
The BBG HIBE Has Limited Delegation

Hovav Shacham∗

hovav.shacham@weizmann.ac.il

Abstract

At Eurocrypt 2005, Boneh, Boyen, and Goh presented a hierarchical IBE for which they
claimed a novel property, called limited delegation: it is possible to give an entity a private key
that restricts it from generating descendant private keys beyond some depth d; in particular,
with d equal to the entity’s depth, such a key allows decryption only. In this paper, we argue
that this claim is nonobvious and requires proof, provide a precise model for arguing about
limited delegation, and prove that the Boneh-Boyen-Goh system does, in fact, have limited
delegation. Whereas Boneh, Boyen, and Goh prove their system semantically secure under the
BDHI assumption, our proof of limited delegation requires the stronger BDHE assumption.

1 Introduction

At Eurocrypt 2005, Boneh, Boyen, and Goh presented a hierarchical IBE system (“BBG”) [2] in
which ciphertexts are three group elements regardless of the depth in the hierarchy of the identity
encrypted to. In addition, they make the following claim: “an identity ID at depth k can be given a
private key that only lets it issue private keys to descendants of bounded depth.” The BBG HIBE
is the first HIBE with this property, called “limited delegation.”

The purpose of this paper is threefold. First, we argue that the claim that BBG has limited
delegation is nonobvious and requires proof. Second, we provide a precise model for arguing about
limited delegation. Third, we prove that the BBG system does, in fact, have limited delegation.

Perhaps surprisingly, our proof makes use of the bilinear Diffie-Hellman exponent (BDHE)
assumption, rather than the weaker bilinear Diffie-Hellman inversion (BDHI) assumption. The
proceedings version of [2] introduced the BDHE assumption to prove the security of the BBG
scheme, and BDHE was later also used to construct an efficient public-key broadcast encryption
scheme [3]. However, it was later observed (by Nelly Fazio) that the proof requires only BDHI, a
weaker assumption previously used in an IBE construction [1].

2 Mathematical Background

We recall the pairing-based crypto setting (see also [4, 5]) and the BDHI and BDHE assumptions.
Consider:

• G and G1 are multiplicative cyclic groups of order p;

• the group action on G and G1 can be computed efficiently;
∗Supported by a Koshland Scholars Program fellowship.

1

• g is a generator of G;

• e : G×G→ G1 is an efficiently computable map with the following properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;

– Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if it satisfies these requirements.
In our descriptions of the assumptions, g and h are random elements of G and α is a random

element of Zp.
The computational `-bilinear Diffie-Hellman inversion (BDHI) problem is as follows:

`-BDHI: given g, gα, gα2
, gα3

, . . . , gα`
compute e(g, g)1/α .

Boneh, Boyen, and Goh use a somewhat weaker variant called `-wBDHI*, which is as follows:

`-wBDHI*: given g, h, gα, gα2
, gα3

, . . . , gα`
compute e(g, h)(α

`+1) .

Finally, the `-bilinear Diffie-Hellman exponent (BDHE) problem is as follows:

`-BDHE: given g, h, gα, gα2
, . . . , gα`−1

, gα`+1
, gα`+2

, . . . , gα2`
, compute e(g, h)(α

`+1) .

Each of these problems has a decisional variant in which the adversary is also given a value T that
is either the solution to the corresponding computational problem or a random element of G1. The
computational and decisional assumptions are formalized in the standard way; see Boneh, Boyen,
and Goh [2] for more details. In what follows, when we refer to the BDHI or BDHE assumption,
we are in fact referring to the decisional variant of wBDHI* or BDHE.

3 The BBG System

We recall the BBG system for an `-level hierarchy. See [2] for motivation and details. For the
reader’s convenience, we retain the notation of Boneh, Boyen, and Goh exactly.

Setup(`): Choose g
R← G and α

R← Zp and set g1 ← gα. Now, choose g2, g3, h1, . . . , h`
R← G. Set:

params ← (g1, g2, g3, h1, . . . , h`) and master-key ← gα
2 .

KeyGen(dID|k−1, ID): Parse ID as (I1, . . . , Ik) ∈ (Z∗
p)

k with depth k ≤ `. To generate dID directly

using the master secret, choose r
R← Zp and compute and output

dID ←
(
gα
2 ·

(
hI1

1 · · ·h
Ik
k · g3

)r
, gr, hr

k+1, . . . , h
r
`

)
.

To generate the private key using the key dID|k−1 for parent identity ID|k− 1 = (I1, . . . , Ik−1)

instead, parse dID|k−1 = (a0, a1, bk, . . . , b`); choose t
R← Zp and set

dID ←
(
a0 · bIk

k ·
(
hI1

1 · · ·h
Ik
k · g3

)t
, a1 · gt, bk+1 · ht

k+1, . . . , b` · ht
`

)
.

2

Encrypt(params, ID,M): To encrypt M ∈ G1 to identity ID = (I1, . . . , Ik) ∈ (Z∗
p)

k, choose s
R← Zp

and compute and output

CT←
(
e(g1, g2)s ·M, gs,

(
hI1

1 · · ·h
Ik
k · g3

)s
)

.

Decrypt(dID,CT): To decrypt the ciphertext CT = (A,B, C) using the private key dID = (a0, a1,
bk+1, . . . , b`) for the identity ID = (I1, . . . , Ik), compute and output

M ← A · e(a1, C)
/

e(B, a0) .

4 Limited Delegation

Consider a BBG private key for a level k identity, of the form (a0, a1, bk+1, . . . , b`). We make some
observations:

• The decryption algorithm makes use only of the first two components a0 and a1.

• In generating the private key for a level-(k+1) child identity, the key generation algorithm re-
quires only bk+1 in addition to a0 and a1; the remaining values (bk+1, . . . , b`) are rerandomized
and passed down to the child key.

An entity that is given only the restricted private key (a0, a1), then, can run Decrypt but not
KeyGen; and, more generally, an entity that is given the restricted private key (a0, a1, bk+1, . . . , bd)
for some k < d < ` can run KeyGen to produce private keys for its descendants, but only up to
depth d. This is what Boneh, Boyen, and Goh call limited delegation.

It does not necessarily follow, however, that because it is not possible to use KeyGen to derive
private keys beyond some depth it is impossible to derive these keys by some other means. And
even if it is impossible to derive these keys, it might still be possible to derive enough information
about them to distinguish ciphertexts encrypted to their corresponding identities. To show that
the BBG scheme has limited delegation, we need to give a proof that rules out attacks of this sort.

To begin with, of course, we must give a precise definition for what limited delegation is. We
now give two such definitions, one for the adaptive-ID setting, a second for selective-ID setting.
(We give a separate selective-ID definition because, as we will see, the selective-ID setting allows a
substantial simplification in the definition.)

Before, we note that the depth-restriction feature of BBG is actually a fifth algorithm, behaving
as follows:

Restrict(dID, d): Here dID is a (possibly restricted) private key for a depth-k identity, and d ≥ k
is the depth to which it should be restricted. Parse dID = (a0, a1, bk+1, . . . , bd′), where d′ is
the depth to which dID is presently restricted. For unrestricted keys, d′ = `. If d is greater
than d′, return an error condition, since a key cannot be unrestricted. If k equals d, remove
all b-elements, returning the newly restricted private key (a0, a1). Otherwise, remove the
elements bd+1, . . . , bd′ , returning the newly restricted private key (a0, a1, bk+1, . . . bd).

3

4.1 The Restricted-Delegation Game for Full HIBE

In the standard IND-ID-CPA game, the adversary is allowed to make private key extraction queries
for arbitrary IDs. To model restricted keys, we must also allow the adversary to make restricted-key
queries, in which he specifies the depth d up to which he can derive descendant keys. Having made
a private key query for ID means that distinguishing ciphertexts encrypted to any ID∗ that is a
descendant of ID is trivial; but if the query at ID was restricted to depth d, distinguishing is only
trivial if the depth of ID∗ is at most d. All this discussion motivates the following definition for the
restricted-delegation (IND-ID-RD-CPA) game played between an adversary A and a challenger, and
stated for an `-level HIBE.

Setup: The challenger runs the Setup algorithm and gives A the public parameters params,
keeping master-key private.

Phase 1: Algorithm A adaptively issues queries of its choice, of the following types:
• Private key query for ID. The queried identity must have depth k with 1 ≤ k ≤ `.

The challenger runs KeyGen(ID) using master-key and returns the resulting key dID

to A.
• Restricted private key query for ID, with restriction depth d. The queried identity

must have depth k with 1 ≤ k ≤ `. The depth restriction d must satisfy k ≤ d ≤ `.
The challenger runs KeyGen(ID) using master-key to obtain the private key dID,
which it then restricts to depth d by running Restrict(dID, d); the result of this is
returned to A.

Challenge: Algorithm A chooses a challenge identity ID∗ and two equal-length messages
M0 and M1. Let the depth of ID∗ be d∗. We require that A must not have made in
Phase 1 a private key query at any ancestor of ID∗, or a restricted private key query
for any pair (ID, d) where ID is an ancestor of ID∗ and d ≥ d∗. The challenger chooses
b

R← {0, 1}, computes CT∗ ← Encrypt(params, ID∗,Mb), and sends CT∗ to A.
Phase 2: Algorithm A issues additional queries as in Phase 1, with the following limitations:

• for a private key query, the queried identity ID must not be an ancestor of ID∗; and
• for a restricted private key query for a pair (ID, d), if ID is an ancestor of ID∗ then

d must be less than d∗.
The queries are handled by the challenger as in Phase 1.

Guess: Finally, A outputs its guess b′ for b.

We define the advantage of the adversary in attacking a scheme E in the standard way:

AdvE,A =
∣∣Pr[b = b′]− 1/2

∣∣ ,

with the probability taken over the coins of the adversary and challenger.
We make two observations about the definition above:

• When the hierarchy is limited to some depth ` (as it is for BBG) a key with delegation
restricted to depth ` is the same as an unrestricted key, so the private key queries in game
above are, strictly speaking, extraneous.

• When the adversary makes no restricted private key queries the IND-ID-RD-CPA game is
identical to the IND-ID-CPA game. Thus a scheme that is secure with restricted delegation is
also secure in the standard sense.

4

4.2 The Restricted-Delegation Game for Selective-ID HIBE

It is possible to turn the definition above into a selective-ID definition simply by having the adver-
sary declare ID∗ at the beginning of the game, before it sees the public parameters. Having made
this transformation, however, we will find that the game can be substantially simplified.

Suppose ID∗ has depth d∗ ≤ `. Now for any identity ID the following holds true:

• If ID is not an ancestor of ID∗, then a private key query at ID does not fall under the triviality
restriction. Thus there is no sense in handling restricted private key queries for ID. If A is
interested in a version of dID with restricted delegation, it can generate this on its own using
Restrict.

• If ID is an ancestor of ID∗, then a (full) private key query at ID would violate the triviality
restriction. Moreover, a restricted private key query at (ID, d) would not violate the restriction
exactly when d < d∗. But now there is no sense in handling queries for depth other than
d∗−1; if the adversry wishes to restrict delegation further, it can again perform the restriction
on its own using Restrict.

These observations, applied to the original game, yield the following simpler selective-ID restricted-
delegation (IND-sID-RD-CPA) game, again played between an adversary A and a challenger and
stated for an `-level HIBE.

ID Selection: Adversary A chooses an identity ID∗ to attack, and sends it to the challenger.
Let the depth of ID∗ be d∗, with 1 ≤ d∗ ≤ k.

Setup: The challenger runs the Setup algorithm and gives A the public parameters params,
keeping master-key private.

Phase 1: Algorithm A adaptively issues queries, to which the challenger responds. In each
query, A provides an identity ID for which it would like to receive a private key. The
challenger runs KeyGen(ID) using master-key and returns the resulting key dID to A. If
ID is not an ancestor of ID∗, the challenger provides dID to A unchanged. Otherwise, the
challenger restricts dID to depth d∗ − 1 by running Restrict(dID, d∗ − 1) and provides
the result of the restriction to A. Algorithm A may not make a query at ID∗.

Challenge: Algorithm A sends to the challenger two equal-length messages M0 and M1. The
challenger chooses b

R← {0, 1}, computes CT∗ ← Encrypt(params, ID∗,Mb), and sends
CT∗ to A.

Phase 2: Algorithm A issues additional queries and the challenger responds as in Phase 1.

Guess: Finally, A outputs its guess b′ for b.

The adversary’s advantage is defined as above. Once again, note that when A never makes a query
for ID that is an ancestor of ID∗ the game is the same as the standard IND-sID-CPA game.

5 Restricted Delegation in BBG

We now show that the BBG scheme has restricted delegation in the selective-ID setting, assuming
BDHE is hard. For the queries allowed by the IND-sID-CPA game, we follow exactly the proof given

5

in [2]. Our addition to the proof handles queries for ID that is an ancestor of ID∗; we will note this
addition as well.

One potential source of confusion: as typically stated, the `-BDHI assumption includes the
exponents gαi

up to i = `, whereas the `-BDHE assumption includes the exponents only up to
i = ` − 1 (and then again from ` + 1 through 2`. Our reduction thus uses the (` + 1)-BDHE
assumption for an `-level HIBE, which keeps the “hole” at index ` + 1.

Theorem 5.1. If (`+1)-BDHE holds for a group G as in Section 2 then BBG is secure for ` levels
in an IND-sID-RD-CPA game on G.

Proof. Given an adversary with advantage ε in the IND-sID-RD-CPA game with `-level hierarchy,
we build an algorithm B with advantage ε in distinguishing (` + 1)-BDHE. For a generator g ∈ G
and α ∈ Z∗

p, define yi = g(αi). Algorithm B is given generators g and h along with values y1, . . . , y`,

y`+2, . . . , y2`+2 as well as T , which is either the BDHE solution e(y`+1, h) = e(g, h)(α
`+1) or random

in G∗
1. Algorithm B’s goal is to output 1 if T is the BDHE solution, 0 if T is random. It interacts

with A as follows.

Initialization. Algorithm A outputs a challenge identity ID∗, which we treat as a depth-` identity
(I∗1 , . . . , I∗`), padding with zero-entries as necessary. We also record the actual depth d∗ ≤ `
of ID∗, i.e., the index of the last nonzero entry in (I∗1 , . . . , I∗`).

Setup. Simulator B now picks a number of random exponents:

γ, γ1, . . . , γ`, δ
R← Zp ;

it uses these to generate the system parameters. First, it sets g2 ← y` · gγ = gγ+α`
. Next,

it computes the hash generators: for each i, 1 ≤ i ≤ `, it sets hi ← gγi/y`−i+1, and, finally
g3 ← gδ ·

∏`
i=1 y

I∗i
`−i+1. The parameters (g, g1, g2, g3, h1, . . . , h`) arge given to A; it is easy to

see that they are properly distributed. The master secret gα
2 = (y1)γ(y`+1) is unknown to B

because y`+1 is.

Phase 1. Suppose A issues a private key query for ID = (I1, . . . , Iu) ∈ (Z∗
p)

u with u ≤ `, and
where ID is not a prefix of ID∗. Let k ≤ u be the first index at which ID and ID∗ differ. (If
none such exists, ID is a prefix of ID∗.) Algorithm B constructs a secret key dID|k, then uses
KeyGen to derive dID, which it returns to A.

To generate dID|k, algorithm B chooses r̃
R← Zp. Define r = r̃ + αk/(Ik − I∗k); while B cannot

compute this, it can compute the private key with r as randomness, and a random choice of r̃
induces a random choice of r, so the resulting key will be properly distributed. To dispose
first of the terms (bk+1, . . . , b`), we observe that, for k + 1 ≤ i ≤ `,

bi = hr
i =

(
gγi/y`−i+1

)r = (gγi)r̃+αk/(Ik−I∗k) · (y`−i+1)r̃+αk/(Ik−I∗k)

= (g)γir̃(yk)γi/(Ik−I∗k) · (y`−i+1)r̃(y`+(k−i)+1)
1/(Ik−I∗k) ,

where in the last expression B knows each of the parenthesized terms —the term y`+(k−i)+1

because the restriction k + 1 ≤ i ≤ ` implies ` + (k− i) + 1 ∈ {k + 1, . . . , `}. Similarly, B can
compute a1, since we have

a1 = gr = (g)r̃ · (yk)1/(IK−I∗k) .

6

It thus remains only to show how B can compute a0. But now observe:

(
hI1

1 hI2
2 · · ·h

Ik
k · g3

)r =
(k∏

i=1

(gγi/y`−i+1)Ii × gδ
∏̀
i=1

y
I∗i
`−i+1

)r

=
(
gδ+

Pk
i=1 γiIi

)r(k∏
i=1

y
I∗i −Ii

`−i+1 ×
∏̀

i=k+1

y
I∗i
`−i+1

)r

=
(
gδ+

Pk
i=1 γiIi

)r(
y

I∗k−Ik

`−k+1 ·
∏̀

i=k+1

y
I∗i
`−i+1

)r

=
(
gδ+

Pk
i=1 γiIi

)r(
y

I∗k−Ik

`−k+1 ·
∏̀

i=k+1

y
I∗i
`−i+1

)r

where the terms with i < k in the product equal 1 since for such i we have I∗i −Ii = 0. Letting
t = δ +

∑k
i=1 γiIi, we continue:(

hI1
1 hI2

2 · · ·h
Ik
k · g3

)r = · · ·

= (g)tr̃(yk)t/(Ik−I∗k)(yI∗k−Ik

`−k+1)
r
(∏̀

i=k+1

y
I∗i
`−i+1

)r

= (g)tr̃(yk)t/(Ik−I∗k)(y`−k+1)(r̃)(I
∗
k−Ik)(y`+1)−1

×
∏̀

i=k+1

(y`−i+1)(r̃)(I
∗
i) ×

∏̀
i=k+1

(y`+(k−i)+1)
I∗i /(I∗k−Ik) .

All the terms of this last expression, except (y`+1)−1, can be computed by B; the terms
y`+(k−i)+1, in particular, are known to B by the range argument above. Let Z ′ be the known
quantities, so that

(
hI1

1 hI2
2 · · ·h

Ik
k · g3

)r = Z ′ · (y`+1)−1.1 But now we have

a0 = gα
2 ·

(
hI1

1 hI2
2 · · ·h

Ik
k · g3

)r = (y1)γ(y`+1) · Z ′ · (y`+1)−1 = (y1)γ · Z ′ ,

which B can compute. Thus B can answer A’s query.

In the new case we handle, ID is a prefix of ID∗ of length k such that 0 < k < d∗. We show
how B computes a private key for ID that is restricted up to depth d∗−1. As before, it chooses
r̃

R← Zp, but this time it defines r = r̃ − αd∗/I∗d∗ . We now show that B can compute (a0, a1)
along with (bk+1, . . . , bd∗−1) — that is, enough to delegate up to depth d∗−1. Specifically, for
k + 1 ≤ i ≤ d∗ − 1, we have

bi = hr
i =

(
gγi/y`−i+1

)r = (gγi)r̃−αd∗/(I∗k) · (y`−i+1)r̃+αd∗/(Ik−I∗k)

= (g)γir̃(yd∗)−γi/I∗k · (y`−i+1)r̃(y`+(d∗−i)+1)
−1/I∗k .

Here B can compute each term. In particular that y`+(d∗−i)+1 is known to B because we have
` + (d∗− i) + 1 ∈ {` + 2, . . . , 2`} when i ≤ d∗− 1. (When i = d∗, however, y`+(d∗−i)+1 is y`+1,

1We include more in Z′ than Boneh, Boyen, and Goh include in their term Z, whence the change of notation.

7

so B couldn’t compute bd∗ . This is as it should be, since otherwise B could compute the key
for ID∗.) Next, B can compute a1, since we have

a1 = gr = (g)r̃ · (yd∗)−1/I∗k .

Finally, we consider a0. For this we have

(
hI1

1 hI2
2 · · ·h

Ik
k · g3

)r =
(
gδ+

Pk
i=1 γiIi

)r(k∏
i=1

y
I∗i −Ii

`−i+1 ×
∏̀

i=k+1

y
I∗i
`−i+1

)r

= (gt)r
(∏̀

i=k+1

y
I∗i
`−i+1

)r

since Ii = I∗i for 1 ≤ i ≤ k, and where we let t = δ +
∑k

i=1 γiI
∗
i . Continuing, we have(

hI1
1 hI2

2 · · ·h
Ik
k · g3

)r = · · ·

= (g)tr̃(yd∗)−t/Id∗ ×
∏̀

i=k+1

y
(r̃)(I∗i)
`−i+1 ×

∏̀
i=k+1

y
−I∗i /I∗

d∗
`+d∗−i+1 .

Now it is clear that B can calculate all the multiplicands except the last product, since the
y-indexes are all in the range {1, . . . , `}. As for the last product, noting that k + 1 ≤ d∗ ≤ `,
we divide it into three cases: (1) k + 1 ≤ i ≤ d∗ − 1; (2) i = d∗; and (3) d∗ + 1 ≤ i ≤ `. In
the first case, we have ` + d∗ − i + 1 ∈ {` + 2, . . . , 2`}, so the y indexes are known to B and
it can compute the terms. In the third case, we have ` + d∗ − i + 1 ∈ {2, . . . , `}, and again B
can compute the terms. In the second case, however, we have y

−I∗i /I∗
d∗

`+d∗−i+1 = y−1
`+1. This term

cancels out the term y`+1 of gα
2 that B cannot compute; thus, since B can also compute the

other term, (y1)γ , of gα
2 , it can compute a0. Note that it is only in this case that we make

use of the BDHE entries yi with i ≥ ` + 2.

Challenge. When the adversary provides messages M0 and M1, algorithm B chooses b
R← {0, 1}

and computes and responds with ciphertext

CT←
(
Mb · T · e(y1, h

γ), h, hδ+
P`

i=1 γiI
∗
i
)

.

We argue that this is a valid encryption of Mb when T is the answer to the BDHE challenge,
and the valid encryption of a random message when T is random. First, note that the
randomness in the second component is properly distributed since h is unformly distributed
in the BDHE challenge and nothing outside of CT seen by A depends on h. Next, the third
component is properly formed, since

h
I∗1
1 h

I∗2
2 · · ·h

I∗k
k · g3 =

∏̀
i=1

(gγi/y`−i+1)I∗i × gδ
∏̀
i=1

y
I∗i
`−i+1 = gδ+

P`
i=1(γi)(I

∗
i) ,

and, letting h = gc for some unknown c, we have(
h

I∗1
1 h

I∗2
2 · · ·h

I∗k
k · g3

)c =
(
gδ+

P`
i=1(γi)(I

∗
i)

)c = hδ+
P`

i=1(γi)(I
∗
i) .

8

Finally, for the same c as above, the correct message blinding factor would be

e(g1, g2)c = e(y1, y` · gγ)c = e(g, g)cα`+1
e(y1, g)cγ = e(g, h)α`+1

e(y1, h)γ .

Comparing this expression to the message blinding factor actually used in computing CT
above, we see that if T equals e(g, h)α`+1

the CT is a valid encryption of Mb; but if T is
random then it is the encryption of a random message, and thus independent of b.

Phase 2. In Phase 2, algorithm B responds to A’s queries as it did in Phase 1, above.

Guess. When A halts, outputting its guess b′, algorithm B outputs 1, meaning that T is the answer
to the BDHE challenge (i.e., T = e(g, h)α`+1

) if b equals b′, and answers 0, meaning that T is
random, otherwise.

When T is the BDHE answer, algorithm A’s environment is perfectly simulated, so we have
∣∣Pr[b =

b′]−1/2
∣∣ ≥ ε. When T is random, A can do no better than guess, so we have

∣∣Pr[b = b′]−1/2
∣∣ = 0.

Thus ∣∣Pr[B = 1 | T = e(g, h)α`+1
]− Pr[B = 1 | T is random]

∣∣ ≥ |(1/2± ε)− 1/2| = ε,

which completes the proof.

Restricted Master Secret. Note that our proof handles the case where ID is a parent of ID∗

even when the depth of ID is zero, i.e., ID is the empty or root identity. In this case, what is
returned is a restricted master secret (a0, a1, b1, . . . , bd∗−1) that can be used to compute any key of
depth at most d∗ − 1. Its first two components are of the form (a0, a1) = (gα

2 gr
3, g

r).

References

[1] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In C. Cachin and J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027
of LNCS, pages 223–38. Springer-Verlag, May 2004.

[2] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ci-
phertext. In R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages 440–
56. Springer-Verlag, May 2005. Full version: http://ai.stanford.edu/∼xb/eurocrypt05a/.

[3] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In V. Shoup, editor, Proceedings of Crypto 2005, volume 3621 of
LNCS, pages 258–275. Springer-Verlag, Aug. 2005.

[4] S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances in Elliptic
Curve Cryptography, volume 317 of London Mathematical Society Lecture Notes, chapter IX,
pages 183–213. Cambridge University Press, 2005.

[5] K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors,
Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lecture
Notes, chapter X, pages 215–51. Cambridge University Press, 2005.

9

http://ai.stanford.edu/~xb/eurocrypt05a/

	Introduction
	Mathematical Background
	The BBG System
	Limited Delegation
	The Restricted-Delegation Game for Full HIBE
	The Restricted-Delegation Game for Selective-ID HIBE

	Restricted Delegation in BBG
	Bibliography

