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Abstract

Identity Based Encryption (IBE) systems are often constructed using bilinear maps (a.k.a.
pairings) on elliptic curves. One exception is an elegant system due to Cocks which builds an
IBE based on the quadratic residuosity problem modulo an RSA composite N . The Cocks
system, however, produces long ciphertexts. Since the introduction of the Cocks system in 2001
it has been an open problem to construct a space efficient IBE system without pairings. In this
paper we present an IBE system in which ciphertext size is short: an encryption of an `-bit
message consists of a single element in Z/NZ plus ` + 1 additional bits. Security, as in the
Cocks system, relies on the quadratic residuosity problem. The system is based on the theory
of ternary quadratic forms and as a result, encryption and decryption are slower than in the
Cocks system.

1 Introduction

In an Identity Based Encryption (IBE) system any string can function as a public key [36]. IBE
systems have found numerous applications in cryptography (see [12, 13, 7, 21, 41, 8, 10, 5] to name a
few) and computer security [2, 40, 29, 30, 37]. There are currently two approaches for constructing
IBE systems. The first approach builds IBE systems using bilinear pairings [9, 6, 39, 35]. The
resulting systems are efficient both in performance and ciphertext size. The rich structure of bilinear
maps enables various extensions such as Hierarchical IBE [27, 24], anonymous IBE [8, 1, 11, 23],
and many others.

The second approach, due to Cocks [16], builds an elegant IBE system based on the standard
quadratic residuosity problem [31, p.99] modulo an RSA composite N (in the random oracle model).
Ciphertexts in this system contain two elements in Z/NZ for every bit of plaintext. Hence, the
encryption of an `-bit message key is of size 2` · log2 N . For example, when encrypting a 128-
bit message key using 1024-bit modulus, one ends up with a ciphertext of size 32678 bytes. For
comparison, pairing based methods produce a 36 byte ciphertext for comparable security.

A long standing open problem since [16] is the construction of a space efficient IBE system
without pairings, namely a system with short ciphertexts. We construct such a system — an
encryption of an ` bit message consists of a single element in Z/NZ plus (` + 1) additional bits.
Hence, ciphertext size is about ` + log2 N . When encrypting a 128-bit message key the result is
a ciphertext of size 1024 + 129 = 1153 bits or 145 bytes. The system makes extensive use of the
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theory of quadratic forms [14]. In particular, encryption and decryption are based on an effective
version of Legendre’s famous three squares theorem.

Our main proposed IBE system is presented in Section 6. The system is related to the Cocks
system and security is similarly based on the quadratic residuosity (QR) problem. As in the
Cocks system, our IBE proof of security makes use of the random oracle model. However, the
random oracle model is needed only for proving that the underlying Rabin signature scheme is
existentially unforgeable. To make this precise we first prove security in the standard model under
the Interactive QR assumption (IQR), namely under the assumption that the QR problem is
difficult in the presence of a hash square root oracle. We then note that IQR is equivalent to QR in
the random oracle model. We observe that the system is an anonymous IBE under the quadratic
residuosity assumption. (the Cocks system is known to not be anonymous). In Appendix E, we
describe a general framework for using hash proof systems (as defined in [18]) that have a trapdoor
to construct IBE systems that are anonymous and secure against chosen-ciphertext attacks in the
standard model under the Interactive Subset Membership (ISM) assumption, a generalization of
the IQR assumption. We provide hash proof systems for quadratic residuosity, which induce a
system based on IQR (in the standard model). We also provide a PKE system secure against
chosen-ciphertext attacks under the QR assumption, which may be of independent interest.

The computational performance of our system is far from ideal. Recall that encryption time
in most practical public key systems such as RSA and existing IBE systems [9, 16] is cubic in the
security parameter. Encryption time in our system is quartic in the security parameter per message
bit. Decryption time, however, is cubic as in other systems. The bottleneck during encryption is
the need to generate primes on the order of N . In Section 5.3 we show a time space tradeoff where
the number of primes to generate can be significantly reduced at the cost of a modest increase in
the ciphertext size. Encryption in the resulting system takes several seconds.

2 Definitions

Recall from [36, 9] that an Identity Based Encryption system (IBE) consists of four algorithms:
Setup, KeyGen, Encrypt, Decrypt. The Setup algorithm generates system parameters, denoted by
PP, and a master key MSK. The KeyGen algorithm uses the master key to generate the private
key dID corresponding to a given identity ID. The Encrypt algorithm encrypts messages for a given
identity (using the system parameters) and the Decrypt algorithm decrypts ciphertexts using the
private key.

An IBE must remain secure against an attacker who can request private keys for identities of
his choice. This is captured in the standard IBE security game [9], which also captures chosen
ciphertext attacks. Beyond the basic semantic security requirements for IBE encryption one can
also require that the IBE be anonymous, namely that a ciphertext reveal no information about the
identity used to create the ciphertext. Anonymous IBE is useful for a variety of applications such
as searching on encrypted data [8, 1, 11, 37]. Chosen ciphertext security, private key queries, and
anonymity are captured in the following IBE security game:

Setup: The challenger runs Setup(λ) and gives the adversaryA the resulting public parameters PP.
It keeps MSK to itself. We set ID∗

0, ID∗
1 ← ⊥ and C∗ ← ⊥.

Queries: The adversary issues adaptive queries q1, q2, . . . where query qi is one of:
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• Private key query 〈IDi〉 where IDi 6= ID∗
0, ID∗

1. The challenger responds by running
algorithm KeyGen(MSK, IDi) and sends the resulting private key di to A.

• Decryption query (IDi, Ci) where (IDi, Ci) is neither (ID∗
0, C

∗) nor (ID∗
1, C

∗). The chal-
lenger responds by running algorithm KeyGen(MSK, IDi) to generate a private key di

and then runs algorithm Decrypt(di, Ci). It sends the resulting plaintext to the adversary.

• A single encryption query
(
(ID0,m0), (ID1,m1)

)
where ID0, ID1 are distinct from all

previous private key queries and m0,m1 are two equal length plaintexts. The challenger
picks a random bit b

R← {0, 1} and sets

C∗ ← Encrypt(PP, IDb,mb) , ID∗
0 ← ID0, ID∗

1 ← ID1

It sends C∗ to the adversary.

Guess: Eventually, the adversary outputs a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We define A’s advantage in attacking the scheme E as

IBEAdvA,E(λ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The probability is over the random bits used by the challenger and the adversary. An adversary A
in this game is called an ANON-IND-ID-CCA adversary. We will also consider three types of weaker
adversaries:

• If A makes no decryption queries we say that A is an ANON-IND-ID-CPA adversary. This
models an anonymous IBE under a chosen plaintext attack.

• If in the single encryption query used to create the challenge ciphertext C∗, the adversary
uses ID0 = ID1 then we say that the adversary is an IND-ID-CCA adversary. This models a
chosen ciphertext secure IBE that is not necessary anonymous [9].

• An adversary that makes no decryption queries and sets ID0 = ID1 is said to be an IND-ID-CPA
adversary. This is the standard IBE security model under a chosen plaintext attack.

Definition 2.1. Let S be one of {IND-ID-CPA, IND-ID-CCA, ANON-IND-ID-CPA}. We say that
an IBE system E is S secure if for all polynomial time S adversaries A we have that IBEAdvA,E(λ)
is a negligible function.

Notation: throughout the paper we let IDλ denote the set of all identities ID. The size of the set
grows with λ. As shorthand, we will often write ID instead of IDλ.

2.1 Jacobi symbols and the QR assumption

For a positive integer N , we use J(N) to denote the set {x ∈ Z/NZ :
(

x
N

)
= 1}, where

(
x
N

)
is the

Jacobi symbol of x in Z/NZ. We use QR(N) to denote the set of quadratic residues in J(N). We
base the security of our system on the following computational assumption.

Definition 2.2 (Quadratic Residuosity Assumption (QR)). Let RSAgen(λ) be a PPT algorithm
that generates two equal size primes p, q.
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• Let PQR(λ) be the distribution:

(p, q) R← RSAgen(λ), N ← pq, V
R← QR(N), output(N,V )

• Let PNQR(λ) be the distribution:

(p, q) R← RSAgen(λ), N ← pq, V
R← J(N) \QR(N), output(N,V )

We say that the QR assumption holds for RSAgen if for all PPT algorithms A, the function∣∣∣Pr[(N,V ) R← PQR(λ) : A(N,V ) = 1]− Pr[(N,V ) R← PNQR(λ) : A(N,V ) = 1]
∣∣∣

is negligible. We call this the QR advantage QRAdvA,RSAgen(λ) of A against RSAgen.

For completeness, we also prove our system secure without relying on random oracles. This,
however, requires a stronger assumption we call the interactive QR assumption. Basically, the
assumption says that the QR assumption holds relative to a square root oracle.

Definition 2.3 (Interactive Quadratic Residuosity Assumption (IQR)). Let H be a hash function
such that for every integer N the function HN(·) maps {0, 1}∗ to J(N). LetO be a square root oracle
— for every N which is a product of two odd primes it picks a quadratic non-residue uN ∈ J(N).
It maps an input pair (N,x) to one of HN(x)1/2 or (uN HN(x))1/2 in Z/NZ, depending on which
value is a quadratic residue. The oracle O is chosen uniformly from the set of all such functions.
We say that the Interactive QR assumption (IQR) holds for the pair (RSAgen,H) if for all
PPT algorithms A, the function∣∣∣Pr[(N,V ) R← PQR(λ) : AO(N,V ) = 1]− Pr[(N,V ) R← PNQR(λ) : AO(N,V ) = 1]

∣∣∣
is negligible. We call this the IQR advantage IQRAdvA,(RSAgen,H)(λ) of A against RSAgen and H.
Note that for IQR to hold, it must be difficult to find collisions in H, since each collision allows the
adversary to factor N with probability 1/2.

Note that the oracle O is a Rabin signature oracle. For a messages m ∈ {0, 1}∗ and public key
(N,uN), the value O(N,m) is the Rabin signature on m.

When H is a full-domain hash function modeled as a random oracle, the QR assumption implies
the IQR assumption. Hence, our system will be secure in the standard model based on IQR and
in the random oracle model based on the standard QR assumption.
Our IBE system also uses a pseudorandom function (PRF) as defined in [25].

3 An abstract IBE system with short ciphertexts

We begin by describing an abstract IBE system that produces short ciphertexts. The system uses
a deterministic algorithm Q with the following properties.

Definition 3.1. Let Q be a deterministic algorithm that takes as input (N,R, S) where N ∈ Z+

and R,S ∈ Z/NZ. The algorithm outputs two polynomials f, g ∈ Z/NZ[x]. We say that Q is IBE
compatible if the following two conditions hold:

4



• (Condition 1) If R and S are quadratic residues, then f(r)g(s) is a quadratic residue for all
square roots r of R and s of S.

• (Condition 2) If R is a quadratic residue, then f(r)f(−r)S is a quadratic residue for all square
roots r of R.

We construct an IBE compatible algorithm Q in Sections 4 and 5. Condition 1 implies that
the Legendre symbol (f(r)/N) is equal to (g(s)/N), a fact that will be used during decryption.
Condition 2 will be used to prove security.

A single bit system. As a warm up to our IBE construction, consider briefly the following
simple IBE for one bit messages.

Setup(λ): generate (p, q) R← RSAgen(λ), N ← pq, and a random u
R← J(N) \ QR(N). Output

public parameters PP = (N,u,H) where H is a hash function H : ID → J(N). The master key
MSK is the factorization of N .

KeyGen(MSK, ID): generate a private key by first setting R← H(ID). If R ∈ QR(N) set r ← R1/2

and otherwise set r ← (uR)1/2. Output r as the private key for ID. Note that the private key is
essentially a Rabin signature on ID, as in the Cocks system.

Encrypt(PP, ID,m): to encrypt m ∈ {±1} with public key ID pick a random s ∈ Z/NZ and
compute S ← s2. Let R← H(ID). Run Q twice:

(f, g)← Q(N, R, S) and (f̄ , ḡ)← Q(N, uR, S)

and encrypt m using the two Jacobi symbols: c ← m ·
(

g(s)
N

)
and c̄ ← m ·

(
ḡ(s)
N

)
. Output the

ciphertext C ← (S, c, c̄).

Decrypt(C, r): decrypt (S, c, c̄) using private key r. Let us first suppose that R = H(ID) is in
QR(N) so that r2 = R. The decryptor runs Q(N, R, S) to obtain (f, g). By condition (1) of
Definition 3.1 we know that (

g(s)
N

)
=
(

f(r)
N

)
Hence the plaintext is obtained by setting m ← c ·

(
f(r)
N

)
. If R is a non-residue then uR is a

quadratic residue and r2 = uR. We decrypt by running Q(N, uR, S) and recovering m from c̄.
Since Q is deterministic, both sender and receiver always obtain the same pairs (f, g) and (f̄ , ḡ).

This completes the description of the one bit abstract system. Condition (1) implies soundness.
As we will see, condition (2) enables us to prove semantic security under the QR assumption. We
note that the Cocks system, reviewed in Appendix A, is not an instance of this system.

Remark: Throughout the paper we let S, s be values chosen by the Sender (encryptor). We let
R, r be values chosen by the Receiver (decryptor).
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3.1 The Multi-Bit Abstract IBE System

Observe that a single value S chosen by the encryptor can be used to encrypt multiple bits. To
encrypt an `-bit message we hash ID multiple times by computing Ri ← H(ID, i) for i = 1, . . . , `.
Now each pair (S, Ri) can be used to encrypt one message bit. The ciphertext only grows by two
bits (ci, c̄i) per message bit. Hence, when encrypting an ` bit message, the complete ciphertext
is C = (S, (c1, c̄1), . . . , (c`, c̄`)) whose length is dlog2(N)e + 2` bits. In Section 6 we show how to
shrink the ciphertext length to dlog2(N)e+ (` + 1) bits.

We describe the complete system, called “BasicIBE” in more detail.

Setup(λ): Generate (p, q) R← RSAgen(λ), N ← pq, and a random u
R← J(N) \ QR(N). Output

public parameters PP = (N,u,H) where H is a hash function H : ID × [1, `]→ J(N).
The master key MSK is the factorization of N and a random key K for a pseudorandom function
FK : ID × [1, `]→ {0, 1, 2, 3}.
KeyGen(MSK, ID, `): Takes as input MSK, ID, and a message length parameter `. It generates a
private key for decrypting encryptions of `-bit messages. For j = 1, . . . , ` do:

Rj ← H(ID, j) ∈ J(N) and w ← FK(ID, j) ∈ {0, 1, 2, 3}
let a ∈ {0, 1} be such that uaRj ∈ QR(N)
let {z0, z1, z2, z3} be the four square roots of uaRj in Z/NZ
Set rj ← zw

Output the decryption key dID ← (PP, r1, . . . , r`). The PRF ensures that the key generator always
outputs the same square roots for a given ID, but an adversary cannot tell ahead of time which of
the four square roots will be output.

Encrypt(PP, ID,m): Takes as input PP, a user ID, and a message m = m1 . . .m` ∈ {−1, 1}`. It
generates random s ∈ Z/NZ and sets S ← s2. For j = 1, . . . , ` do:

(1) Rj ← H(ID, j) , (f, g)← Q(N,Rj , S), and (f̄ , ḡ)← Q(N,uRj , S)

(2) cj ← mj ·
(

gj(s)
N

)
and c̄j ← mj ·

(
ḡj(s)
N

)
.

Set c← c1 · · · c` and c̄← c̄1 · · · c̄` and output the ciphertext C ← (S, c, c̄).

Decrypt(C, dID): Let dID = (PP, r1, . . . , r`). For j = 1, . . . , ` let Rj ← H(ID, j) and do:

if r2
j = Rj run (fj , gj)← Q(N,Rj , S) and set mj ← cj ·

(
fj(rj)

N

)
if r2

j = uRj run (f̄j , ḡj)← Q(N,uRj , S) and set mj ← c̄j ·
(

f̄j(rj)
N

)
Output m← m1 . . .m`.

The completes the description of BasicIBE. Soundness of decryption follows from Condition 1.

Remark: The function H outputs elements in J(N). This function can be easily implemented using
a hash function H ′ that outputs elements in Z/NZ. Simply include in PP some element z ∈ Z/NZ
whose Jacobi symbol (z/N) is −1. Then, to compute H(ID, j) first compute x ← H ′(ID, j). If
x ∈ J(N) output H(ID, j) = x, otherwise output H(ID, j) = xz. Either way, H(ID, j) ∈ J(N) as
required.
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3.2 Security

We prove security of the IBE system BasicIBE in the random oracle based on the QR assumption.

Theorem 3.2. Suppose the QR assumption holds for RSAgen and F is a secure PRF. Then the
IBE system BasicIBE is IND-ID-CPA secure when H is modeled as a random oracle. In particular,
suppose A is an efficient IND-ID-CPA adversary. Then there exist efficient algorithms B1,B2 (whose
running time is about the same as that of A) such that

IBEAdvA,BasicIBE(λ) ≤ 2 ·QRAdvB1,RSAgen(λ) + PRFAdvB2,F (λ).

The proof is given in Appendix B as a sequence of games. We also describe the underlying
public key encryption system and prove its semantic security with a simple reduction style proof
to the QR assumption.

We note that the bounds in Theorem 3.2 are tight, and do not depend on the number of private
key queries from the adversary. Since the theorem is set in the random oracle model, we could avoid
the additional PRF assumption by implementing the PRF using the random oracle H. However,
the proof is simpler and the result more concrete using a PRF.

The proof of Theorem 3.2 depends on Condition (2) of Definition 3.1. Condition (2) is only used
to satisfy the conditions of the following simple lemma, which is used to prove semantic security —
it enables the challenger to create a challenge ciphertext that is well formed when S is in QR(N)
but is random when S is not (see Appendix B).

Lemma 3.3. Let N = pq be an RSA modulus, X ∈ QR(N), and S ∈ J(N) \ QR(N). Let x be a
random variable uniformly chosen from among the four square roots of X. Let f be a polynomial
such that f(x)f(−x)S is a quadratic residue for all four values of x. Then the Jacobi symbol
(f(x)/N) is uniformly distributed in {±1}.

Proof. Let x, x′ be two square roots of X such that x′ = x mod p, but x′ = −x mod q. Then the
four square roots of X are {±x,±x′}. Since S 6∈ QR(N), we have

(
f(x)

p

)
= −

(
f(−x)

p

)
, and the

same on q. By the Chinese Remainder Theorem,
(

f(x′)
p

)
=
(

f(x)
p

)
but

(
f(x′)

q

)
= −1 ·

(
f(x)

q

)
, so

that
(

f(x′)
N

)
= −1 ·

(
f(x)
N

)
. So of the four values f(x), f(x′), f(−x), f(−x′), the first two must have

different Jacobi symbols, as must the last two. Hence, among the four symbols, two are +1 and
two are −1.

Remark: The system BasicIBE is CPA secure, but is not anonymous — there are instances of
Q for which anyone can test which identity created a given ciphertext. In Section 6 we make the
system anonymous. Moreover, we shrink the ciphertext length to dlog2(N)e + (` + 1) bits. The
resulting system can be proven secure in the standard model under the IQR assumption. The
construction, however, cannot be based on a general IBE compatible algorithm Q. Instead, Q
must satisfy additional properties. We view the construction in Section 6 as our main proposed
construction.
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4 Concrete instantiation: an IBE compatible algorithm

To make our abstract system concrete, we need to give an IBE compatible algorithm Q. Recall
that Q must generate polynomials f and g that meet Conditions 1 and 2 of Definition 3.1. The
algorithm works as follows.

Algorithm Q(N,R, S):

1. Construct a solution (x, y) ∈ (Z/NZ)2 to the equation Rx2 + Sy2 = 1 (∗)
In Section 5 we describe algorithms and optimizations for solving this equation.
Solving this equation is the main bottleneck in our system.

2. Output the polynomials f(r)← xr + 1 and g(s)← 2ys + 2.

We show that Q is IBE compatible. Let R,S ∈ Z/NZ. Let r be a square root of R and s a square
root of S, if one exists. Condition 1 is met, since

f(r) · g(s) = 2xrys + 2xr + 2ys + 2 + (Rx2 + Sy2 − 1) = (xr + ys + 1)2 (mod N) .

Condition 2 is met, since f(r) · f(−r) · S = (1−Rx2)S = (Sy)2 (mod N).

Hence we have a valid instantiation for Q. It is tempting to derive a more efficient instantiation by
considering equations other than (∗). We can try to satisfy condition 1 by considering the following
general condition:

f(r) · g(s) = (w · rs + x · r + y · s + 1)2 .

One can show that to satisfy this condition it suffices to find a solution (w, x, y) ∈ Z/NZ3 to the
equation (RS)w2−Rx2−Sy2 +1 = 0, which seems easier than (∗) due to the additional variable w.
However, one can show [32] using quaternion algebra that a solution (w, x, y) to this equation yields
a solution to (∗). Hence, this more general instantiation is no more efficient than the simpler one
described above.

5 Algorithms and Optimizations

The instantiation of algorithm Q in the previous section needs an algorithm that given an integer
N and R,S ∈ Z/NZ outputs a pair (x, y) ∈ Z/NZ2 such that

Rx2 + Sy2 = 1 (1)

Throughout the section we assume R 6= S and RS 6= 0. Recall that when encrypting an `-bit
message using the abstract system (Section 3), the encryptor must solve 2` such equations. In
particular, one needs pairs (xi, yi), (x̄i, ȳi) ∈ Z/NZ2 such that

Ri · x2
i + S · y2

i = 1 and (uRi) · x̄2
i + S · ȳ2

i = 1 (2)

for i = 1, . . . , `. The decryptor needs a solution to ` of these equations.
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5.1 A product formula

Although the encryptor needs solutions to the 2` equations in (2), we show that solving only ` + 1
equations is sufficient. We do so using a product formula that, given a solution to two equations,
builds a solution to a third equation.

Lemma 5.1. For i = 1, 2 suppose (xi, yi) is a solution to Aix
2 + By2 = 1. Then (x3, y3) is a

solution to
(A1A2) · x2 + B · y2 = 1 (3)

where x3 = (x1x2)/(By1y2 + 1) and y3 = (y1 + y2)/(By1y2 + 1).

Proof. The proof is by direct substitution into (3).

During encryption, the encryptor first finds solutions in Z/NZ to the ` + 1 equations

u · x2 + S · y2 = 1 and Ri · x2 + S · y2 = 1 for i = 1, . . . , ` (4)

using the algorithms discussed in the next section. The encryptor can now use Lemma 5.1 to
quickly find solutions to the remaining ` equations in (2). Simply apply Lemma 5.1 to the left
equation in (4) and the ith right equation in (4) to obtain a solution to (uRi) · x2 + S · y2 = 1, as
required. The same applies during decryption.

Overall, during encryption and decryption we need only to construct solutions to `+1 equations
of the form (1). For convenience, from here on we set R0 = u.

5.2 Computing Solutions to Rx2 + Sy2 = 1 in Z/NZ

Now we turn to solving (1). Pollard and Schnorr[34] provided, as part of their cryptanalysis of
the Ong-Schnorr-Shamir signature scheme[33], a beautiful polynomial time algorithm (assuming
the GRH) for finding solutions to the equation x2 − Sy2 = R in Z/NZ. Clearly, a solution to
the Pollard-Schnorr equation (with x 6= 0) also gives a solution to (1). The algorithm, however, is
relatively slow requiring one to generate O(log log N) primes on the order of N .

We, instead, take a different approach. We lift (1) to the integers and consider the ternary
quadratic form

R̃x2 + S̃y2 − z2 = 0 (5)

where R̃, S̃, x, y, z ∈ Z and R̃ = R, S̃ = S mod N . A solution to (5) in Z gives a solution to (1)
in Z/NZ. Since N is odd, by adding multiples of N to R̃ and S̃ we can assume that gcd(R̃, S̃) = 1,
that R̃ is odd, and that S̃ = 1 mod 4. Then, by quadratic reciprocity R̃ is a square mod S̃ if
and only if S̃ is a square mod R̃. Let S′ ∈ [0, 4N ] be an integer such that S′ = S mod N and
S′ = 1 mod 4. Then S̃ = S′ mod 4N .

A classic result of Legendre [14] says that (5) has a solution (x, y, z) in Z whenever there exist
integers r, s such that

r2 = R̃ (mod S̃) and s2 = S̃ (mod R̃) (6)

Cremona and Rusin [19] present an effective version of Legendre’s theorem. They present several
algorithms that take as input integers N, R̃, S̃, r, s satisfying (6) and output a solution to (5). At
the heart of one of these algorithms is a lattice reduction in a simple 3-dimensional lattice of
determinant 4R̃S̃. For completeness, we present the algorithm in Appendix C.
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1024-bit Jacobi symbol: 0.135 ms
full 1024-bit exponentiation: 5.0 ms
1536-bit 3x3 LLL lattice reduction: 6.8 ms
1024-bit prime generation: 123.6 ms
512-bit prime generation: 11.0 ms

Table 1: Running times on 2.015GHz AMD dual-core Athlon64

Consequently, solving (1) reduces to finding integers r, s satisfying (6). To do so, one can look
for the smallest (probable) prime R̃ along the arithmetic progression R̃ = R mod N . Next one looks
for the smallest (probable) prime S̃ along the arithmetic progression S̃ = S′ mod 4N for which the
Legendre symbol (S̃/R̃) = 1. Finally, one computes the appropriate modular square roots to find
an r, s satisfying (6). Given r, s we obtain a solution to (5) which leads to a solution to (1) as
required.

Fortunately, we do not need a full primality test – one can use a simple deterministic square
root algorithm as a light weight primality test. If we obtain square roots r, s satisfying (6), we are
done, even if R̃, S̃ are not primes. We give the details in Appendix C.1. Similarly, the number of
candidates R̃, S̃ considered can be greatly reduced by sieving to eliminate all candidates divisible
by small primes. To summarize, we obtain the following result:

Lemma 5.2. There is a deterministic algorithm Q that on input N and R,S ∈ Z/NZ finds a
solution to (1). Q’s running time is dominated by the time to generate two primes R̃ = R mod N
and S̃ = S′ mod 4N satisfying (S̃/R̃) = 1.

We present the running times for various parts of the algorithm in Table 1. As expected, the
bottleneck is prime number generation. In Section 5.5 we show that it suffices to generate primes
on the order of

√
N corresponding to the last row in the table. These performance numbers were

obtained using the SAGE library.

5.2.1 Solving the system of ` + 1 equations

Recall that in our system the encryptor must solve the ` + 1 equations in (4). Clearly one could
apply Lemma 5.2 (` + 1) times. However, we would like to minimize the number of (expensive)
prime generations needed by our system. In particular, we wish to find a single prime S̃ that will be
used to solve all ` + 1 equations. Moreover, we would like to eliminate prime generation altogether
from the decryption step.

As a preliminary optimization, instead of storing u in PP, we let ũ be the smallest prime such
that ũ = u mod N and ũ = 3 mod 4, and we store ũ in PP. Let R̃0 = ũ. Below, we provide three
methods for generating the other primes needed by the system.
Method 1: The encryptor finds the smallest (probable) prime S̃ such that S̃ = S′ mod 4N and
(S̃/ũ) = 1. Then for i = 1, . . . , ` the encryptor finds the smallest (probable) prime R̃i ∈ Z+ such
that

R̃i = Ri mod N and

(
S̃

R̃i

)
= 1
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Note that by quadratic reciprocity we also have
(

R̃i

S̃

)
= 1 for i = 0, . . . , `. Using the primes (S̃, R̃i)

the encryptor can find a solution to Rix
2 + Sy2 = 1 mod N needed for encrypting the i’th bit of

the message. Overall, the encryptor needs to generate (` + 1) primes.
On the decryption side, for all i = 1, . . . , `, the decryptor precomputes and stores the first few

primes R̃i,1, R̃i,2, . . . that are congruent to Ri modulo N . Moreover, the encryptor can embed S̃ in
the ciphertext. As a result, the decryptor can directly solve the equations Rix

2 + Sy2 = 1 mod N
for i = 0, . . . , ` without generating any primes. Consequently, decryption in this system is much
faster than encryption. Note, however, that the decryptor must precompute and store about ` log2 `
primes.
Method 2: We reduce the decryptor’s storage requirement from ` log2 ` primes to 2` primes.
Suppose the decryptor has square roots for 2` values R1, . . . , R2` ∈ Z/NZ (as opposed to ` values
as in the abstract system). To encrypt an `-bit message the encryptor first constructs the smallest
primes

S̃ = S′ mod 4N ,

(
S̃

ũ

)
= 1 and R̃i = Ri mod N for i = 1, . . . , 2`

It then finds the subset of R̃i such that
(

S̃
R̃i

)
= 1. If at least ` such R̃i exist the encryptor can

encrypt the `-bit message. If fewer than ` primes satisfy the condition the encryptor looks for the
next prime along the arithmetic progression S̃ = S mod N . On average, the encryptor will need
two attempts until a satisfactory prime S̃ is found. Overall, the encryptor generates (2`+2) primes
on average.

The decryptor precomputes and stores the 2` primes R̃1, . . . , R̃2`. Moreover, the encryptor
embeds S̃ in the transmitted ciphertext thus enabling the decryptor to decrypt without generating
any primes.
Method 3: We reduce the decryptor’s storage requirement to ` primes and the encryptor’s prime
generation requirement to (` + 1) primes, at the expense of slightly increasing the size of PP
and the time needed to compute a solution to (5). In particular, we augment PP with values
p1, . . . , pt ∈ Z/NZ, where each Pj ← p2

j mod N is a prime in Z congruent to 3 modulo 4. We can
have t = O(log `). Let P = {P1, . . . , Pt}. Notice that P can be generated without knowledge of
N ’s factorization.

The encryptor generates S̃ as before, except that S̃ = 3 mod 4. For i = 1, . . . , `, the encryptor
finds the smallest (probable) prime R̃i ∈ Z+ such that R̃i = Ri mod N and R̃i = 3 mod 4. For all
i = 0, . . . , ` there are two cases:

• If (S̃/R̃i) = −1, then (R̃i/S̃) = 1 by quadratic reciprocity. The encryptor and decryptor
deterministically select a prime Pj ∈ P such that (Pj/R̃i) = −1, and set S̃′ = S̃ · Pj . In
the unlikely event that no such Pj exists, the encryptor looks for the next suitable prime
along the arithmetic progression S̃ = S mod N . Note that S̃′ is a square modulo R̃i, and
vice versa by quadratic reciprocity. Moreover, S̃′ = 1 mod 4. For these reasons, and since
the factors of S̃′ and R̃i are known, the encryptor and decryptor can each find a solution to
R̃ix

2 + S̃′y2 − z2 = 0 in Z. This yields a solution (x/z, pj · y/z) to Rix
2 + Sy2 = 1 in Z/NZ,

as needed for encrypting the i’th bit of the message.

• If (S̃/R̃i) = 1, then (R̃i/S̃) = −1. Encryption and decryption proceed as in the first case,
except that we multiply R̃j by Pj ∈ P to obtain R̃′ = R̃j · Pj where (R̃′/S̃) = 1.

11



Since S̃′ has about twice as many bits as S̃, the lattice reduction step may take a little longer.
However, empirically, the lattice reduction time is dictated by the smaller of the two coefficients
(e.g., |R̃i| < |S̃′|). In practice, the effect on lattice reduction time is therefore minimal. Since it takes
two full (log N)-bit exponentiations to compute R̃

1/2
i mod S̃′, this method impacts decryption time

somewhat. But it has little impact on encryption time, which is dominated by prime generation.

5.3 A time space tradeoff

So far the encryption bottleneck is in generating the primes S̃, R̃1, R̃2, . . .. This work can be greatly
reduced by splitting the `-bit plaintext into

√
` blocks each containing

√
` bits. We encrypt each

block separately. Write t← d
√

`e.
For example, the encryptor may instantiate this idea with method 3, using the same values of

R̃1, . . . , R̃t with each block. For the i’th block, the encryptor generates S̃i as in method 3, and
encryption proceeds as usual. Overall, the encryptor generates only 2t = 2d

√
`e primes, as opposed

to ` + 1 primes as discussed in the previous section. The downside is that the ciphertext size
increases from a single element in Z/NZ to t elements S1, . . . , St in Z/NZ.

For concrete parameters, say ` = 128 bits, this approach reduces the number of primes to
generate during encryption from ` + 1 = 129 (as in method 3) to 2d

√
`e = 24, about a factor of 5

improvement. The ciphertext grows from one element in Z/NZ to 12 elements (S̃1, . . . , S̃12).

5.4 Hashing IDs to small elements in Z/NZ

To further speed up prime generation, we can change slightly how the primes R̃1, . . . , R̃` are gener-
ated. Recall that R1, . . . , R` ∈ Z/NZ are generated by hashing (ID, i) into Z/NZ for i = 1, . . . , `.
We needed a a uniform distribution over Z/NZ for the random oracle simulation. In particular, we
needed to generate random pairs (z, z2) ∈ Z/NZ and then program the oracle so that H(ID, i) = z2.

Gentry [22], building on work by Vallée [38] and Coron [17], shows how to generate pairs
(z, z2) ∈ Z/NZ where z2 is indistinguishable from uniform in QR(N)∩[1, 8N2/3] and z is a uniformly
random square root of z2. Consequently, we can hash (ID, i) into [1, 8N2/3] without hurting the
simulation. This can potentially speed up prime number generation. We note that hashing into a
shorter interval can become insecure due to the attacks of Desmedt and Odlyzko [20].

Let us assume that for i = 1, . . . , ` the Ri are in the range [1, 8N2/3]. We can no longer look
for primes R̃i along the arithmetic progression R̃i = Ri mod N since that will negate the benefit of
having small Ri. Instead, we generate the R̃i by hashing (ID, i, v) for v = 1, 2, . . .. We define R̃i as
the first prime along this sequence. Since the numbers are a little smaller than before (size 8N2/3

as opposed to N), finding such a prime is faster than looking along the arithmetic progression.

5.5 Hashing IDs to products of small primes

Another way to speed up prime generation is to compute R̃i as the product
∏k−1

b=0 H(ID, i, b), where
H outputs d(log N)/ke-bit primes, each with Jacobi symbol 1 modulo N . R̃0 = ũ can also be set
in this way. Since prime generation takes quartic time (without sieving), generating R̃i in this way
takes much less time for the sender – by a factor of O(k3) – than generating R̃i as in Section 5.2.
The PKG computes the private key value ri from R̃i mod N in the usual way.

When k = 2, this approach can be simulated very efficiently in the random oracle model. To
define H(ID, i, b), the simulator generates random qi

R← Z/NZ and ai
R← {0, 1}, sets Qi ← uaiq2

i ∈
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Z/NZ and uses continued fractions to find small numbers x, y ∈ Z/NZ such that Qi = x/y. It
repeatedly picks new random (qi, ai) until x and y are d(log N)/2e-bit primes coming from the
appropriate distribution. Next, it sets ri ← qi · y and R̃i ← Qi · y2 (= x · y). When queried, it
returns H(ID, i, 0)← x, H(ID, i, 1)← y, and ri as the private key component for R̃i.

Moreover, when k = 2, we can construct a variant of our system that uses the faster approach
to prime generation, without making the other steps (notably, the lattice reduction) much slower.
In this variant, the PKG augments PP as in Method 3 in Section 5.2.1, except that each Pj ∈ P
is a product of two d(log N)/2e-bit primes, each congruent to 3 modulo 4; let Pj,0 and Pj,1 denote
the two factors of Pj . To instantiate H efficiently, H(ID, i, 0) is computed (using sieving) as the
first prime following H ′(ID, i, 0) that is congruent to 1 modulo 4, where H ′ outputs d(log N)/2e-bit
integers; H(ID, i, 1) is computed identically, except it equals 3 modulo 4. To compute R̃i, the
encryptor sets R̃i,0 ← H(ID, i, 0), R̃i,1 ← H(ID, i, 1), and R̃i ← R̃i,0 · R̃i,1. The encryptor generates
S̃ in the usual way. (This single large prime generation seems unavoidable.) For i = 0, . . . , `, if
(R̃i,0/S̃) = (R̃i,1/S̃) = 1, the encryptor and decryptor compute a solution to R̃ix

2 + S̃y2 − z2 = 0
in the usual way. If (R̃i,0/S̃) = −1 and (R̃i,1/S̃) = 1, they select Pj , Pk ∈ P such that R̃i,0 · Pj,0,
R̃i,1 and Pj,1 are all squares modulo S̃′ ← S̃ · Pk, and vice versa. Then, they solve the three
equations Tx2 + S̃′y2 − z2 = 0, where T is one of R̃i,0 · Pj,0, R̃i,1, or Pj,1. Afterwards, these three
solutions can be combined to obtain a solution to R̃′

ix
2 + S̃′y2 = 1 mod N for R̃′

i ← R̃i · Pj by
using the product formula (Lemma 5.1) twice. Multiplying x by pj and y by pk gives a solution
to Rix

2 + Sy2 = 1 mod N , after which encryption and decryption proceed in the usual way. The
remaining cases for (R̃i,0/S̃) and (R̃i,1/S̃) are similar.

Empirically, the time needed to reduce the lattice associated to the equation Tx2+S̃′y2−z2 = 0
is dictated by the smaller of the two values T and S̃′. Since lattice reduction takes cubic time, and
since T is (log N) bits once, and (log N)/2 bits twice, in the three equations above, the three lattice
reductions take only about 1.25 times as long as one “normal” lattice reduction in our system. So,
aside from the generation of S̃, this approach allows significantly (8 times) faster prime generation
almost for free.

Setting k > 2 is an interesting possibility, but it is unclear how to make the simulation efficient.
Of course, the simulator could generate R̃i as follows: generate random ri

R← Z/NZ and ai
R← {0, 1},

set R̃i ← uair2
i , and try to factor R̃i, hoping that it is (roughly speaking) N1/k-smooth. But this

leads to an extremely loose reduction.

6 Anonymous IBE and security without random oracles

The product formula (Lemma 5.1) allows us to quickly compute Q(N,uRj , S) from Q(N,Rj , S).
We show that for these derived solutions the decryptor can deduce the ciphertext bit c̄j from the
bit cj . As a result, the bits (c̄1, . . . , c̄`) need not be included in the ciphertext. By eliminating the
extra ciphertext bits we obtain an anonymous IBE and we can prove its security based on the IQR
assumption without the random oracle model.

As in Section 3 we begin by stating the abstract properties needed for this construction. We
then give an example instantiation and describe the resulting IBE system.

Definition 6.1. Let Q′ be a deterministic algorithm that takes as input (N,u,R, S) where N ∈ Z+

and u, R, S ∈ Z/NZ. The algorithm outputs polynomials f, f̄ , g, τ ∈ Z/NZ[x]. We say that Q′ is
Enhanced IBE Compatible if the following conditions hold:
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• (Condition 1a) If R and S are quadratic residues, then f(r)g(s) is also a quadratic residue
for all square roots r of R and s of S.

• (Condition 1b) If uR and S are quadratic residues, then f̄(r̄)g(s)τ(s) is also a quadratic
residue for all square roots r̄ of uR and s of S.

• (Condition 2a) If R is a quadratic residue, then f(r)f(−r)S is also a quadratic residue for all
square roots r of R.

• (Condition 2b) If uR is a quadratic residue, then f̄(r̄)f̄(−r̄)S is also a quadratic residue for
all square roots r̄ of uR.

• (Condition 2c) If S is a quadratic residue, then τ(s)τ(−s)u is also a quadratic residue for all
square roots s of S.

• (Condition 3) τ is independent of R, that is, Q′(N,u,R1, S) and Q′(N,u,R2, S) produce the
same τ for all N,u,R1, R2, S.

6.1 An enhanced IBE compatible example

As an instance of such a Q′, we proceed from Section 5.1 as follows. Algorithm Q′(N,u,R, S):

1. Construct a solution (x, y) ∈ (Z/NZ)2 to the equation Rx2 + Sy2 = 1
2. Construct a solution (α, β) ∈ (Z/NZ)2 to the equation u · α2 + S · β2 = 1
3. Output the polynomials:

f(r)← xr + 1 f̄(r̄)← 1 + Syβ + αxr̄
g(s)← 2ys + 2 τ(s)← 1 + βs.

This satisfies Conditions 1a, 2a and 2c as in Section 4, and trivially satisfies Condition 3. As for
Conditions 1b and 2b, we note that, per Lemma 5.1, x̄← αx/(Syβ +1) and ȳ ← (y +β)/(Syβ +1)
satisfy uR · x̄2 + S · ȳ2 = 1, so that when uR and S are quadratic residues:

f̄(r̄)g(s)τ(s) = (1 + Syβ + αxr̄) · (2 + 2ys) · (1 + βs)
= 2 · (1 + Syβ + αxr̄) · (1 + Syβ + ys + βs)

= 2 ·
(

1 + r̄
αx

Syβ + 1

)
·
(

1 + s
y + β

Syβ + 1

)
· (Syβ + 1)2

= 2 · (1 + r̄x̄) · (1 + sȳ) · (Syβ + 1)2

This is a quadratic residue: 2 · (1 + r̄x̄) · (1 + sȳ) is a quadratic residue as in Section 4, and so is
(Syβ + 1)2 by definition. Similarly, if uR is a quadratic residue, then

f̄(r̄)f̄(−r̄)S = (Syβ + 1)2(1 + r̄x̄)(1− r̄x̄)S

is a quadratic residue as in Section 4.

6.2 The modified IBE system

With an Enhanced IBE Compatible Q′ we construct an IBE, which we call AnonIBE. Its Setup and
KeyGen algorithms are the same as in the simpler system of Section 3.1.
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Encrypt(PP, ID,m): To encrypt a message m = m1,m2, . . . ,m` ∈ {±1}` to some ID, pick a
random s ∈ Z/NZ and compute S ← s2 mod N . Run Q′(N,u, 1, S) to obtain the polynomial τ ,
and compute k ←

(
τ(s)
N

)
. Then for j ∈ [1, `], set Rj ← H(ID, j), run Q′(N,u,Rj , S) to obtain gj ,

and compute cj ← mj ·
(

gj(s)
N

)
. Set c = c1, . . . , c`; the ciphertext is then (S, k, c). The ciphertext

size is now (log2 N + ` + 1) bits which is `− 1 bits shorter than before.

Decrypt(C, dID): To decrypt a ciphertext C = (S, k, c) with a private key dID = (r1, . . . , r`), for
j = 1, . . . , ` the receiver sets Rj ← H(ID, j) and runs Q′(N,u,Rj , S) to obtain fj and f̄j .

if r2
j = Rj set mj ← cj ·

(
fj(rj)

N

)
; if r2

j = uRj set mj ← cj · k ·
(

f̄j(rj)
N

)
Output m ← m1 . . .m`. Conditions 1a, 1b and 3 above guarantee that this correctly recovers the
message.

Security We prove that the system is ANON-IND-ID-CPA based on the IQR assumption.

Theorem 6.2. Let A be an efficient ANON-IND-ID-CPA adversary against AnonIBE. Then there
exist efficient algorithms B1,B2, running in about the same time as A, such that

IBEAdvA,AnonIBE(λ) ≤ PRFAdvB1,F (λ) + IQRAdvB2,(RSAgen,H)(λ)

Proof. Let A be an ANON-IND-ID-CPA adversary attacking the IBE system AnonIBE. We wish to
bound its advantage IBEAdvA,AnonIBE(λ). We present the proof as a series of games. We let Wi

denote the event that the adversary wins Game i.

Game 0. The first game is identical to the ANON-IND-ID-CPA game defined in Section 2. Hence,
we know that ∣∣∣∣Pr[W0]−

1
2

∣∣∣∣ = IBEAdvA,AnonIBE(λ) (7)

Game 1. In Game 1 we slightly modify the challenger in Game 0. Instead of using a PRF FK

to respond to A’s private key queries we use a truly random function f : ID × [1, `]→ {0, 1, 2, 3}.
Clearly, if F is a secure PRF, A will not notice the difference between Game 0 and Game 1. In
particular, there exists an algorithm B1 (whose running time is about the same as that of A) such
that

|Pr[W1]− Pr[W0]| = PRFAdvB1,F (λ) (8)

Game 2. In Game 2, we modify the challenger so that it does not need the factorization of N .
We will work in the setting of the IQR assumption, so we assume a randomly chosen square root
oracle O with its associated quadratic non-residue u as in Definition 2.3. As before, the challenger
chooses p, q

R← RSAgen(λ) and N ← pq, but now it does not need the factorization during the
game.

The public parameters are (N,u,H); they are distributed as in Game 1. The challenger responds
to private key queries using the oracle O. Given a private key query for ID the challenger must
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return ` values rj ∈ Z/NZ where r2
j = uaH(ID, j) for some a ∈ {0, 1}. This is precisely what the

oracle does, enabling the challenger to respond to private key queries. The encryption query is
unchanged.

Because the square root oracle is chosen at random (replacing the random function f), the
distributions of query responses are identical to those in Game 1. Therefore,

Pr[W2] = Pr[W1] (9)

Game 3. Game 3 proceeds exactly as Game 2 except that the encryption query is handled
differently. To encrypt a message mb to a particular IDb, the challenger does:

construct the private key dIDb
= (PP, r1, . . . , r`) using O

(∗) choose s
R← Z/NZ and set S ← s2

choose k
R← {±1}, and set cb ← Decrypt

(
dIDb

, (S, k,mb)
)

Send the challenge ciphertext (S, k, cb) to the adversary.
This process produces the same distribution for (S, k, cb) as the real Encrypt in Game 2. Indeed,

in Game 2 the quantity S is uniformly distributed among quadratic residues, and by Lemma 3.3,
the bit k is independently uniformly distributed in {±1}. Furthermore, cb is the unique string such
that (S, k, cb) is an encryption of mb. Hence, (S, k, cb) in Game 3 is distributed as in Game 2 and
therefore

Pr[W3] = Pr[W2] (10)

Game 4. Game 4 proceeds exactly as Game 3 except that when creating the challenge ciphertext
the challenger chooses S as a random non-residue. That is, we change the line marked (∗) in
Game 3 to S

R← J(N)\QR(N). Since this is the only change, under the IQR assumption, Game 4
will be indistinguishable from Game 3. More precisely, there exists an algorithm B2 whose running
in about the same time as A, such that

|Pr[W3]− Pr[W4]| = IQRAdvB2,(RSAgen,H)(λ) (11)

We claim that the adversary wins Game 4 exactly half the time. We show that in Game 4
the challenge ciphertext (S, k, c) is random and independent of b. The values S and k are clearly
independent of b. To show that c = c1 . . . c` are independent of b, consider the jth bit cj . Since O
was chosen at random, in the adversary’s view, rj is uniformly distributed among the four square
roots of Rj = H(IDb, j) or uRj . Hence, since S is not a quadratic residue, Lemma 3.3 tells us
that (fj(rj)/N) or (f̄j(rj)/N) is uniform in {±1}. Either way, the bit cj is uniform in {±1} and
independent of b. Overall, (S, k, c) is independent of b and hence

Pr[W4] =
1
2

(12)

Combining equations (7) through (12), we obtain:

IBEAdvA,AnonIBE(λ) ≤ PRFAdvB1,F (λ) + IQRAdvB2,(RSAgen,H)(λ)

This is the desired bound.
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Note that the IQR assumption follows from the QR assumption where H (i.e., HN ) is a full-domain
hash function modeled as a random oracle. The challenger picks some v ∈ J(n), and can replace
calls to HN (X) by choosing x

R← Z/NZ, a
R← {0, 1}, and returning HN (X) = v−ax2. When queried

for O(N,X), it returns x. If v is not a quadratic residue, this gives a properly random distribution
of HN . If v is a quadratic residue, the results are still indistinguishable by the QR assumption. In
summary, AnonIBE is secure in the standard model under the IQR assumption, and in the random
oracle model under the QR assumption.

7 Extensions and Open Problems

7.1 Chosen ciphertext security

In Appendix D, we review a generic construction that converts an IND-ID-CPA IBE system into an
IND-ID-CCA IBE in the random oracle model [4], and discuss how it applies to our scheme.

More importantly, in Appendix E we build an ANON-IND-ID-CCA IBE system in the standard
model. First, we describe a generic ANON-IND-ID-CCA system that uses hash proof systems (as
defined in [18]) for a subset membership problem that has a trapdoor permitting private key
generation. We prove this system secure under the interactive subset membership (ISM) assumption,
a generic analogue to the IQR assumption. We then describe our hash proof systems for quadratic
residuosity (employing the ideas described earlier in the paper) and show that these systems meet
the requirements of our generic framework. As a result, we obtain an ANON-IND-ID-CCA-secure IBE
system in the standard model under the IQR assumption. We also briefly describe an anonymous
PKE system based on our hash proof systems that is anonymous in the multi-user setting and
IND-CCA secure in the standard model under the (non-interactive) QR assumption.

7.2 Multivariate quadratics and higher residue symbols

A possible way to extend our IBE system is to use a higher-order character in place of the Jacobi
symbol. This may improve efficiency by allowing the sender and receiver to derive more than one
bit of shared secret data with each computation. Another possible extension is to use multivariate
polynomials f and g instead of univariate ones. This may improve efficiency if it allows us to
replace Q by a faster algorithm.

8 Conclusions

We described a space-efficient anonymous IBE system without pairings based on the quadratic
residuosity assumption in the random oracle model. In the standard model, the system is secure
under the interactive quadratic residuosity assumption. Our system is more space efficient than
Cocks’ IBE, but is less time efficient. Since the bottleneck in our system is due to algorithm Q it
is natural to look for other instantiations of our abstract system that are more efficient. Another
natural important problem is to design an IBE system secure without random oracles based on
quadratic residuosity. Currently, the Cocks system as well as ours needs the random oracle model
to argue that the underlying Rabin signature system is existentially unforgeable.
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A Review of Cocks IBE

The Cocks cryptosystem [16] depends on the sender and receiver knowing solutions to public
quadratic equations mod a large composite number N . Specifically:

Setup(λ) generates (p, q) R← RSAgen(λ), N ← pq, and a random u
R← J(N) \QR(N). It outputs

public parameters PP = (N,u,H) where H is a hash function H : ID → J(N). The master key
MSK is the factorization of N .

20



KeyGen(MSK, ID) generates a private key by first setting R ← H(ID). If R ∈ QR(N) it sets
r ← R1/2 and otherwise it sets r ← (uR)1/2. It outputs r as the private key for ID.

Encrypt(PP, ID,m): Let R ← H(ID). To encrypt an `-bit message m = m1 · · ·m` choose 2`
random tj,a ∈ Z/NZ for j ∈ {1, . . . , `} and a ∈ {0, 1}. Compute

dj,a ←
t2j,a + uaR

tj,a
and cj,a ← mj ·

(
tj,a
N

)
Output the 2` pairs C ←

(
(dj,a, cj,a)

)
for j ∈ {1, . . . , `} and a ∈ {0, 1}.

Decrypt(C, r): Set a ∈ {0, 1} such that r2 = uaR. For j = 1, . . . , ` set gj ← dj,a + 2r. Note that

gj =
(tj,a + r)2

tj,a
and hence

(gj

N

)
=
(

tj,a
N

)
Therefore the receiver can compute mj ← cj,a ·

(gj

N

)
and outputs m← m1 · · ·m`.

B Proof of Theorem 3.2

We prove security of the abstract multi-bit IBE system from Section 3.1. We prove Theorem 3.2 in
two steps. First, we present a public key system, called BasicPKE, that is semantically secure in the
standard model under the quadratic residuosity (QR) assumption. Then we deduce security of the
IBE system; however this second step requires the random oracle model. We note that BasicPKE
may be of independent interest since it gives a CCA-secure system in the standard model based on
the QR assumption (see Appendix E).

B.1 The public key system BasicPKE.

Our public key system (PKE) allows multiple users to use the same modulus N , and we treat N
as a common reference string. Hence, the PKE consists of four algorithms: a setup algorithm G to
generate the common reference string C, a key generation algorithm K to generate private/public
key pairs, and algorithms E,D to encrypt/decrypt. Note that if for some reason one does not want
all users to share the same N then the pair of algorithms (G, K) can be viewed as a single key
generation algorithm.
Algorithms E = (G, K,E, D) work as follows:

Algorithm G(λ): generate (p, q) R← RSAgen(λ), N ← pq, and output N as the common reference
string. The factorization of N is erased.

Algorithm K(N, `): Takes as input the common reference string N and a message length parameter
`. For j = 1, . . . , ` it picks a random rj

R← Z/NZ and sets Rj ← r2
j . It then outputs the public key

PK← (R1, . . . , R`) and private key SK← (N, r1, . . . , r`).

Algorithm E(N,PK,m): Let PK = (R1, . . . , R`) and m = m1 . . .m` ∈ {−1, 1}`. The algorithm
picks a random s ∈ Z/NZ and sets S ← s2. For j = 1, . . . , `, it does:

(fj , gj)← Q(N,Rj , S) and cj ← mj ·
(

gj(s)
N

)
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Set c← c1 · · · c` and output the ciphertext C ← (S, c).

Algorithm D(SK, C): Let SK = (N, r1, . . . , r`) and C = (S, c1, . . . , c`). For j = 1, . . . , ` do:

Rj ← r2
j , (fj , gj)← Q(N,Rj , S) , mj ← cj ·

(
fj(rj)

N

)
Output m← m1 . . .m`.

This completes the description of the PKE system BasicPKE. Soundness follows from condi-
tion (1) of Definition 3.1.

Security of BasicPKE. We now prove that BasicPKE is semantically secure without random
oracles. The standard semantic security game proceeds by the challenger first running G(λ) to
generate the common reference string C. It then runs K(C, `) to generate a public/private key pair
(PK,SK) for `-bit messages. It sends (C,PK) to A. Finally, it picks a random b

R← {0, 1}. Next,
A gives the challenger two equal length messages m(0),m(1) and gets back a challenge ciphertext
C∗ ← E(C,PK,m(b)). Finally A outputs its guess b′ ∈ {0, 1} for the bit b. We say that A wins the
game if b = b′. We refer to such adversary A as an IND-CPA adversary. We define the adversary’s
advantage in attacking the PKE scheme E as

PKEAdvE,A(λ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition B.1. We say that a PKE system E is IND-CPA secure if for all polynomial time adver-
saries A we have that PKEAdvE,A is a negligible function.

We can now state and prove the security theorem of BasicPKE.

Lemma B.2. The PKE system BasicPKE = (G, K,E, D) is IND-CPA secure in the standard model
if the QR assumption holds for RSAgen. In particular, suppose A is a polynomial time IND-CPA
adversary attacking BasicPKE. Then there exists an efficient QR algorithm B (whose running time
is about the same as that of A) such that

PKEAdvA,BasicPKE(λ) = QRAdvB,RSAgen(λ).

Proof. The proof is by direct reduction to the QR assumption. Algorithm B is given a random tuple
(N,V ) where N = pq, (p, q) R← RSAgen(λ) and V ∈ J(N). It tries to output 1 when V ∈ QR(N)
and 0 otherwise. Algorithm B runs A and plays the role of challenger to A. First, B sets N as the
common reference string and runs K(N, `) to obtain a public/private key pair (PK,SK) for `-bit
messages. It gives A the pair (N,PK).

Adversary A now responds with two equal length messages m(0),m(1) ∈ {±1}`. Now B creates
a challenge ciphertext C∗. It chooses a random b

R← {0, 1} and creates an encryption of m(b) using
the given V as follows:

• Let PK = (R1, . . . , R`) and let SK = (r1, . . . , r`).
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• Write m(b) = m1 . . .m` ∈ {±1}`. For u = 1, . . . , `, do:

(fu, gu)← Q(N,Ru, V ) and cu ← mu ·
(

fu(ru)
N

)
Set c← c1 · · · c` and send A the challenge ciphertext C∗ ← (V, c).

A now outputs a guess b′ ∈ {0, 1} for b. If b = b′ then B outputs 1. Otherwise it outputs 0. This
completes the description of B.

We argue that B breaks the QR assumption with the same advantage as A breaking the public key
system. This will follow from the the following two claims.

Claim 1: When (N,V ) R← PQR (i.e. V is uniformly distributed in QR(N)) then∣∣∣∣Pr[B(N,V ) = 1]− 1
2

∣∣∣∣ = ∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣ = PKEAdvA,BasicPKE(λ) (13)

Proof. When (N,V ) are distributed in PQR then B emulates perfectly an IND-CPA challenger. The
reference string N and public key PK are as in the real game. To see that the challenge ciphertext
C∗ is distributed as in the real attack game, let v be a square root of V , then by condition (1) of
Definition 3.1 we have (gu(v)/N) = (fu(ru)/N) for all u = 1, . . . , `, as required. Hence, the claim
follows.

Claim 2: When (N,V ) R← PNQR (i.e. V is uniformly distributed in J(N) \QR(N)) then

Pr[B(N,V ) = 1] = Pr[b = b′] =
1
2

(14)

Proof. When (N,V ) are distributed in PNQR we claim that the bit b is independent of A’s view.
In particular, the challenge ciphertext C∗ = (V, (c1 · · · c`)) is independent of b. To see why, con-
sider the bit cu = mu · (fu(ru)/N) ∈ {±1} for u = 1, . . . , `. Recall that PK = (R1, . . . , R`). The
only information A has about ru is the value Ru ∈ Z/NZ. Hence, from A’s view, ru is uniformly
distributed in the set of four square roots of Ru. Since V ∈ J(N) \ QR(N), it follows by Con-
dition (2) of Definition 3.1 and Lemma 3.3 that the symbol

(
fu(ru)

N

)
is uniformly distributed in

{±1}. Hence, cu is independent of mu. The same argument holds for all j = 1, . . . , ` and therefore
C∗ is independent of the message being encrypted. Overall, when (N,V ) are distributed in PNQR

we have Pr[B(N,V ) = 1] = Pr[b = b′] = 1
2 .

By combining (13) and (14) we obtain QRAdvB,RSAgen(λ) = PKEAdvA,BasicPKE(λ) as required.
This completes the proof of Lemma B.2.
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B.2 Security of the IBE system

Now, we turn to the proof of Theorem 3.2.

Proof. Let A be an IND-ID-CPA adversary attacking the IBE system BasicIBE. We show that under
the hypothesis of the theorem, IBEAdvA,BasicIBE(λ) is a negligible function. We present the proof
as a sequence of games. We let Wi denote the event that the adversary wins game i.

Game 0. The first game is identical to the IND-ID-CPA game defined in Section 2. Hence, we
know that ∣∣∣∣Pr[W0]−

1
2

∣∣∣∣ = IBEAdvA,BasicIBE(λ) (15)

The challenger picks the random oracle H : ID × [1, `]→ J(N) at random from the set of all such
functions and allows A to query H at arbitrary points.

Game 1. We slightly modify the challenger in Game 0. Instead of using a PRF to respond to A’s
private key queries we use a truly random function f : ID × [1, `] → {0, 1, 2, 3}. Clearly, if F is
a secure PRF, A will not notice the difference between Game 0 and Game 1. In particular, there
exists an algorithm B1 (whose running time is about the same as that of A) such that

|Pr[W1]− Pr[W0]| = PRFAdvB1,F (λ) (16)

Game 2. Recall that in Game 1 the public parameters PP given to A contain (N,u,H) where u
is uniform in J(N) \QR(N). Furthermore, in Game 1 the random oracle H is a random function
H : ID × [1, `] → J(N). In Game 2 we slightly change H. The challenger responds to a query to
H(ID, j) by picking random a

R← {0, 1} and v
R← Z/NZ and settings H(ID, j) = ua · v2. Clearly

this challenger implements a random function H : ID × [1, `]→ J(N) as in Game 1.
Let Rj ← H(ID, j) for some (ID, j). Recall that in Game 1 the challenger responds to a private

key query for ID by outputting a random square root of Rj or uRj for j = 1, . . . , `. Indeed, the
value f(Rj), which selects which square root to output, is uniform in the set {0, 1, 2, 3}.

In Game 2 let Rj ← H(ID, j) = ua · v2 for some (a, v). The challenger responds to a private
key query for ID by outputting either R

1/2
j = v (used if a = 0) or (uRj)1/2 = uv (used if a = 1)

for j = 1, . . . , `. Since v is uniform in Z/NZ this will produce a square root of Rj or uRj that
is uniformly chosen from amongst the four square roots, as in Game 1. In summary, A’s view in
games 1 and 2 is identical and therefore,

Pr[W2] = Pr[W1] (17)

Note that in Game 2 the challenger no longer needs the factorization of N to respond to A’s queries.

Game 3. We slightly modify the challenger in Game 2 by choosing u uniformly in QR(N) instead
of in J(N) \ QR(N). Since this is the only change between games 2 and 3, adversary A will not
notice the difference assuming the QR assumption holds for RSAgen. In particular, there exists an
algorithm B2 (whose running time is about the same as that of A) such that

|Pr[W3]− Pr[W2]| = QRAdvB2,RSAgen(λ) (18)
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We note that since the random oracle is defined as H(ID, j) = ua ·v2 and u ∈ QR(N) we now know
that H(ID, j) always outputs elements in QR(N). From here on we let u0 be a root of u.

Game 4. We slightly change how the challenger picks the challenge ciphertext C∗. We pick C∗

as in the proof of Lemma B.2. To respond to the encryption query (ID,m(0),m(1)) from A the
challenger chooses b

R← {0, 1} and does:

Ri ← H(ID, i) = uai · v2
i and ri ← uai

0 · vi for i = 1, . . . , `
(then ri is a root of Ri and u0ri is a root of uRi)

(∗) s
R← Z/NZ and S ← s2

write m(b) = m1 . . .m` ∈ {±1}`

for k = 1, . . . , `, do:

(fk, gk)← Q(N,Rk, S) and (f̄k, ḡk)← Q(N,uRk, S)

(∗∗) ck ← mk ·
(

fk(rk)
N

)
and c̄k ← mk ·

(
f̄k(u0rk)

N

)
c← (c1 · · · c`) and c̄ = (c̄1 · · · c̄`). Send A the challenge ciphertext C∗ ← (S, c, c̄)

Since S, Rk, uRk are all in QR(N) we know by condition (1) that (fk(rk)/N) = (gk(s)/N) for all
k = 1, . . . , ` and that the same holds for (f̄k, ḡk). Hence, the ciphertext C∗ created in this way is
identical to the challenge ciphertext created in Game 3. Therefore,

Pr[W3] = Pr[W4] (19)

It is important to note that s is not used in the creation of C∗.

Game 5. Game 5 is identical to Game 4 except that the S used to create the challenge ciphertext
C∗ is chosen uniformly in J(N) \ QR(N) instead of QR(N). That is we change the line marked
with a (∗) in Game 4 to be

(∗) S
R← J(N) \QR(N)

Since this is the only change from game 4 to game 5, adversary A will not notice the difference,
assuming the QR assumption holds for RSAgen. In particular, there exists an algorithm B′2 (whose
running time is about the same as that of A) such that

|Pr[W5]− Pr[W4]| = QRAdvB′
2,RSAgen(λ) (20)

Game 6. We can now change Game 5 and make the challenge ciphertext C∗ be independent of
the challenge bit b. We change the line marked (∗∗) in Game 4 as follows:

(∗∗) zk
R← {0, 1}, ck ← zk ·

(
fk(rk)

N

)
and c̄k ← zk ·

(
f̄k(u0rk)

N

)

As a result, the challenge ciphertext C∗ is an encryption of a random message z1 . . . z`, independent
of the bit b.

We argue that because S is a non-residue, Games 5 and 6 are indistinguishable due to Condi-
tion (2) of Definition 3.1 and Lemma 3.3. The argument is similar to the argument in the proof
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of Lemma B.2. The challenge ciphertext is created using 2` elements {R1, uR1, . . . , R`, uR`} all in
QR(N). For each R in {R1, . . . , R`} the adversary does not know which of the four square roots of
R is used in the creation of C∗. Hence, in the adversary’s view, Lemma 3.3 shows that the ` sym-
bols (

(
f1(r1)

N

)
, . . . ,

(
f`(r`)

N

)
) are uniformly distributed in {±1}` implying that the bits c1, . . . , c` are

distributed as in Game 5. The remaining bits c̄1, . . . , c̄` are generated consistently with c1, . . . , c`.
Overall, C∗ in Games 5 and 6 are identically distributed. We obtain

Pr[W6] = Pr[W5] (21)

End. Clearly in Game 6 we have

Pr[W6] =
1
2

(22)

Now combining equations (15) through (22) proves the theorem.

Remark 1: We point out that the reduction is tight, and in particular independent of the number
of private key queries and oracle queries made by A.
Remark 2: Recall that the element u in the public parameters is a random non-residue in J(N).
One might be tempted to set u = −1 and use a modulus N = pq which is a Blum integer (namely,
p = q = 3 mod 4). This, however, would ruin our proof. In the transition from Game 2 to Game 3
we switched u from a residue to a non-residue which caused the random oracle H to always output
elements in QR(N). This was necessary for a later part of the proof. Choosing u = −1 would
preclude this step. We note however that the transition from Game 2 to Game 3 would go through
with u = −1 if, in addition to QR, one also made the assumption that distinguishing N = pq with
p = q = 3 mod 4 from p = q = 1 mod 4 is intractable. Clearly we recommend using a random
non-residue u rather than u = −1.
Remark 3: Key generation in our system outputs a random square root of H(ID, j). The reason
for outputting a random root is evident in the transition from Game 2 to Game 3. That transition
would break if instead, the system used a deterministic square root algorithm (say by using N = pq
with p = q = 3 mod 4). Indeed, a powerful adversary could distinguish Game 2 from Game 3 by
testing whether the “correct” square root was given as a response to a private key query. We note
a modified proof can work with a deterministic square root algorithm, but the reduction is very
loose.

C Solving R · x2 + S · y2 = z2 in Z

In section 5.2, we needed an algorithm to solve R · x2 + S · y2 = z2. Here we describe such an
algorithm. We are given integers R,S, r, s where

• gcd(R,S) = 1, R is odd, and S = 1 mod 4,

• r2 = R mod S and s2 = S mod R.
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We show how to construct a solution (x, y, z) ∈ Z3 to

R · x2 + S · y2 − z2 = 0 (23)

using an algorithm described in [19]. The algorithm presented here is based on the proof of Legen-
dre’s theorem due to Mordell. Consider the three dimensional lattice L in Z3 containing all triples
(x, y, z) satisfying

s · y = z (mod R)
r · x = z (mod S)

x = 0 (mod 2)
y = z (mod 2)

It is easy to see that any point (x, y, z) in L satisfies

Rx2 + Sy2 − z2 = 0 (mod 4RS)

We define the norm q(x, y, z) = |R|x2 + |S|y2 + z2 and look for the shortest vector v ∈ L under the
norm q. A simple determinant calculation (and an application Minkowski’s theorem) shows that a
vector v = (x0, y0, z0) ∈ L exists whose q-norm is less than 4RS. Then |Rx2

0 + Sy2
0 − z2

0 | < |4RS|.
But since Rx2

0 + Sy2
0 − z2

0 = 0 mod 4RS, it follows that Rx2
0 + Sy2

0 − z2
0 = 0 holds over the integers,

as required.
To find the short vector v ∈ L Cremona and Rusin [19] use the LLL algorithm [26]. They show

that in three dimensions, one can easily derive the shortest vector from an LLL reduced basis.
Cremona and Rusin present other algorithms for solving (23) that do not use LLL and are claimed
to be twice as fast as the algorithm above. We also note that Cochrane and Mitchell [15] show that
the lattice L without the 2-adic components already contains a solution to (23).

C.1 Light weight primality tests

We give more details regarding the heuristic light weight primality test discussed in Section 5.2. The
idea is to implement the primality test via a deterministic square root algorithm. For convenience,
we require that R̃ = 3 mod 4 and S̃ = 5 mod 8.

We first look for a (probable) prime along the S̃ arithmetic progression by sequentially testing
if 2(S̃−1)/2 = ±1 mod S̃ until we find the first such S̃. Once found, we treat S̃ as though it was
prime. Next, we look for the first element along the R̃ arithmetic progression such that

s← S̃(R̃+1)/4 mod R̃ satisfies s2 = S̃ mod R̃ (24)

If R̃ and ( S̃
R̃

) = 1 then s will be a square root of S̃ modulo R̃. Finally, we compute the square root
of R̃ modulo S̃ assuming S̃ is prime. Since S̃ = 5 mod 8 the square root is one of

r0 ← R
(S̃+3)/8
0 mod S̃ or r1 ← R

(S̃+3)/8
0 · 2(S̃−1)/4 mod S̃ (25)

We test if r2
i = R̃ mod S̃ for i = 0, 1. If not, then we start over by looking for the next prime along

the S̃ arithmetic progression.
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D IND-ID-CCA IBE With Random Oracles Based on QR

We can construct an IND-ID-CCA system FullIBE from BasicIBE in the random oracle model using
a generic method, such as Construction 3 in [4]. That construction uses hash functions H1 and H2,
modeled as random oracles, and combines them with a generic probabilistic IBE scheme EID with
algorithms EncryptID(ID,m; r) and DecryptID(dID, C). It outputs an ID-KEM scheme EID−KEM

where EncryptID−KEM outputs (k, C) with C = EncryptID(ID,m;H1(m)) and k = H2(m), and
DecryptID−KEM (dID, C) first checks that m ← DecryptID(dID, C) 6= ⊥, then checks that C =
EncryptID(ID,m;H1(m)), and finally outputs k = H2(m). In our system, the second check does
not require a complete encryption; rather, the recipient merely checks that randomness H1(m)
leads to the sender’s choice of S. Bentahar et al. prove (in the random oracle model) that if EID

is one-way, then EID−KEM is secure against adaptive chosen ciphertext attack.

E ANON-IND-ID-CCA IBE Without Random Oracles Based on
Interactive Subset Membership Problems

In this section, we describe how to achieve ANON-IND-ID-CCA security for our IBE system.

E.1 Supplementary Definitions

First, we review Cramer and Shoup’s universal hash proof framework [18].
Let X, Π, K and T be finite non-empty sets. Let H = {Hk : X → Π}k∈K be a set of functions.

Let α : K → T be a function from K to T , which may be seen as a “projection.”

Definition E.1 (Projective hash family (PHF)). Let H, K, X, Π, T , and α be as above. Then,
for a given proper subset L ⊂ X, we refer to the tuple H = (H,K,X, L, Π, T, α) as a projective
hash family for (X, L) if for all k ∈ K, the action of Hk on L is determined by α(k) – i.e., given
α(k) and x ∈ L, Hk(x) is uniquely determined.

Definition E.2 (ε-universal). PHF H above is ε-universal if, for all t ∈ T , x ∈ X \ L and π ∈ Π,
it holds that

Pr[Hk(x) = π | α(k) = t] ≤ ε ,

i.e., the probability of guessing Hk(x) from x and α(k) is at most ε.

Definition E.3 (ε-smooth). PHF H above is ε-smooth if the statistical distance between the
distributions of (x, t, Hk(x)) and (x, t, π) is at most ε when k, x, and π are chosen uniformly at
random from K, X \ L, and Π respectively, and t← α(k).

Definition E.4 (Strongly smooth). PHF H above is strongly smooth if it is 0-smooth.

Definition E.5 (ε-universal2). PHF H above is ε-universal2 if, for all t ∈ T , distinct x, x∗ ∈ X \L,
and π, π∗ ∈ Π, it holds that

Pr[Hk(x) = π | Hk(x∗) = π∗ ∧ α(k) = t] ≤ ε ,

i.e., the probability of guessing Hk(x) from x, α(k) and Hk(x∗) is at most ε.

Note that if H is ε-universal2, it is ε-universal2.
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Definition E.6 (Strongly universal2). PHF H above is strongly universal2 if it is (1/|Π|)-universal2.

Cramer and Shoup use universal hash proofs in connection with hard subset membership problems,
defined as follows.

Definition E.7 (Subset Membership Problem). A subset membership problem M specifies a collec-
tion (Dλ)λ≥0 of distributions. For every value of the security parameter λ ≥ 0, Dλ is a probability
distribution of instance descriptions. We let Gen(λ) be an algorithm that generates a random
instance description according to the distribution Dλ in time polynomial in λ. Each instance
description Λ specifies the following:

• Finite non-empty sets X, L and W , with L a proper subset of X.

• A binary relation R ⊂ X ×W .

M specifies some basic algorithms – i.e., for sampling instances, for generating an element x ∈ L
together with a witness w, and for checking that a bit string is an element of X. We say that M is a
hard subset membership problem if it is hard to distinguish whether an element x has been chosen
at random from L or from X \ L. The subset membership assumption for M is the assumption
that M is a hard subset membership problem.

Definition E.8 (Hash Proof System). A hash proof system (HPS) P for subset membership prob-
lem M associates with each instance Λ[X, L, W, R] of M a PHF H = (H,K,X, L, Π, T, α) for
(X, L). The HPS provides some basic algorithms – e.g., to sample k ∈ K at random, to compute
α(k) given k ∈ K, and to check that a bit string is an element of Π. The most important algo-
rithms are the private evaluation algorithm, which allows one to efficiently compute Hk(x) from the
instance Λ, k ∈ K and x ∈ X, and the public evaluation algorithm, which allows one to efficiently
compute Hk(x) if x ∈ L when given the instance Λ, the value t (where t = α(k)), the value x and
a witness w ∈W for x’s membership in L.

We introduce the following general notion, which we will use to construct an IBE system.

Definition E.9 (Hash Proof System with Trapdoor). P is a HPS with trapdoor for subset mem-
bership problem M if instances of M can be generated (with the appropriate distribution) together
with a trapdoor MSK that enables an efficient lifting function σMSK : T → K that is pseudorandom
among functions satisfying α(σMSK(t)) = t for t ∈ T .

We also introduce the following computational assumption, which is defined analogously to the
IQR assumption.

Definition E.10 (Interactive Subset Membership (ISM) Assumption). Let P be a hash proof
system for subset membership problem M, as above. Let I be a set. Let Γ : I → T be a
function. Let O be an oracle chosen uniformly from the set of all functions from I → K satisfying
α(O(i)) = Γ(i) for all i ∈ I. We say the interactive subset membership assumption holds for
(M,P, I, Γ) if for all PPT algorithms A, the function

ISMAdvA(λ) =
∣∣∣Pr[Λ Dλ← Gen(λ);x R← L : AO(Λ, x) = 1]− Pr[Λ Dλ← Gen(λ);x R← X \ L : AO(Λ, x) = 1]

∣∣∣
is a negligible function. If P and P̂ are two HPS’s for M, with associated sets I and Î, functions
Γ and Γ̂, and oracles O and Ô, we say the ISM assumption holds for (M,P, P̂, I, Î,Γ, Γ̂) when A’s
advantage is negligible when given access to both O and Ô.
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Note that the ISM problem may not actually be hard unless Γ has at least minimal security
properties, such as collision resistance.

Also, note that when Γ is a full-domain hash function onto T that is modeled as a random
oracle and |α−1(t)| is constant for all t ∈ T , the subset membership assumption for M implies the
ISM assumption for (M,P, I, Γ). This is basically because the simulator can use its control over
the random oracle to implement the oracle O; specifically, for i ∈ I, it chooses random ki ∈ K and
sets O(i)← ki and Γ(i)← α(ki).

E.2 ANON-IND-ID-CCA Identity Based Encryption from Hash Proof Systems

Here, we describe a simple generic construction of ANON-IND-ID-CCA identity based encryption
using hash proof systems. The construction is analogous to Cramer and Shoup’s generic construc-
tion of IND-CCA PKE from hash proof systems [18]. In Section E.3, we specify how to construct
the necessary hash proof systems for quadratic residuosity.

Let P be a hash proof system with trapdoor for subset membership problem M, which for
instance Λ[X, L, W,R] of M, has an associated PHF H = (H,K,X, L, Π, T, α) for (X, L) and pseu-
dorandom lifting function σMSK : T → K. Let P̂ be an extended hash proof system with trapdoor
for M, which for instance Λ̂[X̂, L̂, Ŵ , R̂] of M, has an associated PHF Ĥ = (Ĥ, K̂, X̂, L̂, Π̂, T̂ , α̂)
for (X̂, L̂) and pseudorandom lifting function σ̂MSK : T̂ → K̂. (As in [18], “extended” simply
means that X̂ = X × Y and L̂ = L× Y for some set Y , with straightforward modifications to the
associated algorithms.)

Our generic construction, FullIBE, is as follows.

Setup(1λ): Generate an instance Λ[X, L, W,R] of M, together with trapdoor MSK. Let Y = Π. It
is required that Π be an abelian group (with operations + and −). Let ID be the set of possible
identities, and let Γ : ID → T and Γ̂ : ID → T̂ be functions. Output the public parameters
PP, which include Λ, P, P̂, Γ and Γ̂. The master secret is MSK (with the pseudorandom lifting
functions σMSK and σ̂MSK).

KeyGen(PP,MSK,ID): Takes as input PP, MSK, and ID ∈ ID. It sets k ← σMSK(Γ(ID)) and
k̂ ← σ̂MSK(Γ̂(ID)). It outputs the decryption key dID = (PP, k, k̂).

Encrypt(PP,ID,m): Takes as input PP, an identity ID, and a message m ∈ Π. It generates a
random x ∈ L together with a witness w for x, computes t ← Γ(ID) and t̂ ← Γ̂(ID), computes
π = Hk(x) using the public evaluation algorithm for P, sets e = m + π, computes π̂ = Ĥk̂(x, e)
using the public evaluation algorithm for P̂, and outputs the ciphertext C = (x, e, π̂).

Decrypt(C,dID): Takes as input ciphertext C and decryption key dID. It parses C and outputs ⊥
if C does not encode some (x, e, π̂) ∈ X × Π× Π̂. Otherwise, it computes π̂′ = Ĥk̂(x, e) using the
private evaluation algorithm for P̂. If π̂′ 6= π̂, it outputs ⊥. Otherwise, it computes π = Hk(x)
using the private evaluation algorithm for P, and outputs m = e− π.

The following theorem is analogous to Theorem 1 in [18].

Theorem E.11. Let P be a strongly smooth HPS with trapdoor and P̂ be a strongly universal2
extended HPS with trapdoor for the subset membership problem M. Let Γ : ID → T and Γ̂ :
ID → T̂ be injective. Then, FullIBE is ANON-IND-ID-CCA secure (in the standard model) under
the interactive subset membership assumption for (M,P, P̂, ID, ID,Γ, Γ̂).
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As usual in IBE systems, we can set ID = {0, 1}∗ and remove the assumption that Γ and Γ̂ are
injective by assuming that Γ and Γ̂ are collision-resistant and making the appropriate changes to
the proof.

Note that it follows that FullIBE is also ANON-IND-ID-CCA secure in the random oracle model
under the (non-interactive) subset membership problem for M when Γ and Γ̂ are full-domain hash
functions.

We prove Theorem E.11 in Section E.4.
Following Kurosawa and Desmedt [28], we can modify the above IBE system into a more efficient

IBE KEM-DEM. The generic IBE-KEM-DEM, called FullIBE-KD, is as follows.

Setup(1λ): Generate an instance Λ[X, L, W,R] of M, together with trapdoor MSK. Let Y = ∅.
Define ID and Γ̂ as in FullIBE. Output the public parameters PP, which include Λ, P̂, Γ̂, a function
F : Π̂→ {0, 1}d and a one-time symmetric encryption system SKE with algorithms SKE.Encrypt and
SKE.Decrypt. SKE.Encrypt takes input 1λ, a d-bit key and a message. (We discuss the requirements
on F and SKE later.) The master secret is MSK (with the pseudorandom lifting function σ̂MSK).

KeyGen(PP,MSK,ID): Takes as input PP, MSK, and ID ∈ ID. It sets k̂ ← σ̂MSK(Γ̂(ID)). It
outputs the decryption key dID = (PP, k̂).

Encrypt(PP,ID,m): Takes as input PP, an identity ID, and a message m ∈ Π. It generates a
random x ∈ L together with a witness w for x, computes t̂ ← Γ̂(ID), computes π̂ = Ĥk̂(x) using
the public evaluation algorithm for P̂, and computes κ = F (π̂) and χ = SKE.Encrypt(1λ, κ,m).
The ciphertext is C = (x, χ).

Decrypt(C,dID): Takes as input ciphertext C and decryption key dID. It parses C and outputs
⊥ if C does not encode some (x, χ) with x ∈ X. Otherwise, it computes π̂′ = Ĥk̂(x) using the
private evaluation algorithm for P̂, κ′ = F (π̂′), and m′ = SKE.Decrypt(1λ, κ′, χ). It outputs m′ if
SKE.Decrypt does not register an error.

The following theorem is analogous to Theorem 2 in [28].

Theorem E.12. Let P̂ be a strongly universal2 extended HPS with trapdoor for the subset mem-
bership problem M, Γ̂ : ID → T̂ be injective, F (π̂) be uniformly distributed over {0, 1}d if π̂ is
uniformly distributed over Π̂, and SKE be secure in the sense of IND-CCA and ε-rejection secure
for negligible ε. Then, FullIBE-KD is ANON-IND-ID-CCA secure (in the standard model) under the
interactive subset membership assumption for (M, P̂, ID, Γ̂).

We say that SKE is ε-rejection secure if Pr[SKE.Decrypt(1λ, κ, χ) = reject] ≥ 1 − ε for any bit-
string χ, where the probability is taken over the choice of keys κ. We omit the proof of Theorem
E.12, since it adapts the proof of Theorem E.11 in the same way that the proof of Kurosawa and
Desmedt’s Theorem 2 adapts the proof of Cramer and Shoup’s Theorem 1.

To instantiate FullIBE and FullIBE-KD, we use the HPS’s defined in Section E.3 for quadratic
residuosity. We claim the following lemmas are true.

Lemma E.13. The HPS P, as defined in Section E.3, is a strongly smooth HPS with trapdoor.

Lemma E.14. The HPS P̂, as defined in Section E.3, is a strongly univeral2 extended HPS with
trapdoor.
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We prove Lemmas E.13 and E.14 in Sections E.5 and E.6, respectively. In our proof of Lemma
E.14, we assume (as in [18]) that a certain function Γ′ is injective. As mentioned in [18], it is
straightforward to adapt the model account for the case that Γ′ is merely collision-resistant.

As an aside, we note that Gentry’s pairing-based anonymous IBE system [23] falls within the
above framework for ANON-IND-ID-CCA IBE from hash proof systems (though his scheme has
minor differences from our generic scheme). That scheme is secure in the standard model without
interactive assumptions basically because the simulator can actually implement the oracles O and
Ô itself by using an instance to a different subset membership problem M0 to build an instance of
the problem M. However, we note that the size of the M0-instance in [23] must be proportional
to the total number of private key queries permitted to the adversary; otherwise, the simulator’s
lifting function σ will not appear pseudorandom.

E.3 Hash Proof Systems for Quadratic Residuosity

Now, we define two HPS’s P and P̂ for the quadratic residuosity problem. When implemented with
these HPS’s, and when P̂ implements Γ′ as a collision-resistant hash with ˆ̀-bit output, ciphertexts
in FullIBE are 1 + ` + ˆ̀+ log2 N bits, where ` is the message length parameter.

E.3.1 A Strongly Smooth Universal Hash Proof System

In our strongly smooth HPS P for quadratic residuosity, we generate an instance of the quadratic
residuosity subset membership problem for security parameter λ by setting (p, q) R← RSAgen(λ),
N = pq, X = J(N) × {−1, 1}, L = QR(N) × {−1, 1}; we say ((S, b), s) is a relation in R =
X × W when S, s ∈ Z/NZ, S = s2, and (τ(s)/N) = b, where the polynomial τ is generated
using Q′ as in Section 6. P uses the projective hash function H = (H,K,X, L, Π, T, α). We set
K = {(r1, . . . , r`) ∈ (Z/NZ∗)`}. T is a set of equivalence classes in (J(N))`, where (R1, . . . , R`) ∼=
(R′

1, . . . , R
′
`) if there exists (r1, . . . , r`) such that Ri = u−air2

i and R′
i = u−a′ir2

i for ai, a
′
i ∈ {0, 1} for

all i ∈ [1, `], where u is a fixed element of J(N)\QR(N). The projection α : K → T is component-
wise squaring – i.e., α(r1, . . . , r`) = (R1, . . . , R`) where Ri = r2

i , and where the rhs is understood
to represent an equivalence class. Finally, Π = {−1, 1}`, where ` is the message length parameter.
Note Π is an abelian group with operation ‘+’ given by π(1) + π(2) = (π(1)

1 · π(2)
1 , . . . , π

(1)
` · π(2)

` ),
where π(1) = (π(1)

1 , . . . , π
(1)
` ) and π(2) = (π(2)

1 , . . . , π
(2)
` ) are elements of Π.

Now, we define the private and public evaluation algorithms for P. Let x = (S, b) ∈ X, let k =
(r1, . . . , r`) ∈ K, and let t = α(k) = (u−a1r2

1, . . . , u
−a`r2

` ) for aj ∈ {0, 1} be the class representative
of α(k) (with some abuse of notation). To compute Hk(x) using the private evaluation algorithm,
one does the following:

• For each j = 1, . . . , `, use Q′ to generate fj (resp. f̄j) for S and r2
j when aj = 0 (resp. when

aj = 1), as described in Section 6.

• Output Hk(x) ∈ {−1, 1}` as the sequence B1, . . . , B`, where Bj =
(

fj(rj)
N

)
or Bj = b

(
f̄j(rj)

N

)
,

depending on whether aj equals 0 or 1.

To compute Hk(x) using the public evaluation algorithm on input t, (S, b) ∈ L, and a witness s for
(S, b) satisfying S = s2 and (τ(s)/N) = b, one does the following:

• For j = 1, . . . , `, use Q′ to generate gj as described in Section 6.
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• Output Hk(x) ∈ {−1, 1}` as the sequence B1, . . . , B`, where Bj =
(

gj(s)
N

)
.

E.3.2 A Strongly Universal2 Hash Proof System

In our strongly universal2 HPS P̂ for quadratic residuosity, N and u are generated as in P, X̂ =
X × Y and L̂ = L × Y for some set Y , and ((S, b, y), s) is a relation in X̂ × Ŵ when y ∈ Y ,
S, s ∈ Z/NZ, S = s2, and (τ(s)/N) = b, where the polynomial τ is generated using Q′ as in Section
6. K̂ = {(r1, . . . , rˆ̀, r

+
1 , . . . , r+

ˆ̀ ) ∈ (Z/NZ∗)2ˆ̀}, where ˆ̀ is parameter depending on λ; T̂ and α̂ are

defined in the obvious way. We set Π̂ = F = F2[z]/h(z), where h(z) is a monic polynomial of degree
ˆ̀ that is irreducible in F2[z]. Finally, Γ′ : X̂ → Π̂ is a hash function. In the proof of Lemma E.14,
Γ′ is assumed to be injective, but, as mentioned in [18], the hash proof system framework can be
modified to handle the case that Γ′ is merely collision resistant.

To compute Ĥk̂(x̂) using the private evaluation algorithm on input k̂ = (r1, . . . , rˆ̀, r
+
1 , . . . , r+

ˆ̀ ) ∈
K̂ and x̂ = (S, b, y) ∈ X̂, one does the following:

• For each j = 1, . . . , ˆ̀, use Q′ to generate fj (resp. f̄j) for S and r2
j when aj = 0 (resp. when

aj = 1), as described in Section 6. Generate f+
j or f̄+

j analogously.

• For each j = 1, . . . , ˆ̀, set Bj = (1 +
(

fj(rj)
N

)
)/2 or Bj = (1 + b

(
f̄j(rj)

N

)
)/2, depending on

whether aj equals 0 or 1. Set B+
j similarly.

• Set e =
∑ˆ̀

j=1 Bjz
j−1 ∈ F. Set e+ similarly.

• Set a← Γ′(S, b, y).

• Output π̂ ← e + a · e+ ∈ F = Π̂.

To compute Ĥk̂(x̂) using the public evaluation algorithm on input t̂, x̂ = (S, b, y) ∈ X̂, and
witness s for (S, b, y) satisfying S = s2 and (τ(s)/N) = b, one does the following:

• For each j = 1, . . . , ˆ̀, use Q′ to generate gj and g+
j as described in Section 6.

• For each j = 1, . . . , ˆ̀, set Bj = (1 +
(

gj(s)
N

)
)/2. Set B+

j similarly.

• Set e =
∑ˆ̀

j=1 Bjz
j−1 ∈ F. Set e+ similarly.

• Set a← Γ′(S, b, y).

• Output π̂ ← e + a · e+ ∈ F = Π̂.

E.4 Proof of Theorem E.11

We prove that the system is ANON-IND-ID-CCA under the ISM assumption for (M,P, P̂, ID, ID,Γ, Γ̂)
when P is a strongly smooth HPS with trapdoor, P̂ is a strongly universal2 extended HPS with
trapdoor for the subset membership problem M, and Γ and Γ̂ are injective.

Let A be an ANON-IND-ID-CCA adversary attacking the IBE system FullIBE. We wish to bound
its advantage IBEAdvA,FullIBE(λ). We present the proof as a series of games. We let Wi denote the
event that the adversary wins Game i.
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Game 0. The first game is identical to the ANON-IND-ID-CCA game defined in Section 2. Hence,
we know that ∣∣∣∣Pr[W0]−

1
2

∣∣∣∣ = IBEAdvA,FullIBE(λ) (26)

Game 1. In Game 1 we slightly modify Game 0. Instead of using the pseudorandom lifting
functions σMSK and σ̂MSK to respond to A’s private key queries, the challenger uses truly random
functions F : T → K and F̂ : T̂ → K̂ satisfying α(F (t)) = t and α̂(F̂ (t̂)) = t̂ for all t ∈ T and
t̂ ∈ T̂ . To generate a private key (k, k̂) for ID, the challenger sets k = F (Γ(ID)) and k̂ = F̂ (Γ̂(ID)).
Clearly, if σ and σ̂ are secure PRFs, A will not notice the difference between Game 0 and Game 1.
In particular, there exists an algorithm B1 (whose running time is about the same as that of A)
such that

|Pr[W1]− Pr[W0]| = PRFAdvB1,(σ,σ̂)(λ) (27)

Game 2. In Game 2 we remove knowledge of the master private key from the challenger. The
challenger is given an instance Λ of M , the HPS’s P and P̂, hash functions Γ and Γ̂, and access to
randomly chosen oracles O and Ô as in Definition E.10.

This changes how the challenger responds to private key queries, but Game 2 is otherwise
identical to Game 1. In particular, to respond to a private key query on ID, the challenger feeds
ID to O and Ô and forwards the oracles’ responses k and k̂ to A. However, the distribution of the
challenger’s responses to private key queries (and decryption queries) is unchanged, since O and Ô
have the same distribution as F ◦Γ and F̂ ◦ Γ̂ on domain ID (and the challenger uses Decrypt with
its private key to respond to decryption queries).

Therefore,

Pr[W2] = Pr[W1] (28)

Game 3. Game 3 proceeds exactly as Game 2 except that the encryption query is handled
differently. To encrypt a message mb to a particular IDb, the challenger finds the private key
dIDb

= (k, k̂). It chooses x∗
R← L, computes π ← Hk(x∗) using the private evaluation algorithm for

P, sets e∗ ← m + π, computes π̂∗ ← Ĥk̂(x, e) using the private evaluation algorithm for P̂, and
returns (x∗, e∗, π̂∗) to the adversary.

Since x∗ ∈ L, the private and public evaluation algorithms compute the same result for Hk(x∗)
and Ĥk̂(x

∗, e∗). Since x∗ is a uniform L-element in Games 2 and 3, the distribution of the chal-
lenger’s response to encryption query is identical. Since no other aspect of Games 2 and 3 differs,

Pr[W3] = Pr[W2] (29)

Game 4. Game 4 proceeds exactly as Game 3 except that when responding to the encryption
query, instead of choosing x∗

R← L, the challenger sets x∗
R← X \ L. The adversary should not

notice the difference unless it can distinguish subset membership (in the interactive setting). In
particular, there exists an algorithm B2 (whose running time is about the same as that of A) such
that

|Pr[W4]− Pr[W3]| = ISMAdvB2,Gen(λ) (30)
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Game 5. In Game 5 we modify how the challenger handles decryption queries. In particular,
the challenger is given the power to determine subset membership (in L), and the challenger
immediately outputs ⊥ in response to a decryption query (x, e, π̂, ID) if x 6∈ L. Aside from this
additional ciphertext check, the challenger handles decryption queries as in Game 4.

Let E be the event the challenger rejects some decryption query C in Game 5 that would have
been accepted in Game 4. (Note that the opposite is impossible; if C is rejected in Game 4, it is
certainly rejected in Game 5.) Since Games 4 and 5 proceed identically until E occurs,

|Pr[W5]− Pr[W4]| ≤ Pr[E] (31)

Below, we prove the following:

Lemma E.15. Pr[E] ≤ Q/|Π̂|, where Q is the number of decryption queries made by the adversary.

Game 6. In Game 6, we again modify how the encryption query is handled. In particular, the
challenger generates the x∗ component of its encryption query response as in Game 5 (x∗ R← X \L),
but generates the e∗ and π̂∗ components as uniformly random elements of Π and Π̂. Below, we
prove the following:

Lemma E.16.

Pr[W6] = Pr[W5] (32)

Since the challenger does not use mb or IDb to generate its response, the response is independent
of mb or IDb, and we have,

Pr[W6] =
1
2

(33)

Combining equations (26) through (33), and subject to Lemmas E.15 and E.16, we obtain:

IBEAdvA,FullIBE(λ) ≤ PRFAdvB1,(σ,σ̂)(λ) + ISMAdvB2,Gen(λ) + Q/|Π̂|

Now, we prove Lemmas E.15 and E.16.

Proof of Lemma E.15. Suppose A makes the decryption query (x, e, π̂, ID) with x ∈ X \ L. Let
(k, k̂) be the private key for ID that the challenger obtains from (O, Ô). We consider three cases:

• Case 1: (x, e, ID) = (x∗, e∗, IDb). Since we must have (x, e, π̂, ID) 6= (x∗, e∗, π̂∗, IDb), we
conclude that π̂ 6= π̂∗. However, this implies that π̂ 6= Ĥk̂(x, e), and so the decryption query
is certainly rejected in either game.

• Case 2: ID = IDb but (x, e) 6= (x∗, e∗). In A’s view, the only constraint on k̂ is that
α̂(k̂) = Γ̂(ID) and π̂∗ = Ĥk̂(x

∗, e∗). Even if A knows b, the (1/|Π̂|)-universality2 of Ĥ implies
that the probability that Ĥk̂(x, e) = π̂ is only 1/|Π̂|.

• Case 3: ID 6= IDb. Here, A has even less information about k̂ than in Case 2: just that α̂(k̂) =
Γ̂(ID). Again, the (1/|Π̂|)-universality2 of Ĥ implies that the probability that Ĥk̂(x, e) = π̂

is only 1/|Π̂|.
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Thus, the desired bound follows.

Proof of Lemma E.16. Let (k, k̂) be the private key for IDb that the challenger obtains from (O, Ô).
Since the challenger rejects all decryption queries (x, e, π̂, ID) with x 6∈ L, since Decrypt outputs
the same result when applied to (x, e, π̂, IDb) irrespective of which private keys for IDb is used when
x ∈ L, and since (O, Ô) are truly random functions (i.e., the private keys for distinct ID’s are
generated independently since Γ and Γ̂ are injections), A has no information about (k, k̂) other
than that (α(k), α̂(k̂)) ∈ (Γ(IDb), Γ̂(IDb)), e∗ = mb + Hk(x∗), and π̂∗ = Ĥk̂(x

∗, e∗). Since both H
and Ĥ are strongly smooth, the values of Hk(x∗) and Ĥk̂(x

∗, e∗) remain uniformly random in Π
and Π̂ given (α(k), α̂(k̂)). The result follows.

E.5 Proof of Lemma E.13

First, we make sure that P meets the basic requirements of a hash proof system with trapdoor. It is
clear that the QR problem is a subset membership problem, complete with efficient algorithms for
sampling instances, for checking whether an element S is in X = J(N)×{−1, 1}, and for generating
a random element (S, b) ∈ L = QR(N) × {−1, 1} together with a witness s satisfying S = s2 and
(τ(s)/N) = b. (An algorithm for the latter is given in Section 6.) For PHF H = (H,K,X, L, Π, T, α)
for (X, L), it is also clear that there are efficient algorithms for sampling k from K at random,
computing α(k), and checking whether a bit string is an element of Π. Given the factorization of
N , it is straightforward to construct the pseudorandom lifting function. In the body of the paper,
we discussed efficient algorithms for implementing the private and public evaluation algorithms.

It remains to prove that H is strongly smooth – i.e., that for all S ∈ X \ L and all values of
t ∈ T , the distribution of Hk(S) is uniform in Π when k ∈ K is chosen uniformly at random from
the values satisfying t = α(k). Since the j-th bit of Hk(S) for t = (R1, . . . , R`) is independent of
(R1, . . . , Rj−1, Rj+1, . . . , R`), it suffices to show that the j-th bit of Hk(S) is uniform in {0, 1} when
rj (in the key k = (r1, . . . , r`)) is chosen uniformly from the square roots of Rj . However, this is
immediate consequence of Lemma 3.3.

E.6 Proof of Lemma E.14

As in the proof of Lemma E.13, it is clear that P̂ meets the basic requirements of being a hash
proof system. It remains to prove that Ĥ is strongly universal2. We prove this by showing that
the cardinality of the set K̂† = {k̂ ∈ K̂ : t̂ = α̂(k̂) ∧ π̂ = Ĥk̂(x̂) ∧ π̂∗ = Ĥk̂(x̂

∗)} is constant over all
distinct x̂, x̂∗ ∈ X̂ \ L̂ = (J(N) \QR(N))×{−1, 1}× Y , all π̂, π̂∗ ∈ Π̂, and all t̂ ∈ T̂ . In particular,
|K̂†| = 22ˆ̀.

To prove this, let us consider the structure of Z/NZ∗ for N = pq. Let W ⊂ Z/NZ∗ be such
that |W| is maximal for sets satisfying w2 6= w′2 for distinct w,w′ ∈ W. Let v ∈ Z/NZ be such
v = 1 mod p and v = −1 mod q. Then, each element in r ∈ Z/NZ∗ has a unique representation
(a, b, w) ∈ {0, 1}×{0, 1}×W with r = (−1)a ·vb ·w. We can extend this representation component-
wise to a representation for k̂ = (r1, . . . , rˆ̀, r

+
1 , . . . , r+

ˆ̀ ) ∈ K̂ as (~a,~b, ~w) in the obvious way. Also,

we use mappings from the ~b component to F-elements as follows: b ← θ(~b) ←
∑ˆ̀

j=1 bjz
j−1 and

b+ ← θ+(~b)←
∑ˆ̀

j=1 b+
j zj−1.

Now, we state some useful facts. Let k̂ and k̂′ be distinct elements of α̂−1(t̂) with representations
(~a,~b, ~w) and (~a′,~b′, ~w′), respectively, with b ← θ(~b), b+ ← θ+(~b), b′ ← θ(~b′), and b+′ ← θ+(~b′).
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Obviously, ~w = ~w′, since t̂ determines ~w. Let e and e+ (resp. e′ and e+
′) be the F-elements that

arise in Step E.3.2 of the private evaluation algorithm while computing Ĥk̂(x̂) (resp. Ĥk̂′(x̂)).
Then, it turns out that b − e = b′ − e′ and b+ − e+ = b+′ − e+

′. In other words, ∆t̂,x̂ = b − e

and ∆+
t̂,x̂

= b+ − e+ depend only on t̂ and x̂ (and W), and are invariant under keys in α̂(t̂). To

see this, note that the coefficients of zj−1 in e and e′ differ precisely when
(

fj(rj)
N

)
6=
(

fj(r
′
j)

N

)
(or(

f̄j(rj)
N

)
6=
(

f̄j(r
′
j)

N

)
), which occurs iff 1 < gcd(N, rj − r′j) < N , which occurs iff bj 6= b′j (in the

representations of rj and r′j), which occurs precisely when the coefficients of zj−1 in b and b′ differ.
So, for any fixed distinct x̂, x̂∗ ∈ X̂ \ L̂, fixed π̂, π̂∗ ∈ Π̂, and fixed t̂ ∈ T̂ , we obtain:

|K̂†| = |{(~a, b, b+, ~w) ∈ {0, 1}2ˆ̀× F× F×W2ˆ̀ : t̂ = α̂(~w) ∧ π̂ = (b−∆t̂,x̂) + Γ(x̂)(b+ −∆+
t̂,x̂

)

∧π̂∗ = (b−∆t̂,x̂∗) + Γ(x̂∗)(b+ −∆+
t̂,x̂∗)}|

= |{(~a, b, b+) ∈ {0, 1}2ˆ̀× F× F : π̂ = (b−∆t̂,x̂) + Γ(x̂)(b+ −∆+
t̂,x̂

)

∧π̂∗ = (b−∆t̂,x̂∗) + Γ(x̂∗)(b+ −∆+
t̂,x̂∗)}|

= 22ˆ̀|{(b̄, b̂) ∈ F× F : π̂ = (b−∆t̂,x̂) + Γ(x̂)(b+ −∆+
t̂,x̂

)

∧π̂∗ = (b−∆t̂,x̂∗) + Γ(x̂∗)(b+ −∆+
t̂,x̂∗)}|

From the equations π̂ = (b−∆t̂,x̂) + Γ(x̂)(b+−∆+
t̂,x̂

) and π̂∗ = (b−∆t̂,x̂∗) + Γ(x̂∗)(b+−∆+
t̂,x̂∗),

we conclude that

(Γ(x̂)− Γ(x̂∗))b+ = π̂ − π̂∗ + ∆t̂,x̂ −∆t̂,x̂∗ + Γ(x̂)∆+
t̂,x̂
− Γ(x̂∗)∆+

t̂,x̂∗ ,

where the right side of the equation is a constant. Since Γ is injective, Γ(x̂)− Γ(x̂∗) 6= 0, and b+ is
uniquely determined. Similarly, b is uniquely determined. Thus, |K̂†| = 22ˆ̀.

E.7 IND-CCA PKE from Hash Proof Systems

We note that our hash proof systems allow us to construct an IND-CCA PKE system in the stan-
dard model under the (non-interactive) quadratic residuosity assumption. This result may be of
independent interest.

Cramer and Shoup describe the following PKE system, for which we can use our instantiations
of P and P̂.

The PKE system FullPKE.

Setup(1λ): Generate an instance Λ[X, L, W, R] of M. Let Y = Π. It is required that Π be an
abelian group (with operations + and −). Publish the parameters (common reference string) PP,
which include Λ, P and P̂.
KeyGen(PP): Generate random k ∈ K and k̂ ∈ K̂. The private key is k, k̂. The public key is (t, t̂)
with t = α(k) and t̂ = α̂(k̂).
Encrypt(PP,t,t̂,m): Takes as input PP, a user’s public key (t, t̂), and a message m ∈ Π. It generates
a random x ∈ L together with a witness w for x, computes π = Hk(x) using the public evaluation
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algorithm for P, sets e = m + π, computes π̂ = Ĥk̂(x, e) using the public evaluation algorithm for
P̂, and outputs the ciphertext C = (x, e, π̂).
Decrypt(PP,C,k,k̂): Takes as input ciphertext C and decryption key (k, k̂). It parses C and outputs
⊥ if C does not encode some (x, e, π̂) ∈ X × Π × Π̂. Otherwise, it computes π̂′ = Ĥk̂(x, e) using
the private evaluation algorithm for P̂. If π̂′ 6= π̂, it outputs ⊥. Otherwise, it computes π = Hk(x)
using the private evaluation algorithm for P, and outputs m = e− π.

Cramer and Shoup [18] proved the following theorem.

Theorem E.17 (Cramer-Shoup). Suppose P is a strongly smooth HPS and P̂ is a strongly
universal2 extended HPS for the subset membership problem M. Then, the system above is se-
cure against chosen ciphertext attack (in the standard model) assuming M is a hard problem.

Our hash proof systems also allow us to construct an efficient PKE KEM-DEM in the standard
model under the quadratic residuosity assumption, à la Kurosawa and Desmedt [28]. Both PKE
systems are recipient-anonymous, or “key-private” in the terminology of [3].

We note that, since the above system is not identity-based, we could use a slightly simpler pair
of HPS’s for quadratic residuosity. Basically, the reason is that the user’s public key can be a
set of elements from QR(N), rather than J(N), making the parameter u ∈ J(N) \ QR(N) (and
the algorithmic steps involving u) unnecessary. (See Appendix B for the IND-CPA version of this
system.)

Cramer and Shoup [18] also describe an IND-CCA PKE system that uses HPS’s for quadratic
residuosity. In their scheme, the lengths of the ciphertext and public key are basically the same
as in our scheme. The decryption times are also comparable, assuming that in our scheme the
ciphertext value S and the public key values {Rj} are presented as primes already satisfying the
conditions mentioned in Section 5.2. Encryption in our system may take longer, only because the
sender must generate (s, S̃) such that s is uniformly random in Z/NZ, and S̃ is a prime satisfying
S̃ = s2 mod N and S̃ = 1 mod 4. However, we note that (s, S̃) could be computed offline, since it
is independent of the plaintext and the recipient’s public key.
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