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Abstract. Although the Yahalom protocol, proposed by Burrows, Abadi,
and Needham in 1990, is one of the most prominent key establishment
protocols analyzed by researchers from the computer security commu-
nity (using automated proof tools), a simplified version of the protocol
is only recently proven secure by Backes and Pfitzmann (2006) in their
cryptographic library framework. We present a protocol for key establish-
ment that is closely based on the Yahalom protocol. We then present a
security proof in the Bellare and Rogaway (1993) model and the random
oracle model. An extension to our proposed protocol results in an unusual
feature, that is session key can be renewed for subsequent communica-
tion without the server’s involvement (i.e., re-authentication). We also
observe that no partnering mechanism is specified within the Yahalom
protocol. We then present a brief discussion on the role and the possible
construct of session identifiers as a form of partnering mechanism, which
allows the right session key to be identified in concurrent protocol exe-
cutions. We then recommend that session identifiers should be included
within protocol specification rather than consider session identifiers as
artefacts in protocol proof.

1 Introduction

The establishment of session keys often involves interactive cryptographic
protocols (or also known as authentication and/or key establishment pro-
tocols). Such protocols are the cornerstone of any secure communication
and increasingly being considered as the sine qua non of many diverse
secure electronic communications and electronic commerce applications.

It is generally regarded that the design of secure key establishment
protocols is notoriously hard. The study of such protocols has resulted in
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a dichotomy in cryptographic protocol analysis techniques between the
computational complexity approach [1,9,16,38] and the computer security
approach [34].

The emphasis of this paper is on the current computational complex-
ity (provable security paradigm) approach to proofs for protocols. In this
paradigm for protocols, a deductive reasoning process is adopted whereby
emphasis is placed on a proven reduction from the problem of breaking
the protocol to another problem believed to be hard. A complete mathe-
matical proof with respect to cryptographic definitions provides a strong
assurance that a protocol is behaving as desired. The history of mathe-
matics is, however, full of erroneous proofs [14]. One such example is il-
lustrated in the virtuoso work of Lakatos [31] where the many proofs and
refutations for Euler’s characteristic in algebraic topology are presented
as a comedy of errors. Many formulations for Euler’s characteristic in al-
gebraic topology, a theorem about the properties of polyhedra, have been
tried, only to be refuted and replaced by another formulation.

The difficulty of obtaining correct computational proofs of security is
also dramatically illustrated by the well-known problem with the OAEP
mode for public key encryption [39]. Although OAEP was one of the
most widely used and implemented algorithms, it was several years af-
ter the publication of the original proof that a problem was found (and
subsequently fixed in the case of RSA). Problems with proofs of protocol
security have occurred too, evidenced by the breaking of several provably-
secure protocols after they were published.

Despite these setbacks, proofs are invaluable for arguing about secu-
rity and certainly are one very important tool in getting protocols right.
Moreover, having security proofs allow protocol designer to formally state
the desirable properties / goals that a protocol offers (giving assurance
to protocol implementors).

Motivations of Paper.

1. Despite the popularity of the Yahalom protocol [15] – especially with
researchers using formal methods for protocol verification [37] – the
protocol does not possess a security proof within a computational com-
plexity framework (e.g., within the widely accepted indistinguishability-
based model). We note that in a recent work of Backes and Pfitzmann
[3], a simplified version of this protocol is proven in the cryptographic
library that corresponds to a slightly extended Dolev–Yao model [22].
We hope that by providing such a proof for a slightly modified Ya-
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halom protocol, this will be of interest to the researchers, in particular
to researchers from the computer security community.

2. We observe that session identifiers (SIDs) do not form part of the pro-
tocol specification for the Yahalom protocol (as in the case for many
other key establishment protocols). In a real world setting, it is nor-
mal to assume that a host can establish several concurrent sessions
with many different parties. Sessions are specific to both the commu-
nicating parties. In the case of key distribution protocols, sessions are
specific to both the initiator and the responder principals, where every
session is associated with a unique session key. SIDs enables unique
identification of the individual sessions.

Contributions of Paper.

1. We work in the widely accepted indistinguishability-based model of
Bellare and Rogaway (hereafter referred to as the BR93 model) [9] and
the random oracle model (also known as the ideal hash model) [10]1.
In this paper, we present a revised version of the Yahalom protocol
and a formal statement of its security in the BR93 model and the
random oracle model.

2. We highlight the importance of SIDs for practical key establishment
protocols. We briefly discuss possible constructs of SIDS. We then
recommend that SIDs should be included in protocol specification
rather than be considered as artefacts in the protocol proof noting
that not many protocols are proven secure.

Roadmap. Section 2 reviews the BR93 model and the necessary math-
ematical preliminaries. Section 3 revisits the Yahalom protocol and the
simplified version proven secure by Backes and Pfitzmann [3]. In Section 4,
a protocol closely based on the Yahalom protocol is then described, fol-
lowed by a proof of its security. We then describe how our proposed pro-
tocol can be extended to allow session keys to be renewed in subsequent
sessions without the server’s further involvement. Section 5 presents a
brief discussion on the role of SIDs in protocols and our recommenda-
tions. Section 6 concludes the paper with a comparitive summary of the
proven secure protocol.
1 Some might argue that a proof in the random oracle model is more of a heuristic proof

than a real one. However, despite the criticism, this model is still widely accepted
by the cryptographic community. We remark that recently, the first practical and
provable-secure oblivious transfer password-based protocol whose proof of security
relies on the random oracle model was published in ACM CCS 2005 [24]. Moreover,
in many applications, a very efficient protocol with a heuristic security proof is
preferred over a much less efficient one with a complete security proof [17].
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2 Provable Security Paradigm for Protocols

Although the first treatment of computational complexity analysis for
cryptography began in the 1980s [25], it was made popular for key es-
tablishment protocols by Bellare and Rogaway [9]. They provide the first
formal definition for a model of adversary capabilities with an associated
definition of security (which we refer to as the BR93 model in this paper)
where they provide mathematical proofs for two-party entity authentica-
tion protocols. In the model, there exist a powerful adversary who can
interact with all the participants, with an aim to learn some information
about one session key. Therefore, one tries to prove the indistinguishabil-
ity of the session key (from a random key) for the adversary.

2.1 The Adversarial Model

Informally the adversary, A, is allowed to fully control the communication
network by injecting, modifying, blocking, and deleting any messages at
will. A can also request for any session keys adaptively. The adversary
interacts with a set of oracles, each of which represents an instance of
a principal in a specific protocol run. Each principal has an identifier
U and oracle Πs

U,· represents the actions of principal U in the protocol
run indexed by integer s. Formally, A can adaptively query the following
oracles, as follows:

Send(U1, U2, s, m) This query allows the adversary to make the princi-
pal, U1, run the protocol normally (with some responder). The oracle
Πs

U1,U2
will return to the adversary the same next message that an

honest principal U1 would if sent message m according to the conversa-
tion so far. This includes the possibility that m not be of the expected
format in which case Πs

U1,U2
may simply halt. If Πs

U1,U2
accepts the

session key or halts this is included in the response. The adversary can
also use this query to initiate a new protocol instance by sending an
empty message m. For simplicity in the proof simulation, we separate
the simulation of the Send queries into SendClient(U1, U2, s, M) and
SendServer(U1, U2, s, M) queries where SendClient queries are directed
at client oracles and SendServer queries are directed at server oracles.

Reveal(U, s) This query models the adversary’s ability to find session
keys. If a session key Ks has previously been accepted by Πs

U,· then it
is returned to the adversary. An oracle can only accept a key once (of
course a principal can accept many keys modelled in different oracles).
An oracle is called opened if it has been the object of a Reveal query.
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Corrupt(U,K) This query models insider attacks and unknown-key share
attacks by the adversary. The query returns the oracle’s internal state.
A can choose to replace the long-term secret key of the principal with
a key of A’s choice, K. A principal is called corrupted if it has been
the object of a Corrupt query.

Test(U1, U2, s) Once the oracle has accepted a session key Ks the adver-
sary can attempt to distinguish it from a random key as the basis
of determining security of the protocol. A random bit b is chosen; if
b = 0 then Ks is returned while if b = 1 a random string is returned
from the same distribution as session keys. This query is only asked
once by the adversary.

Note that in the original BR93 model, the Corrupt query is not allowed.
However, we consider the BR93 model which allows the adversary access
to a Corrupt query because later proofs of security in the BR93 model
allow the Corrupt query. The omission of such a (Corrupt) query may also
allow a protocol vulnerable to insider and unknown key share attacks to
be proven secure in the model [18].

2.2 Definition of Security

Definition of security in the BR93 model depends on the notion of the
partner oracles to any oracle being tested. The way of defining partner
oracles has varied in different papers using the model. In more recent
proofs (e.g., [30,33,32]), partners have been defined by having the same
session identifier (SID) which consists of a concatenation of the messages
exchanged between the two. We define SID(Πs

U ) as the concatenation of
all messages that oracle Πs

U has sent and received. Let PID(Πs
U ) denote

the perceived partner of Πs
U .

Definition 1. Two oracles, Π i
U1

and Πj
U2

, are partnered if:

– each believes that the other is its partner (i.e., PID(Π i
U1

) = U2 and
PID(Πj

U2
) = U1),

– they agree on the same session identifier (i.e., SID(Π i
U1

) = SID(Πj
U2

)).

Definition 2. An oracle, Π i
U1

, is fresh at the end of its execution if:

– Π i
U1

and its partner Πj
U2

(if such a partner exists) have not been asked
any Reveal queries, and

– both principals U1 and U2 have not been asked any Corrupt queries.
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The security of the protocol is defined by the following game played be-
tween the adversary and an infinite collection of client and server oracles.
Note that a protocol participant is either a client or a server but not both.
An overview of the game simulation is as follows:

Stage 0. The long-term secret keys are assigned to each client and server
participants in the protocol by running the key distribution algorithm
Gk on input of the security parameter, k.

Stage 1. The challenger now simulates the view of the adversary, A, by
answering all Send, Reveal and Corrupt queries of the adversary.

Stage 2. At some stage during the game simulation, a Test query is asked
by the adversary to a fresh oracle.

Stage 3. The challenger continues simulating the view of the adversary,
A, by answering all Send, Reveal and Corrupt queries of the adversary.
However, the adversary is not allowed to ask any Reveal or Corrupt
queries that will trivially expose the Test key (i.e., renders the Test
key unfresh in the sense of Definition 2).

Stage 4. Eventually the adversary outputs a bit b′ and terminates. Suc-
cess of the adversary A in this game is measured in terms of its advan-
tage in distinguishing the session key of the Test query from a random
key, i.e. its advantage in outputting b′ = b. This advantage must be
measured in terms of the security parameter k. If we define success to
be the event that A guesses correctly whether b = 0 or b = 1 then

AdvA(k) = |2 · Pr[success]− 1|.

Definition 3. A protocol is a secure key establishment protocol if both
properties are satisfied:

1. If fresh oracles Π i
U1

and Πj
U2

are partners in the sense of Definition 1,
then Π i

U1
and Πj

U2
conclude with the same session key except for a

negligible probability.
2. For every probabilistic, polynomial-time adversaries, A, the function

AdvA(k) is negligible.

3 The Yahalom Protocol and its Simplified Version

We now revisit the Yahalom protocol [15] described in Protocol 1. At
the end of Protocol 1’s execution, both users A and B will accept the
session key (SKAB) generated by the trusted server, S. Other notation in
Protocol 1 is as follows: E(m)K denotes an encryption of some message
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m under symmetric key K; S denotes a server who shares long-term
symmetric keys KAS and KBS with A and B respectively; NA and NB

denote nonces generated by A and B respectively.

1. A→ B : NA

2. B → S : B, E(A, NA, NB)Kenc
BS

3. S → A : E(B, SKAB , NA, NB)Kenc
AS

, E(A, SKAB)Kenc
BS

4. A→ B : E(A, SKAB)Kenc
BS

, E(NB)SKAB

Protocol 1: The Yahalom protocol

Protocol 1 provides key confirmation – B is assured that A actually has
possession of the same secret session key, SKAB, since A sends to B the
encryption of the nonce chosen by B, NB, using SKAB.

Choo and Hitchcock [20] pointed out informally that it does not ap-
pear possible to prove Protocol 1 secure in the BR93 model due to the en-
cryption of the nonce using the established session key (i.e., E(NB)SKAB

)
in the last message (from A to B). In an independent yet related work,
Backes and Pfitzmann [3] raise similar observation. In the simplified ver-
sion proposed by Backes and Pfitzmann [3], the encryption of the nonce
using the established session key (i.e., E(NB)SKAB

) in message 4 is re-
moved from the protocol.

4 A New Provably-Secure Protocol

Following the approach of Boyd, Choo, and Mathuria [13], we will de-
fine the authenticated encryption scheme in the security proof for our
proposed protocol prior to defining our proposed protocol.

4.1 Secure Authenticated Encryption Schemes

Let k denote the security parameter. A symmetric encryption scheme
SE = (K, E ,D) consists of three algorithms, namely: the key generation
algorithm K, the encryption algorithm E , and the decryption algorithm
D as described below.

– K is a probabilistic algorithm which, on input 1k, outputs a key K.
– E is a probabilistic algorithm which takes a key K and a message

M drawn from a message space M associated to K and returns a
ciphertext C. This is denoted by C

R← EK(M).
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– D is a deterministic algorithm which takes a key K and a ciphertext
C and returns the corresponding plaintext M or the symbol ⊥ which
indicates an illegal ciphertext. This is denoted as x ← DK(C). We
require that DK(EK(M)) = M for every K ← K(1k).

For security we use the definitions of Bellare and Namprempre [7]. We
require that the symmetric encryption scheme provides confidentiality
in the sense of indistinguishability under chosen plaintext attacks (IND-
CPA security) and provides integrity in the sense of preserving integrity
of plaintexts (INT-PTXT security). We note that each of these is the
weakest of the properties defined by Bellare and Namprempre and are
provided by either encrypt-then-MAC or by MAC-then-encrypt construc-
tions. Therefore there are many practical ways of implementing our pro-
tocol which can reasonably be expected to satisfy these assumptions. We
now define these concepts more precisely.

For any efficient (probabilistic polynomial time) adversary X , the con-
fidentiality security is defined in terms of the following game, which we
call G1.

1. The challenger chooses a key K ← K(1k).
2. Given access to the encryption oracle, the adversary outputs two mes-

sages of equal length M0,M1 ∈M of her choice.
3. The challenger computes Cb

R← EK(Mb) where b
R← {0, 1}. The bit b

is kept secret from the adversary.
4. The adversary is then given Cb and has to output a guess b′ for b.

We define the advantage of the adversary X playing the above game as

Advind−cpa
X (k) = |2 · Pr[b′ = b]− 1|.

Definition 4. The encryption scheme SE is IND-CPA secure if the ad-
vantage of all efficient adversaries playing game G1 is negligible.

For any efficient adversary F , the integrity security is defined in terms
of the following game, which we call G2.

1. Choose a key K ← K(1k).
2. The adversary F is given access to the encryption oracle and also a

verification oracle which on input a ciphertext C outputs 0 ifDK(C) =⊥
and outputs 1 if C is a legitimate ciphertext.

3. The adversary wins if it can find a legitimate ciphertext C∗ such
that the plaintext M = DK(C∗) was never used as a query to the
encryption oracle. In this case we say the event forgery has occurred.
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We define the advantage of the adversary playing the above game as
Advint−ptxt

F (k) = 2 · Pr[forgery].

Definition 5. The encryption scheme SE is INT-PTXT secure if the
advantage of all efficient adversaries playing game G2 is negligible.

4.2 Our Proposed Protocol

Now that the authenticated encryption scheme to be employed in the
protocol has been defined, we can define the protocol that we shall prove
secure. New notation introduced here in Protocol 2 are:

– H and H1 denote two secure and independent cryptographic hash
functions;

– {m}K denotes an authenticated encryption of some message m under
symmetric key K;

– || denotes concatenation of messages;
– sid denotes the session identifier2;
– NU ∈R {0, 1}w denotes a random w-bit nonce; and
– SKAB ∈R {0, 1}k denotes the random k-bit key generated by the

server, S, for some session.

Protocol 2 is very similar to Protocol 1 and differences include (but not
limited to) the following:

1. In Protocol 1, the session key (SKAB) is contributed by the server, S,
whilst for Protocol 2, users A and B as well as the server S contribute
to the key value (MKAB = H(sid||0||SKAB)).

2. In Protocol 1’s specification, there is no partnering mechanism (e.g.,
sid) specified. Without such partnering mechanism, communicating
parties will be unable to uniquely distinguish messages from different
sessions. This is further discussed in Section 5.

3. Due to the use of an authenticated encryption scheme in Protocol 2,
the computational overhead is slightly more expensive than that of
Protocol 1.

Informally, the inclusion of the

2 Note that sid is made public upon protocol completion, and the security of the
protocol does not hinge on the difficulty of predicting a valid sid. In other words,
anyone (including the adversary, A) knows what a particular sid is.
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A S B

NA ∈R {0, 1}w A, NA−−−−−−−−−−−−−−−−→ NB ∈R {0, 1}w

sidB = A||B||S||NA||NB

{sidB}KBS , B
←−−−−−−−−−−−−−−−−

SKAB ∈R {0, 1}k

{SKAB , sidB}KBS , {SKAB , sidB , NB}KAS←−−−−−−−−−−−−−−−−
Decrypt {SKAB , sidB , NB}KAS

sidB
?
= A||B||S||NA||NB

EKA = H1(sidB ||1||SKAB)

Session key, MKA = H(sidB ||0||SKAB)

STATUS: Accepted
{SKAB , sidB}KBS , {NB}EKA−−−−−−−−−−−−−−−−→ Decrypt {SKAB , sidB}KBS

Verify sidB ; EKB = H1(sidB ||1||SKAB)

Decrypt {NB}EKA and obtain N ′
B

N ′
B

?
= NB

Session key, MKB = H(sidB ||0||SKAB)

STATUS: Accepted

Protocol 2: A revised Yahalom protocol

– Identities of the participants3 and role asymmetry within the session
key construction effectively ensures some sense of direction. If the role
of the participants or the identities of the (perceived) partner change,
the session keys will also be different. Hence, this provides resilience
against unknown key share and reflection attacks.

– Unique session identifier (sid) within the session key construction en-
sures that session keys will be fresh. Moreover, it appears that the
publication of sid upon protocol completion results in A being unable
to get B to accept nonce pair (which is part of the published sid) as
the session key. Recall a different sid also mean a different session key.
Hence, it appears that the type flaw attack revealed on Protocol 1 by
Basin, Mödersheim, and Viganò [4] is thwarted.

4.3 Proof for Protocol 2

Theorem 1 Protocol 2 is a secure key establishment protocol in the sense
of Definition 3 if the underlying authenticated encryption scheme is INT-
3 Such an approach is also recommended by National Institute of Standards and Tech-

nology (NIST) [35]
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PTXT secure as described in Definition 5 and both H and H1 are modelled
as independent random oracles.

The proof follows that of Bellare and Rogaway [11] and that of Boyd,
Choo, and Mathuria [13] quite closely; differences include the use of a
combined authenticated encryption scheme (as opposed to separate en-
cryption and MAC functions), the different partnering function used, and
the deployment of the random oracle (note that we model H and H1 as
random oracles).

The general idea of the security proof is to assume that the protocol
adversary can gain an advantage and use this to break the assumptions
about the security of the encryption algorithm. Since the adversary relies
on its oracles to run we simulate the oracles so that we can supply the
answers to all the queries the adversary might ask. We cannot supply an-
swers which rely on knowledge of the encryption keys that we are trying
to break, so we use the integrity of plaintexts to show that these queries
would, almost certainly, not be answered by any oracle running the pro-
tocol. As long as the simulation works with non-negligible probability the
assumption about the encryption scheme fails.

Following Bellare and Rogaway [11] we need to extend the definition
of a secure encryption scheme to allow the adversary to obtain multi-
ple encryptions of the same plaintext under many different independent
encryption keys. Such an adversary is termed a multiple eavesdropper.
A multiple eavesdropper, ME , is allowed to obtain encryptions of the
same plaintext under two different independent encryption keys. We can
bound the advantage of a multiple eavesdropper by considering it as a
special case of the multi-user setting analysed by Bellare, Boldyreva and
Micali [6]. In their notation we have the case of qe = 1, meaning that the
adversary can only obtain one encryption for each public key.

Lemma 1 Suppose that an adversary has advantage at most ε(k) for
encryption scheme (E ,D). Then a multiple eavesdropper has advantage
not more than n · ε(k).

Notice that since an authenticated encryption scheme is also a secure en-
cryption scheme in the sense defined by this result, it also holds for an
authenticated encryption scheme. This allows us to define a variant of
game G1 which we call G′1. The only difference between these is that in
G′1 the adversary is given access to two encryption oracles for two inde-
pendently generated keys, and its challenge consists of two encryptions
of either m0 or m1 under the two keys.
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4.3.1 Integrity attacker We now construct a forger F against the
security of the authenticated encryption scheme, SE , described in Defi-
nition 4, using an adversary against Protocol 2, A. We will say that the
event successF occurs if F wins game G2 against SE .

Lemma 2 There is an efficient algorithm F defined using A such that
if forge occurs with non-negligible probability then successF occurs with
non-negligible probability .

In order to prove Lemma 2 we describe how F is constructed. When F
runs it receives access to the encryption and verification oracles of the
authenticated encryption scheme SE . Its output must be a forged cipher-
text for a message m which was not previously input to the encryption
oracle.

In order to obtain the forgery F runs A by first choosing a user Ui

for i ∈R [1, Q]. This user will be simulated as though its long-term key is
the one used in SE . For all other j ∈ [1, Q] with j 6= i, F generates the
long-term shared key using the key generation algorithm Kk. This allows
F to answer all the oracle queries from A as follows.

Send(U1, s, M) For any well-formed queries to S, F can reply with valid
ciphertexts, by choosing the session key and forming the ciphertexts,
either directly using the known key or using the encryption oracle in
the case of Ui. For queries to initiate a protocol run, F can generate
a random nonce and answer appropriately. Finally, consider a query
to either an initiator or responder oracle including a claimed server
message (corresponding to protocol messages 3 or 4). The relevant
ciphertext can be verified either directly using the known key or using
the verification oracle. If the ciphertext is verified correctly then the
oracle accepts and this information is returned to A.

Reveal(U, s) Since all session keys are known from running the Send(U, s,M)
queries the query can be trivially answered with the correct session
key (if accepted).

Corrupt(U) As long as U 6= Ui all the private information is available and
the query can be answered. In the case U = Ui then the query cannot
be answered and F will abort and fail.

Test(U, s) Since all the accepted session keys are known from running
the Send queries the query can be trivially answered by identifying
the correct session key.

F continues the simulation until a forgery event against SE occurs, or
until A halts. Note that as long as F does not abort then the simulation
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is perfect. If forge occurs then the probability that the user involved is Ui

equals 1/Q. In this case the event successF occurs. Futhermore, in this
case F does not abort since Ui cannot be corrupted before the forge event.
Therefore we arrive at the following upper bound.

Pr(forge) ≤ Q · Pr(successF ) (1)

4.3.2 Confidentiality attacker For the second part of the proof, we
assume that A gains an advantage without producing a forgery. We con-
struct an attacker with a non-negligible advantage against the encryption
scheme, X , using the adversary, A.

Lemma 3 There is an efficient algorithm X defined using A such that
if success occurs but forge does not occur, then X wins game G′1.

Two random keys K and K ′ are chosen by the challenger for SE and X
is given access to the encryption oracles for these keys. First X chooses
two users Ui and Uj for i, j ∈R [1, Q]. For all other k ∈ [1, Q], X generates
the long-term key using the key generation algorithm Kk. Next A chooses
two random session keys K0 and K1. Suppose that QS is the maximum
number of Send queries that A will ask of the server and QH is the max-
imum number of hash queries that A will ask of the server. X chooses a
value s0 randomly in [1, QS ]. The idea is that X will inject the ciphertexts
Cb, C

′
b into a random SendServer query. X proceeds to simulate responses

for A as follows. Let UI and UR denote the initiator and the responder
respectively.

Note that we also require two separate lists of tuples, LH and LH1

to be maintained. If we are asked queries of the form H(SIDk
i ||0||SK)

and H1(SIDk
i ||1||SK), we check to see if the queries have been previously

asked. If so, then the previous answer stored in the respective list will be
returned (to maintain consistency). Otherwise, return a random value,
v ∈R {0, 1}k. In addition, store this answer together with the query in
the respective list.

SendClient: In the case of U1 = UI , U2 = UR, and m = ∗, then this will
start a protocol run. This query can be successfully answered by X
and the outgoing message is some randomly chosen k-bit challenge
NU1 .

SendClient: In the case of U1 = UR, U2 = UI , and m is some k-bit chal-
lenge, then X will choose a unique k-bit challenge, NU2 ; computes the
session identitifer, sid = U1||U2||S||m||NU2 and the respective cipher-
text; and successfully answer this query.
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SendServer: In the case of U1 = {UI , UR}, U2 = S, and m is of the right
format (as per message 2 in protocol specification), then S will run the
session key generator and output a session key not previously output
and generates the respective ciphertexts as the protocol specification
demands.

SendClient: In the case of U1 = UI , U2 = UR, and m is of the right
format (as per message 3 in protocol specification). Since we assume
that A is not able to produce any MAC forgeries, all session keys (if
accepted) are known from the SendServer(U1, U2, ι, m) queries. Hence,
if the received ciphertext (MAC digest) verifies correctly, the message
must have been generated by X during a SendServer query and in this
case, X will output the decision δ = accept . Otherwise, X will output
the decision δ = reject , as the protocol specification demands.

SendClient: If U1 = UI , U2 = UR, and m is of the right format (as per
message 4 in protocol specification). Again under the assumption that
A is not able to produce any MAC forgeries, all session keys (if ac-
cepted) are known from the SendServer(U1, U2, ι, m) queries. Since we
also know the keying materials for both the session key and the one-
time encryption/MAC key EK (used to encrypt the nonce of UR) are
the same and if received ciphertext (MAC digest) verifies correctly, the
message must have been generated by X during a SendServer query.
Therefore, X will output the decision δ = accept . Otherwise, X will
output the decision δ = reject , as the protocol specification demands.

In all other cases the input to the SendClient or SendServer is invalid, X
will terminate and halt the simulation. Hence, SendClient and SendServer
queries can be correctly answered by X .

This completes the description of X . Since all the accepted session keys
are known from running the SendClient and SendServer queries, the Test
query can be trivially answered by identifying the correct session key.

Let lucky be the event that X does not fail during the Test query.
When lucky occurs, X wins game G′1 whenever A is successful. This means
that Pr(successX |lucky) ≥ Pr(successA|forge). We also have Pr(lucky) ≥
1/(Q2 ·QS). Putting these together we obtain:

Pr(successA|forge) ≤ Q2 ·QS · Pr(successX ). (2)

4.3.3 Conclusion of Proof for Theorem 1 Since N , QS , and QH

are polynomial in the security parameter k and ε is negligible by defini-
tion. Therefore, by combining equations 1 and 2 completes the proof for
Theorem 1.
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4.4 An Extension to Protocol 2

In addition to the basic Protocol 2, there is an extension which allows
the session key to be renewed in subsequent sessions without the server’s
further involvement (i.e., re-authentication). This entails A and B ex-
changing new nonces N ′

A and N ′
B and computing the new session key

as MK ′
A = H(sidA′ ||SKAB) = H(sidB′ ||SKAB) = MK ′

B where sidA′ =
sidB′ = (A||B||S||N ′

A||N ′
B) as described by Protocol 3.

A B

N ′
A ∈R {0, 1}w

A, N ′
A−−−−−−−→

B, N ′
B←−−−−−−− N ′

B ∈R {0, 1}w

sidA′ = (A||B||S||N ′
A||N ′

B) = sidB′

MK′
A = H(sidA′ ||SKAB) = H(sidB′ ||SKAB) = MK′

B

Protocol 3: An extension to Protocol 2 (i.e., re-authentication)

Protocol 3 can also be enhanced with key confirmation, which consists of
a handshake using the shared secret.

Remark. We are unable to prove Protocol 3 secure in the current model
we are using. To prove Protocol 3 secure, we would have to modify the
definitions of freshness (described in Definition 2) and partnership (de-
scribed in Definition 1). This is to restrict the adversary from exposing
session key agreed by both A and B in their previous session (i.e., SKAB)
without rendering the session key unfresh.

5 Partnering Mechanism: A Brief Discussion

In Protocol 1, partnering mechanism does not form part of its specifi-
cation. Message exchanges in the real world are seldom conducted over
secure channels. Therefore, it is realistic to assume that any adversary is
able to modify messages at will, which is the case in the Bellare–Rogaway
style models. As Goldreich and Lindell [26, Section 1.3] have pointed out,
such an adversary capability means that the adversary is able to conduct
concurrent executions of the protocol (one with each party).

For protocols proven secure in the Bellare–Rogaway style models or
the Canetti–Krawczyk model [16], session identifiers as partnering mech-
anism are not explicitly part of the protocol specification but rather em-
bedded within the partnership definition (e.g., it is stated that the cor-
rectness of session identifiers can be omitted from the formal protocol
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specification [28]). We also observe that in the Canetti–Krawczyk model,
the values of the session identifiers are not specified. Instead, it is assumed
that session identifiers are known by protocol participants before the pro-
tocol begins. Such an assumption might not be practical as it requires
some forms of communication between the protocol participation prior to
the start of the protocol. Furthermore, by assuming that session identifiers
are known by protocol participants before the protocol begins indicates
that session identifiers do not form part of the protocol specification.

We advocate that session identifiers play a significant role in proto-
col security as they bind together incoming and outgoing messages, and
uniquely identify a particular session. In other words, attacks against pro-
tocol is also predicated on the constructions of SIDs chosen as shown by
Bohli, González Vasco, and Steinwandt [12] and Choo and Hitchcock [20].

In practice, it seems more intuitive to include session identifiers within
the protocol specification since implementation of such protocols (e.g.,
SSL and IPSec) should allow applications to distinguish between the
various concurrent sessions between one or many other applications. In
other words, protocol on its own (without the session identifiers compo-
nent) does not allow concurrent executions since oracles have no means
of uniquely identifying one session from another. Moreover, not all pro-
tocols are proven secure in the Bellare–Rogaway style models and the
Canetti–Krawczyk model or carry any security proofs.

How to Construct SIDs? In practice, session identifiers may be deter-
mined during protocol execution [16,21,29], as in the case of the Bellare,
Pointcheval, and Rogaway model [8] and recent work of Krawczyk [33]
whereby session identifiers are defined to be the concatentation of all in-
coming and outgoing messages. However, this might not be achievable
in some protocols where the protocol participants do not have full view
of the messages exchanged (e.g., the inability to define session identifiers
in the Bellare–Rogaway 3PKD protocol [11] pointed out by Choo et al.
[19]). As a bare minimum, session identifiers constructed in this context,
should contain some unique contributions from each participant (e.g.,
random nonces, timestamps) and the identities of the peers (which is the
case for Protocol 2).

Recommendations. Therefore, we suggest consider the construction of
session identifiers or some forms of partnering mechanism within the pro-
tocol specification. Otherwise, this will result in the inability of communi-
cating principals to uniquely distinguish messages from different sessions.
Consequently, this leads one to question the practicality and usefulness of
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the protocol in a real world setting. Moreover, including session identifiers
in the key derivation function ensures that entities who have completed
matching sessions, partners, will accept the same session key.

Word of Caution. We do not claim that including session identifiers
or some forms of partnering mechanism within protocol specifications is
the panacea to the design of secure protocols. The security of the proto-
col is based on many other factors, such as the underlying cryptographic
primitives used. However, in our view, the design of any entity authen-
tication and/or key establishment protocol should incorporate a secure
means of uniquely identifying a particular communication session among
the many concurrent sessions that a communicating party may have with
many different parties.

6 Summary

Table 1 presents a comparative summary of our proven secure protocol,
Protocol 2, with two other similar server-based three-party key establish-
ment protocols, namely the Bauer–Berson–Feiertag protocol [5] and the
Otway-Rees protocol [36].
In conclusion, we proved the security of another protocol example (revised
Yahalom protocol [15]) in the BR93 model. In terms of both messages and
rounds, we observe from Table 1 that all three protocols satisfy the lower
bound of four messages obtained by Gong [27] for server-based protocols
with similar goals using timestamps. However, an extension to Proto-
col 2 allows session key to be renewed in subsequent sessions without
invoking the server (as described in Protocol 3), which makes it more at-
tractive than the other two protocols (in a realistic setting). As noted,we
are unable to prove Protocol 3 secure in the current model we are using.
To prove Protocol 3 secure, we would have to modify the definitions of
freshness (described in Definition 2) and partnership (described in Defini-
tion 1). This is to restrict the adversary from exposing session key agreed
by both A and B in their previous session (i.e., SKAB) without rendering
the session key unfresh.

We then briefly discussed the role of session identifiers as a form of
partnering mechanism and concluded with the recommendation that ses-
sion identifiers should be included within protocol specification. This will
allow concurrent executions and a mean of uniquely identifying one ses-
sion from another. Furthermore, by including session identifiers in the key
derivation function, ensures that entities who have completed matching
sessions, partners, will accept the same session key.
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Protocols Computational Security proof?

Protocol 2 Slightly more expensive
due to use of authenticated
encryption scheme

BR93 model

Extensions to Protocol 2 allows session key to be renewed in subsequent sessions
without invoking the server (see Protocol 3). Moreover, Protocol 2 ensures that en-
tities who have completed matching sessions, partners, will accept the same session
key (recall that sid is included in the key derivation function) without requiring the
server to store every message processed and not issue different session keys for the
same input message received.

Otway-Rees [36] cheap Dolev–Yao style model [2]

In the approach taken by Backes [2], the server is required to store every message
processed and not issue different session keys for the same input message received.
Without this assumption, a malicious adversary is able to make the initiator and
the responder agree on a different session key by asking a trusted third party (i.e.,
server) to create multiple session keys in response to the same message, as revealed
by Fabrega, Herzog, and Guttman [23]. However, it has been pointed out that this
assumption only works well within a confined implementation and will not scale well
to a more realistic environment with a large number of participating parties and a
substantial level of traffic to any one server [20].

Bauer–Berson–Feiertag [5] cheap No

Table 1. A comparative summary

As a result of this work, we recommended that session identifiers
should be included within protocol specification rather than considering
session identifiers as artefacts in protocol proof, even for protocols proven
secure in the computational complexity framework.
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