A Framework for Game-Based Security Proofs *

David Nowak

Research Center for Information Security, AIST, Tokyo

November 7, 2007**

Abstract. To be accepted, a cryptographic scheme must come with a proof that it satisfies some stan-
dard security properties. However, because cryptographic schemes are based on non-trivial mathematics,
proofs are error-prone and difficult to check. The main contributions of this paper are a refinement of
the game-based approach to security proofs, and its implementation on top of the proof assistant Coq.
The proof assistant checks that the proof is correct and deals with the mundane part of the proof. An
interesting feature of our framework is that our proofs are formal enough to be mechanically checked,
but still readable enough to be humanly checked. We illustrate the use of our framework by proving
in a systematic way the so-called semantic security of the encryption scheme Elgamal and its hashed
version.

Keywords: formal verification, game, proof assistant, security

1 Introduction

Information security is nowadays an important issue. Its essential ingredient is cryptography. To be accepted,
a cryptographic scheme must come with a proof that it satisfies some standard security properties. However,
because cryptographic schemes are based on non-trivial mathematics such as number theory, group theory
or probability theory, this makes the proofs error-prone and difficult to check. Bellare and Rogaway even
claim that

“many proofs in cryptography have become essentially unverifiable. Our field may be approaching a
crisis of rigor.” [5]

In particular, proofs often rely on assumptions that are not clearly stated. This is why they advocate the
usage of sequences of games (a.k.a. game-playing technique or game-hopping technique).

This methodology is explicitly presented in [5] and [20] but has been used in various styles before in
the literature. It is a way to structure proofs so as to make them less error-prone, more easily verifiable,
and, ideally, machine-checkable. A proof starts with the initial game which comes from the definition of
the security property to be proved. This can be seen as a challenge involving the attacker and oracles.
Attacker and oracles are efficient probabilistic algorithms (usually modeled as probabilistic polynomial-time
algorithms). Oracles model services provided by the environment. For example an oracle might provide signed
messages in order to model the spying of signed messages circulating on a network. A testing oracle checks
whether an attack is successful of not. There are also encryption and decryption oracles. From the initial
game, one builds a sequence of games such that the last one is simple enough to reason on directly. The
result is then backtracked to the initial game. This is possible because transformations result either in an
equivalent game or introduce small enough and quantified changes.

Our contributions. Recently, Halevi [15] has advocated the need for a software which can deal with
the mundane part of writing and checking game-based proofs. In order to aim at such goal, we present
a refinement of the game-based approach to security proofs, and its implementation' on top of the proof

* A short version of this paper will appear in the proceedings of the 9*" International Conference on Information
and Communications Security (ICICS 2007) [18].
** First public version: May 28, 2007
LA link to the source code is provided on Cryptology ePrint Archive together with this paper.

assistant Coq?. A proof assistant can indeed check that a proof is correct and deal with its mundane part. Of
course, human interaction is still needed in order to deal with the creative part of the proof. But, when using
a proof assistant, two things are necessary. First, all the intermediate lemmas must be explicited; some of
those lemmas are not stated by cryptographers in their proofs because they are considered too obvious in the
context of security proofs. Second, a precise mathematical meaning must be given to games; in papers, this is
usually either left implicit or informally explained in English. This is why we need to refine the game-based
approach. We base our formalization on [20] where games are seen as probability distributions. Our aim is
to have a framework in which proofs are formal enough to be mechanically checked, and readable enough to
be humanly checked.

The approach to game-based proofs by Shoup [20] differs from the one by Bellare and Rogaway [5]:
In the latter, games are seen as syntactic objects. An interest in founding our formalization on this latter
approach would be the possibility for more automation because game transformations would be syntactic.
But each syntactic transformation should then be proved correct with respect to a precise semantics in terms
of probability distributions. However in [5] the semantics is left implicit. They provide arguments for their
syntactic transformations, but they cannot be directly formalized in a proof assistant due to the lack of
semantics.

We illustrate the use of our framework by proving in a systematic way the so-called semantic security of

the encryption scheme ElGamal and its hashed version [12]. It is a widely-used asymmetric key encryption
algorithm. It is notably used by GNU Privacy Guard software, recent versions of PGP and other crypto-
graphic software. Under the so-called Decisional Diffie-Hellman (DDH) assumption [10], it can be proved
semantically secure [21]. To the best of our knowledge, this is the first time a cryptographic scheme is fully
machine-checked. This is not the case in related work (see Section 2).
Outline. We start with related work in Section 2. In Section 3, we introduce our mathematical framework.
In Section 4, we formalize some security notions. In Section 5, we show how to prove semantic security for the
encryption scheme ElGamal and its hashed version. Implementation issues in Coq are addressed in Section 6.
Finally, we conclude and give our plan for future work in Section 7.

2 Related work

A lot of work has been done in direction of automatic discovery of proofs. It is essentially based on the Dolev-
Yao model [11] which requires a high-level of abstraction, and is thus far from the view usually adopted by
cryptographers. In this paper, we are not considering automatic discovery of proofs, but instead we want to
facilitate the writing and checking of actual proofs by cryptographers.

The so-called generic model and random oracle model have been formalized in Coq and applied to
ElGamal [3]. In contrast to our approach, it is not based on sequences of games which had not yet been
popularized by [5] and [20].

CryptoVerif is a software for automated security proofs with sequences of games [6]. It is in particular
illustrated with a proof of the Full-Domain Hash (FDH) signature scheme [4]. However this proof relies
on certain equivalences that have to be introduced by the user. Those non-trivial equivalences are proved
manually in Appendix B of [7]. These are difficult parts of the proof that cannot be handled by CryptoVerif.
Moreover this tool consists of 14800 lines of non-certified O’Caml codes. On the other hand, our tool is
certified: all our game transformations have been proved correct in the proof assistant Coq.

A probabilistic Hoare-style logic has been proposed (but not implemented) in [9] to formalize game-based
proofs. This logic allows for rigorous proofs but those proofs differ from game-based proofs by cryptographers.
Indeed, because their language allows for while loops and state variables, they are led to use a Hoare-style
logic. They illustrate their logic by proving semantic security of the non-hashed version of ElGamal. In
our approach, logical reasoning is closer to the one used by cryptographers: we avoid while loops and state
variables, and thus do not have to use a Hoare-style logic. It is possible because the variables used in [20] are
mathematical variables in the sense that they are defined once and only once whereas the value of a state

2 See http://coq.inria.fr/

variable can change in the course of execution. By the way, the property that a variable is defined once and
only once is also enforced in CryptoVerif. Moreover, while loops, if used, would have to be restricted because
their unrestricted use might break the hypothesis that the attacker and the oracles are efficient algorithms.
Our games are probability distributions which are easily defined in our framework. In the case of ElGamal,
we finally obtain a more natural proof of semantic security than the one in [9].

In [16] a process calculus is defined (but not implemented) which allows to reason about cryptographic
protocols using bisimulation techniques. Contrary to our approach it is not game-based and differs from
usual proofs by cryptographers. It is illustrated by a proof of semantic security for ElGamal.

An encoding of game-based proofs in a proof assistant has been proposed very recently in [1]. Tt is
dedicated for proofs in the random oracle model while our work focuses on the standard model. Up to
now the implementation by [1] has only been used to prove the PRP/PRF switching lemma, but not yet
a full-fledged cryptographic scheme. Compared to them, we have been very careful in making our design
choices such that our implementation remains light. This is an important design issue in formal verification
because formal proofs grow quickly in size when one tackles real-world use-cases. For illustration, one can
compare the size of our implementation with theirs: their complete implementation consists of 7032 lines of
code (compare with our 3381 lines) and their proof of the switching lemma consists of 535 lines (compare
with our 160 lines for proving both correctness and semantic security of ElGamal).

3 Mathematical framework

In this section we recall a few mathematical bases on which rely security proofs: probabilities, cyclic groups
and properties relating them. We formulate them in a way suitable for formalization in the proof assistant
Coq. In particular, we use the elegant notion of monad stemming from category theory [17] and functional
programming [22]3.

3.1 Probabilities

Oracles and games are probabilistic algorithms. We model them as functions returning finite probability
distributions. A probabilistic choice is a side effect. A standard way to model side effects is with a monad
[17,22]. And indeed probability distributions have a monadic structure [2,19]. In our case we only need to
consider the simpler case of finite probability distributions. In their definition we use the notion of multiset
(sometimes also called a bag) which is a set where an element may have more than one occurrence. For
example, the multisets {1,2,2} and {1,2} are different; and the union of {1,2,2,3} and {1,4,4} is equal to
{1,1,2,2,3,4,4}.

Definition 3.1 (Finite probability distribution). A finite probability distribution § over a set A is a
finite multiset of ordered pairs from A x R such that Z(a pesP = 1. We write Ay for the set of finite
probability distributions over a set A.

From now on, we will use the word distribution as an abbreviation for finite probability distribution. Games
and oracles are distributions defined by using three primitive operations: [a] is the distribution consisting of
only one value a with probability 1; let z < § in ¢(x) consists of selecting randomly one value x from the
distribution § and passes it to the function ¢; and @{ai,...,a,} is the uniform distribution of the values
ai, ..., a,. Before giving their formal meaning in the definition below, we need to define the ponderation of
a distribution by a real number p:

p - {(ar, 1), (@, pn)} =aer {(a1,0-p1)s- -5 (@n,p-Dn)}

3 No knowledge of category theory or functional programming is assumed.

Definition 3.2 (Operations).

[a =u {(a,1)} (1)

etz < dinp(z) =4 U p-p(a) (2)
(a,p)€s

Dlorm) = Ao,) (o)) (3)

It is easily seen that those three operations above produce well-defined distributions.
In the rest of this paper, we use the following abbreviations:

(i) letx «— ainp(z) for letx < [a] in ¢(x), and
(ii) let x £ Ain p(x) for letz < P Ain o).

In (i) we choose ramdomly a value from a distribution with only one value: it is a deterministic assignment.
(ii) is a notation for choosing a uniformly random value from a list of values.

It might seem surprising that our distributions are multisets instead of sets. If we were to take sets, our
definition of let would be more tricky as it would involve a phase of normalization. Let us see why on an
example. Consider the distribution defined by |et 2 E {1,2}in [z z 7] where z is the function that returns
the boolean true if its two arguments are equal, or false otherwise. The above defined distribution is equal to
the multiset {(true, 1), (true, 2)}. If distributions were sets, we would have to define let in such a way that it
returns what might be called the normal form {(true,1)}.

The following theorem states that we have indeed defined a (strong) monad.

Theorem 3.3 (Monad laws).

letz — ainyp(x) = ¢(a) (4)
letz < dinfz] = 4§ (5)
lety < (letz <= ding(x)) inp(y) = letx<dinlety < p(z)in Y(y) (6)

In order to ease notations we assume that the operator let...in is right-associative: this means that, for
example, the right-hand side expression of Equation (6) above should be understood as

let z < din (lety < ¢(z) in ¥(y))

Equation (4) allows for propagating constants. Equation (6) states associativity which allows for getting
rid of nested let.

Based on our notion of distribution, we can now define the probability that an element chosen randomly
from a distribution satisfies a certain predicate.

Definition 3.4 (Probability). The probability Pr [P (5)] that an element chosen randomly in a distri-
bution § satisfies a predicate P is given by:

Pr [P(é)] = Z 4

(a,p)€d s.t. P(a)

We write Pr,,, [5] for Pr [(m — & = true) (5)] where +— x = true is the predicate that holds iff

its argument x is equal to the boolean value true.
The following proposition tells us how to compute the probability for a distribution defined by a let.

Proposition 3.5. For all P, § and o,

Pr (P(Ietx < Jin <p(;v))] = Z p-Pr (P(ap(a))]

The following corollary shows how to compute the probability of a successful equality test between a
random value and a constant.

Corollary 3.6. For any finite set A, for any a € A,

R .
Pr... let ic — Ain _ L
[z =d] Al

The following corollary allows for rewriting under a let.
Corollary 3.7. For all sets A and B, for any distribution § € Ay, for all functions ¢ and ¢ from A
to Ag, if Yae€e A - Pr (P(go(a))] = Pr (P(w(a))) then Pr (P(Ietac < Jin <p(:n))] =
Pr [P(Ieta: . 6inw(x))]

As another corollary, we obtain a mean to replace a randomly uniform choice in a goal by a universal
quantifier®.

Corollary 3.8. For all P, A, ¢ and p,

(Vxe A - Pr [P(ga(x))] =p) = Pr [P(Ietx £ Ain gp(x))) =p

The reverse implication is not true. We can see that on a counterexample: if the reverse implication was
true, from Corollary 3.6 we would deduce that Vx € A - Pr,.. ([z z al] = ﬁ. This is not true. Here

x is either equal or not to a: in case of equality the probability is 1; in case of non-equality the probability
is 0. It shows us a fundamental difference between universal quantification and random choice.

The following proposition allows for moving around independent random choices in the definitions of
games. In the proposition below, independent means that the variable z is not used in the expression d; and
the variable y is not used in the expression ;.

Proposition 3.9. For all finite sets A, B and C, for any 61 € Ay, for any d2 € Ap, for any ¢ : A X B —
Ac, if 61 and do are independent, then:

letz < 61 in lety < doin
Pr|P|lety < §in = Pr|P|letx <« §1in
o(z,y) o(z,y)

Additionally we define a necessity modality stating that a certain predicate is satisfied by all those
elements of a distribution that have a probability strictly greater than 0.

Definition 3.10 (Necessity). OP (8) states that a predicate P holds mecessarily for a distribution ¢:
OP (§) <. Y(a,p)€d - p>0 = P(a)

If P is a predicate on a set A, then 0P is a predicate on A 4. Because distributions are finite, P (9) is
equivalent to Pr [P(d)) = 1.
The following proposition, when applied recursively, will remove the necessity modality from the goal.

Proposition 3.11.

P(a) = OP(ld]) (7)
Vac A - Pla) = OP(EA) (8)
O(x — 0OP (p(x))) (0) = OP(letx < §inp(x)) (9)

4 We assume here a backward reasoning as in the proof assistant Coq where we start from the goal and go backward
to the hypothesis. For example, if our goal is (Q and we have a theorem stating that P = @, applying this theorem
leaves us with P as a new goal.

3.2 Cyclic groups
A group (G, *) consists in a set G with an associative operation * satisfying certain axioms. We write a1

for the inverse of a. We write a® for @ * --- x a. A group (G, *) is finite if the set G is finite. In a finite group
i times

G, the number of elements is called thze order of G. A group is cyclic if there is an element v € GG such that

for each a € G there is an integer ¢ with a = ~*. Such 7 is called a generator of G. The following permutation

properties of cyclic groups will allow us below to connect probabilities with cyclic groups. Let G be a finite

cyclic group.

Proposition 3.12. If the order of G is q, then {y* |0<i<q} = G
Proposition 3.13. For any b€ G, {axb|lac G} = G

The set of bit strings of length [equipped the the bitwise exclusive disjunction & forms a commutative
group (not cyclic) where the following proposition holds:

Proposition 3.14. For any s’ € {0,1}, {s@s' | s € {0,1}'} = {0,1}

3.3 Probabilities over cyclic groups

The following theorem and its corollaries make explicit a fundamental relation between probabilities and
cyclic groups. They are important properties used implicitly by cryptographers but never explicitly stated
because they are considered too obvious in the context of security proofs. However it is necessary to explicit
them when using a proof assistant.

Let G be a finite cyclic group of order ¢ and v € G be a generator. We write Z, for the set of integers

{0,...,g—1}.

Theorem 3.15. for all sets A, B and C, for any bijective function f : A — B, for any function g : B — C,

for any predicate P on C,
let z & Ain _ Py let y & Bin
P(wquw])] i [P<w@n)]

Corollary 3.16. for any set A, for any function f from G to A, for any predicate P on A,

. letz & 7, in _ pr letm & Gin
P[P<wwn)] P[P<mm1)

Proof. By Proposition 3.12 and Theorem 3.15. a

Pr

Corollary 3.17. for any set A, for any function f from G to A, for any predicate P on A, for anym’ € G,

pr|pP let m £/Gin — prlp let m & Gin
[f (m * m/)] [f(m)]
Proof. By Proposition 3.13 and Theorem 3.15. O
Corollary 3.18. for any set A, for any function f from {0,1}' to A, for any predicate P on A, for any
s € {0,1},
pr | p|[lets £l{0,1}l in _ pr|p|[lets & 10,1} in
[f(s®)] [£(s)]
Proof. By Proposition 3.14 and Theorem 3.15. a

In Section 3.3 of [20] the proof of semantic security for the encryption scheme ElGamal uses implicitly such
corollaries. Shoup writes: “by independence, the conditional distribution of § is the uniform distribution on G,
and hence from this, one sees that the conditional distribution of (= d-my is the uniform distribution on G”.
The “by independence” part corresponds to our corollary 3.16, while the “one sees that” part corresponds
to our corollary 3.17. It is perfectly legitimate not to state precisely things that are anyway obvious to the
reader. But for our implementation on top of the proof assistant Coq it was necessary to state such theorems
explicitly and formally.

4 Formal security

In this section we formalize in our framework some security notions which are fundamental in cryptography:
the Decisional Diffie-Hellman assumption (DDH), entropy smoothing and semantic security. We also formalize
what it means for an encryption scheme to be correct.

4.1 The Decisional Diffie-Hellman assumption

Let G be a finite cyclic group of order ¢ and v € G be a generator®.

The DDH assumption [10] for G states that, roughly speaking, no efficient algorithm can distinguish
between triples of the form (4%, +¥,4*¥) and (v*,v¥,~7*) where z, y and z are chosen randomly in the set
Zq. More formally, there exists a negligible upper-bound eppy such that for any efficient algorithm ¢ from
G xGxGto A{false,true}:

R ,
R) let z « Zgin
letz «— Zg4in

Prtrue let Y (E Zq in - Prtrue
(7777 ™)

R .
let y : Zq in < enom
let z «— Zgin

oy, 7%)

As will be seen in Section 5, security proofs in our framework mainly consist in game transformations.
Thus, as in [9], we do not need to define precisely the terms efficient and negligible. However they can be
given precise definitions in terms of polynomials.

4.2 Entropy smoothing

A family (Hy)rex, where each Hy, is a hash function from G to {0,1}!, is entropy smoothing iff there exists
a negligible upper-bound .5 such that for any efficient algorithm ¢ from K x {0,1} to Affaise, true}:

let i & Kin letk & Kin
Pro.|letm & Gin | —Prue | letn & {0,1} in S ems
p(k, Hy(m)) ¢(k,h)

Roughly speaking, it means that no efficient algorithm can distinguish between (k, Hi(m)) and (k, h) where
k, m and h are chosen randomly.

4.3 Semantic security

The notion of semantic security was introduced by Goldwasser and Micali [13]. They later showed that
it is equivalent to indistinguishability under Chosen Plaintext Attack (IND-CPA) [14]. We use this latter
formulation which is nowadays the most commonly used.

5 We do not assume that ¢ is prime. However most groups in which DDH is believed to be true have prime order [8].

We assume two oracles: a key generation oracle keygen which generates a pair of public and private keys;
and an encryption oracle encrypt which encrypts a given plaintext with a given public key. Because oracles
are probabilistic algorithms, they are modeled as functions returning distributions. The attacker is modeled
as two deterministic efficient algorithms A; and As that take among other input a random seed r taken for
some non-empty set R.

The semantic security game SSG(keygen, encrypt, A1, A3) consists in calling the oracle keygen, then passing
the generated public key and a random seed to A; which returns a pair of messages m; and mso. One of
the messages is chosen randomly and encrypted by the oracle encrypt which returns the corresponding
ciphertext. This ciphertext is passed to Ay which tries to guess which of the two messages was encrypted.
In our framework, it is defined by:

let (kp, ks) < keygen() in

let 7 &£ Rin let (my,mz2) — Ai(r,kp)in
Ietl3 kil {1,2} inlet ¢ < encrypt(kp,my) in
let b «— As(r, kp,c)in

b=

Definition 4.1 (Semantic security). An encryption scheme with key generation algorithm keygen and
encryption algoritm encrypt is semantically secure iff for all deterministic efficient algorithms Ay and As,

1
’Prm [SSG(keygen, encrypt, Ay, As)] — 2‘ 18 negligible.

4.4 Correctness of a cryptographic scheme

In a similar manner we define a correctness game CG(keygen,encrypt,decrypt, m) by:

let (kp, ks) < keygen() in
let ¢ < encrypt(kp, m) in
let m’ < decrypt(ks,c) in

[m;m'].

where decrypt is a decryption oracle which decrypts a given ciphertext with a given secret key. The purpose of
this game is to show that encrypting any message m € G with a public key, and then decrypting the obtained
ciphertext with the corresponding secret key gives back the same message m. Formally, an encryption scheme
given as a triple (keygen, encrypt, decrypt) is correct iff for any message m the correctness game necessarily
returns true:

Ym - Oz — z = true) CG(keygen, encrypt, decrypt, m)

5 Application to the ElGamal encryption scheme

In our implementation, we illustrate the use of our framework by proving in a systematic way the so-called
semantic security of the encryption scheme ElGamal [12] and its hashed version.

5.1 The ElGamal encryption scheme

Let G be a finite cyclic group of order ¢ and v € G be a generator. The ElGamal encryption scheme consists
in the following probabilistic algorithms:

— The key generation algorithm keygen():
let z & Z,in (47, 2)]

— The encryption algorithm encrypt(kp, m):
let y £ Zg in [(Y, kp¥ xm)]
— The decryption algorithm decrypt(ks, ¢):

ma(c) * (m1(e)®) 7]

where m; and 7o denote the first and second projections of an ordered pair.
Messages and public keys are elements of G; secret keys are elements of Z,; ciphertexts are elements of G x G.
To prove that ElGamal is a correct encryption scheme (as defined in Section 4.4), we apply backward and
recursively Proposition 3.11 until we are left with the following equation in G to prove: m = y*¥xmx (,ny)—l_
It is obvious from the laws of a group. This backward and recursive application of Proposition 3.11 is dealt
with automatically in our implementation (See Section 6).

Theorem 5.1. The ElGamal encryption scheme is semantically secure.

Proof. In this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposition 3.9. In particular the
reader will notice that the order of variable definitions varies along the game transformations as allowed by
Proposition 3.9.

Let us fix A; and As. We proceed by successive game transformations.

GO0. By definition of semantic security, we must prove that:
let (kp, ks) < keygen() in
let 1 £ Rin let (my,mg) «— Ai(r,kp)in
Pr... let b & {1,2} inlet ¢ < encrypt(kp,myp)in | — 3 is negligible
let b — As(r,kp,c)in
b = 0]
G1. Knowing that e,y is negligible, we are led to prove that:
let (kp, ks) < keygen() in

let 7 £ Rinlet (my,mz) — Ai(r,kp)in
R

Pr.. | letb — {1,2}inletc < encrypt(kp,mp)in | — 3 < €ppn
let b «— As(r,kp,c)in
b= 1)

G2. We unfold definitions of oracles and apply associativity of let (by Theorem 3.3 (6)).

let 2 & Zg in

let(kp, ks) «— (4*,x)in
let r £ Rin

let (my,ma) — Ai(r, kp)

Pr.. | letb & {1,2}in — = < épon

lety & Z,in

let ¢ «— (7Y, kpY xmy) in
let b «— As(r,kp,c)in
b= 4]

G3. We propagate definitions of kp, ks, m1, ma, ¢ and b (by Theorem 3.3 (4)).

let 22 & Zg in
lety & Z, in
Pr.. |letr & Rin -3 < €ppn
letb £ {1,2}in

[Ao (7, 7", (79, ™ * T (A1 (r,77))))

?

G4. According to DDH assumption, we have that:

R . let 2 & Zg in
let z «— Zgin R)

R . lety & Zgin
lety < Zgin R .

R . let 2 — Zgin
letr — Rin etr & R

_ etr « in
Prtrue Ietb £ {1’2}”] Prtrue |tb R 1 2 . S €ppH

[AQ(T7’VLE7(”Y‘U7 il Hw{ 7y} n

fyv"?’!/* [2(717‘7 7(7 3

(Arlr, 7)) 2] T
Th 1\ = - ?
my(A1(r,77)))) = 0]

1
which is G3 except that 3 is replaced by the probability of another game. We are thus left to prove
1
that this probability is equal to 5

letz & Z,in
let y £ Zg in
let r & Rin 1
Pr,.. R . =
letb — {1,2}in 2
let 2 & Z, in

?
[A2(T7 ’yma (’Yy77z * 7Tb(A1(T, ’}/T)))) = b]

G5. We replace the randomly uniform choice of z and the computation v* with a random choice of an
element of G (by Corollary 3.16).

Zg in
Zg in
let r Rin 1
let b {1,2} in

let m, £ Gin

[A2(r, 7", (7%, m % (A (r, 7)) = 0]

let ©
let y

Prtrue

IERERERE.

G6. We delete the right operand of * (by Corollary 3.17):

let 2 & Zg in

lety & Z,in

letr & Rin

let m, & Gin

let b & {1,2} in

[Ax(r, 97, (4, ms)) = b]

This is true by Corollary 3.6.
5.2 The hashed ElGamal encryption scheme
The simplest version of ElGamal does not use hash functions. However, in practice, it is more convenient

to consider messages which are bit strings (say of length) instead of elements of a cyclic group. The

10

hashed version of the ElGamal encryption scheme allows for this. We assume that we are given an entropy-
smoothing family of hash functions (H})rex, each Hj, being a function from G to {0,1}!. The ElGamal
encryption scheme consists in the following probabilistic algorithms:

— The key generation algorithm keygen():
letz & Z,inletk & Kin (4", k), (2, k))]

— The encryption algorithm encrypt((«, k), m):
let y & Zqin [(vY, Hy (a¥) & m)]

— The decryption algorithm decrypt((z, k), ¢):
[Hy(m1(c)") & m2(c)]

Messages are elements of {0, 1}!; public keys are elements of G x K secret keys are elements of Zgq x K;
ciphertexts are elements of G' x {0, 1}.

To prove that hashed ElGamal is a correct encryption scheme (as defined in Section 4.4), we apply
backward and recursively Proposition 3.11 until we are left with the following equation which obviously
holds: m = Hp(v*Y) @ (Hg(7¥*) @& m).

Theorem 5.2. The hashed ElGamal encryption scheme is semantically secure.

Proof. Again, in this proof we implicitly apply Corollaries 3.7 and 3.8, and Proposition 3.9.
Let us fix A; and As. We proceed by successive game transformations.

GO. By definition of semantic security, we must prove that:

let (kp, ks) < keygen() in
let 7 & Rin let (my,ma) — Ai(r,kp)in

Pr... IetlA) & {1,2} inlet ¢ < encrypt(kp,m;)in | — 5 is negligible
letb «— As(r, kp,c)in

PR

[b = 0]

G1. Knowing that eppy; and egg are negligible, we are led to prove that:

let (kp, ks) < keygen() in
let 7 &£ Rinlet (my,m2) «— Ai(r,kp)in

Pr,. | lety & {1,2} inlet ¢ < encrypt(kp, my) in | — 3 < €ppu t €rs
let b «— As(r,kp,c)in
b= 1)

G2. We unfold definitions of oracles and apply associativity of let (by Theorem 3.3 (6)).

let 2 & Zg in

let k & K in

let(kp, ks) — ((v*, k), (z,k)) in
let r & Rin

let A k

Prm,e ¢ (mjlgij) <_, 1(7" p) - = S €ppu 1 €rs
letb — {1,2}in 2

let y £ Zg in

|et? — (’yy,Hﬂ2(kp)(7T1(/€p)y) Eme) in
let b «— As(r,kp,c)in

b = o)

11

G3. We propagate definitions of kp, ks, m1, ma, ¢ and b (by Theorem 3.3 (4)).

let z & Zg in
let y i3 Zg in
R .
Pr... let k : Kin - 1 < €ppu T €xs
letr — Rin 2
let b & {1,2}in
?
[Aa(r, (7",), (7%, Hi (") & mp(As (7, (77, K))))) = b]
G4. According to DDH assumption, we have that:
R .
I Z
|etw£Zqin etz; q_m
R . lety & Zgin
let y < Zgin R .
R let z — Zgin
let k — Kin R .
etr & R let k — Kin
«—
Prtrue er R m - Prtrue |et r £ R in S €ppu
letb — {1 2} n R X
[AQ(()(let b < {1 2}|n
Hk(rl/)@ [AQ((’(7 af)a(’Y%
? Hk 'Yz S
Wb(Al(rv (’ywv k))))) = b] x ?
m(A1(r, (V7. k))))) = b]

where the left-hand side game is the one from G3. We are thus left to prove that5:

let & Zg in

let y bl Zgq in

let k£ & K in

R 1
Pr.. | let7 < Rin —3 < s

let b & {1,2} in

let z & Zgq in

)
[Az(r, (v, k), (0, Hi(v*) © mp (A1 (r, (77, K))))) = b]

G5. We replace the randomly uniform choice of z and the computation v* with a random choice of an
element of G (by Corollary 3.16).

etk & Kin
let m, & Gin

R ,
let z « Zgin

IN

€rs

DO =

Pr.. |lety & Z,in
let r £ Rin
let b & {1,2} in
[Aa(r, (v, k), (7%, Hi(m2) & m(Ar(r, (77, K)))))

2

"

6 Indeed, for all r1, ro, 73, r1,2, 72,3, in order to prove that |ri — r3| < 71,2 + 72,3, it is sufficient to prove that

|r1 — 72| <712 and |re —r3| < ras.

12

G6. According to the entropy-smoothing assumption, we have that:

let k & Kin let b &£ K in

let m. &£ Gin let h & {0,1}in

IetxiZ in Ietmﬁzqin

IetyﬁZ in IetyﬁZqin

Pri. let r £ Rin — Pr.. let r £ Rin S ems

let b & {1 2} in let b & {1,2} in

[Aa(r, (47,), (07, [(r, (o, B), (2

Hk(lrzz)EB h®
(A (r, (v, k) = b] m(Av(r, (7%,) < 8]

1
which is G5 except that 3 is replaced by the probability of another game. We are thus left to prove

1
that this probability is equal to 5

let k & K in
let 2 & Zyg in
let y & Z, in X
Pr..|letr & Rin = 5
letb & {1,2}in
let b & {0,1} in
[Ax(r, (77, k), 7Y, b @ m(A (r, (77, K))) = 0]
G7. We delete the right operand of @ (by Corollary 3.18):
let k£ £ K in
let 2 & Zg in
let y & Zg in 1
Pr.. |letr & Rin = 3
let h & {0,1} in
let b & {1,2}in
[Aa(r, (4%, k), 7%, h) = b)

This is true by Corollary 3.6.

6 Implementation in the proof assistant Coq

The proof assistant Coq. Coq is a goal-directed proof assistant. This means that if we are trying to prove
that a formula @ (the goal) is true, and we have a theorem stating that P, & P» implies @, then we can apply
this theorem. Coq will replace the goal @) by two subgoals P; and P,. We proceed this way until we finally
reach goals that are either axioms or are true by definition. On the way, Coq builds a so-called proof term.
The critical part of Coq is its kernel which takes a proof term as an input and checks whether it is correct
or not. On top of that there is a script language which allows users to state theorems and build their proofs
interactively. This script language includes predefined tactics to prove automatically some mathematical
statements such as tautologies, Presburger arithmetic statements, linear inequations over real numbers. ..
Users can also define their own tactics.

13

Our framework in Cog. Our current implementation consists of the following Coq files:

CoqLib.v addendum to the Coq standard library

Distrib.v distributions, probabilities and necessity

Equiv.v equivalence modulo a negligible probability
DistribAuto.v automatically generated properties of distributions
Group.v basic group theory, cyclic groups

GroupProba.v probabilities over cyclic groups

BitString.v bit strings

Challenge.v correctness and security games

DDH.v the DDH assumption

Hash.v hash functions, entropy smoothing

Tactic.v support for automation

CryptoGames.v the main file including the full library
ElGamal.v correctness and semantic security for ElGamal
HashedElGamal.v correctness and semantic security for hashed ElGamal

Our library consists of 3381 lines of Coq and O’Caml code. The O’Caml part is a program which generates
automatically 5923 other lines of Coq code. By using our library, the proofs of correctness and semantic
security for ElGamal and hashed ElGamal consists respectively of only 160 lines and 209 lines of Coq code.
This shows that our framework, while allowing for fully formal and readable security proofs, is scalable.
Therefore, we believe that it can be further extended and applied to much more involved security proofs.

We write games as Coq functions and reason on them using the full logic of Coq: this is a so-called shallow
embedding. We use Coq notations which allow for games and formulas to be written in a syntax close to the
one used in this paper. For example, the game G1 in the proof of Theorem 5.2 appears in Coq as:

mlet k <7 keygen in

mlet r <$ seed in

mlet mm <- Al r (fst k) in

mlet b <$ [true; false] in

mlet ¢ <~ encrypt (fst k) (if b then fst mm else snd mm) in
mlet b’ <- A2 r (fst k) c in

[[egb b’ b]]

Probabilistic choices occurring in games are modeled with a monad. A similar encoding of randomized
algorithms was given in [2]. However our encoding is much simpler due to the fact that it is enough for our
purpose to consider distributions which are finite. In order to be able to compute a probability, we need
to decide whether a predicate is true or not for each value of a distribution. We thus restrict ourselves to
decidable predicates, i.e. predicates that can be encoded as computable functions into booleans.

We provide automated tactics which can move deterministic assignments, random choices and calls to
oracles from one place to another inside the game, and prove automatically that this transformation leads
to an equivalent game. Those tactics are defined in the file Tactic.v. When proving correctness of an
encryption scheme, the backward and recursive application of Proposition 3.11 is dealt with automatically
by the following tactic defined in the file Distrib.v:

Ltac necessarily :=

repeat (
match goal with
| |- Necessarily _ _ (unit _) => apply nec_unit
| |- Necessarily _ _ (bind _ _) => apply nec_bind; intros
| |- Necessarily _ _ (uniform _) => apply nec_uniform
end;
intros

).

It parses the current game and, depending on the root of the syntax tree, applies the corresponding impli-
cation of Proposition 3.11.

14

Difficulties. A trouble with Coq and similar proof assistants based on intensional type theory is the way
they deal with equality. Equality is important because it allows for replacing a subterm by an equal one. The
equality in Coq is intensional: roughly speaking, two expressions are equal iff they have the same definition
(modulo B-equivalence). But in mathematics we commonly use extensional equality for functions: roughly
speaking, two functions f and g are equal iff for any =, f(x) = g(x). Fortunately, it is safe to assume an
axiom stating that the extensional equality for functions implies the intensional one. This axiom is consistent
because, whenever two functions are extensionally equal, it is not provable in Coq that those two functions
are not intensionally equal. This axiom can be seen in many Coq developments and is one of the recurring
questions on the Coq mailing-list. It is important for our formalization because we deal with functions: for
example, let x < §in ¢(x) is encoded in Coq by bind § (fun z => p(z)).

Because the sets and multisets we deal with are finite, we can simply encode them as lists. Equality of
sets (or multisets) is then defined appropriately. As in the case of extensional equality for functions, because
equality of sets is not the intensional equality of Coq, we cannot replace at will a set (or a multiset) with
an equal one. And the trick used for functions consisting in adding an axiom permitting this cannot be used
as, in this case, it would lead to inconsistency! It might be profitable to use the Coq mechanism for setoids
which allows for dealing with such user-defined equalities in a transparent way. However one can only do
replacements in contexts which are syntactic compositions of morphisms that have been proved compatible
with the user-defined equality. Another way would be to enforce a normal form by using a dependent type
so that user-defined equality for terms is exactly Coq’s equality for terms in normal form.

Also, with Coq it is not possible to replace a term by an equal one under a function binder. Thus, in
order to rewrite inside a let, we need to go through Corollaries 3.7 and 3.8.

Another limitation of Coq is that, When a goal contains a subterm of the form let x < ¢ in ¢(x), the
tactic language of Coq cannot parse properly the ¢(z). This is due to the fact that unification in the tactic
language of Coq is limited to non-linear first order unification and therefore cannot parse under lambdas.

7 Conclusions and future work

We have proposed a framework for formalizing game-based proofs of cryptographic schemes. It allows for
security proofs which are precise enough to be mechanically checked, and readable enough to be humanly
checked. We have implemented it as a library of theorems and tactics for the proof assistant Coq. We have
illustrated its use by proving semantic security for the encryption scheme ElGamal and its hashed version.
Our proofs are close to the ones given by Shoup [20] but more precise. The main advantages of using a proof
assistant are that reasoning errors are not possible and that all the assumptions must be stated. On the
other hand, all tedious details of the proof must be dealt with: you cannot simply claim that something is
obvious. This is why we need to develop libraries which deal once and for all with those details.

A possible research direction is to formalize more security notions in our framework. Another extension
is to extend the mathematical framework with more on groups in order to be able to deal with more
advanced cryptographic schemes such as the Weil pairing used in elliptic curve cryptography and identity
based encryption. It is also possible to extend our framework with a syntax for games, and with an associated
semantics in terms of distributions. In order to increase automation and have simpler security proofs, one
possible direction is to make such an extension and prove that some syntactic transformations are correct. A
syntax would help to overcome the impossibility we have currently to parse under let in the tactic language,
and would then allow us to write more powerful tactics by reflection which would for example take care
automatically of rewriting under let, or reordering uniform choices.

Acknowledgements. We would like to thank Reynald Affeldt for having directed us to this research area in
the first place, and for helpful discussions. We are also grateful to Yang Cui, Nicolas Marti, Kirill Morozov,
Miki Tanaka and Rui Zhang for fruitful discussions.

15

References

1

2.

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.

20.

21.

22

. R. Affeldt, M. Tanaka, and N. Marti. Formal proof of provable security by game-playing in a proof assistant. In
ProvSec 2007, volume 4784 of Lecture Notes in Computer Science, pages 151-168. Springer, 2007.

P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in Coq. In MPC, volume 4014 of Lecture
Notes in Computer Science, pages 49—68. Springer, 2006.

G. Barthe and S. Tarento. A machine-checked formalization of the random oracle model. In TYPES, volume
3839 of Lecture Notes in Computer Science, pages 33—49. Springer, 2004.

M. Bellare and P. Rogaway. The exact security of digital signatures - how to sign with RSA and Rabin. In
Eurocrypt, volume 1070 of Lecture Notes in Computer Science, pages 399416, 1996.

M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryptology
ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/.

B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In CRYPTO, volume 4117
of Lecture Notes in Computer Science, pages 537-554. Springer, 2006.

B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. Cryptology ePrint Archive,
Report 2006/069, 2006. http://eprint.iacr.org/.

D. Boneh. The Decision Diffie-Hellman problem. In ANTS, volume 1423 of Lecture Notes in Computer Science,
pages 48-63. Springer, 1998.

R. Corin and J. den Hartog. A probabilistic Hoare-style logic for game-based cryptographic proofs. In ICALP,
volume 4052 of Lecture Notes in Computer Science, pages 252—263. Springer, 2006.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
IT-22(6):644-654, 1976.

D. Dolev and A. C.-C. Yao. On the security of public key protocols (extended abstract). In FOCS, pages 350-357.
IEEE, 1981.

T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory, 31(4):469-472, 1985.

S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping secret all partial
information. In STOC, pages 365-377. ACM, 1982.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270-299, 1984.

S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report
2005/181, 2005. http://eprint.iacr.org/.

J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time process calculus for
the analysis of cryptographic protocols. Theor. Comput. Sci., 353(1-3):118-164, 2006.

E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55-92, 1991.

D. Nowak. A framework for game-based security proofs. In ICICS 2007, volume 4861 of Lecture Notes in
Computer Science, pages 319-333. Springer, 2007.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distributions. In POPL, pages
154-165, 2002.

V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, 2004. http://eprint.iacr.org/.

Y. Tsiounis and M. Yung. On the security of ElGamal based encryption. In Public Key Cryptography, volume
1431 of Lecture Notes in Computer Science, pages 117-134. Springer, 1998.

. P. Wadler. Comprehending monads. In LISP and Functional Programming, pages 61-78, 1990.

16

