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Abstract. In this paper, we develop an information theoretic differential side-channel
attack. An embedded device containing a secret key is modeled as a black box with a
leakage function whose output is captured by an adversary through the noisy measure-
ment of a physical observable e.g. the power consumed by the device. We assume only
that the measured values depend somehow on the leakage and thus on the word being
processed by the device. Without any knowledge on the particular dependency, this fact is
exploited to mount a side-channel attack. We build a distinguisher which uses the Mutual
Information between the observed and the leaked values as a statistical test. The Mutual
Information is maximal when the hypothetical key guessed by the attacker equals the
key in the device. Our approach is confirmed by experimental results. We perform power
analysis on an embedded device using our Mutual Information based distinguisher and
show that the correct key is clearly distinguishable. Finally, our approach allows to com-
pute a good estimate of the minimal number of traces required to perform a successful
attack and gives an upper bound on the information leakage in a single observation.

Keywords: Differential Side Channel Analysis (DSCA), Information Theory, Mutual
Information

1 Introduction

Currently, embedded devices form the major part of the CPU market [16]. It seems
that the vision of Pervasive Computing or Ambient Intelligence is being realised since
we are more and more surrounded by devices such as smart cards, mobile phones,
PDAs and more recently RFIDs and sensor nodes. These devices typically operate in
hostile environments under control of a potential attacker and hence the data contained
in them might be relatively easy compromised. Due to the tight constraints on their
resources such as memory, number of gates, power etc., it is a very challenging task to
protect the information they carry in an adequate way.

The physical accessibility has led to a number of new very powerful attacks that
include physical tampering and side-channels. As an example we mention Differential
Power Analysis (DPA) [10] which demonstrates that by monitoring the power line of a
smart card reader, the cryptographic keys can be rather efficiently extracted if no special
countermeasures are taken. More precisely, two types of power attacks were introduced;
Simple Power Analysis (SPA) and Differential Power Analysis. The main difference is
that SPA exploits the properties of a single (or a few averaged) power measurements,
while DPA exploits the statistical differences in a large set of observations.



In the last decade many other side-channels have been described such as electro-
magnetic emanation [17], timing [9], acoustic [19] etc. Both, theory and practice have
been developed and as a consequence several more advanced attacks have been pro-
posed such as template [3] and higher-order attacks [12]. In parallel, a broad range
of countermeasures has been put forward [4, 7, 8, 11]. For all side-channels we use the
terminology Differential Side Channel Analysis (DSCA) when we refer to Differential
Attacks.

DPA attacks as introduced by Kocher et al. [10] use a partitioning function to sort all
power curves into two subsets. The partitioning function is defined by a special selection
bit (e.g. the lsb) within an intermediate value of a (cryptographic) computation which
can be predicted on the basis of a key hypothesis and a plaintext. The difference between
the averages of the power consumption curves of these two subsets shows a clear peak for
the correct key guess. To this distance of means test based on a partitioning of observed
values we refer as a side-channel distinguisher. Other often used distinguishers are based
on the Hamming weight or Hamming distance of some intermediate value which depends
on a number of key and plaintext bits. In this paper we focus on univariate analysis, i.e.
all functions considered are assumed to have time as at most one independent variable,
but the work can be extended to the multivariate case.

Recently, a new research area appeared which deals with theoretical models for
physical attacks in general and side-channel attacks in particular: Physical Observable
Cryptography [14]. This line of research attempts to introduce the notion of provable
security into cryptosystems that leak some side-channel information. Such attacks re-
quire new models and new definitions of an adversary. Micali and Reyzin have evaluated
some basic theorems of traditional black box cryptography and they have shown that
these results do not hold in this new setting. In their physical observable model, the
assumptions they made were very strong and their adversary is the strongest possible.
This is one of the reasons why their model is hard to work with in practice and diffi-
cult to apply to cryptographic primitives such as block ciphers, for which even black
box security cannot be proven. This open question was the motivation for the work of
Standaert et al. [20]. In their attempt to quantify the leakage, they restricted the most
general assumptions from [14]. This led to a further refinement of the model and to the
classification of adversaries (attacks) and leakage functions.

Our work is not following the same line of research although we also aim to introduce
a more theoretical approach to side-channel analysis. More precisely, we follow the
information theoretic approach in order to develop a more general attack than those
previously known. The question we pose is whether one can perform a successful attack
without incorporating any knowledge on the functional relationship between a physical
observable, e.g. power consumption, and a leakage function, e.g. Hamming weight. We
are interested in using information theoretic notions and insights to formalize side-
channel concepts in such a way that each specific side-channel distinguisher can be
seen as an instance of a Mutual Information based distinguisher. While previously used
distinguishers are bound to specific classes of leakage functions, our Mutual Information
based distinguisher is not.

We illustrate the new approach in a concrete situation and we show how to estimate
the minimal number of samples of the physical observable, that are required.
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Although information theoretical notions such as key entropy, increased entropy
due to noise, etc. have been frequently used in DSCA related literature [1, 15, 6], their
potential has not been fully exploited.

This paper is organized as follows. Section 2 introduces the basic notions of infor-
mation theory. In Sect. 3 we introduce an information theoretic model for side-channel
attacks and analysis. It leads to the construction of a distinguisher that allows to infer
the secret key from observed values. Section 4 provides the theoretical justification of
our approach and compares it to so far widely deployed methods. In Sect. 5 we provide
empirical evidence for the correctness of our model and its practicability whereas in
Sect. 6 we empirically compare it to DPA and Correlation Power Analysis (CPA) [2].
In Sect. 7 we exemplify the applications of Mutual Information beyond key recovery
and we conclude our work in Sect. 8.

2 Information Theory

We introduce the basic notions of information theory. For more details we refer to [5].

2.1 Information Theory Preliminaries

Let X be a random variable on a (discrete) space X with probability distribution PX.
The uncertainty that one has about the value of such a random variable when an
experiment is performed, is expressed by the Shannon entropy of X which is usually
denoted by H(X) or H(PX). It is defined by the following equation

H(X) = −
∑

x∈X

PX[X = x] log2 PX[X = x] . (1)

H(X) expresses the uncertainty in bits. The entropy of the pair of random variables
(X,Y) (where Y is a random variable on a space Y) is denoted by H(X,Y) and it
expresses the uncertainty one has about both. We note that the entropy of two random
variables is sub-additive i.e.

H(X,Y) ≤ H(X) + H(Y) , (2)

with equality if and only if X and Y are independent. Often one is interested in the
uncertainty about X given that one has obtained the outcome of an experiment on a
related random variable Y belonging to a possibly different space Y. This is expressed
by the conditional entropy H(X|Y) which is defined as follows,

H(X|Y) = −
∑

x∈X ,y∈Y

PX,Y[X = x,Y = y] log2 PX|Y[X = x|Y = y], (3)

where PX,Y denotes the joint probability distribution of X and Y and PX|Y stands for
the conditional probability distribution of X given Y. When Y can be considered as
an observation of X over a noisy channel, then one often characterizes the channel by
its set of conditional distributions {PY|X=x}x∈X . The reduction in uncertainty on X

that is obtained by having observed Y, is exactly equal to the information that one has
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obtained on X by having observed Y. Hence the formula for the Mutual Information
I(X;Y) is given by,

I(X;Y) = H(X)− H(X|Y) = H(X) + H(Y)−H(X,Y) = I(Y;X) . (4)

The Mutual Information satisfies 0 ≤ I(X;Y) ≤ H(X). The lower bound is reached if
and only if X and Y are independent. The upper bound is achieved when Y uniquely
determines X. Hence, the larger the Mutual Information, the more close the relation
between X and Y is to a one-to-one relation.

3 Side Channel Model

In this section, we describe a general model and attack methodology to exploit side-
channel leakage of cryptographic devices with a minimal set of assumptions (in par-
ticular, we assume only that there is a functional relationship between the leaked and
observed values). In Sect. 5 we illustrate the results of our model and method in a
concrete situation.

3.1 Definitions and Notations

Let A1, . . . , Al be a set of subsets of a space X . The set A = {A1, . . . , Al} is a partition
of X if and only if Ai ∩Aj = ∅ for all i 6= j, i, j = 1, . . . , l and ∪iAi = X . The elements
Ai, i = 1, . . . , l of A are called atoms.

We model a device (e.g. an IC) that carries out a cryptographic operation Ek

depending on a secret key k, modeled as the random variable K, as a physical computer
PC, i.e. an abstract computer AC with a side channel leakage function L: (AC,L) (cf.
[14]). The leakage function L models the fact, that the adversary can observe (up to
a certain extent) the internal state of PC. We assume that L depends on time and
on the word w being processed by PC. We model the words w being processed as a
random variable W on {0, 1}n. Hence the leakage function L contains information on
W. Therefore we model the output values of L as a discrete random variable L on a
space L = {0, . . . , l}. It is furthermore assumed that l ≤ 2n.

The random variable L1 is observed by measuring a physical observable O. The
physical observable O is modeled as another random variable, on a continuous space O

where O = R models the most general case. Summarizing we have a model consisting
of a cascade of two channels (cf. Fig.1):

1. W→ L: the leakage channel through which information on the word w is revealed
at some time t = τ .

2. L → O: the measurement (observation) channel of the leakage through which O

provides information on L.

During an attack the attacker obtains q > 0 observations oi, i = 1, . . . , q, of O.

First, we consider the points of interest in time t = τi when the word w being
processed is the result of a function fk : {0, 1}m → {0, 1}n, x 7→ fk(x) applied on an

1 We will simply speak about the random variable L when we mean the output value of the leakage
function L.
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Fig. 1. Schematic illustration of the cascaded channels

input X (plaintext)2. We assume that the cryptographic primitive EK is known to the
attacker and that fk(·) is an intermediate result of EK(·). The secret key k is a random
variable K on a key space {0, 1}m which is uniformly random distributed. We will focus
on a known plaintext attack 3 where plaintexts X are chosen uniformly random from
{0, 1}m.

3.2 Side Channel Attack

We denote by M = {ox1
, . . . , oxq} the multi-set4 of q measurements of the physical

observable O when the (known) inputs x1, . . . , xq were processed by the device. A side
channel attacker has to develop a distinguisher D, which takes as input the measure-
ments ox1

, . . . , oxq and the plaintexts x1, . . . , xq, and creates a non-negligible advantage
for retrieving the key in the following experiment:

Experiment Expsc
L :

K←R {0, 1}
m

x1, . . . , xq ←R {0, 1}
m, ox1

, . . . , oxq ← O

k∗ ← D(ox1
, . . . , oxq ;x1, . . . , xq)

The advantage Adv(ox1
, . . . , oxq ;x1, . . . , xq) is defined as

Adv(ox1
, . . . , oxq ;x1, . . . , xq) = Prob[k∗ = k].

3.3 Construction of an Information Based Distinguisher

To each possible key k′ ∈ {0, 1}m, we associate a partition Hk′ = {Hk′

0 , . . . ,Hk′

l } on
{0, 1}m which is defined by

Hk′

i = {x ∈ {0, 1}m | L(fk′(x)) = i} for i = 0, . . . , l.

The partition Hk′ induces a subdivision5 Gk′ = {Gk′

0 , . . . , Gk′

l } of the measurement
space O. The subdivision Gk′ is defined by,

Gk′

i = {ox ∈ O| x ∈ Hk′

i } .

2 For ease of notation we assume that the key space and the plaintext space are of equal size {0, 1}m,
but generalizations are straightforward.

3 Note that application to a known ciphertext scenario is straightforward.
4 A multi-set is a set in which values can appear several times.
5 In contrast to a partition, the atoms of a subdivision do not necessarily have an empty intersection.

5



Let PL and PO denote the probability distributions of the random variables L and O

respectively. We note that for a given plaintext x, O depends on the actual key k used
by the device while the value of L depends on the hypothetical key k′ guessed by the
attacker.

Given the multi-set of measurements M = {ox1
, . . . , oxq}, and a subdivision Gk′

on O, we define the following set of conditional distributions
{

P̃
k|k′

O|Lk′=i
(O|L = i)

}l

i=0
.

The distributions P̃
k|k′

O|L=i
(O = o|L = i) describe the random variable O given that

L(fk′(x)) = i for a hypothetical key k′.
They represent a noisy observation channel L → O which depends on the hypo-

thetical key k′, the actual key k, and the physical properties of the device and the

measurement setup. The distributions {P̃
k|k′

O|L=i
}li=0 are determined empirically by gen-

erating the histograms (cf. Sect. 5.1) of the measurements ox1
, . . . , oxq belonging to the

atoms of Gk′

.
We define the Mutual Information Ik′k(L;O) under the key guess k′ while the actual

key is k as follows,

Ik′k(L;O) = H(PO)− H(P
k|k′

O|L) , (5)

where P
k|k′

O|L denotes the empirical conditional distribution used in the computation of

Hk′

(O|L).
We define our distinguisher D : Oq × {0, 1}m → {0, 1}m by the following equation:

given a multi-set M = {ox1
, . . . , oxq} of observations and the corresponding plaintexts

x1, . . . , xq,

D(ox1
, . . . , oxq ;x1, . . . , xq) 7→ k∗ iff Ik∗k(L;O) = max

k′

Ik′k(L;O) . (6)

The distinguisher D can be extended to retrieve also the point(s) in time t = τi

when the targeted computation fk(·) happens. Then it takes as input the multi-set of
observed traces M = {ox1

(t), . . . , oxq(t)} and the plaintexts x1, . . . , xq. The extended
distinguisher is defined by,

D(ox1
(t), . . . , oxq(t);x1, . . . , xq) 7→ (k∗, τ) iff

Ik∗k(L;O(τ)) = max
(k′,t)

Ik′k(L;O(t)) (7)

4 Theoretical Considerations

4.1 Theoretical Justification

As mentioned above, entropy is the uncertainty about the measurements and quantify-
ing this value gives us useful information such as the number of measurements required
for a successful attack. Another interesting quantity is Mutual Information that mea-
sures the mutual (in)dependence between variables. An advantage is that it can also be
applied to non-Gaussian distributions. Hence, at first we want to address side-channel
leakage by measuring this value. Intuitively, considering this function of two random
variables, the maximum should be obtained for the correct key guess.

As discussed in Sect. 3.1 a physical observable depends on the data words being
processed by the device for all time instants t. A leakage function takes as an argument
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one specific data word that is an intermediate result of the computation. Therefore,
it is evaluated only once by the attacker while the device handles the data word at
instant(s) t = τi. Thus, for all t 6= τi the device processes different words and in this case
observables are independent of the leakage function. The issue of partial dependency
will be addressed at the end of this section.

More precisely, we consider the Mutual Information between the output of a leakage
function L and an observable O, i.e. the reduction in the uncertainty on L due to the
knowledge of O for a key candidate k′, so Ik′k(L;O) as defined in (5).

If the leakage function L is computed for the correct key k which corresponds to the
observed values O then the Mutual Information Ikk(L;O) will obtain the maximal value
and for other values k′ (incorrect key hypotheses) the value of the Mutual Information
Ik′k(L;O) will be lower.

We consider now Ik′k(L;O) for incorrect key hypotheses in all time instants t where
t 6= τi.

Ik′k(L;O) =

= H(L(f(xi, k
′)) + H(O(xi, k))− H(L(f(xi, k

′)),O(xi, k)) =

= H(L(f(xi, k
′)) + H(O(xi, k))− (H(L(f(xi, k

′)) + H(O(xi, k))) = 0 .

The first equality follows by the definition of Mutual Information and the second one
from (2). On the other hand, for the correct key k′ = k the mutual information Ikk(L;O)
results in a strictly positive value. This follows directly from the non-negativity of
Mutual Information and the fact that equality (to zero) holds if and only if two random
variables are independent. So, at right time t = τi, the correct key leads to the highest
Mutual Information while at wrong time instants, incorrect key candidates result in a
Mutual Information of zero. The existence of a maximum for Mutual Information as
a function in time defined on a key space K is therefore proven. The uniqueness of
the arguments follows directly from the assumptions on (in)dependency of a physical
observable and the leakage function.

Hence, Mutual Information is theoretically equal to zero for all incorrect key guesses.
This holds for all t 6= τi but in practice we also get “peaks” at other moments as it is
shown in Sect. 5. The reason for this is that some data processed during the execution of
the algorithm may be related with the intermediate data w in time τi. We also mention
here that in practice we do not get zero but some values close to it as we are working
with the noisy observation O of L.

Some peaks also appear for wrong key guesses, which seems to contradict the theory.
These so-called “ghost peaks” occur due to the properties of the leakage function. For
example, the Hamming weight of the S-box output can still be partially correlated
for two different key guesses. Similar observations with respect to CPA are mentioned
in [2].

4.2 Comparison of Mutual Information, DPA and CPA

Here we discuss the comparison of the proposed Mutual Information based distinguisher
and two other common DSCA distinguishers, i.e. the distance of means test and the
correlation test. For the first one, we refer to the work done by Kocher et al. [10]. The
second one, Correlation Power Analysis [2], estimates the linear correlation coefficient
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between the leaked and the observed values, which is slightly more computationally
expensive than standard DPA, but often gives better results.

CPA can only detect linear correlations and is therefore limited to attack scenarios
where a linear approximation is justified. DPA does not require any specific dependency
between the target bit and the observable, but is limited to the distance of means test,
which uses less information than available. As already mentioned, this fact allows to
envision the Mutual Information distinguisher as a generalization of other methods.
So, the results obtained by this distinguisher are platform independent and arbitrary
relationships between the power consumption and the leaked value can be assumed. The
result is always expressed in bits and we can also estimate the number of measurements
required for key recovery.

We compare these distinguishers from the experimental point of view in more detail
in Sect. 6.

5 Experimental Results for Mutual Information

In this section, we apply the theoretical framework from Sect. 3 and provide exper-
imental results based on measurements from an ATMega163 micro controller (8-bit)
performing AES-128 encryption in software.6 The measurements O(t) represent the
voltage drop over a 50Ω resistor inserted in the smart card reader’s ground line. We
sample the power consumption at t = 1, . . . , 20 000 during the first round of the AES-
128 encryption of randomly chosen plaintexts7 with a constant key. Our experiments
focus on the first key byte denoted by K and the first plaintext byte denoted by X, but
application to the other bytes as well as to a known cipher text scenario are straight-
forward.

5.1 Mutual Information Applied to Side Channel Leakage

Our Mutual Information method does not require any assumptions on the dependency
between the measured value and the leaked value, except for the one that is fundamental
to DSCA: the leakage and thus the power consumption of a device (partially) depends
on the data w it is processing. We empirically confirm this statement with the following
experiment, for which we use a sample size of q = 50 000 power curves oi(t) (i = 1, ..., q).
As leakage function L, we use the value of the S-Box’s outcome for the first byte during
the first round. Hence, each oi(t) is assigned to an atom of Gk′

by li = S-box(xi⊕k), li ∈
{0, ..., 255}.

First, we compute the sum of squared pairwise differences (sosd), i.e. we compute
the means mj(t) of {oi(t) | li = j} (j = 0, . . . , 255) and sum up their squared pairwise
differences (note that we omit the time parameter t):

mj =
1

|{oi|li = j}|

∑

oi|li=j

oi sosd =

255
∑

j,n=0

(mj −mn)2 .

Figure 3 shows the resulting sosd trace. The obvious peaks appear during the Initial
Roundkey Addition, the jointly implemented SubBytes and ShiftRows transformations,
and the MixColumn operation.

6 We would like to point out that the AES encryption terminates in constant time.
7 To model a known plaintext attack.
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Next, we compute the Mutual Information Ikk(L;O) of the output L of the leakage
function and the observed power consumption O(t) according to (4, 5). The number of
bins in the histogram can be chosen according to Scott’s rule [18], see the appendix.

We use 256 bins for the histogram of li (since li ∈ 0, . . . , 255) and for the his-
togram of oi(t) (since the resolution of our oscilloscope is 8 bit). This choice allows
the maximum precision but also requires a large amount of data. The resulting Mutual
Information trace is depicted in Fig. 2. One observes that the peaks in the two plots are
synchronous, hence the Mutual Information distinguisher is sensitive to differences in
the power consumption. The applied leakage function L partitions the power curves into
identical subsets, independently of the assumed key byte k′, since the Initial RoundKey
Addition with a constant key byte and the SubBytes substitution are bijections. Hence,
for any guess of the key byte the resulting partitions are merely permuted and the sta-
tistical tests sosd and Mutual Information (incl. all intermediate entropy values) are
independent of a key hypothesis. This means that this partitioning function L does not
allow key recovery. However, while the sosd metric only allows to reveal the point(s)
of interest t = τi, the Mutual Information distinguisher additionally provides the ad-
versary with an estimate of the maximum Mutual Information Ikk(S-box(x ⊕ k);O)
in bits. This important figure gives an upper bound on the number of (secret) bits an
adversary can learn from a single curve, on average. Only such a partition can lead to
this estimate of the maximum Mutual Information, because it treats each possible byte
of the 8-bit implementation separately. Applications of this number will be discussed
in Sect. 7.

5.2 Empirical Evidence

This section aims at providing empirical evidence that the requirements from Sect. 3
are fulfilled and hence at confirming the theoretical considerations of Sect. 4.

The Mutual Information metric, as most other statistical tests, is bound in its
efficiency to recover keys by the leakage function L. The closer the partitioning by L

is to the unknown physical data-dependency inherent in O, the more significant the
outcome of the statistical test will be. Note, however, that knowledge of the dependency
between the atoms of the partition and the atoms of the subdivison (CPA needs a linear
dependency) is not required, as has been shown in Sect. 5.1.
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In the next experiment, we apply the well-studied and widely agreed-on Hamming
weight Model8 combined with the Mutual Information distinguisher to a set of q =
1000 power curves O(t). We denote HW(w) as the number of bits set to “1” in the
eight-bit word w, i.e. HW(w) =

∑8
i=1 wi, HW(w) ∈ {0, . . . , 8}. Based on a key guess

k′ ∈ {0, . . . , 255}, each oi(t) is assigned to an atom of Gk′

by li = HW(S-box(xi ⊕ k′)).

We compute the Mutual Information of the distributions L and O(t) according to (4,
5). We set the number of bins for the histogram of li to 9 and as oi(t) ideally is a one-
to-one function of li (if the Hamming Weight Model was correct), we also use 9 bins for
the histogram of oi(t). Figure 4 depicts the resulting Mutual Information trace for the
correct key guess k′ = k. As can be seen when comparing to Fig. 2 and 3, the trace shows
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Fig. 4. Mutual Information over time for the correct key hypothesis

clear peaks at some9 of the points of interest t = τi. Hence, the first requirement from
Sect. 3 is empirically confirmed. To verify whether the second requirement is fulfilled,
we compute the same Mutual Information trace for all other key hypotheses k′ and test,
if the highest derived Mutual Information value for any wrong k′ is lower than the one
for k′ = k. More formally that is: argmaxt Ikk(L,O(t)) > argmaxt,k′ 6=k Ik′k(L,O(t)).
Figure 5 shows the highest Mutual Information value (selected from the whole time
frame) for every key hypothesis. The peak for the correct key hypothesis k′ = k is
clearly distinguishable. Figure 6 shows the Mutual Information trace for the second
best but wrong key hypothesis. The height of the visible “ghost peaks” is less than a
third of the height of the peak for the correct hypothesis and they appear at different
instants. Obviously, the second requirement from Sect. 3 is empirically confirmed. The
maximum Mutual Information value achieved for k′ = k will be discussed in Sect. 7.

6 Comparison to DPA and CPA

In this section, we compare Mutual Information to other widely accepted and adopted
statistical tests.

8 Note that our experimental platform implements a Harvard architecture and pre-charges its bus to
“0”, so that the Hamming weight is equivalent to the bus’ toggle count.

9 The peaks appear during the MixColumns operation, when the S-box output leaks most due to our
AES implementation. The fact that no peaks appear e.g. during the Initial RoundKey Addition is
explained by the lack of partial dependencies due to the Hamming Weight Model.
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6.1 Comparison to Correlation Power Analysis

CPA as proposed in [2], estimates the Pearson Correlation Coefficient between a vector
of observations O(t) and a vector of predictions L

ρLO(t) =
q
∑

oi(t)li −
∑

oi(t)
∑

li
√

q
∑

oi(t)2 − (
∑

oi(t))2
√

q
∑

l2i − (
∑

li)2
. (8)

The summations are taken over the q measurements and the correlation coefficient has
to be estimated for each time slice t = 1, . . . , T within the power curves O(t). We
apply CPA to a set of power curves oi(t) (i = 1, . . . , q) and form the q predictions
according to li= HW(S-box(xi ⊕ k′)).10 To show the impact of the population size, we
use q = 1, . . . , 1000. Fig. 7 shows the maximum correlation coefficient, i.e. the maximum
from the overall time frame, for each key hypotheses k′ on the vertical axis over the
population size q on the horizontal axis. The plot shows that the correct key hypothesis
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Fig. 7. Max. and min. correlation for each k′ over the number of samples used

k′ = k is clearly distinguishable from about q = 30 upwards.
We now repeat the experiment but use the distinguisher Mutual Information instead

of the correlation coefficient. More precisely, we use the same set of q power curves oi(t),
and the same partitioning function li = HW(S-box(xi ⊕ k′)) in order to compute the
Mutual Information Ikk′(L;O) according to (4,5) for each time slice t. Again we use
9 bins for the histograms. Figure 8 shows the result of this experiment in the same
manner as used for Fig. 7. The plot shows that the correct key hypothesis k′ = k is

10 Note that the ’reference state’ mentioned in [2] is “0” in our scenario due to the pre-charged Harvard
Architecture of our experimental platform. Therefore the proposed Hamming Distance is equal to
the Hamming weight.
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Fig. 8. Max. Mutual Information for each k′ over the number of samples used

clearly distinguishable from approximately q = 75 upwards.

Summarizing the results: CPA is able to recover the correct key from a smaller pop-
ulation size than Mutual Information (q ≈ 30 vs. q ≈ 75). These results are explained
if one considers the differences in the approaches, more precisely in the power models.
CPA assumes the linear relation oi = a · li + b between the Hamming weight li and the
measured power consumption oi and is therefore limited to finding linear correlations
between O and L (cf. [2]). Mutual Information on the other hand makes no further
assumption on the relation between the atoms Hk

i of a partition and their typical power
consumption inherent in the atoms gk

i of the subdivision, so that every possible power
model (in this case in nine variables) is plausible. A linear dependency seems to be
a good first approximation of our platform’s power model and thus CPA needs less
measurements. However, the true power model of our platform (based on the Hamming
weight assumption) seems to be more complex since the correlation coefficient does not
get close to its maximum value 1.

6.2 Comparison to Differential Power Analysis

(Single-bit) DPA as proposed in [10] computes the DPA bias signal

∆(t) =

∑

i oi(t)li
∑

i li
−

∑

oi(t)(1 − li)
∑

i(1− li)
(9)

as the difference between the average of all measurements for which a so called target bit
is 0 and the average of all measurements for which the target bit is 1. The summations
are taken over the q samples and the bias signal has to be computed for each time
slice within the power measurements O(t). We apply DPA to a set of power curves
oi(t) (i = 1, . . . , q) and use the least significant bit of S-box(xi ⊕ k′) as the target bit
li. Again, we use q = 1, . . . , 1 000 to show the impact of the population size. Figure 9
shows the maximum DPA bias for each key hypotheses k′, i.e. the maximum from the
overall time frame, on the vertical axis over the population size q on the horizontal
axis. The plot shows that the correct key hypothesis k′ = k is clearly distinguishable
from approximately q = 490 upwards. Comparing these results to Mutual Information:
Mutual Information is able to reliably recover the key from a smaller population than
single-bit DPA (q ≈ 75 vs. q ≈ 490). These results are explained if one considers
the differences in the approaches, i.e. the power models, once again. Single-bit DPA
considers the mean values of two sets of measurements for which the target bit is either
1 or 0 and assumes that these means must differ. Mutual Information on the other hand
considers not only the mean value of each set, but its entropy and thus the distribution
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of the values in the set. This explains why Mutual Information recovers the key from
fewer measurements.

We also tried multi-bit DPA as proposed in [13] and used 2 to 8 bits for the target
bit function. However, in line with the conclusions of [2] and [13] we observed that, in
our setup, multi-bit DPA leads to worse results than single-bit DPA due to the small
population size q.

7 Application of the Results

This section discusses applications of Mutual Information analysis beyond key recovery.

7.1 How Many Curves Do We Need on Average?

By combining the leakage model with the notions of Fig. 1 we estimate the minimum
number of measurements needed on average for non-ambiguous key recovery. We ex-
emplify the approach using the Hamming weight Model.

In the Hamming weight Model, the input to channel 1 is W = S-box(x ⊕ k) and
its output L is the Hamming weight of the input. The Mutual Information of channel
1 can be computed analytically. We assume that the inputs to channel 1, hence the
plaintexts, originate from a uniformly random distribution. Let wi = (0, 1, 2, . . . , 255)
and li ∈ {0, . . . , 8} (the Hamming weights of W) for all i. Then the Mutual Information
of channel 1 is given by I(W;L) = 2.5442 bits.

The input to channel 2 is L and at its output we get O, a noisy observation of L.
From the experiment in Sect. 6 we estimate the Mutual Information of channel 2 as
I(L;O) = 0.41 bits.

The uncertainty on L is H(L) = 2.5442 bits when the keys and plaintexts are chosen
uniformly at random. The uncertainty on W and hence the key K is H(K) = H(W) =
log2(2

8) = 8 bits.
The task of an attacker is to track bits backwards through both channels in or-

der to learn W and thus the key. She needs to learn 2.5442 bits from channel 2 in
order to know one Hamming weight li. This implies that on average she will need to
observe E(oi) = 2.5442

0.41 = 6.21 measurements oi from the same Hamming weight li
to learn its value. Considering L as a random variable with probability distribution
PL = ( 1

256 , 8
256 , . . . , 1

256 ) (where the probabilities are ordered according to increasing
Hamming weights) which reflects uniformly distributed plain texts, we can compute the

number vi of measurements needed for each Hamming weight li as vi = E(oi)
PL(li)

= 6.21
PL(li)

.
Finally, the weighted mean of the numbers of required measurements for each Ham-

ming weight, E(M) =
∑

i PL(li) ∗ vi, estimates the minimum number of measurements
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that are required on average to learn one Hamming weight11. For our setup this number
is 55 measurements. The fact that this number slightly deviates from our experimental
analysis, where we need ≈ 75 measurements, can be explained by the impossibility of
observing 256 different plaintexts as a uniform distribution in less than 256 experiments.
Hence, for a more precise estimation one needs to know the probability distribution of
the plain texts. Further, our estimation does not cover the occurrence of redundant
information, e.g. multiple observations of the same plaintext.

7.2 Application of the Maximum Mutual Information

The maximum amount of possible information leakage is a major concern for all man-
ufacturers of secure embedded devices. Usually this figure is unknown and the security
of a device is evaluated by exposing it to efficient attacks. If the attacks are successful,
the device is equipped with additional countermeasures, and the procedure is repeated
until the desired security level is reached.

The results of a Mutual Information analysis as presented in Sect. 5 provides a
manufacturer with a very good estimate of the maximal possible information leakage.
Based on his knowledge about the efficiency of the available countermeasures, where ef-
ficiency denotes the increased uncertainty of an attacker, the manufacturer can directly
choose an appropriate set of them and circumvent the costly and lengthy evaluation
cycle.

8 Conclusion

We have introduced Information theoretical concepts to DSCA and constructed a side
channel distinguisher based on Mutual Information, that efficiently and practically
performs under relaxed assumptions and can be seen as a generalization of all previously
applied statistical tests. In particular, we relax the assumption that a side channel
adversary needs insight in the dependency of observations and leaked values. To carry
out a successful Mutual Information based attack, the only requirement for an adversary
is to know for which words processed the leakage differs. This means that the attacker
does not need to know how the observation differs with the leakage.

We have also shown applications of Mutual Information in DSCA beyond key re-
covery. In short it allows to asses the maximal possible information leakage, which is
an important figure to manufacturers of secure embedded devices, and to estimate the
minimal number of observations needed.
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Appendix

Scott’s rule [18] defines the optimum bin width b∗n as

b∗n =

(

6
∫∞
−∞ f ′(x)2dx

)
1

3

n− 1

3

where n is the number of measurements and f is the underlying probability distribution.
For Gaussian distributions b∗n = 3.49sn− 1

3 , where s is the empirical standard deviation.
If one assumes Gaussian noise in the observations, he derives the number of bins as
max(O)−min(O)

b∗n
.
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