Fully Anonymous Group Signatures without Random Oracles

Jens Groth
University College London
E-mail:j . grot h@icl . ac. uk

September 7, 2007

Abstract

We construct a new group signature scheme using bilinearpgto The group signature scheme is
practical, both keys and group signatures consist of a aaheumber of group elements, and the scheme
permits dynamic enrollment of new members. The schemdisati&rong security requirements, in partic-
ular providing protection against key exposures and ngtrrglon random oracles in the security proof.
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1 Introduction

Group signatures make it possible for a member of a groupgto reiessages anonymously so that outsiders
and other group members cannot see which member signed #sagee The group is controlled by a group
manager that handles enrollment of members and also halilityeta identify the signer of a message. Group
signatures are useful in contexts where it is desirabledsguve the signer’s privacy, yet in case of abuse we
want some authorities to have the means of identifying her.

Group signatures were introduced by Chaum and van Heyst9Clvahd have been the subject of much
research. Most of the proposed group signatures have beeerpsecure in the random oracle model [BR93]
and now quite efficient schemes exist in the random oracleei@€CJT00, BBS04, CL04, CG04, FI05,
KYO05]. The random oracle model has been the subject of isitichough. Canetti, Goldreich and Halevi
[CGH98] demonstrated the existence of an insecure signathreme that has a security proof in the random
oracle model. Other works showing weaknesses of the randamieomodel are [Nie02, GK03, BBP04,
CGHO04].

There are a few group signature schemes that avoid the randmcte model. Bellare, Micciancio and
Warinschi [BMWO03] suggested security definitions for graignatures and offered a construction based on
trapdoor permutations. Their security model assumed thepgwas static and all members were given their
honestly generated keys right away. Bellare, Shi and Zh&8¥(5] strengthened the security model to
include dynamic enroliment of members. This security madieb separated the group manager’s role into
two parts: issuer and opener. The issuer is responsiblenfolliag members, but cannot trace who has signed
a group signature. The opener on the other hand cannot eneotibers, but can open a group signature to
see who signed it. Moreover, it was required that this opsheuld be able to prove that said member made
the group signature to avoid false accusations of membB&Z(5] demonstrated that trapdoor permutations
suffice also for constructing group signatures in this moBeth of these schemes use general and complicated
primitives and are very inefficient. Groth [Gro06] usedrmar groups to construct a group signature scheme in
the BSZ-model, with nice asymptotic performance, wherdé emoup signature consists of a constant number
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of group elements. Still the constant is enormous and a gsmature consists of thousands or perhaps even
millions of group elements.

There are also a few practical group signhature schemes eatlrity proofs in the standard model. Ate-
niese, Camenisch, Hohenberger and de Medeiros [ACHdMOB]aghighly efficient group signature scheme,
where each group signature consists of 8 group elementge rder bilinear groups. This scheme is secure
against a non-adaptive adversary that never gets to sedgkigys of honest members. If a member’s key is
exposed, however, it is easy to identify all group signatstee has made, so their scheme is not secure in the
BMW/BSZ-models.

Boyen and Waters [BW06, BWO07] suggest group signaturesatigasecure against key exposure attacks.
Their constructions are secure in a restricted versioneoBt\W-model where the anonymity of the members
relies on the adversary not being able to see any openingswb gignatures. In the latter scheme [BWO07], the
group signatures consist of 6 group elements in a compogitr bilinear group. The public key in [BWO07]
grows logarithmically in the size of the message space tmamng will for practical purposes typically contain
a couple of hundred group elements.

OUR CONTRIBUTION. We propose a hew group signature scheme based on primehilidear groups. All
parts of the group signature scheme, including the grougigolby and the group signatures, consist of a
constant number of group elements. The constants are adaedior practical purposes; for instance using
256-bit prime order bilinear groups, a group public key vadog less than 1kB and a group signature less than
2kB.

We prove under some well-known assumptions, the strongeBiféliman assumption [BB04] and the
decisional linear assumption [BBS04], as well as a new apamthat the scheme is secure in the BSZ-
model. This means the scheme permits dynamic enrollmenteshlvers, preserves anonymity of a group
signature even if the adversary can see arbitrary key exgesu arbitrary openings of other group signatures,
and separates the role of the issuer and opener such thatah@perate independently.

TECHNIQUE. We use in our group signature scheme a certified signatinerse. Certified signatures, the
notion stemming from Boldyreva, Fischlin, Palacio and Wsehi, allow a user to pick keys for a signature
scheme and use them to sign messages. The user can ask eatieriifauthority to certify her public verifi-
cation key for the signature scheme. The verification allgorichecks both the certificate and the signature
and accepts if both of them are acceptable. A trivial way itdlaucertified signature schemes is just to let the
certification authority output a standard signature on ter’'s public verification key. Non-trivial solutions
such as for instance using an aggregate signature schemsS[Epalso exist. Certified signature schemes
may be more efficient though since the certificate does nat bawbe unforgeable. In a certified signature
scheme, the requirement is just that it is infeasible todagertificate together with a valid signature. We
refer to Section 3 for a formal definition.

In our group signature scheme, enrolling members will er@akey for a signature scheme and ask the
issuer to issue a certificate on their verification key. To enakgroup signature, the member will make a
certified signature. To be anonymous she will encrypt thefiger signature and use non-interactive witness-
indistinguishable and non-interactive zero-knowledgmfs to demonstrate that the ciphertext contains a valid
certified signature.

In order to have efficient non-interactive proofs, it is et to preserve as much of the bilinear group
structure of the encrypted certified signature as possiligparticular, using cryptographic hash-functions
or using group elements from one part of the certified sigeasis exponents in other parts of the certified
signature does not work. We will combine the signature seheifBoneh and Boyen [BB04] with the signature
scheme of Zhou and Lin [ZL06] to get a certified signature sahé¢hat is both efficient and relies only on
generic group operations.



2 Setup
Let G be a probabilistic polynomial time algorithm that genesdie G, G, e, g) « G(1¥) such that:
e pis ak-bit prime.

e (G, G are groups of ordey.

g is arandomly chosen generator@f

e is a non-degenerate bilinear map, i€y, g) is a generator oz and for alla,b € Z, we have
e(g”,9") = e(g,9)™

Group operations, evaluation of the bilinear map, and meshiie of G, G are all efficiently com-
putable.

We will now present some of the security assumptions thatgilused in the paper.

DLIN assumption. The decisional linear assumption was introduced by BonabyeB and Shacham
[BBS04]. The DLIN assumption holds f@f, when it is hard to distinguish for randomly chosen group ele
ments and exponentg, g, h, f", g°, h') whethert = r + s or t is random.

¢g-SDH assumption. The strong Diffie-Hellman assumption was introduced by Boaed Boyen [BB04].
1
The ¢-SDH assumption holds fog, when it is hard to find a pai(m,¢™=) € Z, x G when given

24(k)

g,9%, gmz, ey g as input. In the paper, it suffices to haybeing a polynomial.

g-U assumption. We will now define the unfakeability assumption. TéxJ) assumption holds faog if for
any non-uniform polynomial time adversadywe have:

Pr [(p, G.Gr,e,9) = GOU") s 1,71, g,y < Lp s
fihoz =G Ti=e(f,z); ai=f"; bi=h"g""z;
(‘/7 A,B,m,S) — A(p7 G7 GT76797 f7 h7T7x17a17b17 e 7xq(k)7aq(k)7bq(k)) :
Vg{g™, . ..,g"W} A e(ARV)e(f,B) =T A e(S,Vg™) = 6(9,9)] ~ 0.

Theorem 1 Theq-U assumption holds in the generic group model whéna polynomial.

Proof. We will show that an unbounded adversary cannot break-teassumption when restricted to using
only a polynomial number of generic group operations. Indkeeric group model, we do not give the
adversary access to the group elements themselves. Ingeepitk random bijection$] : Z, — G and

(]l : Z, — Gr and give the adversary access to the representation ofdbp gtements as random encodings
of their discrete logarithms. Picking random group elersemtd computing group operations can be handled
by calling an oracle) that works as follows:

e On(exp, z) return|z].

e On (multiply, [z], [y]) return[z + y].

e On (multiply, [[z]], [[y]]) return[z + y]].
(

e On (bilinear, [z], [y]) return{[zy]].



Given elements( |, ... ., [&,] the oracle for instance enablegsto pick a, ..., a, € Z, and compute linear
combinationgag + ;" ; ai&i] = ao[l] + > i ail&).
We can reformulate the theorem in the generic group modelliasvs:

Pr |:(pa G, GT’ 6,9) — g(lk) y LTy Tog(k)Tq(k) < Zp )
V00, G =Ly [ — Zp = G [[]] « Zp < Gr;
(W], [a], [b],m, [s]) < A (p, G, Gr. [V, (9], [n], [[6¢]],
xy, (1], [ + w1y 4 Cls e Ty D))y [17(k) F Ta) VT ak) + €)

[o] & {[yz1), - [ywg)d A [la(n +v) + b)) = [[@C)) A [s(v +ym)]) = [Y]]| = 0.

To prove the theorem, observe first that the elemefitsan generate inG and G using the or-
acle encode low degree polynomials @[y, $,7,¢,71,...,7qu]. The resulting condition for success
[[a(n +v) + ¢b — ¢¢]] = [[0]] and][s(v + m~) — 7?]] = [[0]] corresponds to having low-degree polynomials
in Zyly, ¢,m,¢,71, - -, 74x)] €valuate to O for randomly chosene, n, ¢, 71, ..., 7). The Schwarz-Zippel
theorem says that a low-degree polynomial has negligitdeatility of evaluating to 0 in randomly chosen

Y, 9,1, ¢, 71, - -+ Tqr) UNlESS it is identical zero. What remains in the proof if teraut that generic group
oracle enables! to actually constructv], [a], [6], m, [s] such thatu(n +v) + ¢b — ¢¢ ands(v +m~y) — 2 are
the zero-polynomials, and at the same ting {yx1, ..., 7Zqx)}-

Let us start with the requirement thdtoutputs[v], m, [s] s0s(v 4+ ym) — 4% = 0. We will show this can
only be done by picking, € Z, and using the oracle to compujtg~]. For this part of the proof, assume we
even givep, n, (, 1, . .., rq(x) 10 A as extra input. We can now write = vy + vyy ands = sq + sy, for
knownuy, vy, 84, 54 € Zp. We have the equation

(sa + 5¢7) (V4 + (vg +m)y) —7* = 0.

Assume for contradiction thai; # 0. Looking at the constant of the polynomial we haye, = 0 so we

haves; = 0. Looking at the coefficient foy we haves,vg = 0, which impliess, = 0. This meansg = 0 and

s(v + m~y) = 72 gives us a contradiction. We conclude tblitan only be successful by picking= v,.
We will now use the equation

a(n +vgy) + ¢b — ¢ = 0.
Sincea andb are constructed with calls {6 we can write them as

q(k) q(k)
a=aq+ard+agy+apn+ Zaaiﬁb?“i + Zabi(m"i + ziyri +¢)
i=1 i=1
q(k) a(k)
and b=0bg+brp+byy+bpn+ Zbaiqm- + bei(m’i + ziyr; + C),
i=1 i=1
for known agq,ay, a4, ap, aq;, ay,,ba, by, by, by, ba;, by, € Z,. Looking at the coefficient forp( we have
Zfﬁ? by, = 1 so there exists sontg, # 0. The coefficient fokpnr; gives usa,, + by, = 0 S0a,; = —by,. The
coefficient forgyr; tells usag, vy + by, zi = by, (v; —vg) = 0S0vy = x;. Thisimpliesv € {yz1,...,7ZTyx)}-
O

3 Certified Signatures

Typically, using a signature in a public key infrastructurerks like this: A user that wants to set up a signature
scheme, generates a public verification kéyand a secret signing kesk. She takes the public key to a
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certification authority that signsk and possibly some auxiliary information such as name, é-atairess,

etc. We call this the certificate. Whenever the user wantgtosmessage, she sends both the certificate and
the signature to the verifier. The verifier checks that théfaetion authority has certified that the user has
the public keyvk and also checks the user’s signature on the message.

In the standard way of certifying verification keys desaiiladove, the process of issuing certificates and
verifying certificates is separate from the process of sigmhessages and verifying signatures. Boldyreva,
Fischlin, Palacio and Warinschi [BFPWOQ7] show that comiginthe two processes into one can improve
efficiency. As they observe, we do not need to worry aboutdioeg of the certificate itself, we only need to
prevent thgoint forgery of both the certificate and the signature.

A certified signature scheme [BFPWO07], is a combined sch@msi§ning messages and producing cer-
tificates for the verification keys. We will give a formal defion that is tailored to our purposes and slightly
simpler than the more general definition given by Boldyrdwiachlin, Palacio and Warinschi. Formally, a
certified signature scheme consists of the following prdissib polynomial time algorithms.

Setup: G takes a security parameter as input and outputs a desaorigtiof our setup.

Certification key: CertKey on inputgk outputs a paifak, ck), respectively a public authority key and a
secret certification key.

Key registration: This is an interactive protocdUser, Issuer) that generates keys for the user together with
a certificate.User takesgk, ak as input, whereabssuer takesgk, ck as input. If successfullser out-
puts a triple(vk, sk, cert), whereadssuer outputs(vk, cert). We write ((vk, sk, cert), (vk, cert)) «—
(User(gk, ak),Issuer(gk, ck)) for this process. We callk the verification keysk the signing key and
cert the certificate. Either party outputsif the other party deviates from the key registration protoc

Signature: Sign gets a signing key and a messages input. It outputs a signatuee

Verification: Ver takes as inpugk, ak, vk, cert, m, o and outputs 1 if accepting the certificate and the signa-
ture onm. Otherwise it outputs 0.

The certified signature scheme must be correct, unfakeabl@rmforgeable as defined below.
Perfect correctness: For all messages: we have
Pr|gk — G(1%); (ak, ck) — CertKey(gk) ;

((vk, sk, cert), (vk,cert)) <« (User(gk, ak), Issuer(gk, ck)) ;
o « Signg.(m) : Ver(gk, ak, vk, cert,m,o) = 1] =1.

Unfakeability: We want it to be hard to create a signature with a faked cextdicOnly if the verification
key has been generated correctly and been certified by thiftoation authority should it be possible to
make a certified signature on a message. For all non-unifoiympmial time adversaried we require:

Pr |gk — G(1¥) ; (ak,ck) — CertKey(gk) ; (vk,cert,m,o) — AXYRE(gk ak) :
vk ¢ Q andVer(gk, ak, vk, cert,m,o) = 1| ~ 0,

whereKeyReg is an oracle that allowsg! to sequentially start up new key registration sessions eisd |
A act as the user. That is in sessione run(x, (vk;, cert;)) <« (A, Issuer(gk,ck)) ; Q := Q U {vk;}
forwarding all messages to and frasthrough the oracle.



Existential M -unforgeability: Let M be a stateful non-uniform polynomial time algorithm. We Hag/certi-
fied signature scheme is existentiallj-unforgeable if for all non-uniform polynomial time advarges
A we have:

Pr |gk — G(1¥) ; (Sty,ak) — A(gk) ; ((vk,sk,cert),Sty) « (User(gk, ak), A(St1)) ;
(cert’,m, o) « AMeSS&geSign(')(S‘cg) :

m ¢ Q andVer(gk, ak, vk, cert’,m,o) = 1| ~ 0,

where MessageSign(-) is an oracle that on inputi; runs (m;, h;) «— M(gk,a;) ; o7 <«
Signg,(m;) ; @ == Q U {m;} and returng§m;, h;, o;).

Adaptive chosen message attack corresponds to lettinige an algorithm that on input; outputs
(m4,e). On the other hand, letting/ be an algorithm that ignored’s inputs corresponds to a weak
chosen message attack, where messages to be signed bydkeaoeachosen without knowledge .

In a weak chosen message attack,/tHe may contain a history of how the messages were selected. In
this paper, we only need security against weak chosen nessagk.

4 A Certified Signature Scheme

We will construct a certified signature scheme from bilingesups that is existentially unforgeable under
weak chosen message attack. There are two parts of the schertiication and signing. For signing, we
will use the Boneh-Boyen signature scheme that is securerumebk chosen message attack. In their scheme
the public key i3 := ¢ and the secret signing keyis A signature on message € Z,\{z} iso = gﬁ. It
can be verified by checking o, vg™) = e(g, g). Boneh and Boyen [BB04] proved that this signature scheme
is secure against weak chosen message attack undgiSbél assumption. The existential unforgeability of
our certified signature scheme under weak chosen messagk witl follow directly from the security of the
Boneh-Boyen signature scheme under weak chosen messagje att

What remains is to specify how to generate the verificationkand how to certify it. This is a 2-step
process, where we first generate a random ¢* such that the issuer learasbut only the user learns. In
Section 4.1 we describe in detail the properties we needk#yiggeneration protocol to have. In the second
step, we use a variation of the signature scheme of Zhou anfZLD6] to certify v.1

To set up the certified signature scheme, the certificatitimoaity picks random group elemenfsh, z €
G. The authority key ig f, h, T') and the secret certification key issoT" = e(g, z). To certify a Boneh-
Boyen keywv the authority picks: «— Z, and setSa,b) := (f~", (hv)"2). The certificate is verified by
checkinge(a, hv)e(f,b) = T. We remark that this is not a good signature scheme, sineagiv, b it is easy
to create a certificate far := v2h as(a’,b') := (a% ,b). For certified signatures it works fine though since we
cannot use the faked verification keys to actually sign angsages. The nice part about the certified signature
scheme we have suggested here is that a certificate corfaistly dwo group elements and is created through
the use of generic group operations. These two propertiteedfertified signature scheme are what enable us
to construct a practical group signature scheme on top of it.

Theorem 2 The scheme in Figure 1 is a certified signature scheme witfegecorrectness for messages in
Zp \ {z}. It is unfakeable under the-U assumption and is existentially unforgeable under wedaksen
message attack under theSDH assumption.

The signature scheme of Zhou and Lin [ZL06] can be used toesigonents. As they observe, however, it is sufficient to know
v = ¢g” to signz. In our notation, their scheme computes a signature by settingy = ¢g® and computing the signatuce, b) as
a:= f7,b:= (hv)"z, wherez = h'°¢ 9 S0T = e(g, h).



(User(gk, ak), Issuer(gk, ck))

Setup(1*)
Return gk == (p, G, G, e, g) — G(1¥) (z,v) « (User(gk), Issuer(gk))
) ) ) roe Zp
a:=f7T
CertKey(gk) b= (vh)">
FhzeG vk :=wv; sk :=x; cert = (a,b)
T’ ; e(f,2) User outputi(vk, sk, cert)

Issuer output(vk, cert)

Return (ak, ck) := ((gk, f,h,T), (ak, 2))

Ver(gk, ak, vk, cert,m, o)
Return 1 if
e(a,vh)e(f,b) =T
e(o,vg™) = e(g,9)
Else returrd

Signsk(m)
If £ = —mreturnL
Else returno .= gw;m

Figure 1: The certified signature scheme.

Proof. Perfect correctness follows from the perfect correctnétiseckey generation protocol.

We will now show that the certified signature scheme is urdblee Assume for contradiction that there
exists & > 0 such that for an infinite number &f<c N the adversaryd has probability at Ieaz% of making
a valid signature for a public key that has not been certifie@ther words,

Pr |gk — G(1¥) ; (ak,ck) — CertKey(gk) ; (vk,cert,m,o) — AXYRE(gk ak) :
vk ¢ @ andVer(gk, ak, vk, cert,m,o) = 1] > 2k°,

Let ¢(k) be a polynomial upper bound of the numberl&éyReg queries thatd makes. Part of the key
registration protocol is the interactive key generatioat@eol. We can black-box simulate the view of the
adversarial user in each of these key generation protoaplsp an error ofm. We can therefore pick
T1,...,T4x IN advance and simulate the key generation such that theszdiad user get the signing key
x; or alternatively deviates from the protocol in which caseiisuer outputd . Call the modified oracle that

simulates the key generation queriismKeyReg and we have:
Pr |gk — G(1¥) ; (ak,ck) — CertKey(gk) ; x1,... s Ta(k) < Lp ;
(vk, cert,m, o) « ASTKeyRes(xXaw) (gk ak) :
vk ¢ Q andVer(gk, ak, vk, cert,m,o) = 1| > kO,

With this modified key registration oraclg} only sees certificates an := g*', ..., v,y) = g"«®. These
certificates are of the form; := f~" andb; := h™ g*"i 2. It therefore follows directly from the-U assump-
tion that the probability is negligible, which gives us a tradiction. We conclude that the certified signature
scheme is unfakeable.

We will now show that the certified signature scheme is ent@lly unforgeable under weak chosen
message attack. Assume for contradiction that there exiSts 0 such that for an infinite number &f € N
we have:

Pr [gk: — g(lk) ; (Sty,ak) — A(gk); ((v,x,a,b),Ste) «— (User(gk, ak), A(St1)) ;
(a/7 b/7 m, O’) - AMessageSign(-)(StQ) .

m ¢ Q andVer(gk, ak,v,a’,b',m,o) = 1] > 2k79,
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under a weak chosen message attack. Part of the key rdgistpabtocol is a key generation protocol. By
our construction, this key generation protocol has the gntgghat it is possible to chooge:= ¢* in advance
and black-box simulate the malicious issuer’s view. After key generation protocol, only the adversary acts,
so we can consider the certification part of the protocol taibmulated. The error in the simulation can be
chosen such that it does not excéed. We therefore have:

Pr [gk — G(1%); (St1,ak) — A(gk); © — Zp; v = g";

(g%, Sta) «— Sf(Stl)(gk, v); (d', b, m, o) — AMessazeSien() () .
m ¢ Q andVer(gk, ak,g",a’,b',m,0) = 1| > k=0,

whereu € {1, z}. However, now we are in a situation, wherés an honestly chosen Boneh-Boyen verifi-
cation key andA4 only has access to a weak chosen message attack. For tliedeitinature output byl

to be valid we must have" # | sov = g%, and also we must have a valid Boneh-Boyen signature on the
message as part of the certified signature. g48DH assumption implies that the Boneh-Boyen signature is
secure against weak chosen message attack [BB04] and thabjlity given above must therefore be negli-
gible. This gives us our contradiction and we must therefameclude that the certified signature scheme is
existentially unforgeable under weak chosen messagekattac O

4.1 Key Generation

In the certified signature scheme, we require that the usergtes her signing key honestly. We will use an
interactive protocol between the user and the issuer thas ghe user a uniformly random secret keyg 7Z,,
while the issuer learns := ¢*. In case either party does not follow the protocol or halesypaturely, the other
party will output_L. We will now give a more precise definition of the properties protocol should have. For
notational convenience, defige = L.

Write (x,v) < (User(gk), Issuer(gk)) for running the key generation protocol between two proistiui
polynomial time interactive Turing machiné$ser, Issuer on common inpuigk giving User outputz and
Issuer outputv. We require that the protocol is correct in the following s&n

Pr [gk: — G(1*); (z,v) — (User(gk), Issuer(gk)) : v = gx] =1

We require that the view of the issuer, even if malicious, lsarsimulated. More precisely, for agy> 0
and polynomial timdssuer™ there exists a polynomial time (inand the size of the input flesuer*) black-box
simulatorS;, such that for all non-uniform polynomial time adversati¢sve have:

Pr[gh — G(I*) s y — Algh) s = — 2y vi= g7 5 (g%1) = SP™ W (gh,v) = Alu,i) =1]
— Pr [gk: — Gk s y — A(gk) ; (2,i) — (User(gk), Issuer*(y)) : A(u,i) = 1| < k7°,

whereS; outputsg” sou € { L, z}.

We also require that the view of the user, even if malicioa@s be simulated. For any > 0 and any
polynomial timeUser* there exists a polynomial time (ih and the size of the input ttser*) black-box
simulator Sy, such that for all non-uniform polynomial time adversati€sve have:

Prlgh — G(1%) sy — A(gh) s @ < Zy5 vim g™ (ud) = S P (gh, ) s A(u,i) = 1]
— Pr [gk: —G(1%); y — A(gk) ; (u,i) — (User*(y), Issuer(gk)) : A(u,i) = 1] < k79,

whereSy; outputsi € { L, v}.



There are many ways in which one can construct a key generptigtocol with the abovementioned
properties. We will offer an example of a 5-move key generatprotocol where the parties hayé as
common input. The protocol lets the user pigk The user and issuer use a coin-flipping protocol to generate
a random modifieb + ¢ and outputy := ¢®T?*¢. Atthe same timeé + ¢ is used as a challenge to the user in a
proof of knowledge of:.

User — Issuer : Picka,r « Zp,n < Z, and sendd := g%, R := g", h := g" to issuer.
User « Issuer : Pickb, s + Z, and sendB := g°h* to user.

User — Issuer : Sendc « Zj, to issuer.

User <+ Issuer : Sendb, s to user.

User — Issuer : CheckB = g®h*. If check passes, send= (b+ c)a + r mod p andn to issuer and output
z:=a+ b+ cmod p.

Issuer : Checkn € Z5, h = g" andA"*“R = g7 and outputy := Ag"™¢ if checks pass.

Theorem 3 The Join/Issue protocol has perfect correctness and asguthe discrete logarithm problem is
hard it is possible to black-box simulate both the user amdissuer.

Proof. Perfect correctness follows by direct verification.
We will now prove that for any > 0 there exists a black-box simulator for a malicious issuee Sfért

Issuer™(y)

by describing the simulators; (gk,v) pickse, z,n «— Z, and sets4d := vg~© andR := g*A~¢ and
h = g". It runs thelssuer*(y) on input A, R, h to get a commitmenB. It then runs the malicious issuer
up tok°+! times on randomly chosen«— Zy, until Issuer™ opensB to b, s. There are now two possibilities:
eitherIssuer™ provides a satisfactory opening Bfor it never opens the commitment. In case no such opening
is given, the simulator runksuer® once again with random. If Issuer® does not operB in this run, the
simulator outputg_L, ), wherei is the output oflssuer™. If Issuer™ opensB, we abort the simulation. The
other possibility is that we did extract an opening of B. In this case, we sendl:= ¢ — b mod p to Issuer®.
If Issuer® stops the protocol, we outpyt_, i), wherei is Issuer*’s output. IfIssuer* opens the commitment
to b’ # b we abort the simulation. Finally, issuer* opens the commitment g we sendy, z to Issuer* and
output(v, i), wherei is Issuer™’s output.

We will now prove that the simulator satisfies the definitidinis clear thatS; runs in polynomial time,
sincelssuer* is a polynomial time algorithm with polynomial size outpaisd we only run it:**+! times. Let
us modify the real protocol between an honest user and ansatisd issuer. After the user’s first message
A, R, h and the adversary’s first messagave store the state @fsuer*. We runIssuer* up toko+! times with
randomly chosento get an opening, s of B. After this, we make areal run d&fsuer* and produce the output
of the protocol, with two exceptions. If we extracted an apgm, s of B but in the real rudssuer™ opens the
commitment ta)’ # b we abort. This only gives a negligible change in probabikince otherwise we could
break the binding property of the commitment scheme andhiheek the discrete logarithm assumption. The
other change is that Iksuer* did not openB in the k%*! runs, but does so in the real run, we abort. Observe
the following, if at the stored statiesuer® has at Ieas% probability of openingB after seeing randomly

choser, then there ig1 — ﬁ)’“‘m < e 3 probability that no opening oB will be extracted in the:o+!
runs. On the other hand, adding up all cases with probaﬂﬂﬁstha@% of Issuer™ finishing the protocol on
randome add up to less thagl}?& probability of aborting.

What remains is to see that the simulation and the modifiesiareiof the real protocol described above
yield the same probabilities. In both the simulation andrtfaglified real protocol, we have uniform random

A, R, h and get a responsB from Issuer®. ForIssuer® having probability less thag}g—(s of openingB on



randome, the two experiments are the same. Esner* having at IeastZ% chance of openindg on random

c observe first that the experiment is perfectly indistingalde from one, where we pick ¢ at random and
setA := ¢g”¢in the beginning of the protocol and use= e — b, since in both cases everything is still chosen
uniformly at random. Now we have a proof of knowledge with @fixhallenge: and we can simulate it by
picking z first and settingk := ¢* A—¢, which again does not change the distribution at all.

We will now show that for anyy > 0 there is a black-box simulator for an adversarial user. V& fir
describe the simulator. The simulator gés&, x) as input and run&/ser*(y) on gk to getA, R, h. It now
makes up td:**! runs ofUser* with randomly choseh, s to get two successful transcriptsy, z andc’, 7, 2.

If it is unsuccessful in getting two transcripts it makes gebther run with randomly choséns and if User*

produces satisfactory, n, z, then it aborts the simulation. If it is successful, it abaftb + ¢ = v/ + ¢.

Otherwise, we haveg® = A"R andg¢? = AY*YR giving A = ¢g(¢=2))/(a+b=d'=V)) 50 we can set :=

(z—2)/(a+b—a'—b") mod p. We also have € Z; soh = ¢". We now make a real run, with := ¢*, where
t is chosen at random. If getting an incorrect or lacking respan either step of the real run, we output 1 ),

whereu is the output ofUser*. Else, we receive and open the commitment &= ¢* % ¢h(t-2+a+c)/n gnd
sendb :=z—a—c,s:= (t—x+a+c)/nmod pto User*. On a successful response framer*, we output
(u, %)

We will now argue that this is a good simulation. It is cleaattthe simulator runs in polynomial time.
Consider modifying a real protocol between the adversadyaanhonest issuer. We modify the behavior of
the issuer such that it rewinds the protoéél! times after the initial message and makes a complete run
with randomly chosem, s to get two successful answers), z andc’, n, 2’. If it does not succeed, it makes
yet another run with randorh, s and aborts ifUser* produces a satisfactory answem, z. If User* has
probability ﬁ of succeeding on randoim s, then there is overwhelming probability that we do extraat t
answersc, 7, z andc’, 7, z’. So the only case where we would get an abort for the reasotioned above
is whenUser* has less tha@% chance of succeeding. So this abort only changes the supoasability
with less thanﬁ. The commitment is perfectly hiding, so there is negligibtebability ofb + ¢ = v/ + ¢/
in the simulation, so we can from now on ignore that possjbilsupposdiser® has probability at Iea%
of completing the protocol successfully after sendigr, , then we will successfully extraatso A = g
with overwhelming probability and we also leagrso h = ¢". Modifying the protocol further to picle at
random and opening to z — a — ¢ therefore does not change the probability distributiomhier. This latter
modification brings us to an experiment that is equivalerthéosimulation running on a randomly chosen
Il

5 Defining Group Signatures

In a group signature scheme there is a group manager thatedegiho can join the group. Once in the
group, members can sign messages on behalf of the group. détesignatures are anonymous, except to the
group manager who can open a signature and see who signeé@ssags. In some scenarios it is of interest to
separate the group manager into two entities, an issuer mioisemembers and an opener who traces signers.

We imagine that enrolled member’s when joining have somatifyéng information added to a registry
reg. This registry may or may not be publicly accessible. Theifize of how the registry works are not im-
portant, we just require thatg[i] only contains content both the issuer and usggrees on. One option could
be that the issuer maintains the registry, but the user hsigiiathe content ofegli| for it to be considered a
valid entry. Useri stores her corresponding secret keyit[i|. The number we associate with the user is
simply a way to distinguish the users. Without loss of gelitgrave will assume users are numberked. . , n
according to the time they joined or attempted to join.

Key generation: GKg generateggpk, ik, ok). Heregpk is a group public key, whilék andok are respec-
tively the issuer’s and the opener’s secret key.
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Join/Issue: This is an interactive protocol between a user and the isdtisuccessful, the user and issuer
register a public keyk; in regi] and the user stores some corresponding secret signingfkesation
in gskli].
[BSZ05] specify that communication between the user andsteer in this protocol should be secret.
The Join/Issue protocol in our scheme works when all messagesent in clear though. In our scheme,
we will assume the issuer joins users in a sequential mahoedepending on the setup assumptions
one is willing to make, it is easy to substitute then /Issue protocol for a concurrent protocol.

Sign: Group membei can sign a message asy «— Gsig(gpk, gsk[i],m).

Verify: To verify a signature- on messagen we runGVf(gpk, m, ). The signature is valid if and only if
the verification algorithm outputs 1.

Open: The opener has read-access to the registration tapleNe have(i, 7) < Open(gpk, ok, reg, m, )
gives an opening of a valid signatureon messagen pointing to uset. In case the signature points to
no member, the opener will assume the issuer forged thetaignand set := 0. The role ofr is to
accompany # 0 with a proof that usef did indeed sign the message.

Judge: This algorithm is used to verify that openings are correct.e $dy the opening is correct if
Judge(gpk,i,regli], m,¥,7) = 1.

[BSZ05] define four properties that the group signature msatisfy: correctness, anonymity, traceabil-
ity and non-frameability. We refer to [BSZ05] for a discussiof how these security definition covers and
strengthens other security issues that have appeared Ilitettadure. Informally, non-frameability protects
the user against being falsely accused of making a grouptsigg) even if both the issuer and the opener are
corrupt. When the issuer is honest and the opening algoigtapplied correctly, albeit the opener’s key may
be exposed, traceability guarantees that a group sigrativay's can be traced back to a member who made it.
An opener knows who made a particular group signature, lmytigeed the opener is honest and the opener’s
key is kept secret, nobody else should be able to identifyrtmber. Anonymity guarantees that even in an
environment where all users’ keys are exposed and the isscerrupt. In the definition, the adversary is also
permitted to ask the opener to open group signatures, eXoegfroup signature where it is trying to guess
who signed it. A weaker variant of anonymity called CPA-aymaity does not permit the adversary to see
openings of other group signatures. The difference betfideanonymity and CPA-anonymity is analogous
to the difference between security under chosen cipheatitxtk and chosen plaintext attack for public-key
encryption.

PERFECT CORRECTNESSOnN any adversarially chosen message, the verificatioridlagaept a group signa-
ture created with a correctly generated group signinggkéy:] for memberi. Running the opening algorithm
on this should identifyi and make thdudge algorithm accept the opening. For all (unbounded) adviersar
A we have:

Pr [F = 0; (gpk, ik, ok) — GKg(1¥) ; (i,m) — AT/ (gpk ik, ok) ; ¥ — GSig(gpk, gsk[i],m) ;
(j,7) < Open(gpk, ok,reg,m,¥) : F =0 A i =73 A Judge(gpk,i,regli],m, X, 1) = 1] =1,
whereA outputsi € Members and the oracle works as follows:

Join/Issue: On thed'th query toJoin/Issue add: to the listMembers. Run the Join/lssue protocol for an
honest user and issuer. If the user or issuer does not asetpt,:= 1 and return 1. Else update and
returnregli|, gsk[i].
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ANONYMITY. It should be infeasible for an adversary to identify thensigof a message if she does not know
the opener’s keyk. We require a strong version of anonymity, which holds eveemthe adversary controls
the issuer and all the members’ secret signing keys are edpde require for all non-uniform polynomial
time A that:

Pr [(gpk, Zk,Ok) - GKg(lk) : ACho,Open,JoinCorrupt,JoinExposedHonest(gpk7Z'k) _ 1}
~ Pr [(gpk ik Ok) - GKg(lk) . ACh1,Open,JoinCorrupt,JoinExposedHonest(gpk Zk) _ 1}

where the oracles work as follows:

JoinExposedHonest: On input (i, start) start up an honest uséthat tries to join the group. This user acts
honestly, however, the entire internal state is exposelda@dversary. On inpyt, msg) send message
msg to the user on behalf of the issuer and return the new intestag¢ of the user. On successful
completion of theJoin /Issue protocol update-eg|i] and addi to HonestUserKeys. Since the internal
state is exposed, the adversary knows the correspondingt &eggsk|i] and will be able to make group
signatures on behalf of the user.

JoinCorrupt: On input(i, vk;) setregli] := vk;. This allows the adversary to enroll a corrupt member and
register any public key of its own choosing.

Chy: Oninput(ig, i1, m) whereig, i; € HonestUserKeys returnY «— GSig(gpk, gsk|ip], m).

Open: On input a valid message and group signature pair>) that has not been produced 6y, return
Open(gpk, ok, reg,m,¥).

Some papers have considered a weaker variant of anonymiird cCPA-anonymity. In CPA-anonymity, the
adversary does not have access to(pen oracle.

TRACEABILITY. We want to avoid forged group signatures. The issuer caayamake a dummy registration
and create group signatures, so we cannot rule out theameaftgroup signatures. What we want to capture
here is that if the issuer is honest, then it is infeasible¢aie a signature that does not belong to some member
with a registered key imeg[i]. For all non-uniform polynomial time adversaridswe have:

Pr | (gpk, ik, ok) — GKg(1*) ; (m, %) — A" (gpk,ok) ; (i,7) — Open(gpk, ok,reg,m, %) :
GVf(gpk,m,¥X) =1 A (Judge(gpk,i,reg[i],m,X,7) =0 V i=0)| =0,

where the oracle is:

Join: On input (i, start) accept only(i, msg) queries until thisJoin /Issue protocol finishes successfully or
not. Run the issuer’s protocol usingk, ik with the adversary being able to subritmsg) as the
possibly malicious user’'s messages to the issuer. If tegodtocol is successful update the registry
reg[i] correspondingly.

NON-FRAMEABILITY. We want to avoid that an honest member is falsely attribatsiginature that it did not
sign, even if both the issuer and opener are controlled byadversary. We require that for all non-uniform
polynomial time adversaried we have:

Pr [(gpk,ik:,ok:) - GKg(lk) : (m, E,i,’r) - AIssueToHonest,ReadGsk,GSig(gpk:’Z-k’ Ok‘) .
GVi(gpk,m,X) =1 A Judge(gpk,i,reglil,m,2,7) =1
Ai € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures] ~ 0,

where the oracles are:
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IssueToHonest: On input (i, start) start up a new honest usejoining the group usingpk as the group
public key and add to HonestUsers. On input(i, msg) send this message to the user on behalf of the
corrupt issuer. If the protocol is successful updatgi| andgsk[i] correspondingly.

ReadGsk: On inputi returngsk[i]. Addi to ExposedKeys.

GSig: Oninput(iz,m) check whetheysk[i] is non-empty. In that case retukh— GSig(gpk, gskli], m) and
add(m, ) to UserSignatures.

The definition above addresses a partially dynamic settingregmembers can be enrolled along the way.
It also separates the roles of granting membership fromingesignatures. In [BMWO03] a simpler situation is
considered. Only a single group manager that acts as opecensidered. All members’ keys are set up from
the start, there is no enrollment. This relaxation perntitsdefinitions of traceability and non-frameability
to be combined into one requirement called full-traceshbilin this paper we concentrate on the stronger and
more flexible [BSZ05] model.

6 Tools

To construct our group signature scheme, we will use thdfiegrsignature scheme from Section 4. We will
also use several other tools in our construction, namelysimi-free hash functions, non-interactive proofs
for bilinear groups, strong one-time signatures securinagaeak chosen message attack and selective-tag
weak CCA-secure cryptosystems.

6.1 Collision-Free Hash-Functions

H is a generator of collision free hash-functidiissh : {0, 1}* — {0, 1}¢(*) if for all non-uniform polynomial
time adversariesl we have:

Pr |Hash — H(1%) ; #,y — A(Hash) : Hash(z) = Hash(y)| ~ 0.

We will use a collision-free hash-function to compress rages before signing them. For this purpose we
will require that we can hash down %,, so we want to have!®) < p. We remark that collision-free hash-
functions can be constructed assuming the discrete lbgaptoblem is hard, so the existence of collision-free
hash-functions follows from our assumptions on the bilirggaup.

6.2 Strong One-Time Signatures

We will use a one-time signature scheme that is secure agairedversary that has access to a single weak
chosen message attack. We say the one-time signature schetreng, if the adversary can neither forge a
signature on a different message nor create a differenaiggnon the chosen message she already got signed.
An obvious candidate for such a scheme is the Boneh-Boyeratsige scheme [BB04], since this signature
scheme is deterministic and hence automatically has thegiess property.

6.3 Non-interactive Proofs for Bilinear Groups

Groth and Sahai [GS07] suggest non-interactive proofsadyature relations for bilinear groups. They look
at sets of equations in our bilinear group G, Gr, e, g) over variables inG andZ, such as pairing product
equations, e.ge(x1,x2)e(zs,x4) = 1, or multi-exponentiation equations, e.gilmgQ = 1. They suggest
non-interactive proofs for demonstrating that a set of #qoa of the form described above has a solution
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z1,...,xr € G,61,...,05 € Z, so all equations are simultaneously satisfied. Their praxgsn the common
reference string model. There are two types of common nederstrings that yield respectively perfect sound-
ness and perfect witness indistinguishability/perfeabZenowledge. The two types of common reference
strings are computationally indistinguishable and thethlgve perfect completeness. We now give some
further details.

[GS07] show that there exists four probabilistic polyndntime algorithms (K, P, V, X), which we
call respectively the key generator, the prover, the veridied the extractor. The key generator takes
(p,G, Gr,e,g) as input and outputs a common reference steing= (F, H,U,V,W,U’, V', W') € G® as

well as an extraction keyk. Given a set of equations, the prover takesand a witness, ..., z7,01,...,07
as input and outputs a proaf The verifier givercrs, a set of equations andoutputs 1 if the proof is valid
and else it outputs 0. Finally, the extractor on a valid preafill extract x1,...,z; € G, in other words it

will extract part of the witness.

The proofs of [GS07] have perfect completeness: on a ctyrgenerated CRS and a correct withess,
the prover always outputs a valid proof. They have perfeandpness: on a correctly generated CRS it is
impossible to create a valid proof unless the equations iaraltsneously satisfiable. Further, they have
perfect partial knowledge: givenk the algorithmX can extractey, ...,z from the proof, such that there
exists a solution for the equations that use these. ., z;.

There exists a simulatdt; that outputs a simulated common reference stringand a simulation trapdoor
key tk. These simulated common reference strings are compuiitiandistinguishable from the common
reference strings produced Wy assuming the DLIN problem is hard. On a simulated commornreate
string, the proofs created by the prover are perfectly wg#radistinguishable: if there are many possible
witnesses for the equations being satisfiable, the prodbes not reveal anything about which witness was
used by the prover when creating the proof. Further, let llsacget of equations tractable, if it is possible
to find a solution, where:, ..., z; are the same in all equations, hit...,J; are allowed to vary from
equation to equation. Tractable equations have perfeotkagwledge proofs on simulated reference strings:
there exists a simulatd, that on a simulated reference strings and a simulation trapdoor ke produces
a simulated proof: for the tractable equations being satisfiable. If the equatare satisfiable, then simulated
proofs are perfectly indistinguishable from the proofsa pFover with a withess would form on a simulated
reference string.

It will be useful later in the paper to know some technicaladlstof the construction. The values
F,H,U,V,W will be used to commit to the variables as (ci, co,c3) := (F'U! H5V! g™ sWiz) for
randomly chosem,s,t € Z,. On a real common reference string, they are set up/se- F& V =
H% W = g¢f+S so the commitment can be rewritten @&"+%¢ Fs+5t grts+(E+S)t) - The extraction
key iszk := (¢,n) SOF = ¢g®, H = ¢". This permits decryption of the commitment as= 03c;¢c;n. On
the other hand, on a simulation reference string, weluse F®,V = HS, W = g7 with T # R + S, which
makes the commitment perfectly hiding.

To commit to a variabled € Z, using randomness,s we use the commitmentd;,ds,ds) :=
(F(U"°, H*(V')?, g"+5(W')%). On a normal common reference string, we pitk= % V' = H5 W' =
g" for T # R + S. This makes the commitment perfectly binding. On a simdlatemmon reference
string, on the other hand, we pidk’ = FE V' = HS W' = ¢f*+S. The simulation trapdoor key is
tk := (R, S), which permits us to trapdoor open a commitment to 0 to anyev@lsince(F", H*, g" %) =
(F’"_R‘S(U’)‘S, Hs—Sé(V/)é,gr+s—(R+S)6(W/)6)_

6.4 Selective-tag Weakly CCA-secure Encryption

We will use a tag-based cryptosystem [MRY04] due to KiltzI(6i]. The public key consists of random non-
trivial elementspk = (F, H, K, L) € G* and the secret key ist = (¢,n) SOF = ¢g®, H = g". We encrypt
m € G using tagt € Z, and randomness s € Z, as(yi,...,ys) := (F",H®, " *m, (¢’ K)", (¢'L)*).
The validity of the ciphertext is publicly verifiable, sinvalid ciphertexts have(F,ys) = e(y1,9'K) and
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e(H,ys) = e(y2, g L). Decryption can be done by computing= ygyfd’y;". In the group signature scheme,
we will set up the cryptosystem with the satAieH as in the common reference string of the non-interactive
proofs.

[KilO6] shows that under the DLIN assumption this cryptdsys is selective-tag weakly CCA-secure. By
this we mean that it is indistinguishable which message weypted under a tagj even when we have access
to a decryption oracle that decrypts ciphertexts under #mgrdag. Formally, for all non-uniform polynomial
time adversariegl we have:

Pr {gk — G(1F) 5t A(gk) 5 (pk, sk) — K(gk) ; (mo,m1) «— AP+C)(pk) ; y  Bpp(t,mo) :

|

APsk() () = 1
gk) ; (pk,sk) — K(gk); (mo,m1) « AP+C)(pk) s y — Epp(t,my) :
1

(

)

~ Pr [gk — G(%) 5t — A
AP () < 1,

where the oracle returnS, (¢;, y;) if t; # t.

7 The Group Signature Scheme

The core of our group signature scheme is the certified sigaacheme from Section 4. The issuer acts as
a certification authority and whenever a new membeants to enroll, she needs to create a verification key
v; for the Boneh-Boyen signature scheme and get a certificate thhe issuer. In the group signature scheme,
the verification key and the corresponding secret key is rgéee with an interactive key generation protocol
as defined in Section 4.1. This way both user and issuer knaiwls selected with the correct distribution
and that the user holds the corresponding secretckey

When making a group signature, the member will generate p&@yvks.is, sksots) fOr a strong one-time
signature that is secure under weak chosen message attachilBsign the message using..s and user;
to signuvks.ts. The combination of certified signatures and strong one-8ignatures is what makes it hard to
forge group signatures.

Group signatures have to be anonymous and therefore we tcaaweal the certified signature. Instead,
a group signature will include a non-interactive witnasgistinguishable (NIWI) proof of knowledge of a
certified signature onk,.is. Witness-indistinguishability implies that a group siggma does not reveal which
group member has signed the message. The opener will hotktizetion key for the NIWI proof of knowl-
edge and will be able to extract the certified signature. V@henan opening is called for, she extracts the
signature onvks.ts, Which points to the member who signed the message. In casgentber has certified
signedvks.is, the opener points to the issuer since the certified sigadias a valid certificate.

The ideas above suffice to construct a CPA-anonymous gromatsire scheme. To get anonymity even
when the adversary has access toGhen oracle, we will encrypt the signature etk with Kiltz' cryp-
tosystem usingks.is as a tag. We will also give an NIZK proof that the encryptedhatgre is the same as the
one used in the NIWI proof of knowledge.

We present the full group signature scheme in Figure 2. Lekpkin the non-interactive proofs further.
The NIWI proof of knowledge, will demonstrate that therestxia certified signaturg:, b, v, o) on vksas SO

e(a,hv)e(f,b) =T A e(o, ngaSh(”kSOts)) =e(g,9).

In the terminology of [GS07], these are two pairing produgti@ions over three variablésv, . The last
elements will be public, since we can rerandomize the certificate ghelha does not identify the member.
[GS07] gives us an NIWI proof of knowledge for these two egurest being simultaneously satisfiable that
consists of 27 group elements. This proof consists of thoegngitments to respectively, v, o, which consist
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of 3 group elements each, and two proofs for the committegegasatisfying the two equations consisting of
9 group elements each.

In the NIZK proof we have a ciphertextunder tagiash (vksots) @and a commitment to o from the NIWI
proof of knowledge. We wish to prove that the plaintextyaind the committed value inare the same. The
ciphertext is of the form(yy,...,ys) = (F"v, H%v, g"vtsvg, (gHash(ksons) )y (gHash(vhsois) )5y and the
commitment is of the fornfcy, ¢z, c3) = (F"<U*, H5V?, g™ T5<W'o). Settingr := r. — ry, s := s, — s, We
have(ciy;*, cays , cays t) = (FTUL, HVY, g" ). On the other hand, if the plaintext and the committed
value are different, then no suehs, t exist. Proving that the plaintext and the committed valethe same,
therefore corresponds to proving the simultaneous sdttiijeof the following equations ovep, r, s, t € Z,:

¢ =1 A (Cl_lyl)(bFTUt =1 A (62—1y2)¢HSVt -1 A (63—1y3)¢)gr+SWt‘

This set is tractable, i.e., if we allogrto take different values in the equations, then there isvaltrsolution

¢ = 1in the first equation ang = » = s = t = 0 in the other three equations. Since the set of equations
is tractable, there is an NIZK proof for the 4 equations beiimgultaneously satisfiable. The proof consists of
commitments tab, 7, s, t, but since the first equation is straightforward we can sjruge(U’, V', W') as the
commitment tap, which makes it easy to verify that the first equation holdse Three commitments t9 s, ¢
each consist of 3 group elements. The three last equatiensaiti-exponentiations of constants and using
the proof of [GS07] each equation costs 2 group elementsotaepiThe NIZK proof therefore costs a total of
15 group elements.

GKg(1%)

gk «— G(1¥) ; Hash «— H(1%)
((f,h,T),z) — CertKey(gk)
(crs,xk) «— Kni(gk) ; K,L — G GVf(gpk.,m, X) _ '
(F, H,the res} — Parse(crs) ; pk == (F, H, K, L) Return 1 if the following holds:
(

. s 1 = Ver ((vksots, My @y T, Y, 1), Osots )
k,ik,ok) := ((gk,Hash, f,h,T,crs,pk), z, vk Vksots sots, 116 ™y F5 Jh ¥/ Csots
P )=l / Pk) ) 1 = Virwi(ers, (gpk, a, Hash (vkgots ) ), 7)

1 = Vzx (ers, (gpk, m,y), )
1 = ValidCiphertext(pk, Hash(vksots), y)
Else return O

Join/Issue(User i : gpk , Issuer : gpk,ik)
((vs, i, ai, b;), (vi,a;,b;)) < (User, Issuer)
User: Ife(a;, hv;)e(f,b;) =T set

regli] := v; ; gskli] = (z;,ai,b;)

Open(gpk, ok, m, )
(b,v,0) «— Xyi(crs, (gpk, a, Hash (vksets)), 7)
GSig(gpk, gsk[i], m) Return(i, o) if there isi sov = v;
(Vkaore, Skaore) — KeyGen,,.(1F) Else return(0, o)
(Repeat untiHash (vksots) # —x;)
p— Ly a:=a;fP;b:=bi(hv)P
1

o= gxi"’HaSh('Uksots)

Judge(gpk, i, regi],m, %, o)

Return 1 if

T — PNIWI(CV“S, (gp]{), a, Hash(vksots)), (b, Vi, O’)) i 7& 0 A 6(0' UigHaSh(kaOts)) — e(g g)
y  Ep(Hash(vksors), vi) Else return 0 7

Y — Pz (crs, (gpk,y, ), (v, 5,1))
Osots < Signsksots (UksotSa m,a,m,y, 7/))
Return ¥ := (vksots, @, T, Y, ¥, Osots )

Figure 2: The group signature scheme.

Theorem 4 The scheme in Figure 2 is a group signature scheme with garéeectness. Under the DLIN;
SDH andg-U assumption and assuming the strong one-time signatimense is secure against weak chosen
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message attack and the hash-function is collision resisthe group signature has anonymity, traceability
and non-frameability.

Proof. Perfect correctness follows from the perfect correctnéisegoin/issue secure function evaluation, the
certified signature, the NIWI proof of knowledge, the tagdxh cryptosystem, the NIZK proof and the strong
one-time signature. Anonymity, traceability and non-feaility follows from Lemmas 5, 7 and 6. O

Lemma 5 The group signature scheme is anonymous under the DLIN @sgumand assuming the one-time
signature scheme is secure against weak chosen messagle atththe hash-function is collision-free.

Proof. Consider the probability
Pr (gpk: ik Ok‘) - GKg(lk) . AChb,Open,JoinCorrupt,JoinExposedHonest(gpk: Zk‘) =1

from the definition of anonymity. We want to prove that the fpvobabilities for respectively = 0 andb = 1
only have negligible difference.

First, let us modify the underlying game by aborting if th@st one-time signature in the challenge group
signature is ever forged in an opening query. The existemtiorgeability of the one-time signature scheme
under weak chosen message attack implies that there igitdglprobability that we will abort for this reason.
From now on we can therefore assunig,s is hot used in valid group signature queriestpen.

We also abort, if any group signature querie@®toen collides withHash (vksots ) from the challenge group
signature. Collision-freeness of the hash-function iegpthat there is negligible probability that this will ever
happen, so from now on we can assume that no such collisibhaypen.

Let us now modify the way we generate the public key for thebaged cryptosystem. We skt :=
¢, L = ¢* and storex, \. WhenevelOpen receives a valid group signature, we use\ to decrypt the tag-
based cryptosystem. By the validity check of the tag-bagauectext and the perfect soundness of the NIZK
proof this gives the same signatureas we get when running the extractor on the NIWI proof of kremlgle.
We now go throughreg checking whether there existso (o, v; g2 (vksors)) = ¢(g, ¢). In that case, we
return(i, o). The equation defineg uniquely so this points to the samgas when extracting the NIWI proof
of knowledge. If no suchy; can be found, we returf0, o). The perfect soundness of the NIWI proof of
knowledge and the NIZK proof implies that this does not cleating probabilities witlh = 0 andb = 1 at all.

What we have accomplished in the last step is to modifyQlpen oracle such that it does not use the
extraction keyrk for the NIWI proof. We can therefore now switch to using a deed common reference
string crs that gives us perfect witness-indistinguishability andfige zero-knowledge. Since real common
reference strings and simulated common reference striregsaanputationally indistinguishable, this change
only negligibly alters the probability ofl outputting1. Perfect witness indistinguishability implies that the
proof  does not reveal any information abaptk[ig] or gsk[i1] having been used to create the challenge
group signature.

The only information that is left in the challenge about thgner is inside the ciphertexg. We will
now use the selective-tag weak CCA-security of the cryissy to show that the two modified probabilities
for respectivelyp = 0 andb = 1 only differ negligibly. Let us therefore use the group sigma adver-
sary to construct a selective-tag adversary that attaeksrifptosystem. The cryptosystem has a public key
F,H, K, L. ltis possible to build a common reference string using #raesl’, H, g that has perfect witness-
indistinguishability and perfect zero-knowledge, sine zero-knowledge trapdoor consists of the discrete
logarithms ofU’, V', W' with respect taF, H, g. We can therefore on top of a public kéy H, K, L generate
a correctly formed public keypk for the group signature scheme and emulate the ordei@€ orrupt and
JoinHonestExposed. Whenever we have a valid group signature quer@ien it contains a ciphertexy.
This ciphertext never uses the tHgsh(vksots) from the challenge ciphertext, so we can use the decryption
oracle in the selective-tag weak CCA-security game defittiegsecurity of the cryptosystem to decrypt the
ciphertext and get out.
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We will now describe how to generate the challenge groupasige on top of a challenge tag-based ci-
phertext. We start by picking a key for the strong one-timgnaiure schemévksots, sksots). We will use
Hash(vksots) as the target tag, which we observe is chosen independeithegublic key for the cryp-
tosystem. We now get the public kéy H, K, L and run the group signature game on top of it as described
above. At some point the adversary produggs;, m on which it wants a challenge group signature. We
construct signatures;,, o;, on Hash(vksos) for respectively usefy andi;. We then get an encryption
using Hash(vksots) @s the tag of eithes;, or o;, and our goal is to distinguish which one is the plaintext
of y. We build a group signature on top of this ciphertext, whiah be done since we have perfect NIWI
proofs of knowledge and perfect NIZK proofs on simulated own reference strings. If the group signature
anonymity probabilities fob = 0 andb = 1 are different, we can distinguish whethgencryptso;, or o;, .
The selective-tag weak CCA-security of the cryptosysteerdfore gives us that the modified probabilities
with b = 0 andb = 1 are indistinguishable. O

Lemma 6 The group signature scheme has non-frameability undergt®&®H assumption and assuming
the one-time signature scheme is existentially unforgeabder weak chosen message attack and the hash-
function is collision-free.

Proof. We want to prove that for all non-uniform polynomial time adsaries4 we have:

Pr (gpk:,ik,ok) - GKg(lk) : (?n7 E,i,O’) - AIssueToHonest,ReadGsk,GSig(gpk’Z‘k70k) .
GVf(gpk,m,¥X) =1 A Judge(gpk,i,regli],m,3,0) =1
A i € HonestUsers A i ¢ ExposedKeys A (m,X) ¢ UserSignatures| ~ 0.

By the strong unforgeability of the one-time signature seheinder weak chosen message attack, there is
negligible probability thatd producegm, ) sovks.ts from one of the group signatures made from Geig
oracle is reused. The collision-freeness of the hash-fomdmplies that there is negligible probability that
Hash(vksots) collides with one of the k. ., used by the&Sig oracle. We can therefore assume that an attempt
to frame a user requires a signataren a valueHash (vk.ts) that the user has not made a certified signature
on.

Let n(k) be a polynomial upper bound of the numberdsfueToHonest queries thatd makes. We have
at Ieastﬁ chance of guessing the ugethat.A will attempt to frame before running the game. However, the
proof of the existential unforgeability of the certified s&ure scheme against weak chosen message attack
tells us that for each honest user there is negligible piityabf producing o that is a satisfactory Boneh-

Boyen signature oflash (vksots )- O
Lemma 7 The group signature scheme is traceable if §id assumption holds.
Proof. We have to prove that valid signatures lead to the provalgletification of a signer. In other words,
Pr | (gpk, ik, ok) — GKg(1%); (m, %) — A" (gpk, ok) ; (i,0) — Open(gpk, ok,reg, m,¥) :
GVf(gpk,m,X) =1 A (Judge(gpk,i,reg[i],m,X,0) =0 V i = O)] ~ 0.

By the soundness of the NIWI proof a valid signatirémplies the existence of a valid certified signature on
Hash(vksots). We can use the extraction key: to extract this certified signature. By the unfakeabilitythd
certified signature scheme, the certified signature pointme of thev;’s generated in a join/issue session.
The perfect soundness of the NIWI proof of knowledge impifet the extracted is indeed a sighature on
Hash(vksots) Under the verification key; in the NIWI proof of knowledgeJudge will therefore output 1
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EFFICIENCY. If we instantiate the strong one-time signature with the€&eBoyen signature scheme a veri-
fication key is one group element and a one-time signaturisasame group element. We make the element
a public. The NIWI proof of knowledge consists of 27 group etans. The ciphertext consists of 5 group
elements. The NIZK proof consists of 15 group elements. ota size of a group signature is therefore 50
group elements id7. This is of course much better than the many thousand elesmeqtired for a group
signature in [Gro06].

In case CPA-anonymity is sufficient, we can consider a ligiégsion of our group signature, where we
omit the ciphertexty and the NIZK proofiy). This CPA-anonymous group signature scheme would consist
of 30 group elements. We observe that regular anonymityigephat the group signature is strong, i.e.,
even when seeing a messageand a group signaturg on it, it is not possible to create a different group
signatureX’ onm such that it still points to the same member. In CPA-anonyrhibwever, we do not give
the adversary access to an opening oracle and thus maulingtsies is no longer a problem. If we do not
care about the group signature being strong, we do not neeslithng one-time signature key and we can
simply signHash(m) instead ofHash(vksots). This reduces the size of the group signatures furth@8to
group elements. In comparison, the CPA-anonymous groutatige scheme of [BWO7] consists of 6 group
elements in a composite order group. Since composite ordeipg rely on the hardness of factoring, these
groups are very large and our CPA-anonymous group sigrsatuestherefore comparable in size for practical
parameters, perhaps even a bit smaller. However, our CBAyamous group signature scheme still supports
dynamic enrollment of members and has a group publicg¢gyconsisting of a constant number of group
elements.

KEY GENERATION. Since the [BSZ05]-model assumes a trusted key generawmibrth considering how
the key generation should be carried out in practice. Ths fruour scheme relies on the bilinear group
(p, G,Gr, e, g) being generated so the cryptographic assumptions hold eglies on the hash-function being
collision-free. We remark that an advantage of our schenttgiswe work over prime order bilinear groups,
so it may be possible to use a uniform random string to sépu@, Gr, e, g). Also, since the trust is based
on a very elementary setup, a bilinear group and a hashifumadt is possible that suitable public standards
can be found. One could for instance use SHA-256 as the haslidn.

The non-frameability of the user relies only on the collisfoeeness of the hash-function and the crypto-
graphic assumptions itp, G, G, e, g). The rest of the group public keypk can be generated jointly by the
issuer and the opener. The issuer generates the authoyifpikthe certified signature scheme. The opener
generategrs andpk, anonymity follows from the opener generating these keyeecty. Since the opener
can break anonymity anyway, it is quite reasonable to thesbpener with protecting anonymity. The opener
will have to make a zero-knowledge proof of knowledge of tber@sponding extraction key to the issuer,
since the security proof for traceability relies on the ggrdpeing able to actually extract a signature from the
NIWI proof of knowledge.
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