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Abstract

The notion of Signer-Base Intrusion-Resilient (SiBIR) signatures was introduced in [IR02] as
a scheme that can withstand an arbitrary number of key-exposures, as long as both of its modules
are not compromised simultaneously. This was achieved by dividing time into predefined time
periods, each corresponding to a different time-evolving secret key, while maintaining a constant
public key. The two modules of this scheme consist of a signer that can generate signatures on
its own, and a base that is used to update the signer’s key as it evolves through time.

The purpose of this paper is to provide a model for multi-signer, multi-base intrusion-resilient
signatures. This proactive SiBIR scheme essentially breaks the preexisting notions of signer and
base, to an arbitrary number of signer and base modules. This tends to implementations where
multiple parties need to agree for a document to be signed. An attacker needs to break into all
the signers at the same time in order to forge a signature for that period. Moreover, he needs
to break into all the bases as well, at that same time period, in order to ”break” the scheme
and generate future signatures. Thereby, by assuming a large number of bases, the risk of our
scheme being compromised becomes arbitrarily small.

We provide an implementation that’s provably secure in the random oracle model, based on
the strong RSA assumption. We also yield a modest improvement in the upperbound of our
scheme’s insecurity function, as opposed to the one presented in [IR02].

Keywords: intrusion resilience, signature schemes, proactive signatures, key evolving signatures

1 Introduction

1.1 Background and Motivation

Digital signatures play an essential role for security on the Internet. Electronic commerce, private
and authenticated communication, and secure storage are but a few of the multitude of applications
that rely on signatures to assert authenticity, ownership, or delegation. However, signature-based
systems are very vulnerable to the key exposure problem, which is currently a far more likely cause
of compromise than cryptanalysis. Once a private key has been exposed, all signatures (past and
future) associated with it are invalidated. The damage of these compromises can be enormous,
both in terms of overhead in revoking and reissuing keys and signatures, and in terms of the new
security vulnerabilities introduced by the possibility of repudiation. Indeed, it is very easy for a
dishonest signer to leak his secret key in order to repudiate a previously signed document. These
problems are especially serious given the crucial role that signatures play for applications such as
certificate authorities (i.e. Verisign), digital signing of legal contracts, electronic checkbooks, etc.

There have been several approaches towards limiting the effect of key exposure. Techniques
such as the use of short lived keys and centralized time-stamping mechanisms do not scale well; the
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former requires many public keys to be certified, distributed, and maintained, while the latter is
interaction heavy and requires a trusted third party who itself must never be compromised in order
for security to be maintained. Key revocation mechanisms, while very important, are problematic,
their current schemes being very complex, cumbersome, suffering from various disadvantages and
presenting some of the most challenging problems with public key infrastructure. Moreover, they
do not solve the problem, as they do not prevent forgeability of past signatures and the repudiation
problem. Two promising approaches to mitigating the damage caused by key exposure are those of
threshold or proactive schemes, and of key evolving schemes (see below). These approaches come
with their own advantages and disadvantages, each being appropriate for different applications.

In this paper we present a new model and an efficient protocol for intrusion-resilient proactive
signature schemes, thereby combining the advantages of both approaches. Before describing our
contributions, however, we start with a brief overview of these two lines of research.

Threshold and Proactive Signatures. This approach uses a distributed multi-party system
in order to increase the difficulty of key exposure that allows for signature forgery. Threshold
signature schemes [DF89] share the secret key among a number of signers, using a multi-party
protocol to generate a signature. In this model, a compromise (such as a key exposure) of up
to a certain threshold of the parties does not allow the adversary to forge signatures. Proactive
signatures [OY91, HJKY95, HJJ+97] take this one step further by dividing the lifetime of the
scheme to time periods. In order for an adversary to be able to forge signatures, he will have to
break into more than a threshold of the parties, during the same period. This is done by providing
a procedure that rearranges the secret key shares at the beginning of every time period.

Key Evolving Signatures and SiBIR. The basic idea behind this approach is to extend a stan-
dard digital signature algorithm with a key update algorithm, so that the secret key can be changed
frequently, while the public key stays the same. The first such notion was that of forward-secure
signatures [And97, BM99]. [IR01] later provided with a very efficient implementation, followed
by [MMM02] with a more generic implementation. Forward security ensures the authenticity of all
past signatures, by dividing time into time periods and evolving the secret key along the progression
of every period. This means that a key exposure would not enable the adversary to backtrack and
reproduce past signatures, although it would yield all the information necessary to forge present and
future signatures. In order to overcome this, the model of Key-Insulated Security [DKXY03]
was proposed. This model uses two separate modules (later named signer and base). The signer
generates signatures, while the base helps the signer update the key every time period. As long as
the adversary only breaks into one of the modules, security for both past and future signatures is
maintained. A compromise of the signer’s key alone yields forgeries for the current time period,
whereas a compromise of the base’s key alone yields nothing. However, if the adversary ever breaks
into both modules, even during different time periods, the security of all signatures is compromised.

The key-evolving model with the strongest security guarantee to date is that of Signer-Base
Intrusion Resilience (SiBIR) [IR02, Itk02], combining the benefits of forward secure, key in-
sulated, and proactive security for two parties. Here, there are again two modules, a signer and a
base. The signer module generates signatures as signers are oft to do. The base module is used
by the signer in order to update a time-evolving secret key whenever we advance to the next time
period, as well as to rearrange the key shares during regular refresh intervals in a manner akin to
proactive security (such refresh operations are transparent to the verifier, while the time period is
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included as part of the signature to be verified). This notion achieves security for both past and
future signatures even when both of its modules are compromised, as long as there has been a
refresh operation between the compromise of each module. Moreover, even in the case where both
modules are compromised simultaneously, the scheme maintains forward-security.

A different extension of the forward-security model was given by [AMN01], who provided a
scheme for Proactive Forward Security, combining the benefits of forward-secure and proactive
signatures. Here, as in the proactive setting, there are multiple parties, and security is maintained
as long as the adversary has not compromised more than a threshold of the parties. If the adversary
does compromise more than that threshold, however, forward-security is still maintained. Namely,
signatures for the current and future time periods are invalidated and their key needs to be revoked,
whereas the security of past signatures is still maintained.

1.2 Our Contributions

Model. We introduce the notion of ProSiBIR, proactive signer-base intrusion resilient signa-
tures. Our new model uses an n-out-of-n approach to expand on the concept of intrusion resilience,
by adding to it the multiparty aspects of proactive security. Instead of requiring a large number of
signing parties to maintain security, our framework allows the number of signers to be set according
to the needs of the application. For example, signing a credit card bill may require one person,
while selling a house that’s collectively owned by 7 brothers requires 7 parties. When there is only
one signer, she can generate signatures by herself offline. When there are multiple signers, some
interaction between them is needed to generate signatures, though the exchanged messages are not
sensitive (i.e. do not need to be kept secret). In retrospect, it seems counter intuitive to artificially
beef up the number of signers in order to increase security. Instead, our scheme achieves better
results by increasing the number of bases. These parties are not needed for signature generation
and can be provided by one or more trusted independent organizations, hosted on different software
platforms, in different parts of the world. This can protect us from exposures due to vendor-specific
vulnerabilities, legal or geopolitical factors.

An adversary would need to break into all the signers, at the same time and refresh period, in
order to forge present signatures, while past and future would remain protected. Even if that takes
place, however, as soon as we progress to a new time period, that signing key will be of no use
to him, as it will have evolved during the update phase. The only way for an adversary to keep
forging signatures, short of intercepting all of the update messages for ever that is, would be to
compromise the bases’ keys. In order to do that, though, he would need to break into all the bases
at the same time, while having compromised all the signers during that period. That can be really
hard for the adversary; given a sufficiently large number of bases, the risk of our scheme being
compromised becomes arbitrarily small. Finally, even if the adversary did manage to procure all
the secrets from all the parties involved simultaneously, the scheme would still be forward secure,
thereby preserving the security of all past signatures. A syllogism similar to [AMN01] will tell us
that such a reduced usefulness of signers’ keys and key shares, will be a disincentive and will act
as a deterrent for potential adversaries.

Construction. We provide a ProSiBIR scheme, based on the SiBIR scheme of [IR02], which
in turn is based on the Guillou-Quisquater signature scheme [GQ88]. Our scheme is as efficient
as the ordinary signatures of [GQ88]; every signing party needs to calculate just two modular
exponentiations and is required to send 2` − 2 non-sensitive messages (where ` is the number of
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signers) to the other signers so that they form a product that’s needed for the signature. Similarly,
verifying only requires two modular exponentiations.

Our scheme proves to be secure in the random oracle model, based on the strong RSA assump-
tion. In addition to that, through our proof of security, we achieve a somewhat tighter security
bound than that of [IR02] (in fact, we observe that the [IR02] analysis can be improved to achieve
this tighter bound).

From Certificate Revocation to Offline Verification. In order to deal with the danger
presented by key exposures in public key signature systems, people have turned to certificate
revocation mechanisms. If a signer’s secret key is compromised, the certificate is revoked, thereby
informing other people that signatures relying on that certificate should no longer be considered
valid. The process of revoking a signature, however, is very demanding, both computationally and
in terms of storage for the required infrastructure. Essentially, this means that verifiers will need
to be online, to consult a certificate revocation list, to know if a signature is valid or not. Our
scheme, however, in a manner similar to that stated in the intrusion resilient scheme presented
by [IR02], minimizes the need for certificate revocation. Key exposures become much harder and
rarer, while at the same time only compromising signatures for the present time period. Our key
update, turns out to be a much faster and smarter reaction to key exposure than a key revocation.
This way, with the revocation infrastructure becoming so obsolete, signature verification can even
be performed offline, since there won’t be any need to consult revocation lists any more.

Comparison. We compare our work to the two main ones previously known in this domain.
Compared to the work of [AMN01], our scheme achieves intrusion resilience, as opposed to the

simple forward security of proactive signatures. This means that even if all the signers were to be
compromised1, only the current time period would be rendered unsafe, as opposed to the current
and future periods of forward security. This is achieved through the use of the base modules, whose
keys can be better protected, as they are not needed for signing, not used as frequently and can
be held in a non-mobile, more secure environment. Furthermore, computationally, the [AMN01]
scheme relies on [BM99], so it’s inherently not as efficient in terms of computations as our scheme,
which relies on [IR02], which is as efficient as [GQ88].

We next compare our work to that of [IR02]. Despite incorporating the benefits of proactive
schemes by using a base and a signer, [IR02] does not take advantage of their multiparty aspects,
thus limiting itself to a single signer and a single base. Single signer schemes may not suit particular
implementations where more than one party is needed to authorize a document. An example of
this could be the movie scenario where the president and the vice-president of a country need to
turn their keys simultaneously to activate a nuclear weapon. Single base schemes carry another
disadvantage; considering that key-exposures and intrusions are inevitable these days, it may not
be as hard for an attacker to compromise the base module at the same time as the signer module.

2 Model

The definitions we use are based on those of [IR02]. Before we delve into any further formalities,
however, allow us to present an intuitive overview of the model, to make what we are doing clearer.

1This is not an unlikely scenario, if one comes to consider that a plurality of signers might likely share some
common affiliation. Such groups of people could be susceptible to an insider attack.
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This model expands the notions of signer and base, to include an arbitrary number of parties for
each. Each of these parties, be it a signer or a base, holds a share of the signer or base key,
respectively. All the signers are required to collaborate, each contributing with her share of the
secret key, in order to sign messages.

A key update operation is performed at the beginning of every time period, every base con-
tributing with its share of the key, in order to evolve all the keys. These updates are always followed
by a key refresh; a process where messages are transmitted between all parties, leading to a re-
distribution of the shares for the secret key. Key refresh operations can also occur at any time in
between updates (i.e. especially when there is a compromise).

The adversary is defined as capable of obtaining the shares of individual signers and bases,
for time periods that he chooses. He can also gain access to update and refresh information, by
intercepting messages between parties of his choice.

Note that, as in [IR02], though our definitions are given in the standard model, they can easily
incorporate random oracles as per the model used for our proof of security.

2.1 Functional Definition

Borrowing from the notation used in [IR02], we’ll use RN(t) to refer to the number of times a key
refresh is performed at time period t.

SKSt.r∗ is used to denote the signing key which is shared among k signing parties. When referring
to these shares individually, we’ll use SKSt.r

i to refer to the ith signer’s key at time period t,
refresh period r.

SKBt.r∗ is similarly shared among ` bases and holds the secrets of the update process. SKBt.r
j

would refer to the jth base’s key, at time period t, refresh period r.

SKU t
i.j is the message transmitted during the update phase, from the jth base to the ith signer, at
time period t.

SKRt.r
i.j refers to the message transmitted during the refresh phase, from the jth base to the ith

signer, at time period t, refresh period r.

In addition to the notation outlined above, our scheme is going to consist of the following algorithms:

1. Gen: Key generation algorithm
Input: Security parameters k, `, κ, λ and the total number of time periods T .
Output: Preliminary key shares, SKS0.0

i , for signers, and SKB0.0
j , for bases.

2. UB: Algorithm to update a base’s key share
Input: The base’s key share: SKBt.r

j .
Output: The base’s new key share: SKBt+1.0

j , along with k update messages:

SKU t
1.j , SKU t

2.j , · · · , SKU t
k.j

3. US: Algorithm to update a signer’s key share
Input: The signer’s key share: SKSt.r

i , as well as ` update messages:

SKU t
i.1, SKU t

i.2, · · · , SKU t
i.`

Output: The signer’s new key share: SKSt+1.0
i
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4. RB: Algorithm to refresh a base’s key share
Input: The base’s key share: SKBt.r

j .
Output: A new key share for that base: SKBt.r+1

j , along with k distinct refresh messages:
SKRt.r

i.j

5. RS: Algorithm to refresh a signer’s key share
Input: The signer’s key share: SKSt.r

i , as well as ` refresh messages: SKRt.r
i.j .

Output: A new key share for that signer: SKSt.r+1
i

6. ProSign: The signing algorithm
Input: The signers’ shares of the signing key: SKSt.r

i and a message m
Output: A valid, for time period t, signature of message m.

7. V er: Signature verification algorithm
Input: A message m, its corresponding signature and the public key PK
Output: ”valid” or ”invalid”

2.2 Definition of Security

We define the attacker, F , as a probabilistic polynomial-time oracle Turing Machine with access to
the following oracles:

Osig is our signing oracle, mapping all input (m, t, r) (where 1 ≤ t ≤ T and 1 ≤ r ≤ RN(t)) to
corresponding signatures

ProSign(SKSt.r
1 , ..., SKSt.r

k , m)

Osec is the key exposure oracle; it will expose keys (analogous to intrusions) corresponding to the
input it receives:

• On input (“si”, t.r), where 1 ≤ t ≤ T and 1 ≤ r ≤ RN(t), the oracle retrieves SKSt.r
i .

• On input (“bj”, t.r), where 1 ≤ t ≤ T and 1 ≤ r ≤ RN(t), the oracle retrieves SKBt.r
j

• On input (“uj”, t), where 1 ≤ t ≤ T − 1, the oracle retrieves SKU t
j , as well as base j’s

refresh messages SKRt.1
i.j to all of the signers.

• On input (“ri.j”, t.r), where 1 ≤ t ≤ T and 1 ≤ r ≤ RN(t) − 1, the oracle retrieves
SKRt.r

i.j

Let Q be a set of queries to the Osec oracle. For any such set Q, t ≥ 1 and 1 ≤ r ≤ RN(t), we
say that the signing key SKSt.r∗ is Q− exposed if any of the following three conditions holds:

• All of the signers’ shares have been compromised: (“si”, t.r) ∈ Q,∀i : 1 ≤ i ≤ k

• The keys have been refreshed at least once during this time period, all the refresh messages
were compromised, and the signing key was Q− exposed before the refresh (recursive): r >

1, SKS
t.(r−1)
∗ is Q− exposed, and (“ri.j”, t.(r − 1)) ∈ Q,∀i : 1 ≤ i ≤ k, ∀j : 1 ≤ j ≤ `

• The keys were just updated, all the update messages were compromised and the signing key
was Q− exposed before the update (recursive): r = 1, SKS

(t−1).RN(t−1)
∗ is Q− exposed, and

(“uj”, t− 1) ∈ Q,∀j : 1 ≤ j ≤ `.
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The same definition of Q − exposure can be applied when the bases’ keys are exposed; just
replace SKS with SKB. If SKSt.r∗ and SKBt.r∗ both become Q − exposed, then the attacker
will be able to forge present and future signatures. In such a case we say that the scheme is
(t,Q)− compromised. The scheme is (t, Q)− compromised if either of these two conditions hold:

• SKSt.r∗ is Q− exposed

• SKSt′.r∗ and SKBt′.r∗ are both Q− exposed for some t′ < t

To finish defining our attacker’s modus operandi, we will consider the following: The attacker’s
algorithm will return a 1 if the attacker manages to forge a signature, using the information obtained
from Q (the set of queries to Osec), without rendering the scheme (t,Q)−compromised, generating
any illegal or out of bounds queries, or generating this signature by using the Osig oracle. In all
other cases it will return a 0. So, to define this more formally, for a k number of signers, ` bases,
security values κ and λ, a T number of time periods and a map RN that maps time periods to the
corresponding maximal number of refresh intervals at that time period; let the attacker’s algorithm
be such that:

Run−Adversary(F, k, `, κ, λ, T, RN)

returns 1 when:

• The attacker manages to forge a signature, using the information obtained
from his set of queries to Osec.

• and in doing so, the attacker doesn’t render the scheme (t,Q)−compromised,
nor does he generate any illegal or out of bounds queries.

• and the attacker hasn’t generated this signature by using the Osig oracle.

returns 0 on all other cases.

Now, to actually define security. Let ProSiBIR[k, `, κ, λ, T,RN ] be a proactive SiBIR scheme.
We define SuccIR(F, ProSiBIR[k, `, κ, λ, T, RN ]) to be the probability an adversary’s algorithm
will return 1 (i.e. satisfy all of the conditions listed above).

SuccIR(F, ProSiBIR[k, `, κ, λ, T, RN ]) = PR[Run−Adversary(F, k, `, κ, λ, T, RN) = 1]

InSecIR(ProSiBIR[k, `, κ, λ, T,RN ], τ, qsig) is defined to be the maximum possible value of
SuccIR(F, ProSiBIR[k, `, κ, λ, T,RN ]), over all possible adversary algorithms; so it is the prob-
ability of the “best possible” adversary algorithm returning a 1. Our goal is to show that our
scheme’s insecurity value is negligible:

InSecIR(ProSiBIR[k, `, κ, λ, T,RN ], τ, qsig) < ε

3 Scheme Construction

The scheme we propose, ProSiBIR1, is based on the SiBIR scheme. We expand the notions of signer
and base to include multiple parties that function collaboratively as signers and bases. Our scheme
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utilizes four security parameters: k, `, κ and λ. We use k and ` to refer to the number of signers and
bases, respectively. Our scheme can easily be reduced to an equivalent of the SiBIR1 scheme, by
setting the number of signers to 1 and the number of bases to 1. When referring to the product of
all the messages sent by base j, we are going to denote this by SKU t

∗.j =
∏k

i=1 SKU t
i.j . Similarly,

the product of all the messages received by a signer i will be denoted by SKU t
i.∗ =

∏`
j=1 SKU t

i.j ,
whereas the product of all update messages will be denoted by SKU t∗ =

∏k
i=1

∏`
j=1 SKU t

i.j .

Implementing Gen:

• Generate a modulo n: n is the product of two (κ/2)-bit Sophie Germain primes, p and q:

n = pq = (2p′ + 1)(2q′ + 1)

where p′ and q′ are also primes. Once n is computed, we keep it public and delete its
factorization.

• Take a hash function, H : {0, 1}∗ → {0, 1}λ.

• Generate some (λ+1)-bit exponents: e1, e2, ..., eT , making sure that they be relatively prime.
The product of all exponents, from a time period t to the last time period T , is denoted by
e[t,T ]. It follows that the product of all the exponents is represented by e[1,T ]. Note that none
of these exponents are secret.

• Every party generates a random number. This number is assigned to si[1,T ] if the party is the
ith signer, or to bj[1,T ] if the party is the jth base. Every signer i computes vsi = 1

s
e[1,T ]
i[1,T ]

, every

base j computes vbj = 1

b
e[1,T ]
j[1,T ]

.

• The product of of all the vsi ’s and all the vbj ’s is assigned to v = (vs1vs2 ...vsk
)(vb1vb2 ...vb`

).
This v is public and is to be used during signature verification.

• The time and refresh periods are both initialized: t = 0, r = 0.

• Every signer i sets SKS0.0
i = {si[1,T ], ∅, ∅}

• Every base j sets SKB0.0
j = {bj[1,T ]}

The next step in completing key generation is to perform our very first update and refresh. Let’s
have a look at how these are done.

Implementing UB: A new time period always starts with an update operation to evolve the
secret keys, bases first.

• The time period is incremented: t = t + 1

• First we update some values we’ll need next time we try performing an update. Every base
j computes bj[t+1,T ] = bet

j[t,T ]. and sets its key to SKBt.1
j = {bj[t+1,T ]}

• Next, we update the values to be used in this time period. Every base computes bjt = b
e[t+1,T ]

j[t,T ]
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• Every base then generates k − 1 random numbers in Z∗n, taking care that they be relatively
prime to our modulus n, and assigns them to all but one of the update messages it is going to
send out. As for the ith update message that is left, every base j will compute it as follows:
SKU t

i.j = bjt

SKUt
1.j ···SKUt

i−1.jSKUt
i+1.j ···SKU t

k.j
. This essentially breaks the key into k multiplica-

tive shares, one for each signer, using them as the update messages to be transmitted. Note
that SKU t

∗.j =
∏k

i=1 SKU t
i.j = bjt.

Implementing US: As soon as the bases are done with their update, the signers use the update
messages received to evolve their keys.

• Every signer multiplies the update messages she has received to compute SKU t
i.∗ =

∏`
j=1 SKU t

i.j

• As with the bases, all signers now have to update some values they’ll need for the next update.
Every signer i computes si[t+1,T ] = set

i[t,T ].

• Next the signers update the value they’ll use during this time period. Every signer computes
sit = s

e[t+1,T ]

i[t,T ] .

• Every signer sets her key to SKSt.1
i = {si[t+1,T ], sit, SKU t

i.∗}

Implementing RB: Every update operation is followed by a refresh, though we can also have
additional refreshes in between. Refresh operations start with the bases.

• The refresh period is incremented: r = r + 1

• Every base j generates a random number SKRt.r
i.j ∈ Z∗n for every signer i. Note that this key

needs to be relatively prime to our modulus n.

• Each base j refreshes its key by multiplying with each of the k random numbers it generated:
SKBt.r

j = {bj[t+1,T ]

∏
i SKRt.r

i.j}
• All of the SKRt.r

i.j are then transmitted to their respective signers.

Implementing RS: When the bases transmit their refresh messages, all signers have to refresh
their keys accordingly, so as to complete the redistribution of shares.

• Every signer i refreshes its key by dividing with each of the ` random numbers it has received
from the bases:

SKSt.r
i =

{
si[t+1,T ]∏
i SKRt.r

i.j

, sit, SKU t
i.∗

}

Now that we have finished describing how key generation, update and refresh are performed, we
can proceed to talk about signing.

Implementing ProSign:
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• Every signer generates a random xi ∈ Z∗n. The product of all the xi’s is denoted by x =∏
i xi = x1x2...xk. Note here that, while each signer knows her own xi, nobody ever learns x

in its entirety. Every signer also computes yi = xet
i .

• All the yi’s are pooled to compute y =
∏

i yi, which in essence, is the same as xet . y is known
to all the signers and is then used to compute the hash σ = H(t, et, y, M)

• Every signer computes zi = xis
σ
it(SKU t

i.∗)
σ = xis

σ
it(

∏`
j=1 SKU t

i.j)
σ

• The zi’s are then pooled to compute:

z =
k∏

i=1

zi = xsσ
t




k∏

i=1

∏̀

j=1

SKU t
i.j




σ

= xsσ
t


∏̀

j=1

bjt




σ

= x (stbt)
σ

• The signature is now ready. We simply return: {z, σ, t, et}

Implementing V er:
Compute y′ = zetvσ

The signature is valid iff: H(t, et, y
′,M) = σ

This makes sense because, if the signature is valid, then y′ will be: y′ = xet (stbt)
σet vσ = y

4 Security

4.1 Complexity Assumption

The strong RSA assumption states that given a number n = pq, where p and q are both prime, as
well as an α ∈ Z∗n, it is computationally intractable find a β ∈ Z∗n and an r ≥ 3 such that βr ≡ α
(mod n). Its use was introduced by [BP97] and [FO97], though [IMS03] provides a more rigorous
study of the complexity of the assumption. We are going to base our proof on a variant identical to
the one used by [IR01] and [IR02]. This variant restricts our modulus n, so that it is formed by
the product of two Sophie Germain primes. It also places an upperbound κ on the length of our
modulus and limits the possible values of r : r ≤ 2λ+1. Both [IR01] and [IR02], do an excellent job
of explaining why these restrictions don’t strengthen our assumption and why InSecSRSA(κ, λ, τ)
is negligible.

4.2 Proof of Security

Theorem 1. Suppose there exists a forger, F , with a running time ≤ τ , asking at most qhash hash
queries and qsig signing queries, whose probability of success is SuccIR(F, ProSiBIR[k, `, κ, λ, T,RN ]) ≥
ε. We claim that, from that forger, we can construct an algorithm A that, for α ∈ Z∗n and a random
modulus n, can represent α as a perfect power:

i.e. br ≡ α (mod n)
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Such that:

ε′ =
(T − 1)

(
ε− 22−κqsig(qhash + 1)

)2

T 2(qhash + 1)
− (T − 1)

(
ε− 22−κqsig(qhash + 1)

)

2λT

and τ ′ is polynomial on τ . Where τ ′ is the algorithm’s running time, and its probability of success
is ≥ ε′.

Proof. Let us start by examining the way in which A will use F , as a subroutine, to break strong
RSA. A picks a random w between 1 and T , guessing F will forge a signature corresponding to that
time period. A generates values according to our scheme construction; starting with the exponents
e1, ..., eT , then proceeding to calculate v = 1

αe1...ew−1ew+1...eT (mod n).
A then calls the forger, F , using the v he just computed. Signature and hash queries are to

be answered randomly, while using respective query tables to enforce consistency in case the same
query is asked twice. A will also be responsible of addressing any of F ’s queries to the signing and
key exposure oracles. A more detailed discussion of how A will answer key exposure queries can be
found in the Osec section of the Appendix.

If F does not succeed in forging a signature for time period w, then A fails and needs to try
again. In the case where F does succeed in producing (z, σ, w, e), however, we use it to compute
y ≡ zevσ (mod n). This signature will have required a hash value σ = H(w, e, y, m) which we can
spot on the query table once we’ve computed y.

A, then, runs the forger again on the same input, returning the same results on all queries,
according to the query tables he kept last time. When, during this second run, the forger asks A for
the hash value of (w, e, y, m), A will return another value σ′ instead of the σ returned in the first run.
If this σ′ is not the one used to forge the signature, then A fails and needs to try again. If the forger
succeeds for a second time, the forged signature (z′, σ′, w, e) will be such that y ≡ zevσ ≡ z′evσ′ .
This means that ( z

z′ )
e ≡ vσ′−σ ≡ α(σ−σ′)e1...ew−1ew+1...eT . We know that e, also referred to as ew, is

by definition relatively prime to e1...ew−1ew+1...eT . We also know that σ − σ′ is at most one bit
smaller than e. Hence, it holds that gcd(e1...ew−1ew+1...eT (σ − σ′), e) = gcd(σ − σ′, e) < e (since
the σ and σ′ provided by A were distinct). Thereby, by means of Lemma 1 from [IR01], we deduce
that A can generate a non-trivial root of α, its degree being e

gcd(fw+1(σ′−σ),e)>1

Now we can put all the probabilities together to derive the value of ε′. An analysis of why
the probabilities turn out as they do can be found in the Appendix. This completes the proof of
Theorem 1.

Let u = (ε− 22−κqsig(qhash + 1))/T . This enables us to transform our equation to

ε′ =
(T − 1)u2

qhash + 1
− (T − 1)u

2λ
⇔

u2 − (qhash + 1)2−λu− ε′(qhash + 1)
T − 1

= 0

Now we can solve this quadratic equation to get

u =
(qhash + 1)2−λ +

√
(qhash + 1)22−2λ + 4ε′(qhash+1)

T−1

2
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= (qhash + 1)2−λ−1 +

√
(qhash + 1)22−2λ−2 +

ε′(qhash + 1)
T − 1

≤ (qhash + 1)2−λ−1 +
√

(qhash + 1)22−2λ−2 +

√
ε′(qhash + 1)

T − 1

= (qhash + 1)2−λ−1 + (qhash + 1)2−λ−1 +

√
ε′(qhash + 1)

T − 1

= 2−λ(qhash + 1) +

√
ε′(qhash + 1)

T − 1

Now we can solve for ε (based on the way we initially defined u) to get that ε = Tu+22−κqsig(qhash+
1). Substituting u with the inequality we have computed, we have that

ε ≤ T

√
ε′(qhash + 1)

T − 1
+ T2−λ(qhash + 1) + 22−κqsig(qhash + 1)

This can also be expressed as:

ε ≤ T

√
(qhash + 1)InSecSRSA(κ, λ, τ ′)

T − 1
+ 2−λT (qhash + 1) + 22−κqsig(qhash + 1)

Hence, we have managed to upper-bound our scheme’s insecurity; it is close to or less than the
insecurity of strong RSA. This clearly shows that our scheme’s insecurity is negligible.
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Appendix A: Osec Simulation

To begin with, we will need to use the notions of points and intervals, as they were defined in the
SiBIR paper. For the sake of clarity, we have included these definitions here. In order to simplify
notation, from now on, valid time/refresh periods of the form ti.rj : 0 < rj < RN(ti) will be referred
to as points. Let π1, π2 be two points, such that π1 < π2. We define an interval I to be the set of
all points between π1 and π2, iff every point π ∈ I is such that, (”ri.j”, π) ∈ Q,∀P : 1 ≤ P ≤ k + `.

Lemma 1. Let π1, π2 ∈ I : π1,2 ≤ t. If (”si”, π1) ∈ Q∀i : 1 ≤ i ≤ k and (”bj”, π2) ∈ Q∀j : 1 ≤ j ≤
`, then the scheme is (t,Q)− compromised.

Proof. SKSt and SKBt are both Q − exposed; this follows trivially from the definitions of Q −
exposure and intervals. Consequently, proving the lemma that the scheme is indeed (t, Q) −
compromised.

If, for any π ∈ I, (”si”, π) ∈ Q ∀i : 1 ≤ i ≤ k, then I is called a signer interval. A similar
definition applies for what we call a base interval ; (”bj”, π) ∈ Q ∀j : 1 ≤ j ≤ `. For the purposes
of proving security, no interval can be both a signer and a base interval at the same time, as this
would render the scheme (w, Q) − compromised (neither F , nor A, can succeed if the scheme is
(w,Q)− compromised).

Now that these notions are in place, we can proceed by generating all the values that A will
need to respond to F ’s key exposure queries. First we randomly pick bj[1,T ].0 ∈ Z∗n, for every base
j, making sure that these bj[1,T ].0 are relatively prime to n. Then we use the already defined base
update and refresh functions of our scheme to generate all the SKB’s, SKU ’s and SKR’s required
to answer F ’s queries. This gives us all the bj[t+1,T ].r for 1 ≤ t ≤ T and 0 ≤ r < RN(t).

We randomly pick si[1,T ].0 ∈ Z∗n, for every signer except the k-th, making again sure they are
relatively prime to n. For the k-th signer we compute:

sk[1,T ].0 =


∏̀

j

bj[1,T ].0

k−1∏

i

si[1,T ].0



−1

We use the signer update and refresh functions of our scheme, along with the previously com-
puted values, to generate all the SKS’s until time period w. This gives us all the si[t+1,T ].r for
1 ≤ t < w and 0 ≤ r < RN(t). We randomly pick si[w+1,T ].0 for every signer except the k-th so
that they are relatively prime to n. We set

sk[w+1,T ].0 = αe[1,w−1]




k−1∏

i

si[w+1,T ].0

∏̀

j

bj[w+1,T ].0



−1

and we use the signer update and refresh functions again to generate the rest of the SKS’s. This
will give us the si[t+1,T ].r for w ≤ t < T and 0 ≤ r < RN(t).

Now that everything is computed, A is ready to answer all of F ’s ”s”, ”b” and ”r” queries. As
far as update queries go, A will need to check Q to find out the interval in which t resides in a
(”uj”, t) query. If it is in a base interval, A responds to the query by sending SKU t

j = bjt. If it
is in a signer interval and t ≥ w, then A responds with SKU t

j = bjt. If, however, it is a signer
interval where t < w; A will respond with SKU t

j = bjt for j 6= k and SKU t
k = αe[1,T ]/etewbkt for the
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k-th signer. Note that, when t 6= w,


∏

i

sit

∏

j

SKU t
j




et

= 1/v. Answering queries in such a way

creates a simulated run, so that it is indistinguishable from an actual run in the eyes of the forger,
which is exactly what we need for F to be able to break the scheme. Details on why this simulated
run is consistent with that of a true signer, are very similar to [IR02].

Appendix B: Counting Probabilities

In the interest of completeness, we include this probability analysis, working along the same lines
as [IR01], while at the same time focusing on certain stages for the sake of clarity.

Let ph,b,S be the probability of F forging a signature based on the h-th hash query amongst the
qhash + 1 it can ask, following a break-in at time period b, where a string S (of length m) is used
to determine F ’s random tape.

Our algorithm is supposed to run F twice, while issuing different responses (σ and σ′) to the
h-th hash query. During the second run, however, there is a 2−λ probability that the two hash
values will collide. This means that instead of p2

h,b,S , the probability of F forging a signature based
on the h-th hash query in both runs but answered differently in the second run, following a break-in
query at time period b and using the string S, is ph,b,S(ph,b,S − 2−λ)

Let qh,b be the probability of this over all possible strings of length m. It will then be such that

qh,b =
∑

S∈{0,1}m

2−mph,b,S(ph,b,S − 2−λ) = 2−m


 ∑

S∈{0,1}m

p2
h,b,S − 2−λ

∑

S∈{0,1}m

ph,b,S




Let ph,b be the probability of F producing a forgery based on the h-th hash query after a break-
in query at time period b. It therefore follows that the sum of the ph,b,S over the 2m possible strings
of length m is

∑

S∈{0,1}m

ph,b,S = 2mph,b

Hence, by applying Lemma 2 from [IR01], we have that

qh,b ≥ 2−m





 ∑

S∈{0,1}m

ph,b,S




2

2m
− 2−λ

∑

S∈{0,1}m

ph,b,S




=
2−m(2mp2

h,b)
2m

− 2−λ2−m2mph,b = p2
h,b − 2−λph,b

∴ qh,b ≥ ph,b(ph,b − 2−λ)
Let εb be the probability of F producing a valid forgery after a break-in query at time period

b. In essence it’s the sum of the ph,b over all possible hash queries. So εb =
qhash+1∑

h=1

ph,b
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The probability of F forging a signature on both runs based on the same hash query, while that
query gets answered differently in the second run, and following a break-in query at period b is

qb =
qhash+1∑

h=1

qh,b ≥
qhash+1∑

h=1

p2
h,b −

qhash+1∑

h=1

2−λph,b

≥

(
qhash+1∑

h=1

ph,b

)2

qhash + 1
−

qhash+1∑

h=1

2−λph,b (Lemma 2, [IR01])

=
ε2
b

qhash + 1
− 2−λεb

The sum of the eb over all possible time periods for the break-in, is δ =
T∑

b=1

eb.

Note that since this is an intrusion resilient scheme, F ’s break-in query at time period b cannot
take place during the same time period as the forgery. The probability of A picking a w 6= b is
T−1

T . The analysis of [IR02] mentions a factor of 1
T in place of this probability. A closer look at

[IR01], however, which is the paper from which both this and the proof of [IR02] stem, suggests
that since these are not simply forward secure schemes, but also intrusion resilient, a tighter bound
of T−1

T is forthcoming.
If we calculate the sum of the qb over all possible time periods for a break-in and take into

account the probability of w 6= b, we’ll get

ε′ =
T − 1

T

T∑

b=1

qb ≥ T − 1
T

T∑

b=1

(
ε2
b

qhash + 1
− 2−λεb

)

=

(T − 1)
T∑

b=1

ε2
b

T (qhash + 1)
−

(T − 1)
T∑

b=1

εb

2λT

≥
(T − 1)

(
T∑

b=1

εb

)2

T 2(qhash + 1)
− (T − 1)δ

2λT
(Lemma 2, [IR01])

=
(T − 1)δ2

T 2(qhash + 1)
− (T − 1)δ

2λT

We know that δ = ε − qsig(qhash + 1)22−κ, because F ’s chance of success is affected by the
probability of collision between a hash defined in a signature query and that of a hash query. From
this we deduce that

ε′ ≥ (T − 1)
(
ε− 22−κqsig(qhash + 1)

)2

T 2(qhash + 1)
− (T − 1)

(
ε− 22−κqsig(qhash + 1)

)

2λT
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