṽ X

n−1 = v]

− Pr[Ỹ = x|Ṽ Y
n−1 = v, ĨY

n = i] · Pr[ĨY
n = i|Ṽ Y

n−1 = v]
∣

∣

≥ 1
2

∑

x,i

Pr[ĨX
n = i|Ṽ X

n−1 = v] ·
∣

∣Pr[X̃ = x|Ṽ X
n−1 = v, ĨX

n = i]− Pr[Ỹ = x|Ṽ Y
n−1 = v, ĨY

n = i]
∣

∣

− 1
2

∑

x,i

Pr[Ỹ = x|Ṽ Y
n−1 = v, ĨY

n = i] ·
∣

∣Pr[ĨY
n = i|Ṽ Y

n−1 = v]− Pr[ĨX
n = i|Ṽ X

n−1 = v]
∣

∣

=
(

∑

i

Pr[ĨX
n = i|Ṽ X

n−1 = v] ·∆(X̃|Ṽ X
n−1 = v, ĨX

n = i; Ỹ |Ṽ Y
n−1 = v, ĨY

n = i)
)

−∆(ĨX
n |Ṽ X

n−1 = v; ĨY
n |Ṽ Y

n−1 = v) (11)

Equation (i) uses the fact that the oracle queries, and thus in particularĨX
n and ĨY

n can be ex-
tracted fromX̃ andỸ , respectively.
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For convenience, we abbreviate∆(ĨX
n |Ṽ X

n−1 = v; ĨY
n |Ṽ Y

n−1 = v) as∆Ĩ . Then we continue
the above calculation.

(11)
(10,ii)

≥
(

∑

i

Pr[IX
n = i|V X

n−1 = v] · 3α
w(v)∆(X|V X

n−1 = v, IX
n = i; Y |V Y

n−1 = v, IY
n = i)

)

−∆Ĩ

=
(

3α
w(v)

2

∑

x,i

∣

∣Pr[X = x|V X
n−1 = v, IX

n = i] · Pr[IX
n = i|V X

n−1 = v]

− Pr[Y = x|V Y
n−1 = v, IY

n = i] · Pr[IX
n = i|V X

n−1 = v]
∣

∣

)

−∆Ĩ

=
(

3α
w(v)

2

∑

x,i

∣

∣

∣
Pr[X = x|V X

n−1 = v, IX
n = i] · Pr[IX

n = i|V X
n−1 = v]

− Pr[Y = x|V Y
n−1 = v, IY

n = i] · Pr[IY
n = i|V Y

n−1 = v]

− Pr[Y = x|V Y
n−1 = v, IY

n = i] ·
(

Pr[IX
n = i|V X

n−1 = v]− Pr[IY
n = i|V Y

n−1 = v]
)

∣

∣

∣

)

−∆Ĩ

≥
(

3α
w(v)

2

∑

x,i

∣

∣Pr[X = x|V X
n−1 = v, IX

n = i] · Pr[IX
n = i|V X

n−1 = v]

− Pr[Y = x|V Y
n−1 = v, IY

n = i] · Pr[IY
n = i|V Y

n−1 = v]
∣

∣

− Pr[Y = x|V Y
n−1 = v, IY

n = i] ·
∣

∣Pr[IX
n = i|V X

n−1 = v]− Pr[IY
n = i|V Y

n−1 = v]
∣

∣

)

−∆Ĩ

= 3α
w(v)∆(X, IX

n |V X
n−1 = v; Y, IY

n |V Y
n−1 = v)− 3α

w(v)∆(IX
n |V X

n−1 = v; IY
n |V Y

n−1 = v)−∆Ĩ
(iii)
= 3α

w(v)∆(X, IX
n |V X

n−1 = v; Y, IY
n |V Y

n−1 = v)− (1 + 3α
w(v))∆(ĨX

n |Ṽ X
n−1 = v; ĨY

n |Ṽ Y
n−1 = v)

(iv)

≥ 3α
w(v)∆(X|V X

n−1 = v; Y |V Y
n−1 = v)− (1 + 3α

w(v))∆(X̃ |Ṽ X
n−1 = v; Ỹ |Ṽ Y

n−1 = v).

(12)

Inequality (ii) uses (besides the bound given in (10)) the fact that given the inputs and responses
of all oracle queries up to the(n − 1)-st query, the input of then-th query depends only on the
querying machineX, but not on the oracle. So giveñV X

n−1 (or Ṽ X
n−1, resp.),ĨX

n andIX
n have the

same distribution. Equality (iii) uses exactly the same fact. In equality (iv) we used thatIX
n and

IY
n can be extracted fromX andY , respectively, and that̃IX

n andĨY
n can be extracted from̃X

andỸ , respectively.
Since‖o(v)‖ = n− 1 < r, we haveαo(v) ≤ 1

3 . From (12) we then get:

∆(X̃ |Ṽ X
n−1 = v; Ỹ |Ṽ Y

n−1 = v) ≥
3α

w(v)

2 + 3α
w(v)

∆(X|V X
n−1 = v; Y |V Y

n−1 = v)

≥ α
w(v) ∆(X|V X

n−1 = v; Y |V Y
n−1 = v). (13)

So recapitulating, if for some1 ≤ n ≤ r, (6) holds for allv′ ∈ Vn, we have (13) for all
v ∈ Vn−1. By induction over decreasingn (using (5) for the induction basisn = r) we see that
the following holds for allv ∈ V0:

∆(X̃ |Ṽ X
0 = v; Ỹ |Ṽ Y

0 = v) ≥ α
w(v)∆(X|V X

0 = v; Y |V Y
0 = v).
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SinceV X
0 = V Y

0 = Ṽ X
0 = Ṽ Y

0 is the sequence of length0 with probability 1, we can rewrite
the last inequality as∆(X̃; Ỹ ) ≥ αλ∆(X;Y ) = 3−rpmin∆(X;Y ). ut

We restate Lemma 26 in an asymptotic setting:

Lemma 27. LetX andY be oracle Turing machines. LetA be an oracle. Assume bothX and
Y call their oracle at mostr times, and that the total length of the answers given byA is at most
l. Assume further that all oracle queries and oracle answers can be extracted from the output of
X andY .

Let Ã be the oracle that first uniformly choose anr-tupel (o1, . . . , or) of strings such that
the total length

∑

oi is at mostl, and then upon itsi-th activation responds withoi.
Then∆(XÃ;Y Ã) ≥ 2−O(l+r)∆(XA;Y A).

Proof. We can encode anr-tupel (o1, . . . , or) with total length at mostl as a string of length
O(l + r). Therefore there are at most2O(l+r) suchr-tupels. IfD is the uniform distribution
on theser-tupels, in the notation of Lemma 26 we havepmin ∈ 2−O(l+r). So by Lemma 26
we have∆(XÃ;Y Ã) ≥ 3−r2−O(l+r)∆(XA;Y A). Since3−r2−O(l+r) ⊆ 2−O(l+r), the lemma
follows. ut

To apply Lemma 27 to the setting of RSIM or UC, we need the following well-known fact:

Lemma 28. The following holds with respect to computational/statistical general/universal re-
active simulatability and computational/statistical UC.

Let π and ρ be protocols with communication complexity boundedb. Then there is an ad-
versaryAdummy (the so-called dummy-adversary) with communication complexity O(b) such
that π is as secure asρ if and only ifπ is as secure asρ with respect to the dummy-adversary
Adummy .

This is easily shown using the so-called dummy-adversary technique. See [Can05, Section
4.3.1, “Security with respect to the dummy adversary”] for an overview.

We can now apply Lemma 27 to the setting of RSIM and conclude that in this setting, com-
putational implies statistical security for logarithmic protocols.

Theorem 29 (Computational Implies Statistical Simulatability). Letπ andρ be polynomial-
time protocols with logarithmic communication complexity. Assume thatπ is as secure asρ with
respect to computational general reactive simulatability. Thenπ is as secure asρ with respect
to statistical general reactive simulatability.

The same holds for universal reactive simulatability.

Proof. By definition, the viewviewπ,A,H,k(H) consists of the sequence of all messages sent
and received byH together with all internal states ofH. Similarly, we define the external view
extviewπ,A,H,k(H) to consist only of the messages sent and received byH (without the internal
states). Obviously,extviewπ,A,H,k(H) is a function ofviewπ,A,H,k(H).

By Lemma 28, there exists a logarithmic boundbA such that we can w.l.o.g. assume all
adversaries to have communication complexity at mostbA. Since a simulator that communicates
more than the adversary with the honest user will be trivially distinguished from the adversary,
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we can assume the simulator to communicate at mostbA with the honest user. Further, since
the communication complexity of the protocolρ is logarithmically bounded, we can assume the
total communication of the simulator to be bounded bybS . Since there are fixed logarithmic
upper bounds on the communication complexity ofπ, ρ, the adversary and the simulator, we can
also assume the honest user’s communication complexity to have a fixed bound.

By choosing the same logarithmic boundb for all the entities above, we can assume all
simulators, adversaries and honest users, as well as the protocolsπ andρ to have communication
complexity at mostb. This holds for statistical and computational general and universal reactive
simulatability. We will implicitly assume this boundb for the rest of this proof.

Assume now thatπ is as secure asρ with respect to computational general reactive simu-
latability. We want to show that this implies thatπ is as secure asρ with respect to statistical
universal reactive simulatability. Since universal reactive simulatability implies general reactive
simulatability, this show the theorem both in the case of general and of universal reactive simu-
latability.

For any adversary, we can now construct a sequence of oracle Turing machinesXA,k so

thatXH(1k)
A,k simulates the interaction between protocolπ, adversaryA and honest userH upon

security parameterk and then outputs the external view ofH. Here we identify honest users
(which are machines in the sense of the Reactive Simulatability framework) with oracles in the
following natural way: A query toH(1k) corresponds to an activation ofH through an incoming
message (or in its capacity as scheduler) upon security parameterk, and outgoing messages sent

by H are modelled by the oracle responses. ThenX
H(1k)
A,k andextviewπ,A,H,k(H) have the same

distribution. SinceA and π have communication complexity at mostb, we can assume that

the number of timesH is called byX
H(1k)
A,k and the total length of the answers given byH is

bounded by a boundb′(k) ∈ O(b(k)) (independent of the choice ofA).
Similarly, for any simulatorS we can construct a sequence of oracle Turing machinesYS,k

such thatY H(1k)
S,k andextviewρ,S,H,k(H) have the same distribution. As above, we can bound

the number of timesH is called byXH(1k)
A,k and the total length of the answers given byH by

b′(k).

Note that sinceXH(1k)
A,k andY

H(1k)
S,k output the external view ofH by construction, the se-

quence of all queries toH and of all its answers is contained in the output ofX
H(1k)
A,k andY

H(1k)
S,k ,

respectively.
Let thanH̃ be the honest user/oracle that chooses randomly a sequence of b′(k) messages of

total length at mostb′(k).

By Lemma 27, if∆(X
H(1k)
A,k ;Y

H(1k)
S,k ) is not negligible ink, then∆(X

H̃(1k)
A,k ;Y

H̃(1k)
S,k ) is not

negligible ink, either.
We can now finish our proof by showing thatπ is as secure asρ with respect to statistical

universal reactive simulatability. Let an adversaryA be given. By Lemma 28 we can assume
A to be polynomial-time. Then, sinceπ is as secure asρ with respect to computational general
reactive simulatability, there is a polynomial-time simulatorS such that{extviewπ,A,H̃,k(H̃)}k
and{extviewρ,S,H̃,k(H̃)}k are computationally indistinguishable (we are even guaranteed that
the views, not only the external views ofH are computationally indistinguishable). Since
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extviewπ,A,H̃,k(H̃) andextviewρ,S,H̃,k(H̃) can be efficiently computed (π, ρ, A, H̃ andS are

polynomial-time), and since the external view ofH̃ has logarithmic length, by Theorem 23
if follows that {extviewπ,A,H̃,k(H̃)}k and{extviewρ,S,H̃,k(H̃)}k are even statistically indistin-
guishable, i.e.,

∆
(

extviewπ,A,H̃,k(H̃); extviewρ,S,H̃,k(H̃)
)

= ∆
(

X
H̃(1k)
A,k ;Y

H̃(1k)
S,k

)

is negligible. Then for any honest userH (not only polynomial-time ones) we

have that ∆
(

X
H(1k)
A,k ;Y

H(1k)
S,k

)

is negligible. In other words,{extviewπ,A,H,k(H)}k and
{extviewρ,S,H,k(H)}k are statistically indistinguishable. Since the distribution of the view can
be (inefficiently) computed from the external view (given a specific honest userH), it follows
that also{viewπ,A,H,k(H)}k and{viewρ,S,H,k(H)}k are statistically indistinguishable.

Soπ is as secure asρ with respect to statistical universal reactive simulatability. ut

Similar to Theorem 29 we get that also in the UC setting, computational implies statistical
security for logarithmic protocols.

Theorem 30 (Computational Implies Statistical UC).Let π andρ be polynomial-time proto-
cols with logarithmic communication complexity. Assume that π is as secure asρ with respect to
computational UC. Thenπ is as secure asρ with respect to statistical UC.

Proof. Analogous to the proof of Theorem 29, we can w.l.o.g. assume alogarithmic upper bound
b on the communication complexity of environmentsZ, adversariesA, simulatorsS and the
protocolsπ andρ. We will implicitly assume this boundb for the rest of this proof.

In the case of statistical UC, we can assume that the environment Z just outputs its view,
i.e., all messages it sent and received, since the distribution of Z ’s output can be (possibly inef-
ficiently) computed from its communication.

As in the proof of Theorem 29, we construct sequences of oracle Turing machinesXA,k and
YS,k and an efficiently computable logarithmic upper boundb′ with the following properties:

– For all simulatorsS, adversariesA and environmentsZ that output its view, and for all

z ∈ {0, 1}∗, the distributionsXZ(1k ,z)
A,k andEXECπ,A,Z(k, z) are identical, and so are the

distributionsY Z(1k,z)
A,k andEXECπ,A,Z(k, z).

– For all simulatorsS, adversariesA and environmentsZ, the oracle Turing machines

X
Z(1k ,z)
A,k and Y

Z(1k,z)
A,k call Z at mostb′(k) times and the total lenght ofZ ’s answers is

bounded byb′(k).

Then letZ̃ be the environment/oracle that on security parameterk and auxiliary inputz
randomly chooses a sequence ofb′(k) messages of total length at mostb′(k). (The auxiliary
input is ignored.) The environment̃Z outputs its view.

By Lemma 27, if∆(X
Z(1k ,z)
A,k ;Y

Z(1k,z)
S,k ) is not negligible ink, then∆(X

Z̃(1k,z)
A,k ;Y

Z̃(1k ,z)
S,k )

is not negligible ink, either.
We now show that ifπ is as secure asρ with respect to computational UC, thenπ is also as

secure asρ with respect to statistical UC. Let therefore an adversaryA be given. By Lemma 28
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we can w.l.o.g. assumeA to be polynomial-time. Then, sinceπ is as secure asρ with respect to
computational UC, there exists a polynomial-time simulator S such that{EXEC π,A,Z̃(k, zk)}k
and{EXEC ρ,S,Z̃(k, zk)}k are computationally indistinguishable for any sequencez of strings.

So{XZ̃(1k ,zk)
A,k }k and{Y Z̃(1k ,zk)

A,k }k are computationally indistinguishable, too.

SinceZ̃ outputs its view by construction, we then have that{XZ̃(1k ,zk)
A,k }k and{Y Z̃(1k ,zk)

A,k }k
are even statistically indistinguishable. Then for all environments Z that output only

their view, also {XZ(1k ,zk)
A,k }k and {Y Z(1k ,zk)

A,k }k are statistically indistinguishable. Thus
{EXEC π,A,Z(k, zk)}k and {EXEC ρ,S,Z(k, zk)}k are statistically indistinguishable. Since in
the case of statistical UC it is sufficient to consider environments that output their view, it fol-
lows thatπ is as secure asρ with respect to statistical UC. ut

D Stand-Alone Security – Details and Proofs

We first give a definition of stand-alone security.

Definition 31 (Stand-Alone Security). Let π and ρ be ITMs. We say thatπ is as secure
as ρ with respect to computational stand-alone security with auxiliary input, if for every
polynomial-time ITMA (the adversary) there is a polynomial-time ITMS (the simulator)
such that for sequencesx and z of strings of polynomial length, the families of distributions
{

〈〈A(1k, zk), π(1k, xk)〉〉
}

k,zk,xk
and

{

〈〈S(1k, zk), ρ(1k , xk)〉〉
}

k,zk,xk
are computationally in-

distinguishable ink.
We speak ofstatistical stand-alone security with auxiliary inputif the above holds with un-

boundedA andS and statistical indistinguishability.
We speak ofcomputational/statistical stand-alone security withoutauxiliary input if A

and S do not get the additional inputzk (i.e. the distributions〈〈A(1k), π(1k, xk)〉〉 and
〈〈S(1k), ρ(1k, xk)〉〉 are compared).

Our definition is considerably simpler than that of e.g., [Gol04] since it abstracts away from
details like the possibility of corruptions, asynchronousmessage delivery, and even the fact that
there are different parties in the protocol.

However, it is easy to see that our results also hold for more complex definitions of stand-
alone security since one can see our definition as a simple special case of a more general def-
inition (the case of a single-party protocol), and the more general definition can be seen as a
special case of our definition by including the corruption and network delivery mechanisms into
the specification of the real or ideal protocol (i.e., the real protocolπ in our model can be consid-
ered as being all protocol machinesand the networkin one machine, and similarly for the ideal
protocolρ).

In many models of stand-alone security, in the ideal model wedo not allow arbitrary proto-
cols, but only ideal functions. In order to be able to capturethis restriction, we characterise the
ITMs that correspond to such functions using the next definition.

Definition 32 (Function-Like ITMs). We say an ITM is function-like if it sends only one mes-
sage and receives only one message (in that order) and then gives output.
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D.1 On The Complexity of Finding a Good Adversary-Strategy

We are now going to construct protocolsπ and ρ such that there always exists a good (i.e.,
successful) adversary against the security ofπ (with respect toρ), but such that finding that
adversary is hard.

A central concept in our construction will be that of the adversary-polytope. The adversary-
polytope of a protocol (with some fixed inputs) is the set of all distributions of the output of that
protocols that can occur with various adversaries. If thereis a distribution that can occur with
some adversary in the real protocol but not in the ideal protocol (not even approximate), then
π is not as secure asρ with respect to statistical security. Reformulated in terms of adversary-
polytopes, this condition reads as follows: There is a pointin the adversary-polytopeAπ of π
that is (sufficiently far) outside the adversary-polytopeAρ of ρ. However, if this point cannot
be found efficiently, we still can hope for computational security. Thus our goal is to construct
protocolsπ andρ such thatAπ contains a point sufficiently far outside ofAρ, but such that
finding a point inAπ \Aρ implies finding a witness to an NP-hard problem.

Definition 33 (Adversary-Polytope).Let an ITMT be given. Assume that the output ofT is in
{1, . . . , t}. For an ITMA, let 〈A,T (x)〉 denote the distribution of the output ofT invoked with
input x and running withA. Then we can consider〈A,T (x)〉 as a vectorp ∈ Rt by setting
pi := Pr[〈A,T (x)〉 = i]. Then for some inputx, theadversary-polytopeAT (x) ⊆ Rt of T (x) is
defined as

AT (x) := {〈A,T (x)〉 : A is an ITM}.

To be able to speak more easily of adversaries that break the protocol, we give the following
definition of good and strongly good adversaries.

Definition 34 (Good Adversaries).Letπ andρ andA be ITMs, and letε > 0.
We callA ε-good for(π, ρ) if for all ITMs S the statistical distance between〈〈A,π〉〉 and

〈〈S, ρ〉〉 is bounded from above byε. We callA good for(π, ρ) if A is ε-good for someε > 0.
We callA stronglyε-good for(π, ρ) if for all ITMs S the statistical distance between〈A,π〉

and〈S, ρ〉 is bounded from above byε. We callA strongly good for(π, ρ) if A is stronglyε-good
for someε > 0.

It is easy to see that a protocol is statistically insecure iff there existε-good adversaries with
sufficiently largeε. On the other hand,stronglyε-good adversaries exist iff there exists a point
in Aπ that is at leastε-far from Aρ with respect to the 1-norm. So in general, the criterion in
terms of adversary-polytopes does not necessarily coincide with the definition of stand-alone
security. However, in all our constructionsε-good adversaries will be equivalent to stronglyε-
good adversaries.

The NP-complete problem that we will reduce finding points inAπ \Aρ to is the following:

Definition 35 (Set Cover).Let n ∈ N, sij ∈ {0, 1} with i = 1, . . . ,m and j = 1, . . . , n and
d ≤ n. Let si· 6= 0 for all i = 1, . . . ,m. Then(n,m, S, d) is an instance of set cover (with
S := ((sij))). LetSj := {i : sij = 1}. Then(n,m, S, d) is a yes-instance of set cover if there is
a setC ⊆ {1, . . . , n} such that#C ≤ d and

⋃

j∈C Sj = {1, . . . ,m}.

28



Note that set cover is NP-complete with a witness-preserving reduction, i.e., a SAT instance
can be reduced to set cover such that a witness of the set coverinstance can be transformed into
a witness for the SAT instance in deterministic polynomial time. See e.g., [Pap93].

For the remainder of this section, we will often implicitly assume(n,m, S, d) to be a set
cover instance andsij to be the components ofS. So if in some lemma, definition, or proof
an unqualifiedn, m, S, or d appears, it refers to the corresponding component of the setcover
instance(n,m, S, d).

We now define a particular type of polytopes, the set cover polytopes. Such a set cover
polytope encodes an instance of set cover and is additionally parametrised over an additional
parameterε ∈ (0, 1). Here a high value ofε intuitively denotes that the set cover polytope
encodes the set cover instance well. We will later see that ifwe can let the adversary-polytope
Aπ be a set cover polytope with sufficiently largeε andAρ a suitable cross-polytope, the points
in Aπ \Aρ encode the witnesses for the encoded set cover instance.

Definition 36 (Set Cover Polytope).Let (n,m, S, d) be an instance of set cover. Letε ∈ (0, 1).
LetP be a polytope. We callP an ε-set cover polytope for(n,m, S, d) if the following holds:

– P ⊆ [0, 1]n.
– Letv ∈ {0, 1}n. If ‖v‖1 ≤ d and〈si·, v〉 ≥ 1 for all i = 1, . . . ,m, thenv ∈ P .
– Letv ∈ [0, 1]n. If ‖v‖1 > d + 1− ε or 〈si·, v〉 < ε for somei ∈ {1, . . . ,m}, thenv /∈ P .

An example of anε-set cover polytope is the polytope given by the inequalities v ∈ [0, 1]n,
‖v‖1 ≤ d and〈si·, v〉 ≥ 1. (It is anε-set cover polytope for everyε ∈ (0, 1)).

The following lemma give us a reduction that maps points in a set cover polytope that have
sufficiently large 1-norm (i.e., that are outside a suitablecross-polytope) to witnesses of set
cover.

Lemma 37 (Reducing Set Cover to Polytope 1-Norm).Let (n,m, S, d) be an instance of set
cover,ε ∈ (0, 1), u := (1, . . . , 1)T ∈ Rn, andP an ε-set cover polytope. LetP ′ := P − 1

2u.

(i) If (n,m, S, d) is a yes-instance, then‖P ′‖1 = n
2 .

(ii) If (n,m, S, d) is a no-instance, then‖P ′‖1 ≤ n
2 − ε

n2+1
.

(iii) Moreover, given a vectorv ∈ Rn with d1(v, P ′) < ε
n2+1 and‖v‖1 > n

2 − ε
n2+1 , we can

efficiently compute a witness for(n,m, S, d).

Proof. First, to show (i), assume that(n,m, S, d) is a yes-instance. Then there is a setC with
#C ≤ d such that

⋃

j∈C Sj = {1, . . . ,m}. Let v∗ ∈ Rn be defined byv∗j := 1 if j ∈ C
andv∗j := 0 otherwise. Since#C ≤ d we have‖v∗‖1 ≤ d. Fix somei ∈ {1, . . . ,m}. Then
i ∈ ⋃j∈C Sj, so we can choose somej ∈ C with sij = 1. Sincesi· ≥ 0 andv∗ ≥ 0, we have

〈si·, v∗〉 ≥ sijv
∗
j = 1. Thereforev∗ ∈ P . Let v′ := v∗ − 1

2u ∈ P ′. Sincev∗ ∈ {0, 1}n, it is
|v′j | = 1

2 for all j, thus‖v′‖1 = n
2 . So‖P ′‖1 ≥ ‖v′‖1 = n

2 . SinceP ′ ⊆ [−1
2 , 1

2 ]n, it is also
‖P ′‖1 ≤ ‖[−1

2 , 1
2 ]n‖1 = n

2 . Summarising, we get‖P ′‖ = n
2 . This shows (i).

We proceed by showing (iii). Letδ := ε
n2+1

and assume that a vectorv ∈ Rn is given with

d1(v, P ′) < δ and‖v‖1 > n
2 − δ. We definev∗ as follows: If vj ≥ 0, let v∗j := 1

2 , otherwise
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let v∗j := −1
2 . Sinced1(v, P ′) < δ andP ′ ⊆ [−1

2 , 1
2 ]n, it is d1(v, [−1

2 , 1
2 ]n) < δ and therefore

|vj | < 1
2 + δ for all j. Furthermore, since‖v‖1 > n

2 − δ, it is
∑

j |vj| > n
2 − δ. It follows that

|vj | > 1
2 − nδ for all j. Then|vj − v∗j | < nδ for all j and thusd1(v, v∗) < n2δ.

Sinced1(v, P ′) < δ, there is av′ ∈ P ′ with d1(v, v′) < δ (the existence is sufficient, we
do not need to computev′). Then‖v′‖1 > ‖v‖1 − δ > n

2 − 2δ. Furthermore,d1(v
′, v∗) ≤

d1(v, v′) + d1(v, v∗) < (n2 + 1)δ. Let ṽ′ := v′ + 1
2u and ṽ∗ := v∗ + 1

2u. Then ṽ′ ∈ P and
ṽ∗ ∈ {0, 1}n. SinceP is anε-set cover polytope, it is‖ṽ′‖1 ≤ d + 1− ε and〈si·, ṽ′〉 ≥ ε for all
i ∈ {1, . . . ,m}. Thus we have‖ṽ∗‖1 ≤ ‖ṽ′‖1 + d1(v

′, v∗) < d + 1 − ε + (n2 + 1)δ = d + 1.
Sinceṽ∗ ∈ {0, 1}n, the value‖ṽ∗‖1 is an integer. Therefore‖ṽ∗‖ ≤ d. Since allsij ∈ {0, 1}, we
have further〈si·, ṽ∗〉 ≥ 〈si·, ṽ′〉 − d1(v

′, v∗) > ε− (n2 + 1)δ = 0. Since〈si·, ṽ∗〉 is an integer,
it follows that 〈si·, ṽ∗〉 ≥ 1 for all i. Let C := {j : ṽ∗j = 1} ⊆ {1, . . . , n}. We will show that
C is a witness for the set cover instance(n,m, S, d). Sinceṽ∗ ∈ {0, 1}∗ and‖v∗‖1 ≤ d, we
have#C ≤ d. Fix somei ∈ {1, . . . ,m}. Then〈si·, ṽ∗〉 ≥ 1 and sincesij, vj ∈ {0, 1} for all
j, there is aj ∈ {1, . . . , n} such thatvj = 1 andsij = 1. Sincevj = 1, we havej ∈ C, and
sincesij = 1, we havei ∈ Sj ⊆

⋃

j∈C Sj . Since this holds for alli ∈ {1, . . . ,m}, the setC is a
witness for(n,m, S, d). Sincej ∈ C if and only if vj ≥ 0, we can efficiently computeC from
v. This proves (iii).

To show (ii), it is sufficient to note that if‖P ′‖ > n
2 − ε

n2+1
, there exists av ∈ P ′ such that

‖v‖1 = ‖P ′‖1 > n
2 − ε

n2+1
(note thatP ′ is a polytope and thus closed). Sincev ∈ P ′, it is

d1(v, P ′) = 0 < ε
n2+1

. So by (iii) there exists a witness for(n,m, S, d), in contradiction to the
assumption that(n,m, S, d) is a no-instance. ut

We are now going to construct a set cover polytope for a given instance of set cover from sim-
ple polytopes. This construction we will later transform into a recursive definition of a protocol
π whose adversary-polytope will then also be a set cover polytope.

The following definition states the building blocks of our recursive construction:

Definition 38. For l ∈ [0, 1] and ε ∈ (0, 1) and i ∈ {1, . . . ,m} and x, y ∈ {0, 1}n and
g ∈ {0, . . . , ‖x · y‖1}, we define the following sets:

– Theupper bound polytopeDl := conv{v ∈ {0, l}n : ‖v‖1 ≤ ld}
– Thelower bound polytopeSi

l := conv{v ∈ {0, l}n : 〈si·, v〉 ≥ l}
– Thecombined polytopePε := D1−mε +

∑m
i=1 Si

ε

– Therecursive vertex setV x,y
g := {v ∈ {0, 1}n : 〈x · y, v〉 ≤ g, v ≤ y}

– Therecursive polytopeCx,y
g := conv V x,y

g .

Note that these sets implicitly depend on the set cover instance(n,m, S, d).
The next lemma will show thatPε is indeed anε-set cover polytope, and the Lemmas 40–43

thereafter will allow to recursively constructPε from polytopes of formCx,y
g with g ∈ {0, 1}.

These polytopesCx,y
g have at most two vertices and are therefore very easy to construct.

Lemma 39. If 0 < ε ≤ 1
nm+1 thenPε is anε-set cover polytope.
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Proof. SinceD1−mε ⊆ [0, 1 −mε]n andSi
ε ⊆ [0, ε]n, it is Pε = D1−mε +

∑m
i=1 Si

ε ⊆ [0, 1 −
mε]n + m · [0, ε]n = [0, 1]n.

Let a vectorv ∈ {0, 1}n be given with‖v‖1 ≤ d and〈si·, v〉 ≥ 1 for all i. Then(1−mε)v ∈
{0, 1−mε}n and‖(1−mε)v‖1 ≤ (1−mε)d, so(1−mε)v ∈ D1−mε. Further,εv ∈ {0, ε}n and
〈si·, εv〉 ≥ ε, soεv ∈ Si

ε for all i. Thusv = (1−mε)v +
∑m

i=1 εv ∈ D1−mε +
∑m

i=1 Si
ε = Pε.

Let now a vectorv ∈ [0, 1]n be given with‖v‖1 > d + 1− ε. Since‖Pε‖1 ≤ ‖D1−mε‖1 +
∑m

i=1‖Si
ε‖1 ≤ (1−mε)d +

∑m
i=1 nε ≤ d + 1− ε, it follows v /∈ Pε.

Now, let a vectorv ∈ [0, 1]n be given with〈si·, v〉 < ε for somei. Assume thatv ∈ Pε. Then
we can writev = va+vb with va ∈ Si

ε andvb ∈ D1−mε+
∑

k 6=i S
k
ε . Thenvb ≥ 0, so〈si·, vb〉 ≥ 0.

Sinceva ∈ Si
ε, it is 〈si·, va〉 ≥ ε. Therefore we have〈si·, v〉 = 〈si·, va〉+ 〈si·, vb〉 ≥ ε. This is a

contradiction, hencev /∈ Pε.
We have verified all properties given in Definition 36, hencePε is anε-set cover polytope.

ut

The following lemma allows to writePε in terms of polytopesCx,y
g (but we do not necessar-

ily haveg ∈ {0, 1}, so these polytopesCx,y
g may still be complex).

Lemma 40. Let u := (1, . . . , 1) ∈ {0, 1}n and l ∈ [0, 1]. ThenDl = l · Cu,u
d and Si

l =
l · (u− Csi·,u

‖si·‖1−1).

Proof. Since for anyv ∈ {0, 1}n we have‖v‖1 = 〈u, v〉 andv ≤ u, we haveD1 = Cu,u
d and

thusDl = l ·D1 = l · Cu,u
d . Sincesi· ≥ 0 we have〈si·, u− v〉 = ‖si·‖1 − 〈si·, v〉 and thus

Si
1 = conv{v ∈ {0, 1}n : 〈si·, v〉 ≥ 1}

= conv{v ∈ {0, 1}n : 〈si·, u− v〉 ≤ ‖si·‖1 − 1}
= conv{u− v′ : v′ ∈ {0, 1}n, 〈si·, v

′〉 ≤ ‖si·‖1 − 1}
= conv(u− V si·,u

‖si·‖1−1) = u− Csi·,u
‖si·‖1−1.

From this it follows thatSi
l = l · Si

1 = l · (u− Csi·,u
‖si·‖1−1). ut

The following lemma states some probably well-known facts about the convex hulls of sums
and unions of sets. We give the proof for completeness.

Lemma 41. For sets A,B,A1, . . . , Ar ⊆ Rn, it is conv
⋃

i Ai = conv
⋃

i conv Ai and
conv(A + B) = conv A + conv B.

Proof. Since Ai ⊆ conv Ai we haveconv
⋃

i Ai ⊆ conv
⋃

i conv Ai. To show the other
direction, we first show

⋃

i conv Ai ⊆ conv
⋃

i Ai. Let x ∈
⋃

i conv Ai be given. Then
there is ani such thatx =

∑

j rjxj with
∑

j rj = 1, rj ≥ 0 and xj ∈ Ai ⊆
⋃

i Ai.
Thus x ∈ conv

⋃

i Ai and therefore
⋃

i conv Ai ⊆ conv
⋃

i Ai. From this it follows that
conv

⋃

i conv Ai ⊆ conv conv
⋃

i Ai = conv
⋃

i Ai. So we have shownconv
⋃

i Ai =
conv

⋃

i conv Ai.
We now showconv(A + B) ⊆ conv A + conv B. Let x ∈ conv(A + B) be given. Then

x =
∑

j rj(aj + bj) with
∑

j rj = 1 andrj ≥ 0. With xa :=
∑

j rjaj andxb :=
∑

j rjbj we
havex = xa + xb ∈ conv A + conv B.
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Now, we showconv A + conv B ⊆ conv(A + B). Let x ∈ conv A + conv B be given.
Then we can writex =

∑

j rjcj +
∑

j sjaj +
∑

j tjbj with cj ∈ A + B andaj ∈ A and
bj ∈ B and

∑

j rj +
∑

j sj = 1 and
∑

j rj +
∑

j tj = 1 and rj , sj, tj ≥ 0. We call the
number of summands of the formsjaj andtjbj (but notrjcj) the degree of the representation.
Let x =

∑

j rjcj +
∑

j sjaj +
∑

j tjbj be such a representation with minimal degree. Then all
sj, tj > 0. Assume that minimal degree is greater than0. Then the second and the third sum both
contain at least one summand, since otherwise

∑

j sj =
∑

j tj = 1 −∑j rj. Then there exists
ansk or a tk that is minimal under allsj andtj. W.l.o.g., we assume that somesk is minimal.
Thensk ≤ t1. Let t′1 := t1− sk andt′j := t′j for j > 1. Let c0 := ak + b1 andr0 := sk. We then
have

x =
∑

j

rjcj +
∑

j

sjaj +
∑

j

tjbj = r0c0 +
∑

j

rjcj +
∑

j 6=k

sjaj +
∑

j

t′jbj .

Since the right hand side is a representation ofx with smaller degree this is a contradiction to
the minimality of the original representation. So the original representation had degree0, so
x =

∑

j rjcj with
∑

j rj = 1 andrj ≥ 0 andcj ∈ A + B. Thusx ∈ conv(A + B).
It follows thatconv A + conv B = conv(A + B). ut

The following definition provides some notation to write Lemma 43 more concisely.

Definition 42. For a vectory ∈ {0, 1}n with w := ‖y‖1, let l(y) andr(y) be the vectors with
the firstdw2 e and lastbw2 c bits ofy set, respectively.

Formally, letl(y) andr(y) be the unique vectors satisfying

l(y), r(y) ∈ {0, 1}n and y = l(y) + r(y) and ‖l(y)‖ = dw2 e and

‖r(y)‖ = bw2 c and l(y)i = r(y)j = 1⇒ i < j.

The following lemma gives a recursive construction ofCx,y
g using sums and unions. The base

case of the recursion are setsCx,y
g with g ∈ {0, 1} and the depth of the recursion is logarithmic

in ‖x · y‖1 and its width is polynomial in‖x · y‖1. Together with the preceding lemmas, we can
now recursively constructPε using only sums and unions of convex sets.

Lemma 43. For x, y ∈ {0, 1}n and0 ≤ g ≤ ‖x · y‖1, we have

Cx,y
g = conv

(

⋃

I

(

C
x,l(y)
i + C

x,r(y)
g−i

)

)

whereI := {i = 0, . . . , g : i ≤ ‖x · l(y)‖1 andg − i ≤ ‖x · r(y)‖1}.

Proof. Let cl := ‖x · l(y)‖1 andcr := ‖x ·r(y)‖1. We first showV x,y
g =

⋃

I

(

V
x,l(y)
i +V

x,r(y)
g−i

)

whereI := {i = 0, . . . , g : i ≤ cl andg − i ≤ cr}.
Let v ∈ V x,y

g . Then by definition,v ∈ {0, 1}n and 〈x · y, v〉 ≤ g andv ≤ y. Let vl :=
v · l(y) ≤ l(y) andvr := v · r(y) ≤ r(y). Let a := 〈x · y, vl〉 = 〈x · l(y), vl〉 ≤ cl. Then

vl ∈ V
x,l(y)
a .

32



Similarly, letb := 〈x · y, vr〉 = 〈x · r(y), vr〉 ≤ cr. Thenvr ∈ V
x,r(y)
b .

Sincel(y) + r(y) = y, we havev = v · y = vl + vr and thereforea + b ≤ 〈x · y, v〉 ≤ g.
Furthermore,g ≤ ‖x · y‖1 = cl + cr. So we havea + b ≤ g ≤ cl + cr anda ≤ cl and
b ≤ cr. Therefore it exists an integer0 ≤ i ≤ g with a ≤ i ≤ cl andb ≤ g − i ≤ cr. Then

vl ∈ V
x,l(y)
b ⊆ V

x,l(y)
i andvr ∈ V

x,r(y)
b ⊆ V

x,r(y)
g−i . Thusv = vl + vr ∈

⋃

I

(

V
x,l(y)
i + V

x,r(y)
g−i

)

.

Therefore we haveV x,y
g ⊆ ⋃I

(

V
x,l(y)
i + V

x,r(y)
g−i

)

.

Let now somev ∈ ⋃I

(

V
x,l(y)
i +V

x,r(y)
g−i

)

be given. Then there exist ani ∈ I and vectorsvl ∈
V

x,l(y)
i andvr ∈ V

x,r(y)
g−i such thatv = vl+vr. Sincevl ≤ l(y), we have〈x ·y, vl〉 = 〈x ·l(y), vl〉.

Analogously, it follows〈x · y, vr〉 = 〈x · r(y), vr〉. Hence〈x · y, v〉 = 〈x · y, vl〉+ 〈x · y, vr〉 =
〈x · l(y), vl〉+ 〈x · r(y), vr〉 ≤ i + g− i = g. Furthermore,v = vl + vr ≤ l(y) + r(y) = y. And
sincevl, vr ∈ {0, 1}n andv ≤ y ∈ {0, 1}n, it is v ∈ {0, 1}n. Hencev ∈ V x,y

g .

Therefore we haveV x,y
g ⊆ ⋃I

(

V
x,l(y)
i + V

x,r(y)
g−i

)

.

Applying Lemma 41 twice (marked with(∗)), it follows

Cx,y
g = conv V x,y

g = conv
(

⋃

I

(

V
x,l(y)
i + V

x,r(y)
g−i

)

)

(∗)
= conv

(

⋃

I

conv
(

V
x,l(y)
i + V

x,r(y)
g−i

)

)

(∗)
= conv

(

⋃

I

(

conv V
x,l(y)
i + conv V

x,r(y)
g−i

)

)

= conv
(

⋃

I

(

C
x,l(y)
i + C

x,r(y)
g−i

)

)

.

ut

We now have a recursive construction of a set cover polytope using sums and unions of sets.
In the following, we will transform this construction into arecursive construction of a protocol
π whose adversary-polytope is a set cover polytope (up to affine transformation).

In order to do so, we first need to be able to express sums and unions of adversary-polytopes
by operations on protocols. The following lemma gives us themeans to do so.

Lemma 44 (Constructions of Adversary-Polytopes).Let T an ITM. Letr1, . . . , rq ≥ 0 with
∑

i ri = 1. Let x, x1, . . . , xq ∈ Σ∗. Let R be an ITM that upon inputx chooses some valuei
with probabilityri, sendsi, and then executesT (xi). ThenAR(x) =

∑

riAT (xi).
LetU be an ITM that upon inputx expects a messagei ∈ {1, . . . , q} and then executesT (xi).

(If U receives a message of different form, it assumesi = 1.) ThenAU(x) = conv
⋃

i AT (xi).

Proof. First, we show thatAR(x) =
∑

i riAT (xi).
Let v ∈ AR(x). Then there exists an ITMA such that〈A,R(x)〉 = v. Let Ri be the ITM

that behaves asR(x), except that it always chooses messagei. Then〈A,R(x)〉 =
∑

i ri〈A,Ri〉.
SinceRi behaves likeT (xi), except that it first sends a fixed message toA, we can construct an
ITM A′ from A that does not expect this first message but assumes it to bei, and get〈A,Ri〉 =
〈A′, T (xi)〉 ∈ AT (xi). Thusv ∈∑i riAT (xi). SoAR(x) ⊆

∑

i riAT (xi).
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Now, let v ∈ ∑i riAT (xi). Thenv =
∑

i riv
(i) with v(i) ∈ AT (xi) and there are ITMs

Ai such thatv(i) = 〈Ai, T (xi)〉 for all i. Let A be the ITM that expects a messagei and
then executesAi. Since eachi is chosen with probabilityri by R(x), we have〈A,R(x)〉 =
∑

i ri〈Ai, T (xi)〉 = v, sov ∈ AR(x). ThusAR(x) =
∑

i riAT (xi).
We proceed by showingAU(x) = conv

⋃

i AT (xi).
Let v ∈ AU(x). Then there is an ITMA such thatv = 〈A,U(x)〉. W.l.o.g., we assume that

the first message sent byA is in {1, . . . , q}. Let ri be the probability that that first message is
i. Then〈A,U(x)〉 =

∑

i ri〈Ai, T (xi)〉 whereAi is the residual ITMA after sendingi. Then
v(i) := 〈Ai, T (xi)〉 ∈ AT (xi) ⊆

⋃

i AT (xi), sov =
∑

i riv
(i) ∈ conv

⋃

i AT (xi). It follows that
AU(x) ⊆ conv

⋃

i AT (xi).
Now, let v ∈ conv

⋃

i AT (xi). Then we can decomposev such thatv =
∑

i riv
(i) with

∑

i ri = 1, ri ≥ 0 andv(i) ∈ conv AT (xi) = AT (xi). So there are ITMsAi such thatv(i) =
〈Ai, T (xi)〉 for all i. Let A be the ITM that chooses ani ∈ {1, . . . , q} with probability ri and
then executesAi. Then 〈A,U(x)〉 =

∑

ri〈Ai, T (xi)〉 = v. So v ∈ AU(x). It follows that
AU(x) = conv

⋃

i AT (xi). ut

The reader may have noticed that Lemma 44 does not give us the possibility to construct
an adversary-polytopeAR that is the sumAT (1) + AT (2) of two adversary-polytopesAT (1)

andAT (2), but only a downscaled sum12(AT (1) + AT (2)). This is to be expected since the
sum of two sets of probability distributions (considered aspoints inRn) is not necessarily a set
of probability distributions. Therefore, we cannot directly map the recursive construction from
Lemma 43 into a recursive construction of a protocolπ. Instead, we have to keep track of the
additional downscaling of the polytopes. Similarly, we will also have to transform the occurring
polytopes so that they will be a subset of the set of all probability distributions.

To keep track of these scalings and translations we will use affine transformations that map
the unit cube inRn into the set of probability distributions considered as a subset ofRn+1. Such
maps we call valid.

Definition 45 (Valid Affine Maps). An affine mapf : Rn → Rn+1 is called valid if
f([0, 1]n) ⊆ {x ∈ Rn+1 : x ≥ 0, ‖x‖1 = 1} and if f(x) = Ax + b for some rational
matrixA and rational vectorb.

We can now start to construct our protocol. First, we construct an ITM H that given a set
of points as input constructs a polytope with that vertices (up to transformation by a valid affine
map). Given this ITM we can then construct adversary-polytopes that have few vertices.

Lemma 46. There exists a polynomial-time ITMH such that forn ∈ N, a finite nonempty set
X ⊆ [0, 1]n ∩ Qn, and a valid affine mapf , we haveAH(n,X,f) = f(conv X). Upon input
(n,X, f), the ITMH has communication complexitydlog #Xe. The ITMH is function-like.

Proof. Let V be the ITM that upon inputv ∈ Qn+1 with
∑

vi = 1 andvi ≥ 0 for all i chooses
a valuei ∈ {1, . . . , n + 1} with probabilityvi. ThenV sendsi to the other ITM and outputsi.
Then〈A,V (v)〉 = v for all valid inputsv and all ITMsA, soAV (v) = {v}.

The ITM H behaves as follows: Upon input(n,X, f) satisfying the conditions given
in the statement of this lemma, it enumeratesX (in some deterministic fashion) such that
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{x1, . . . , x#X}. Then it expects a messagei ∈ {1, . . . , x#X} and runsV (f(xi)). Sincef is
a valid affine map,f(xi) is a valid input forV . So by Lemma 44 we have

AH(n,X,f) = conv
⋃

i

AV (f(xi)) = conv{f(x1), . . . , f(x#X)} = f(conv X).

Since ani ∈ {1, . . . ,#X} can be encoded indlog #Xe bits, H has communication com-
plexity dlog #Xe. Obviously,H is function-like and runs in polynomial time. ut

We can now transform the recursion forCx,y
g given by Lemma 43 into a construction of a

protocol that hasCx,y
g as an adversary-polytope (up to an affine transformation). For the base

case of the recursion we use the ITMH from Lemma 46 and the sums and unions are handled
using the constructions from Lemma 44. The resulting adversary-polytope is a downscaled ver-
sion ofCx,y

g since we cannot directly construct sums, however, it will only be downscaled by a
polynomial factor which turns out to be good enough for our purposes.

Lemma 47. There exists a polynomial-time ITMC such that for alln ∈ N, x ∈ {0, 1}n,
y ∈ {0, 1}n \ {0}n, g ∈ {0, . . . , ‖x · y‖1} and all valid affine mapsf : Rn → Rn+1, we have

– The communication complexity ofC upon input(n, x, y, g, f) is O
(

(log n)2
)

.
– The adversary-polytope ofC(n, x, y, g, f) is

AC(n,x,y,g,f) = f
(

λ(‖y‖1) · Cx,y
g

)

.

whereλ(y) := 2−dlog‖y‖1e.

Proof. We call an input tuple(n, x, y, g, f) valid if it satisfies the conditions given in the lemma,
i.e., if n ∈ N, x ∈ {0, 1}n, y ∈ {0, 1}n \ {0}n, g ∈ {0, . . . , ‖x · y‖1} andf is a valid affine
map.

For ‖y‖1 ≥ 2, defineh as follows: If
⌈

log
⌈‖y‖1

2

⌉

⌉

=
⌈

log
⌊‖y‖1

2

⌋

⌉

, let h := 1. Otherwise,

let h := 1
2 . If f is a valid affine map, so isf ′(v) := f(hv).

We defineC recursively. Upon valid input(n, x, y, g, f) with ‖y‖1 ≥ 2, it behaves as fol-
lows:

– Let I be defined as in Lemma 43. Note thatI is nonempty.
– First, C expects ani ∈ I from the adversary. If noi ∈ I is received,C setsi := min I

otherwise.
– Then,C chooses a uniformly random bitb ∈ {0, 1} and sendsb to the adversary.
– If b = 0, the ITM C executesC(n, x, l(y), i, f) and otherwiseC(n, x, r(y), g − i, f ′). (For

the functionsr andl see Definition 42.)

Upon valid input(n, x, y, g, f) with ‖y‖1 = 1, we computeV := V x,y
g and execute the ITM

H(n, V, f) from Lemma 46. (Note that in this case#V x,y
g ≤ 2.)

Upon invalid input,C terminates with output1.
For the recursion to make sense, we first have to verify that the ITMs C that are invoked

as subprograms are always invoked with valid input. In this case ofH this is straight-forward:
V x,y

g ⊆ {0, 1}n andf is a valid map.
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To see thatC is invoked with valid input, first consider the caseb = 0. In this case, we
have to verify thatn ∈ N, x ∈ {0, 1}n, l(y) ∈ {0, 1}n, i ∈ {0, . . . , ‖x · y‖1} andf is a valid
affine map. The conditions forn, x andf are satisfied by assumption. Since‖y‖1 ≥ 2, we have
l(y) ∈ {0, 1}n \ {0}n by definition ofl(y) and we havei ∈ {0, . . . , ‖x · l(y)‖1} by definition
of I. In the caseb = 1 the mapf ′ is valid as seen above and we haver(y) ∈ {0, 1}n \ {0}n by
definition ofr(y) andg − i ∈ {0, . . . , ‖x · r(y)‖1} by definition ofI.

Note that the recursion terminates since for‖y‖1 ≥ 2, ‖l(y)‖1, ‖r(y)‖1 < ‖y‖1. More-
over, since‖l(y)‖1, ‖r(y)‖1 ≤ d‖y‖1/2e, the recursion has at most logarithmic depth (and no
branching takes place), so in particular,C is polynomial-time.

We now examine the communication complexity ofC. In each round (with exception of
the last, whereH is invoked),C receives an element fromI ⊆ {1, . . . , n} and sends a bitb.
Therefore the communication complexity within one round isO(log n). In the last roundH is
invoked. Since#V x,y

g ≤ 2 in this case, the communication complexity ofH is O(1).
Since there areO(log n) rounds, the overall communication complexity isO

(

(log n)2
)

.
It is left to show thatAC(n,x,y,g,f) has the required form.
For‖y‖1 = 1 it is λ(y) = 1. By construction ofH, we then have

AC(n,x,y,g,f) = AH(n,V x,y
g ,f) = f

(

conv(V x,y
g )

)

= f(λ(y) · Cx,y
g ).

Now consider the case‖y‖1 ≥ 2. It is dlog‖y‖1e =
⌈

log
⌈‖y‖1

2

⌉

⌉

+ 1 = dlog‖l(y)‖1e + 1.

Thusλ(y) = 1
2λ(l(y)). Further, by definition ofh, we have

h2−dlog‖r(y)‖1e = h2−
⌈

log
⌊

‖y‖1
2

⌋⌉

= 2−
⌈

log
⌈

‖y‖1
2

⌉⌉

= 2−dlog‖l(y)‖1e = λ(l(y)).

So summarising, we have12λ(l(y)) = 1
2hλ(r(y)) = λ(y).

Then, by induction we get

AC(n,x,y,g,f)
(∗)
= conv

⋃

i∈I

(

1
2AC(n,x,l(y),i,f) + 1

2AC(n,x,r(y),g−i,f ′)
)

(∗∗)
= conv

⋃

i∈I

(

1
2f
(

λ(l(y)) · Cx,l(y)
i

)

+ 1
2f
(

hλ(r(y)) · Cx,r(y)
g−i

)

)

= conv
⋃

i∈I

(

f
(

1
2λ(l(y)) · Cx,l(y)

i + 1
2hλ(r(y)) · Cx,r(y)

g−i

)

)

= conv
⋃

i∈I

(

f
(

λ(y) ·
(

C
x,l(y)
i + C

x,r(y)
g−i

))

)

= f

(

λ(y) · conv
⋃

i∈I

(

C
x,l(y)
i + C

x,r(y)
g−i

)

)

(∗∗∗)

= f
(

λ(y) · Cx,y
g

)

.

We used Lemma 44 for(∗), the induction hypothesis for(∗∗), and Lemma 43 for(∗∗∗).
So for all valid inputs, we haveAC(n,x,y,g,f) = f

(

λ(y) · Cx,y
g

)

. ut
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Finally, since we can constructPε from polytopes of the formCx,y
g (by Definition 38 and

Lemma 40), we can now construct an ITMP that hasPε as its adversary polytope (up to trans-
formation by a valid affine map). This ITMP is almost the protocolπ we want to construct,
except thatπ takes an valid affine map as an additional argument.

Lemma 48. There exists a polynomial-time ITMP , such that for a set cover instance
(n,m, S, d) and a valid affine mapf , the following holds:

– The communication complexity ofP upon input(n,m, S, d, f) is O
(

(log n)2 + log m
)

.
– The adversary-polytope ofP (n,m, S, d, f) is

AP (n,m,S,d,f) = f(2−dlog ne · Pε + γ)

whereε := 1
nm+1 andγ := mε(1 − 2−dlog ne)u andu := (1, . . . , 1) ∈ Rn.

Proof. Let C be the ITM from Lemma 47.
Upon input of a set cover instance(n,m, S, d) and a valid affine mapf , the ITMP behaves

as follows:

– It chooses a randomj ∈ {0, 1, . . . ,m} with the following distribution:j = 0 has probability
1−mε, and eachj 6= 0 has probabilityε.

– The valuej is sent to the adversary.
– If j = 0, invokeC(n, u, u, d, f).
– If j > 0, invokeC(n, si·, u, ‖si·‖1 − 1, f ′) wheref ′ is the affine map defined byf ′(v) :=

f(u− v).

Sinced ≤ n = ‖u · u‖1, the ITM C is called with valid input in the casej = 0. Since
‖si·‖1 − 1 ≤ ‖si· · u‖1, and sincef ′ is a valid affine map, the ITMC is always invoked with
valid input in the casej > 0.

SinceC is polynomial-time, so isP . The communication complexity ofC is O
(

(log n)2
)

,
and sending the valuej takes O(log m) bits, so the communication complexity ofP is
O
(

(log n)2 + log m
)

.
We now examine the adversary polytope ofP (n,m, S, d, f). We have

AP (n,m,S,d,f)
(∗)
= (1−mε)AC(n,u,u,d,f) +

m
∑

i=1

AC(n,si·,u,‖si·‖1−1),f ′

(∗∗)
= (1−mε)f(2−dlog ne · Cu,u

g ) +
m
∑

i=1

εf ′(2−dlog ne · Csi·,u
‖s·‖1−1

)

= (1−mε)f(2−dlog ne · Cu,u
g ) +

m
∑

i=1

εf
(

u− 2−dlog ne · Csi·,u
‖s·‖1−1

)

= f

(

(1−mε)2−dlog ne · Cu,u
g +

m
∑

i=1

ε
(

u− 2−dlog ne · Csi·,u
‖s·‖1−1

)

)

= f

(

2−dlog ne
(

(1−mε)Cu,u
g +

m
∑

i=1

ε
(

u− Csi·,u
‖s·‖1−1

)

)

+ mε(1− 2−dlog ne)u

)

(∗∗∗)

= f
(

2−dlog ne · Pε + γ
)

.
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Here(∗) is an application of Lemma 44 and(∗∗) of Lemma 47. The equality(∗∗∗) follows from
Lemma 40 and Definition 38. ut

Using the tools given so far, we can finally give a construction of protocolsπ andρ such that
strongly good adversaries correspond to witness for a set cover instance. Thus finding a strongly
good adversary is equivalent to solving a set cover instance. Note however that the protocol
π constructed in the following theorem is not logarithmic, but O((log n)2). We will solve this
problem later by using shorter set cover instances.

Theorem 49. There exist a functionδ ∈ Ω( 1
n5m

) and polynomial-time ITMsπ andρ such that
the following holds for every set cover instance(n,m, S, d):

– The communication complexity ofπ(n,m, S, d) is in O
(

(log n)2 + log m
)

, that of
ρ(n,m, S, d) in O(log n). The ITMρ is function-like.

– If (n,m, S, d) is a yes-instance, there is a stronglyδ-good adversary forπ(n,m, S, d) and
ρ(n,m, S, d).

– If (n,m, S, d) is a no-instance, there is no strongly good adversary forπ(n,m, S, d) and
ρ(n,m, S, d).

Furthermore, given black-box access to a strongly good adversary for π(n,m, S, d) and
ρ(n,m, S, d), we can compute a witness for the set cover instance(n,m, S, d) in probabilis-
tic polynomial time and with overwhelming probability.

Proof. For a vectorv ∈ Rn, let fn(v) := ( 1
nv, 1−∑j

1
nvj) ∈ Rn+1. Letu := (1, . . . , 1) ∈ Rn

andεn,m := 1
nm+1 andξn,m :=

εn,m

2(n2+1)
andλn := 2−dlog ne andγn,m := mεn,m(1 − λn)u.

Then for a vectorv ∈ Rn, let wn,m(v) := 1
2 (v + u− γn,m).

Obviously,fn is a valid affine map. To see thatfn ◦ wn,m is a valid affine map, first note
that0 ≤ mεn,m ≤ 1 and0 ≤ λn ≤ 1 and thus0 ≤ γn,m ≤ u. Then forv ∈ [0, 1]n, we have
1
2(v +u− γn,m) ≤ 1

2(v +u) ≤ u and 1
2(v +u− γn,m) ≥ 1

2v ≥ 0. Thuswn,m([0, 1]n) ⊆ [0, 1]n

and thereforefn ◦ wn,m is valid.
Let X := {e1, . . . , en,−e1, . . . ,−en} where theei are the unit vectors ofRn. Thenconv X

is the cross-polytope that is the unit ball of‖·‖1. Let Bn := (n
2 − ξn,m) · conv X + 1

2u. Let

Xn := 1
2λn

(

(n
2 − ξn,m) ·X + 1

2u
)

+ 1
2u

UsingX ⊆ [−1, 1]n, n
2 − ξn,m ∈ [0, n

2 ] andλn ∈ [0, 1
n ], one verifies thatXn ⊆ [0, 1]n.

The ITMs π and ρ are constructed as follows. Upon input(n,m, S, d), the ITM π runs
P (n,m, S, d, fn ◦ wn,m). And for the same input, the ITMρ runsH(n,Xn, fn).

Since(n,m, S, d) is a set cover instance, andfn ◦ wn,m is a valid affine map,P is called
with valid input. And sinceXn ⊆ [0, 1]m andfn is a valid affine map, the ITMH is also called
with valid input.

SinceP is polynomial time, so isπ. And sinceH is polynomial-time and#Xn ∈ O(n), the
ITM ρ is also polynomial-time. SinceP has communication complexityO

(

(log n)2+log m
)

, so
doesπ. And sinceH has communication complexityO(log #Xn) = O(log n) and is function-
like, so doesρ.
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We now determine the adversary-polytope ofπ(n,m, S, d). It is

Aπ(n,m,S,d) = AP (n,m,S,d,fn◦wn,m)

(∗)
= fn ◦ wn,m(λn · Pεn,m + γn,m)

= fn(1
2λn · Pεn,m + 1

2u)

where(∗) is shown by Lemma 48.
We now determine the adversary-polytope ofρ(n,m, S, d). It is

Aρ(n,m,S,d) = AH(n,Xn,fn)

(∗)
= fn(conv Xn)

= fn(1
2λn · Bn + 1

2u)

where(∗) follows from Lemma 46.
We will now show that if(n,m, S, d) is a yes-instance, there is a stronglyδ-good adversary.

Sinceεn,m = 1
nm+1 , by Lemma 39 the polytopePεn,m is anε-set cover polytope. Thus, by

Lemma 37, it is‖Pεn,m − 1
2u‖1 = n

2 . Since‖Bn − 1
2u‖1 = n

2 − ξn,m, there exists a vector
v ∈ Pεn,m − 1

2u such thatd1(v,Bn − 1
2u) ≥ ξn,m. Then forv′ := 1

2λn(v + 1
2u) + 1

2u, we
havev′ ∈ 1

2λnPεn,m + 1
2u andd1(v

′, 1
2λnBn + 1

2u) ≥ 1
2λnξn,m. For any two vectorsva, vb it is

d1(fn(va), fn(vb)) ≥ d1(
1
nva,

1
nvb) = 1

nd1(va, vb). So forv′′ := fn(v′) we have

v′ ∈ Aπ(n,m,S,d) and d1(v
′,Aρ(n,m,S,d)) ≥

λnξn,m

2n
.

Sincev′ ∈ Aπ(n,m,S,d), there exists an adversaryA such that〈A,π(n,m, S, d)〉 = v′. Fur-
ther, for any simulatorS we have〈S, ρ(n,m, S, d)〉 ∈ Aρ(n,m,S,d) and therefore the statis-
tical distance between〈A,π(n,m, S, d)〉 and 〈S, ρ(n,m, S, d)〉 is bounded from below by
1
2d1(〈A,π(n,m, S, d)〉, 〈S, ρ(n,m, S, d)〉) ≥ λnξn,m

4n = δ(n,m). SoA is a stronglyδ(n,m)-
good adversary forπ(n,m, S, d) and ρ(n,m, S, d). Sinceεn,m ∈ Ω( 1

nm) we haveξn,m ∈
Ω( 1

n3m
). Further,λn ∈ Ω( 1

n). Soδ ∈ Ω( 1
n5m

).
Now we prove that given black box access to a strongly good adversaryA, we can efficiently

compute a witness for(n,m, S, d). Let vA ∈ Rn+1 be the distribution of〈A,π(n,m, S, d)〉.
SinceA is strongly good, it isvA ∈ Aπ(n,m,S,d) \Aρ(n,m,S,d). SincevA is a probability distribu-
tion, f−1

n (vA) exists. Then

v′A := 2
λn

(f−1
n (vA)− 1

2u)− 1
2u ∈ (Pεn,m − 1

2u) \ (Bn − 1
2u).

SinceBn − 1
2u = {v ∈ Rn : ‖v‖1 ≤ (n

2 − ξn,m)}, we have‖v′A‖1 > n
2 − ξn,m.

Given black-box access toA, we can efficiently sample〈A,π(n,m, S, d)〉. Then by
Lemma 22, we can estimate a probability distributionṽA ∈ Rn+1 such that with probability
at least23 we haved1(ṽA, vA) ≤ λn

2n ξn,m. (Note for this thatλn

2n ξn,m is noticeable.)3

3 Strictly speaking, the formulation of Lemma 22 only guarantees that random variables of logarithmic length can be
sampled if they are efficiently constructible, but does not cover the case when the random variables are efficiently
constructible using an oracle (in this caseA). However, it is easy to see that the proof of Lemma 22 relativises and
therefore also applies to the present situation.
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SinceṽA is a probability distribution,f−1
n (vA) is defined. Then let̃vA := 2

λn
(f−1

n (ṽA) −
1
2u) − 1

2u. For any two vectorsva, vb it is d1(fn(va), fn(vb)) ≥ d1(
1
nva,

1
nvb) = 1

nd1(va, vb).
Thusd1(f

−1
n (vA), f−1

n (ṽA)) ≤ nd1(vA, ṽA) ≤ λn

2 ξn,m. Therefore we haved1(v
′
A, vA) ≤ ξn,m.

Since ‖v′A‖1 > n
2 − ξn,m we have‖ṽ′A‖1 > n

2 − 2ξn,m = n
2 −

εn,m

n2+1
. Since further

d1(ṽ
′
A, Pεn,m) ≤ d1(ṽ

′
A, v′A) ≤ ξn,m <

εn,m

n2+1 , and sincePεn,m is anε-set cover polytope, by
Lemma 37 we can efficiently compute a witness for(n,m, S, d) from ṽ′A. So given black-box
access toA we can compute a witness with probability at least2

3 . Since set cover is in NP, we
can efficiently verify the solution and therefore amplify the success probability by repetition.

It is left to show that if(n,m, S, d) is a no-instance, there is no strongly good adversary for
π andρ. Assume there was a strongly good adversaryA. Then we can efficiently compute a
witness using black-box access toA. In particular, such a witness exists. This is a contradiction
to the assumption that(n,m, S, d) is a no-instance. ut

Theorem 49 is formulated in terms of strongly good adversaries. However, to derive results
about stand-alone security, we need to consider good adversaries. Fortunately, for the protocols
π andρ given in Theorem 49, these notions coincide as the followinglemma shows.

Lemma 50. Letπ andρ be ITMs. Assume that in an interaction with an ITMS, the ITMρ sends
its output toS at some point. ThenA is a good adversary for(π, ρ) if and only if it is a strongly
good adversary for(π, ρ).

Moreover, the ITMρ from Theorem 49 satisfies the above condition.

Proof. Since a strongly good adversary is always a good adversary, we only have to show that a
good adversary for(π, ρ) is a strongly good adversary for(π, ρ).

Assume therefore thatA is nota strongly good adversary. Then, by Definition 34 there exists
an ITM S such that〈A,π〉 and〈S, ρ〉 have the same distribution. Define the random variables
X andO by (X,O) := 〈〈A,π〉〉, i.e.,X denotes the output of the ITMA andO the output of
the ITM π. For a stringo, let µo be the distribution ofX under the condition thatO = o. We
construct an ITMS′ as follows: First,S′ executesS. By assumption, in an interaction between
S′ andρ, the ITM ρ sends the output it is going to give toS′. We can therefore assume thatS′

knows the outputo of ρ when the interaction between the simulatedS andρ has finished. Then
S′ chooses a stringa according to the distributionµo and outputso. SinceS′ differs fromS only
in its output, the distributions of〈A,π〉 and〈S′, ρ〉 are identical. And therefore by construction
of µa it follows that〈〈A,π〉〉 and〈〈S′, ρ〉〉, too. ThereforeA is not a good adversary for(π, ρ). It
follows that any good adversary for(π, ρ) is also strongly good.

The ITM ρ as constructed in the proof of Theorem 49 always sends its output toS (sinceρ
invokes the ITMH from Lemma 46 which sends its output by construction). So theconditions
of this lemma are fulfilled for the ITMρ from Theorem 49. ut

Finally, we can deduce from Theorem 49 that finding good adversaries is hard (given a
realistic complexity assumption).

Corollary 51. If NP 6⊆ BPTIME(nO(log n)), the following holds for allε > 0:
There is no efficient probabilistic algorithm that finds a good adversary for a pair of

polynomial-time algorithms with logarithmic communication complexity, even when they are
guaranteed to have a stronglykε-good adversary.
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Proof. Assume thatNP 6⊆ BPTIME(kO(log k)) and that we can efficiently find good adversaries
under the conditions specified in the corollary.

Since set cover is NP-hard andNP 6⊆ BPTIME(kO(log k)) we also have that set cover is
not in BPTIME(kO(log k)). (To see this note that for any polynomialp it is p(k)O(log p(k)) ⊆
kO(log k).) Then for any functionf ∈ 2Ω(

√
log k), set cover with instances of size at most

f(k) is hard for probabilistic algorithms running in polynomialtime in k. Let δ(n,m) be
as in Theorem 49. W.l.o.g., we can assumeδ to be monotonous. (Simply replaceδ by
δ′(n,m) := min(n′,m′)≤(n,m) δ(n′,m′) ∈ Ω( 1

n5m
).) Sinceδ(n,m) ∈ Ω( 1

n5m
), there is a func-

tion f ∈ 2Θ(
√

log k) such thatδ(f(k), f(k)) > kε. Then by Theorem 49 we can convert any
set cover instance(n,m, S, d) of size at mostf(k) (in particular,n,m ≤ f(k)) into a pair of
protocolsπ andρ with the following properties: The protocols run in polynomial time and their
communication complexity is bounded inO((log f(k))2) = O(log k). Furthermore, they are
guaranteed to have a stronglyδ(n,m)-good adversary. And given a strongly good adversary (as
a black-box) we can efficiently compute a witness for(n,m, S, d). Sinceδ(n,m) > kε, by as-
sumption we can find a good adversary in probabilistic polynomial time ink. By Lemma 50, this
adversary is then also strongly good. So summarising, for set cover instances of length at most
f(k) we can find witnesses in probabilistic polynomial time ink. Sincef ∈ 2Θ(

√
log k) this is a

contradiction to the fact that set cover with instances of size at mostf is hard.
So our assumption is disproved. ut

Although this hardness result is interesting in its own right, it does not yet show that there are
computationally secure protocols that are not statistically secure. The first problem is that a pro-
tocol that has no good adversaries is not necessarily secure: it may be that there are adversaries
that necessitate superpolynomial-time simulators. This problem will be solved by showing that
(at least for the protocolsπ andρ we constructed in the reduction) we can always efficiently
compute a simulator. The second problem is that although it might be infeasible to compute
a good adversary for a given protocol, it might still be possible that thereexistsan adversary
that is good for all security parametersk. This we solve by using a stronger assumption which
roughly states that there are efficiently computable sequences of NP-instances that are hard for
polynomial-time machines. Then we can define a protocol thatfor each security parameter uses
another such instance.

D.2 Separation of Computational and Statistical Security Without Auxiliary Input

In the preceding section we showed that finding a good adversary is hard. However, a good (and
polynomial-time) adversary might still exist. To show thatcomputational and statistical security
fall apart (in the case without auxiliary input), we need an additional assumption:

Assumption 52. There exists an sequencefk of Boolean formulas computable in deterministic
polynomial time that has the following two properties:

– Infinitely manyfk are satisfiable.
– For any probabilistic Turing machineA that runs in nO(log n)-time, the probability

Pr[fk(A(1k)) = 1] is negligible ink.
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Although rarely written in this general form, Assumption 52is a common assumption
in cryptography. For example, a collision-resistant family {Hk}k∈N of hash functions that is
collision-resistant against uniform quasi-polynomial-time adversaries implies Assumption 52.

In the lemmas in this section, we will tacitly assume Assumption 52.
Given a sequence of hard instances as in Assumption 52, we cannow construct proto-

cols π̃ and ρ̃ that encode these hard instances as in Theorem 49. Note that the construction
of Theorem 49 gives protocols with communication complexity O((log n)2) wheren is the
length of the NP-instance, so we have to use sufficiently short instances to get protocols with
logarithmic communication complexity.

Definition 53. Letπ andρ be the ITMs from Theorem 49. Letfk be as in Assumption 52. LetR
be a witness-preserving reduction from SAT to set cover. Then let π̃ andρ̃ be the following ITMs:
Upon input1k, π̃ and ρ̃ run π andρ, respectively, with inputR(fd2

√
log ke).

For the remainder of this section,π̃ andρ̃ denote the ITMs from Definition 53.
The following lemma states thatπ̃ andρ̃ are indeed suitable protocols for a separating exam-

ple between computational and statistical stand-alone security in the case of logarithmic com-
munication complexity.

Lemma 54. The ITMsπ̃ and ρ̃ run in polynomial-time and have logarithmic communication
complexity. The ITM̃ρ is function-like.

Proof. By Theorem 49, the runtime ofπ andρ with input R(fd2
√

log ke) is polynomial in the

length ofR(fd2
√

log ke). This again is polynomial ind2
√

log ke which is sublinear. So the runtime
of π̃ andρ̃ is polynomial ink.

Let (n,m, S, d) := R(fd2
√

log ke). By Theorem 49, the communication complexity ofπ andρ

with inputR(fd2
√

log ke) is in O
(

(log n)2+log m
)

= O
(

(logd2
√

log ke)2
)

= O(log k). Therefore
the communication complexity of̃π andρ̃ is logarithmic ink.

Sinceρ is function-like by Theorem 49, so is̃ρ. ut

First we show that̃π is not as secure as̃ρ with respect to statistical stand-alone security.

Lemma 55. The ITM π̃ is not as secure as the ITM̃ρ with respect to statistical stand-alone
security without auxiliary input.

Proof. For a givenk ∈ N, let χk := 1 if fk is satisfiable, andχk := 0 otherwise. Let
(n,m, S, d) := R(fd2

√
log ke). Assume thatχk = 1. Then (n,m, S, d) is a yes-instance of

set cover. Then, by Theorem 49, there is a stronglyδ-good adversaryAk for π(n,m, S, d)
and ρ(n,m, S, d) with δ ∈ Ω( 1

n5m
). Sincen and m are polynomial ind2

√
log ke, we have

δ ∈ 2−O(
√

log k) ⊆ Ω( 1
k ).

Let A be the ITM that upon input1k with χk = 1 executesAk. Forχk = 0 let Ak behave
arbitrarily. ThenA(1k) is a stronglyχkδ-good adversary for̃π(1k) and ρ̃(1k). Sinceχk = 1
holds infinitely often andδ ∈ Ω( 1

k ), we have thatχkδ is not negligible, so for every simulatorS
we have that〈A,π(1k)〉 and〈S, ρ(1k)〉 are statistically distinguishable. Then also〈〈A,π(1k)〉〉
and〈〈S, ρ(1k)〉〉 are statistically distinguishable.
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Thereforeπ is not as secure asρ with respect to statistical stand-alone security without
auxiliary input. ut

First we want to show thatπ is as secure asρ with respect to computational stand-alone
security. By Theorem 49 we will get that a polynomial-time adversary cannot be a strongly good
adversary. This implies that there is a simulator for this adversary. However, we do not know
that this simulator is also polynomial-time. The followinglemma guarantees that this is at least
the case for the protocols̃π andρ̃ constructed above.

Lemma 56. There is a probabilistic polynomial-time oracle ITMS such that for every oracle
ITM A and everyk ∈ N, the following holds: IfA is not a strongly good adversary for̃π(1k)
and ρ̃(1k), then〈〈A, π̃(1k)〉〉 and〈〈SA(1k), ρ̃(1k)〉〉 have the same distribution.

Proof. SinceS can fix the random tape ofA, we can w.l.o.g. consider only deterministic ITMs
A.

Since π̃ has logarithmic communication complexity, there are only apolynomial number
of communication traces possible betweenA and π̃(1k) and a polynomial number of possible
outputs ofπ̃. We call C the set of these traces and the set of outputsO. By construction of
π̃, O = {1, . . . , n} for somen. For each(c, o) ∈ C × O, the ITM S can efficiently compute
the probabilityPc,o that the communicationc and outputo occur in an interaction betweenA
andπ̃(k). (Note that this does not holds in general, since some of these probabilities might be
efficiently constructible, but not efficiently computable.However, the reader may verify that for
the protocol̃π as constructed here, and using the fact thatA is deterministic, it is indeed possible
to efficiently computePc,o.) In particular,Pc,o ∈ Q. Furthermore, for each communication
c ∈ C, let ac be the output ofA after communicationc.

Thenvo :=
∑

c∈C Pc,o is the probability that〈A, π̃(k)〉 = o. Thenv := (v1, . . . , vn) ∈ Qn.
SinceA is not strongly good,v ∈ Aρ̃(k). We remember the construction ofρ̃ (see in particular
Lemma 46): The ITMρ̃ (or, more concretely, the ITMH simulated byρ̃) expects a single
messagej of logarithmic length fromS. Let J be the set of these possible messages. Then, for
eachj ∈ J there is a probability distributionv(j) such that upon messagej the ITM ρ̃ gives
outputi with probability v

(j)
i . Therefore the adversary-polytope ofρ̃(k) has the formAρ̃(k) =

conv{v(j) : j ∈ J}. Note thatS can efficiently compute allv(j).
Sov ∈ conv{v(j) : j ∈ J}. Therefore there is a convex combinationv =

∑

j∈J rjv
(j) with

∑

j rj = 1 andrj ≥ 0. Since#J is polynomial ink, andv andv(j) are efficiently computable,
we can efficiently compute the valuesrj.4

Let S choose messagej with probabilityrj . Then〈SA(1k), ρ̃(1k)〉 = v. So〈SA(1k), ρ̃(1k)〉
andv = 〈A, π̃(1k)〉 have the same distribution.

To be able to investigate〈〈SA(1k), ρ̃(1k)〉〉, we have to specify the output ofS. Sinceac and
Pc,o for c ∈ C, o ∈ O are known toS, it can efficiently compute the distribution of〈〈A, π̃(1k)〉〉.
(It is Pr[〈〈A, π̃(1k)〉〉 = (a, o)] =

∑

c∈C δ(ac = a)Pc,o whereδ(ac = a) = 1 if and only if

4 Finding the convex combination can be recast into a linear programming problem: Find a vector(r1, . . . , r#J )

satisfying the linear equalities and inequalitiesvi =
∑

j∈J
rjv

(j)
i for all i,

∑

j
rj = 1, andrj ≥ 0 for all

j ∈ J . Since these are polynomially many equations with rationalcoefficients, we can efficiently compute an
exact solution using the ellipsoid method (see e.g., [GLS93, Theorem (6.4.9)]).
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ac = a and0 otherwise.) Sinceρ(1k) sends its output toS (cf. in particular the construction
of H from Lemma 46), we can assume thatS knows the outputo′ of ρ(1k). ThereforeS can
compute the distribution of(a, o) = 〈〈A, π̃(1k)〉〉 under the conditiono = o′. ThenS choosesa
according to that distribution and outputsa. Since〈SA(1k), ρ̃(1k)〉 and〈A, π̃(1k)〉 have the same
distribution, it follows that the distributions of〈〈SA(1k), ρ̃(1k)〉〉 and〈〈A, π̃(1k)〉〉 are identical,
too. ut

Using this lemma we can now show thatπ̃ is indeed as secure asρ̃ with respect to computa-
tional stand-alone security.

Lemma 57. The ITM π̃ is as secure as the ITM̃ρ with respect to computational stand-alone
security without auxiliary input.

Proof. Assume for contradiction that̃π is not as secure as̃ρ with respect to computational stand-
alone security without auxiliary input. Then there exists aprobabilistic polynomial-time ITM
A such that for every polynomial-time ITMS the following distributions are computationally
distinguishable

〈〈A(1k), π̃(1k)〉〉 and 〈〈S(1k), ρ̃(1k)〉〉. (14)

Let K be the set of allk ∈ N such thatA(1k) is strongly good forπ(1k) and ρ(1k). By
Lemma 56 there is a polynomial-time probabilistic oracle ITM S such that〈〈A(1k), π̃(1k)〉〉
and 〈〈SA(1k)(1k), ρ̃(1k)〉〉 have the same distribution for allk /∈ K. SinceA(1k) runs in
probabilistic polynomial time,SA(1k)(1k) does, too. So ifK is finite, 〈〈A(1k), π̃(1k)〉〉 and
〈〈SA(1k)(1k), ρ̃(1k)〉〉 are computationally indistinguishable in contradiction to (14). Therefore
K is infinite.

By Theorem 49, for allk ∈ K, given black-box access toA(1k) we can compute a witnessw
for R(fd2

√
log ke) in probabilistic polynomial time ink. SinceR is a witness-preserving reduction,

from w we can efficiently compute a witness (i.e., a satisfying assignment) forfd2
√

log ke. By
outputting that witness, we can construct a probabilistic polynomial-time algorithmB with the
property that fork ∈ K, the probabilityPr[fd2

√
log ke(B(1k)) = 1] is at least23 .

For n ∈ N, let Kn := {k ∈ N : d2
√

log ke = n}. Let C be the following Turing machine:
Upon input1n, for eachk ∈ Kn it invokesB(1k) (it may invoke no instance ofB if Kn = ∅).
If one of these instances returns a witness forfl, the machineC outputs that witness.

Since fork > nlog n it is d2
√

log ke > n, all k ∈ Kn satisfyk ≤ nlog n and in particular,
#Kn ≤ nlog n. SoC(1n) has running time inpoly(nlog n) = nO(log n).

For k ∈ K andn := d2
√

log ke, the Turing machineC(1n) calls B(1k) and thus gets a
witness forfd2

√
log ke = fn with probability at least23 . SinceK is infinite, this happens for

infinitely manyn. So the probabilityPr[fn(C(1n)) = 1] is at least23 for infinitely manyn. This
is a contradiction to Assumption 52. So our assumption thatπ̃ is not as secure as̃ρ is wrong. ut

Combining the results from this section, we get the separation of computational and statisti-
cal stand-alone security without auxiliary input.

Theorem 58 (Computational Does Not Imply Statistical Security Stand-Alone Security
Without Auxiliary Input). If Assumption 52 holds, computational stand-alone security with-
out auxiliary input does not imply statistical stand-alonesecurity without auxiliary input for
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polynomial-time protocols with logarithmic communication complexity, even if the ideal proto-
col is a function (i.e., a function-like ITM).

Proof. Immediate from Lemmas 54, 57 and 55. ut

Because of Lemma 56, analogous theorems hold for black-box security and if we require the
simulator to be efficient even in the statistical case.

One might ask whether this result also holds in the case with auxiliary input. Here we have to
distinguish two cases, nonuniform and uniform auxiliary input. Definition 31 defines stand-alone
security with nonuniform auxiliary input. In contrast, uniform auxiliary input in the sense of
[Gol93] means that protocol-inputs and auxiliary input arechosen by a probabilistic polynomial-
time machine. This allows to model additional information the adversary might have on the
protocol-inputs and still enables sequential compositionwithout introducing nonuniform com-
plexity assumptions. If the protocols take no inputs (as is the case with̃π and ρ̃), stand-alone
security with uniform auxiliary input and stand-alone security without auxiliary input coincide
since the adversary may choose the auxiliary input himself.Therefore Theorem 58 also applies in
the case of stand-alone security withuniformauxiliary input. In the case ofnonuniformauxiliary
input however, our approach does not work, since we would need a variant of Assumption 52
that holds against nonuniform adversaries, which of courseis impossible. In fact, in the next
section we will show that Theorem 58 does not holds in the casewith nonuniform auxiliary
input.

D.3 The Stand-Alone Model With Auxiliary Input

We will now show that with nonuniform auxiliary input, computational security implies statisti-
cal security in the case of protocols with logarithmic communication complexity. This is done
by showing that in this case any adversary’s strategy can be encoded into an auxiliary input. The
following lemma formalises this fact.

Lemma 59. Let X and A be ITMs. Assume thatX has communication complexityO(log k)
upon input(1k, z). Then there is a polynomial-time ITMApoly and a functionf with |f(k, z)| ∈
kO(1) such that for all sequencesx and z of strings, the distributions〈〈A(1k , zk),X(1k , xk)〉〉
and〈〈Apoly(1

k, f(k, zk)),X(1k , xk)〉〉 are statistically indistinguishable ink.

Proof. Fork ∈ N, a stringz and a sequencec of inputs and outputs ofA, letpmsg
A,k,z(c,m) denote

the probability thatA(1k, z) sends messagem under the condition that its communication up to
that point wasc. Similarly, letpout

A,k,z(c, o) denote the probability thatA(1k, z) terminates with
outputo under the condition that its communication up to that point wasc. If these probabilities
are undefined (because the communicationc cannot occur withA(1k, z)), we setpmsg

A,k,z(c,m) =

0 or pout
A,k,z(c, o) := 0, respectively.

Let Ak,z be the ITM that after communicationc, sendsm with probabilitypmsg
A,k,z(c,m) and

outputso with probability pout
A,k,z(c, o). (If these probabilities do not add to1, with the remain-

ing probability Ak,z terminates with a fixed output⊥.) Obviously,〈〈A(1k, z),X(1k , x)〉〉 and
〈〈Ak,z,X(1k, x)〉〉 have identical distributions for all stringsx.
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Forα > 0 andr ∈ R, let brcα := αb r
αc, i.e.,brcα denotesr rounded down to a multiple of

α.
Let p̃msg

A,k,z(c,m) := bpmsg
A,k,z(c,m)c2−k andp̃out

A,k,z(c, o) := bpout
A,k,z(c, o)c2−k .

Let Ãk,z be defined analogously toAk,z, except that the probabilities̃pmsg
A,k,z(c,m) and

p̃out
A,k,z(c, o) are used. Then〈〈Ak,z,X(1k , x)〉〉 and 〈〈Ãk,z,X(1k, x)〉〉 are statistically indistin-

guishable ink. SinceA(1k, z) has logarithmic communication complexity ink, and since the
images ofp̃msg

A,k,z(c,m) and p̃out
A,k,z(c, o) can be represented usingk bit, there is a representa-

tion of p̃msg
A,k,z and p̃out

A,k,z whose length is polynomial ink. Let f(k, zk) be that representation.

Given f(k, zk), we can simulateÃk,z in polynomial time ink. Let thenApoly be the polyno-
mial time ITM that upon input(1k, f(k, z)) simulatesÃk,z. Then for all sequencesx andz of
strings,〈〈A(1k, zk),X(1k, xk)〉〉 and〈〈Apoly(1

k, f(k, zk)),X(1k , xk)〉〉 are statistically indistin-
guishable ink. ut

Since any adversary can be encoded into the auxiliary input of a polynomially-bounded one,
it is not hard to show the following theorem which states thatcomputational implies statistical
stand-alone security with nonuniform auxiliary input in the case of logarithmic protocols.

Theorem 60 (Computational Implies Statistical Stand-Alone Security With Nonuniform
Auxiliary Input). Let π andρ be polynomial-time ITMs. Assume that the communication com-
plexity and the length of the output ofπ and ρ on input (1k, z) is logarithmic ink. If π is as
secure asρ with respect to computational stand-alone security with auxiliary input, thenπ is as
secure asρ with respect to statistical stand-alone security with auxiliary input.

Proof. Assume thatπ is not as secure asρ with respect to statistical security with auxiliary input.
Then there exist an ITMA such that for every ITMS there are sequencesxS andzS of strings
polynomial length such that

〈〈A(1k, zS
k ), π(1k , xS

k )〉〉 6≈ 〈〈S(1k, zS
k ), ρ(1k, xS

k )〉〉 (15)

where≈ denotes statistical indistinguishability ink. Without loss of generality, we can assume
that the communication complexity ofA is logarithmic ink (sinceπ has logarithmic communi-
cation complexity, too) and that the output ofA is its view (and thus in particular has logarithmic
length ink, too). Letb(k) be an efficiently computable upper bound on the length of the output
of A.

By Lemma 59 there exists a polynomial-time ITMApoly and a functionf with |f(k, z)| ∈
kO(1) such that for every ITMS, we have

〈〈A(1k, zS
k ),X(1k, xS

k )〉〉 ≈ 〈〈Apoly(1
k, f(k, zS

k )),X(1k , xS
k )〉〉.

From Apoly, we construct an ITMAb
poly that upon input(1k, z) runsApoly but truncates the

output to lengthb(k). Sinceb(k) is an upper bound on the length of the output ofA, we have for
all ITMs S:

〈〈A(1k, zS
k ),X(1k, xS

k )〉〉 ≈ 〈〈Ab
poly(1

k, f(k, zS
k )),X(1k , xS

k )〉〉. (16)
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To finish the proof, we have to show that for any polynomial-time ITM S, there are se-
quencesẑS and x̂S of strings of polynomial length such that the families of distributions
realS :=

{

〈〈Ab
poly(1

k, ẑS
k ), π(1k, x̂k)〉〉

}

k,ẑS
k

,x̂k
andidealS :=

{

〈〈S(1k, ẑS
k ), ρ(1k, x̂k)〉〉

}

k,ẑS
k

,x̂k

arenot computationally indistinguishable. SinceAb
poly has output of logarithmic length ink, we

can assume w.l.o.g. thatS has output of logarithmic length ink, too.
We define the (not necessarily polynomial-time) ITMS′ which upon input(1k, z) invokes

S(1k, f(k, z)). Then by (16) and (15) and witĥzS
k := f(k, zS′

k ) andx̂k := xk, we have

〈〈Ab
poly(1

k, ẑS
k ), π(1k, x̂k)〉〉 6≈ 〈〈S′(1k, zS′

k ), ρ(1k, xk)〉〉 = 〈〈S(1k, ẑS
k ), ρ(1k, x̂k)〉〉.

In other words, the families of distributionsrealS andidealS arenot statistically indistinguish-
able. SinceAb

poly, S, π andρ are polynomial-time ITMs, and have output of logarithmic length
in k, by Theorem 23 the familiesreal and ideal arenot computationally indistinguishable, ei-
ther. ut

E Advantage-Based Security – Details and Proofs

Definition 61 (Advantage-Based Security).Let B be an ITM andγ a function. We say that
B is γ-secure with respect to computational advantage-based security with auxiliary inputif for
every polynomial-time ITMA and for all sequencesx and z of strings of polynomial length,
there is a negligible functionµ such thatPr[〈A(1k, zk), B(1k, xk)〉 = 1] ≤ γ(k) + µ(k) for all
k ∈ N.

We speak of statistical advantage-based security if the above holds with unboundedA.
We speak of advantage-based security without auxiliary input if A does not get the additional

input zk (i.e., the distribution〈A(1k), B(1k, xk)〉 is considered).

Definition 62 (Game of a Protocol).LetB be an ITM. ThegameGB
k,n of B, k, n is the follow-

ing one-player game:

– First, player 1 may choose a stringx with |x| ≤ log n.
– Then, the game consists of the interaction〈A,B(1k, x)〉, where player 1 learns all messages

thatA receives, and may choose all message thatA sends.
– The payoff of the game is1 if B outputs1, and0 otherwise.

If B(1k, x) has logarithmic communication complexity ink + |x|, the game-treeGB
k,n has poly-

nomial size ink + n (note that we do not claim that the representation ofGB
k,n and in particular

the probability distributions therein have polynomial size, since these distributions may contain
irrational numbers).

Definition 63 (Distance of games).LetG1 andG2 be two games in extensive form of the same
structure (i.e.,G1 andG2 differ only in their transition probabilities).

For a pathp, byG1(p) we denote the product of the probabilities associated with the chance-
edges on the pathp.

Then the distanced(G1, G2) is defined asmaxp|G1(p) − G2(p)| wherep ranges over all
paths inG1 connecting the root and a leaf.
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Lemma 64. Let G1 and G2 be n-player games in extensive form of the same structure. Let
Hi(µ1, . . . , µn) denote the expected payoff of player 1 for gameGi if the strategiesµ1, . . . , µn

are played.5

Assume thatHi takes values in[−1, 1]. For mixed strategiesµ1, . . . , µn, it is
|H1(µ1, . . . , µn)−H2(µ1, . . . , µn)| ≤ #G1 · d(G1, G2).

Proof. For pure strategiesσ1, . . . , σn we haveHi(σ1, . . . , σn) =
∑

p∈S G′(p)H(p). HereS is
the set of all paths that are not ruled out by the strategiesσ1, . . . , σn, andH(p) denotes the
payoff H(v) of the leafv of pathp. SinceG1 andG2 have the same structure,H(p) andS do
not depend oni. Then

∣

∣H1(σ1, . . . , σn)−H2(σ1, . . . , σn)
∣

∣ ≤
∑

p∈S

∣

∣H(p)(G1(p)−G2(p))
∣

∣

≤ #S · d(G1, G2) ≤ #G1 · d(G1, G2).

For mixed strategiesµ1, . . . , µn we then have

∣

∣H1(µ1, . . . , µn)−H2(µ1, . . . , µn)
∣

∣ =
∣

∣Eµ[H1(σ1, . . . , σn)−H2(σ1, . . . , σn)]
∣

∣

≤ Eµ

[

|H1(σ1, . . . , σn)−H2(σ1, . . . , σn)|
]

≤ #G · d(G1, G2).

HereEµ[X] denotes the expectation value ofX if σ1, . . . , σn are chosen independently accord-
ing to the distributionsµ1, . . . , µn. ut

Lemma 65. There is a deterministic polynomial-time ITMAG such that the following holds:
Let n, k ∈ N. LetB be an ITM and letGB

k,n be the game ofB, k, n. Let G̃ be a game with the

same structure asGB
k,n. Then

max
|x|≤log n

Pr[〈AG(G̃), B(1k, x)〉 = 1] ≥ max
A, |x|≤log n

Pr[〈A,B(1k , x)〉 = 1]−2#GB
k,n ·d(G̃,GB

k,n)

where the maxima go over stringsx of length|x| ≤ log n and over (possibly unbounded) ITMs
A, andGB

k,n is given in extensive form.

Proof. In [KM92, Section 3.3] it is shown that for a one-player gameG with perfect recall in
extensive form, one can compute a pure strategyσ in deterministic polynomial time, such thatσ
is optimal in the following sense: For every mixed strategyµ we haveH(σ) ≥ H(µ). HereH
denotes the payoff function ofG.

SinceGB
k,n has perfect recall by construction, the gameG̃ has perfect recall, too. Then letAG

be the ITM that upon input̃G computes an optimal pure strategyσ for G̃. Theσ then prescribes
the choice of a stringxσ with |xσ | ≤ log n and how to interact withB. ThenAG simply interacts
with B as prescribed by the strategyσ (and ignores the choice ofxσ). Then, by definition ofGB

n,k

we have
Pr
[

〈AG(G̃), B(1k, xσ)〉 = 1
]

= HB
k,n(σ)

5 AlthoughG1 andG2 have the same payoffs at corresponding leafs, their payoff functions may differ anyway since
the payoff functions denote the expected payoff which change when the transition probabilities change.
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whereHB
k,n is the payoff function ofGB

k,n.
Let an ITMA and a stringxA with |x|A ≤ log n be given. Letµ be the mixed strategy that

choosesx := xA as input forB and prescribes to send the messagesA would send. Then

Pr
[

〈A,B(1k, xA)〉 = 1
]

= HB
k,n(µ).

By using the fact thatσ is an optimal strategy for̃G and applying Lemma 64 twice, we get

HB
k,n(σ) ≥ H̃(σ)−#GB

k,z · d(G̃,GB
k,n)

≥ H̃(µ)−#GB
k,z · d(G̃,GB

k,n)

≥ HB
k,n(µ)− 2#GB

k,z · d(G̃,GB
k,n). (17)

whereH̃ is the payoff function ofG̃. So for all ITMsA and all stringsx of length|xA| ≤ log n,
we have

max
|x|≤logn

Pr
[

〈AG(G̃), B(1k, x)〉 = 1
]

≥ Pr
[

〈AG(G̃), B(1k, xσ)〉 = 1
]

(17)

≥ Pr
[

〈A,B(1k, xA)〉 = 1
]

− 2#GB
k,z · d(G̃,GB

k,n).

From this, the lemma follows. ut

Definition 66 (Efficiently playable games).Let {Gk,n}k,n∈N be a family ofm-player games
in extensive form. We call{Gk,n}k,n∈N efficiently playable if the following two conditions hold:

– There is a deterministic polynomial time algorithm which upon input(1k, 1n) computes the
extensive form ofGk,n excluding the probabilities at the chance nodes (i.e., we get the game-
tree without transition probabilities, the information sets and the value of the payoff function
on the leafs of the game tree).

– There is a probabilistic polynomial time algorithmR with the following property. Let
σ1, . . . , σm be pure strategies for players1, . . . ,m. For a pathp from the root ofGk,n to a
leaf ofGk,n, let P be the probability that this path is played given the strategiesσ1, . . . , σm.
Then upon input(1k, 1n, σ1, . . . , σm) the algorithmR outputs the pathp with probabilityP .

Lemma 67 (Estimating game trees).Assume that{Gk,n} is an efficiently playable family of
games.

Then there is a probabilistic polynomial-time algorithmT such that for every superpoly-
nomial functionf there is a negligible functionδ such that the following holds: Upon input
(1k, 1n, 1f(k)), the algorithmT outputs a game treẽG that has the same structure asGk,n, and
with probability at least1− δ(k), it is d(G̃,Gk,n) ≤ δ(k).

Proof. Upon input(1k, 1n, 1f ) for somek, n, f ∈ N, the algorithmT proceeds as follows:

– SinceGk,n is efficiently playable, we can compute the extensive form ofGk,n with excep-
tion of the probabilities at the chance nodes. To get a complete extensive form, we have to
estimate the probability distributions on the outgoing edges of each change noden.
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– For each chance nodev, let (σ1, . . . , σm) be pure strategies not ruling outv. By Xk,n,v we
denote the following distribution: In a play ofGk,n with pure strategies(σ1, . . . , σm), if v is
reached, letXk,n,v denote the node reached immediately afterv, and ifv is not reached, let
Xk,n,v := ⊥.

– SinceGk,n is efficiently playable, there are at most polynomially-many nodes ink + n
(otherwise the extensive form ofGk,n could not be computed in polynomial time). Therefore
a node ofGk,n can be represented using logarithmic length, so we can consider Xk,n,v to
be a random variable with logarithmic length ink + n + |v|. Then by Lemma 22, there is
a probabilistic polynomial-time algorithmSX such that upon input(1k, 1n, v, 1f ) it outputs
the description of a probability distributioñX such that with probability at least1 − 1

f , we

have∆(Xz ; X̃) ≤ 1
f .

– For each chance noden, we therefore callSX(1k, 1n, v, 1f ) to get an estimatẽXk,n,v

of Xk,n,v. Then we annotate each edge fromv to a successorv′ with the probability
Pr[X̃k,n,v=v′]
Pr[X̃k,n,v 6=⊥]

. If Pr[X̃k,n,v 6= ⊥] = 0, we assign an arbitrary probability distribution to

the outgoing edges ofv.
– Let G̃ be the resulting game and outputG̃.

Since for each chance nodev, the probabilitiesPr[X̃z,n=n′]
Pr[X̃z,n 6=⊥]

sum to1, the outputG̃ of algorithm

T always is a game.
Let now f be a superpolynomial function in|z|. Assume thatT is called with inputs

(1k, 1n, 1f(k)). We will show that the estimatẽG output bySG(z, 1f(|z|)) has with overwhelming
probability negligible distance fromGz. Let k, n ∈ N be fixed. By Lemma 22, for each chance
nodev, with probability1− 1

f(k) we have∆(Xk,n,v; X̃k,n,v) ≤ 1
f(k) . Therefore, with probability

at least1− #Gk,n

f(k) we have

∆(Xk,n,v; X̃k,n,v) ≤
1

f(k)
for all chance nodesv in G. (18)

In the following, we assume that (18) holds.
Fix some path p in Gk,n from root to leaf. We will show that |Gk,n(p) −

G̃(p)| ≤ 4#Gk,n

√

1/f(k), and since this holds for all pathsp, it follows d(Gk,n, G̃) ≤
4#Gk,n

√

1/f(k).
Let l denote the length of the pathp (i.e., the number of edges on the path). For anyi ≤ l let

Qi :=
Pr[Xk,n,pi

=pi+1]

Pr[Xk,n,pi
6=⊥] . Herepi is thei-th node on the pathp. Similarly, letQ̃i :=

Pr[X̃k,n,pi
=pi+1]

Pr[X̃k,n,pi
6=⊥]

.

By definition ofXk,n,v we havePr[Xk,n,pi−1
= pi] = Pr[Xk,n,pi

6= ⊥] andPr[Xk,n,p0 6= ⊥] =
1, so thatRi := Q1 · · ·Qi−1 = Pr[Xk,n,pi−1

= pi]. In particular,Q1 · · ·Ql = G(p). Further,
Q̃1 · · · Q̃l = G̃(p) by construction ofG̃.

We show thatRi|Qi − Q̃i| ≤ 4
√

1/f(k). If Ri ≤
√

1/f(k), this follows directly from the
fact thatQi, Q̃i ∈ [0, 1]. On the other hand, ifRi ≥

√

1/f(k), by (18) there areµ, ν ∈ R with
|µ|, |ν| ≤ 1/f(k) such that we have withPi := Pr[Xk,n,pi

= pi+1] ≤ 1:

Ri|Qi−Q̃i| (18)
= Ri

∣

∣

∣

∣

Pi

Ri
− Pi + µ

Ri + ν

∣

∣

∣

∣

=

∣

∣

∣

∣

νPi − µRi

Ri − ν

∣

∣

∣

∣

≤ f(k)−1 + f(k)−3/2

f(k)−1/2 − f(k)−1

(∗)
≤ 2f(k)−1

f(k)−1/2/2
≤ 4
√

1/f(k).
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In (∗) we used that w.l.o.g. we can assumef(k) > 4.
Since Q̃i ≤ 1 for all i, from Ri|Qi − Q̃i| ≤ 4

√

1/f(k) it follows that
∣

∣Q1 · · ·Qi−1QiQ̃i+1 · · · Q̃l −Q1 · · ·Qi−1Q̃iQ̃i+1 · · · Q̃l

∣

∣ ≤ 4
√

1/f(k) and therefore
∣

∣Gk,n(p)− G̃(p)
∣

∣ =
∣

∣Q1 · · ·Ql − Q̃1 · · · Q̃l

∣

∣ ≤ 4l
√

1/f(k) ≤ 4#Gk,n

√

1− f(k).

Since this holds for allp, we haved(Gk,n, G̃) ≤ 4#Gk,n

√

1/f(k) (under the assumption made

above that (18) holds). Summarizing, for anyk, n with probability at least1 − #Gk,n

f(k) we have

d(Gk,n, G̃) ≤ 4#Gk,n

√

1/f(k). By settingδ := 4#Gk,n

√

1/f(k) ≤ #Gk,n

f(k) the lemma fol-
lows. ut

Lemma 68. Let B be a polynomial-time ITM with logarithmic communication complexity in
the length of its input.

There is a polynomial-time ITMAT such that for every superpolynomial functionf and
every polynomial functionn there is a negligible functionµ such that

max
|x|≤log n(k)

Pr
[

〈AT (1k, 1n(k), 1f(k)), B(1k, x)〉 = 1
]

≥ max
A, |x|≤log n(k)

Pr
[

〈A,B(1k, x)〉 = 1
]

−µ(k).

Here the maxima go over stringsx of length|x| ≤ log n(k) and over (possibly unbounded) ITMs
A.

Proof. Let GB
k,n be the game ofB, k, n. Since there are only a polynomial number (inn) of

stringsx with length|x| ≤ log n, and sinceB has logarithmic communication complexity, the
game tree ofGB

k,n has polynomial size#GB
k,n in k + n and can be efficiently computed (with

exception of the probabilities occurring in the game tree).Thus, sinceB runs in polynomial-
time, the family{GB

k,n}k,n of games can be efficiently played. Therefore, by Lemma 67 there is
a probabilistic polynomial-time algorithmT such that for any superpolynomial functionf there
is a negligible functionδf such that upon input(1k, 1n, 1f(k)), the algorithmT outputs a grame
treeG̃ such that with probability at least1− δf (k) it is d(G̃,GB

k,n) ≤ δf (k).

Let AG be the ITM from Lemma 65. Then defineAT to be the ITM that on input(1k, 1n, 1f )
computesG̃ := T (1k, 1n, 1f ) and then executesAG(G̃).

Let f be a superpolynomial function andn a polynomial function. Then by Lemma 65 we
have

max
|x|≤log n

Pr
[

〈AT (1k, 1n(k), 1n(k)), B(1k, x)〉 = 1
]

≥ max
A, |x|≤logn

Pr
[

〈A,B(1k, x)〉 = 1
]

− 2#GB
k,n(k) · E[d(G̃k, GB

k,n)]. (19)

HereG̃k denotes the game computed byT (1k, 1n(k), 1n(k)), andE[d(G̃,GB
k,n)] denotes the

expected value ofd(G̃,GB
k,n).

Since with probability at least1 − δf (k) we have d(G̃,GB
k,n(k)) ≤ δf (k), it is

E[d(G̃k, GB
k,n(k))] ≤ 2δf (k) negligible. Since#GB

k,n(k) is polynomially bounded ink + n(k),

which is again polynomial ink, it follows thatµ(k) := 2#GB
k,n(k) ·E[d(G̃k, GB

k,n)] is negligible.
With (19) the lemma follows. ut
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Theorem 69. Let B be a polynomial-time ITM that upon input(1k, x) has logarithmic com-
munication complexity ink and reads only a prefix ofx of logarithmic length ink. Let γ be a
function.

Assume thatB is γ-secure with respect to computational advantage-based security without
auxiliary input. ThenB is γ-secure with respect to statistical advantage-based security without
auxiliary input

The same holds for advantage-based security with auxiliaryinput.

Proof. We first examine the case of security without auxiliary input. We assume thatB is not
γ-secure with respect to statistical advantage-based security without auxiliary input.

Then there is an efficiently computable polynomially-bounded functionn and a (possibly
unbounded) ITMA and a sequencesx of strings of length at mostlog n such that

Adv(A, k, xk) := max{0,Pr[〈A,B(1k , xk)〉 = 1]− γ}

is not negligible ink.
Let AT be defined as in Lemma 68. For an integerf ∈ N, let ∆f (k) :=

max|x|≤log n(k) Adv(AT (1k, 1n(k), 1f ), k, x). We extend this to functionsf by setting∆f (k) :=
∆f(k)(k). Then, for any superpolynomial functionf , by Lemma 68 we have that∆f (k) ≥
Adv(A, k, xk) − µ(k) for some negligible functionµ. Thus∆f is not negligible. LetP be the
set of all positive polynomials with integer coefficients. Assume that for every polynomialp ∈ P ,
the function∆p is negligible. We say a functionµ∗ asymptotically dominates a functionµ if for
all sufficiently largek, we haveµ∗(k) ≥ µ(k). In [Bel02] it is shown that for every countable set
N of negligible functions there is a negligible functionµ∗ that asymptotically dominates every
µ ∈ N . SinceP is countable, it follows that there is a negligible functionµ∗ that asymptotically
dominates every∆p with p ∈ P .

Let f(k) := max{f ∈ N : ∆f (k) ≤ µ∗}. Then∆f ≤ µ∗ and therefore negligible. Further-
more, we show thatf is superpolynomial. For contradiction, assume thatf was not superpoly-
nomial. Then there exists a polynomialp ∈ P such thatf(k) < p(k) for infinitely manyk. By
construction off , we then have∆p(k) > µ∗(k) for infinitely manyk. This is a contradiction
to the fact thatµ∗ asymptotically dominates∆p, sof is superpolynomial. But we have shown
above that for every superpolynomialf , the function∆f is not negligible. So our assumption
was wrong and there exists a polynomialp such that∆p is not negligible. In other words:

max
|x|≤log n(k)

Adv(AT (1k, 1n(k), 1p(k)), k, x)

is not negligible. For eachk, let xk be a stringx for which the maximum is reached. Further, let
A∗(1k) be the ITM that executesAT (1k, 1n(k), 1p(k)). Then

max{0,Pr[〈A∗(1k), B(1k, xk)〉 = 1]− γ(k)}

is not negligible, so there is no negligible functionµ such thatPr[〈A∗(1k), B(1k, xk)〉 = 1] ≤
γ+µ. SinceA∗ runs in polynomial-time, this shows thatB isnotγ-secure with respect to compu-
tational advantage-based security without auxiliary input. This concludes the case of advantage-
based security without auxiliary input.
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The proof carries over to the case of advantage-based security with auxiliary input almost
verbatim. The only change necessary is to supply the ITMA∗ with an additional argumentz
whichA∗ ignores. ut
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