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Abstract: Now, It is believed that the best costs of a point doubling and addition on elliptic curves 

over binary fields  are SM 54 +  (namely, four finite field multiplications and five field squarings) and 

, respectively. In this paper we reduce the costs to less than SM 58 + SM 33 +  and , respectively, 

by using a new projective coordinates we call PL-coordinates and rewriting the point doubling formula. 

Combining some programming skills, the method can speed up a elliptic curve scalar multiplication by 

about 15～20 percent in practice. 

SM 18 +
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                                                   1. Introduction 
 
As well known, elliptic curve cryptosystem(ECC) is recognized to be strongest among modern 

cryptosystems. 

Nevertheless, it seems the amount of operations needed for practice to be yet large.  

So, the investigation for speeding up the arithmetic on elliptic curves has been steadily working 

since ECC was appeared. We call the point addition(Ep) and the point doubling(Ed) on the elliptic 

curve as elliptic operations. 

In the case of characteristic 2, the elliptic operation algorithm which was introduced in international 

standard in 1999, consums , i.e. 15 multiplications and 5 squarings in finite field, per Ep.(cf. 

[1]) 

SM 515 +

After a while, a new algorithm has occurred, which required SM 614 +  per Ep.(cf. [2]) 

Also, a new Ep-algorithm was announced which required SM 413 + , in 2000.(cf. [3]) 

But all these algorithms have the cost of at most SM 49 + , in the case of  and 1=a 1=Z  which is 

most important in the cryptographic practice.(cf. [1,4])  

After them, in 2002,  an Ep algorithm for the case 1=a and 1=Z  was proposed, which required 

.(cf. [4]) Since SM 58 + M  is more expensive than , it turns out that this is improvement of  [2]. S

On the other hand, the Ed algorithm had not been improved over SM 54 +  which is original, during 

all these time. 
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In sum, the best costs for Ed and Ep attained by now are SM 54 + , SM 58 + respectively.(cf. [1-5]) 

In this paper we propose a new method to reduce the costs to less than  and , 

respectively. Combining some programming skills, the method gives a speed-enhancement in scalar 

multiplication, by 15~20 percent. 

SM 33 + SM 18 +

 
                                                        2. Algorithm 
 

In this paper we suppose that elements of the binary field  are represented in polynomial 

basis, because the representation generally gives faster implementation of  arithmetic on the field than 

normal basis representation. 

)2( nGF

Lets denote the modulation (by the definition  polynomial)  of  an polynomial a  by  and 

polynomial multiplication of  and  (without the modulation), by . 

][a

)2( nGFa∈ )2( nGFb∈ ba *

Then it is obvious that the cost of a field multiplication is equal to the sum of  the costs for those 

two operations. 

Since the binary field addition is so cheap that is always negligible in considerations for 

implementation, we think that the cost for a modulation is approximately equal to the cost of a field 

squaring. 

][a

In below estimations  we will be keeping in mind them. 

 

There are many type of projective coordinates used for speeding up the scalar multiplication on 

elliptic curves.(cf. [1]) 

We employ a 4-D projective coordinates , corresponding to an affine representation 

 by:                                                                                                                 

to represent points on the elliptic curve. In this paper we will call this projective coordinates as PL-

coordinates.  

),,,( TZYX

),( yx 2,/][,/ ZTTYyZXx ===

As shown, the difference of the coordinates from Lopez-Dahab coordinates(cf. [2]) is that an 

expansion variable T  is added and the variant Y  is  without modulation.  

 

Lets consider non-supersingular elliptic curve: , where , bxxxyy ++=+ 232 )'2( nGFb∈

over . It is known that this type of curves covers the half of ordinary elliptic curves over 

.(cf. [4]) 

)2( nGF

)2( nGF

In the PL-coordinates, the curve equation is represented as: . 42232][ bZZXZXXYZY ++=+

 

 

 2



[THEOREM 1]  The Ed  of  a point   in the PL-coordinates is obtained  by  
following. 

),,,( 1111 TZYX ),,,( TZYX

 

Order Operation Cost 

1 22 ][, YBXA ==  S3  

2 ,1 TAZ =    2
11 ZT = SM 11 +  

3 ]**[ 2
1 TbAAX +=  SM 11 +  

4 11111 *)(* TTbZXBBY ++++=  SM 22 −  

Total SM 34 +  

 
 (proof)   
By the definition of elliptic curve group law, the doubling  point  of affine point  is 

given by:                                                               

)( 1,1 yx ),( yx

xxy += /λ , 

12
1 ++= λλx , 

2
11 )1( xxy ++= λ . 

We can easily derive from the curve equation that 

                                                                        ,  )1(22 +=+ λxby

2226 )( bxxyyx +++= . 

Using them, we obtain that  

                                        , 2222222
1 //)(/ xbxxbyxxyx +=+++=

              . 4442222424
1 /)]1()([/))(( xbxbxxyyxxbybxy +++++=+++=

 

In the PL-coordinates, above expressions are equivalent to: 
2244

1 /)( ZXbZXx += , 

4444442222
1 /))1()]([]([ ZXbZXbZXZXYYy +++++= . 

Then, the algorithm is obtained, putting .  22
1 ZXZ =

                                                                                                                                                            

It is noticed that two among  four field multiplications in above algorithm are by a fixed constant  

and without modulation. 

b

The cost of a constant multiplication can be much more decreased by block control using the MMX 

instructions, in software implementations and  by filter operations using DSP, in hardware 

implementations. 
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In other words, we can implement a constant multiplication by less than half of the cost of  a general 

multiplication , in either case of  software or hardware.  

Therefore the cost of above algorithm is cheaper than SM 33 + ,  in the actual  cryptographic practice. 

 

Next, we propose a mixed point addition algorithm in PL-coordinates. 

[THEOREM 2] 

The Ep  of an affine point  and a PL-projective point   is obtained 

by: 

),,,( 2222 TZYX ),( yx ),,,( 1111 TZYX

Order Operation Cost 

1 11 xZXA +=  M1  
2 ]*[ 11 TyYB +=  M1  
3 1AZC =  M1  
4 )( CBCD +=  M1  
5 ,2

2 CZ =     2
2ZT = S2  

6 ]**[ 2
2 DACBBX ++=  SM 11 +  

7 2222 *)(*)( TyxDxZXY +++=  SM 23 −  

Total SM 18 +  
 
 
We abbreviate the proof of the theorem, since it is quite similar to one of theorem 1.                

 

As well known in communication practice, all Ed’s can be eliminated in the case of transmission.    

In the case, we can eliminate the modulation of the X - coordinate as well as the one of the Y -

coordinate, in the algorithm, using analogue of PL-coordinates. It can be easily checked that this also 

decreases by  the cost of above algorithm.  S1

Therefore the cost of  an Ep is estimated to be , in the transmission. M8

Summing up, theorems 1 and 2 show that when using the PL- coordinates , the costs for  Ed and Ep 

are less than  and SM 33 + SM 18 + , respectively.                                          

 
Finally, we estimate the cost of  an scalar multiplication on non-supersingular elliptic curve in 

practice. Let length of  the scalar for point multiplication is . In practice, the length also is the size of 

base field or the strength of security. When using the algorithms proposed above and the window 

method with width 4, cost needed for a key agreement is estimated as follows.  

N

 Case of transmission : MNMNNEpW 5.0*16/8*16/*1 ===  

 Case of reception :  )25.0233(*4/**2 SMSMNNEpNEdW +++=+=  

                                              )25.35(* SMN +=  

 4



 Total : )25.35.5(*21 SMNWWW +=+=  

If the length N  is about 200 bit, a usual P4-2.4GHz computer can compute four million of finite 

field multiplications per second by using the method for speeding-up proposed in [8]. Thereby, 

according to above discussion we can generate more than three thousand ECC keys of  200 bit long per 

second.           
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