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Abstract. In this paper, we show that the claims in the original Kipnis-
Shamir’s attack on the HFE cryptosystems and the improved attack by
Courtois that the complexity of the attacks is polynomial in terms of the
number of variables are invalid. We present computer experiments and
a theoretical argument using basic algebraic geometry to explain why
it is so. Furthermore we show that even with the help of the powerful
new Grobner basis algorithm like Fj, the Kipnis-Shamir’s attack still
should be exponential not polynomial. This again is supported by our
theoretical argument.
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1 Introduction

The family of multivariate public key cryptosystems [17, 5] is considered as one
of the main candidates that have the potential to resist the future quantum
computer attacks. One of the major research topics in this area is the HFE fam-
ily of cryptosystems. The HFE encryption systems were presented by Jacques
Patarin at Eurocrypt’96 [15], where the fundamental idea is very similar to that
of Matsumoto and Imai [14], namely one first builds some polynomial systems
on a large field and then transforms it into a polynomial system over a vector
space of a much smaller field. The first attack on HFE was presented by Kipnis
and Shamir [12], where they lifted the public key back to the large field and
attacked the system via a so-called MinRank [3] problem. This attack was fur-
ther improved by Courtois [2] using different methods to solve the associated
MinRank problem. The conclusion of these attacks is that to find the secret key
and break the HFE cryptosystem is not exponential but polynomial in terms
of the number of variables n once one fixes another key parament D of HFE
(or more precisely, log(D)). Later it was shown that if one uses new Grébner
basis methods to attack the HFE directly, it should be again not exponential
but polynomial [9,11], in particular, Faugeére has broken one of the challenges
set by Patarin. The overall conclusion seems to be that the HFE family itself is
over.

However, there are still HFE variants, which we consider viable for practi-
cal applications [16,6], which are resistant to the Grobner basis attacks. The
possibility of extension of Kipnis-Shamir’s attack seems to be quite appealing
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as in the case of the attack on HFEv in [6]. Therefore it seems to be a good
idea to do a complete study of the original Kipnis, Shamir, and Courtois work
including complete computer experiments to verify the claims and to derive a
good estimate on the complexity in terms of practical attacks. To our surprise,
our experiments show that the claims made by Kipnis, Shamir, and Courtois are
actually invalid in the sense that the timing is far beyond what is expected. This
made us to think what happened and we presented a theoretical explanation why
this happens using some basic theoretical tools in algebraic geometry. Further-
more, we apply the new Grobner basis method of Faugere by using the Magma
implementations to this problem. Though the performance is clearly much bet-
ter than the previous methods, it still confirms that the original Kipnis-Shamir’s
attack is not polynomial rather it should be exponential.

The paper is arranged as follows. First we will briefly describe the original
Kipnis-Shamir’s attack and the improvement of Courtois. Then in the next sec-
tion, we will show that through experiments, the complexity of the attacks of
Kipnis-Shamir are not as claimed. We present a theoretical argument why the
claims of Kipnis, Shamir, and Courtois are not valid. In the next section, we will
show via computer experiments using the Magma implementation of the new
Grobner basis Fy that if we use the new Grobner basis algorithm to improve
the attack, the timing should be exponential and not polynomial. Then we will
present our conclusion.

2 Kipnis-Shamir’s Attack on the HFE Scheme

2.1 The HFE Scheme

The HFE encryption scheme uses two finite fields. We denote the small field with
q elements as F, and K as its extension field of degree n over F. A recommended
choice for HFE is ¢ = 2 and n = 128. Given a basis of K over F, we can identity
K with an n-dimensional vector space over F by ¢ : K — F™ and its inverse
¢~ L. The design of HFE is based on a univariate polynomial P(z) over K of the

form
r—1r—1

P(x) =) > pya?t?, (1)
i=0 j=0

where the coefficients p;; are randomly chosen from K and r is much smaller
than n so that the degree of P(z) is less than some fixed parameter D. (Here
for simplification reason we consider only the case of P(x) being a homogeneous
polynomial.) The limitation on the degree of P(x) is required to make it possible

to invert P(z) efficiently at decryption.

Let

Glx)=¢ loTopoPop toSop(x), (2)

where T and S are two randomly chosen invertible linear transformations on
F™ and they are part of the private key of the HFE scheme together with
polynomial P(x). The public key is ¢ o G o ¢~!, which are n homogeneous
quadratic polynomials in n variables on F.
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2.2 Kipnis-Shamir’s Attack

The attack of Kipnis and Shamir on HFE scheme in [12] is done over the big
field K. They proved that every linear transformation S and 7" on F" has the
form

n—1 n—1
S(x) =Y st T (x) =) tia?, (3)
=0 =0

where s;,t; € K. It simplifies the expression of public key polynomial G(z) to
G(z) = T(P(S(x))) using the univariate polynomial form over the big field,
which also gives the expression T~1(G(z)) = P(S(z)). They rewrote the public
key polynomial as a matrix form:

n—1ln—1
Glx) =) gija" " =z2Ca’, (4)
i=0 j=0
where G = [g;;] is a matrix over K, and z = (mqo,qu,--~,an71) is the vector

over K, and z! is its transpose, and this implies that

CEIED S B) BITESIRIAS (5)
k=0 i=0 j=0
and
P(S(z)) = aWPW'z!, (6)

where we use the same notation P to denote a matrix [p;;], W is a specified
matrix with its (¢, j)-entry W;; = sgﬂ (Here and henceforth the subscripts are
computed modulo n.)

Let G** be the matrix derived from G by raising all entries of G to ¢*-th
powerings and cyclically rotating all rows and columns of G forwards by k steps.

Then T-1(G(x)) = 2G'z!, where
n—1
G =) tG*F=wPW' (7)
k=0

It is not hard to show that both ranks of matrices P and WPW? do not
exceed r, where r < n and are roughly log(D). Kipnis and Shamir found that if
one made a correct choice for the values of tg,¢1,---,t,_1, then the rank of G
would not be more than r; otherwise for any random choice of values the expected
rank would be close to n. The difference between the correct and random choices
is clear, and below is a specific method to recovering (to,t1,- - -, t,—1). Surely here
in terms of explicit form of the matrix, we need to use the symmetric form of
the matrix and in the case of characteristic 2, the diagonal entries shall all be 0.

The matrix G can be easily obtained from the public key of the HFE scheme,
then all G** can be computed. Take tg, ¢, - -, tn_1 as n variables. The matrix G
can be represented by G** and (to,t1,- -, t,_1). Since its rank does not exceed r,
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its left kernel, defined as {z : G’ = 0}, is an (at least) n — r dimensional vector
subspace, and there are n — r independent n-dimensional vectors Z1,- -, Tp_p
such that in the kernel. Assigning random values for these vectors in their first
n—r entries and taking new variables for each of the remaining r entries, one adds
r(n —r) new variables. Each Z;G’ = 0 brings n scalar equations over K, a total
of (n — r)n equations can be obtained in n + r(n — r) variables (tg,t1, -, tn—1
and r(n — r) new variables).

These equations are quadratic and form an overdefined system of about n?
equations in about rn variables where r < n. In their attack Kipnis and Shamir
propose to solve it by relinearization technique. Surely, if they had solved this
overdefined system and derived the values of tg,t1,---,t,_1, it was easy to re-
cover T~! and T, and there is also a specific way to recover S by solving linear
overdefined equations over F. Therefore the crucial point of the attack is to re-
cover the transformations T~! and T. The later developed XL algorithm is an
improved algorithm over the relinearization method.

Later Courtois pointed out that the point of the attack of Kipnis and Shamir
can be viewed as a MinRank problem and he proposed some further improvement
on how to find 7" using some of known methods for the MinRank problem.

3 Can Kipnis-Shamir’s Attack and Courtois’ MinRank
Attack Really Work?

Now we would like to do a careful analysis in theory under what condition that
the Kipnis-Shamir’s attack will work.

3.1 Another Look at the Kipnis-Shamir’s Attack

If we look at the relinearization method, we know immediately that in order for
it to work, we must satisfy the condition that the solution is actually unique
because we expect to find the solution via solving a set of nondegenrate linear
equations.

Originally, the part T of the private key of HFE scheme is fixed and its
corresponding form, of which the coefficients are (to,t1,--,%,—1), in the big
field is unique too. Unfortunately, it is clear that we have equivalent keys.

First, it is clear that solutions to our problem is not unique, because if
(ag,a1, - -,an—1) is a solution for (tg,t1,--+,tn—1), then u(ag,as, -, an—1) is
still a solution for any constant w. This problem can be easily solved by fix-
ing one variable, say tg, to be 1. Furthermore, if r is even, we need to fix two
variables, because any symmetric matrix over characteristic 2 with 0 diagonal

entries of odd size is degenerate. This implies if r is even, if (ag, a1, -, an—1) is
a solution, then u(ag, a1, -+, an—1) +v(ai_;,ad,--,al_,) is also a solution.
Then we realize that this is not enough. If (ag,a1,--+,an—1) is a solution

of (to,t1,- -, tn—1), it is easy to see that (al_;,al,---,al_,) is also a solution,

q a q* is also a soluti i
and furthermore (a}_;,a}_; |,---,a}_;_;) is also a solution for any i from 2 to

—7
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n — 1. This is due to the fact that we only use the condition that the rank of G
can not exceed r in Kipnis-Shamir’s attack not how it looks like, and the fact
raising the ¢-th powering of the entries of a matrix and rotating its rows and
columns accordingly do not change the rank.

This can also be stated as follows.

Proposition 1. Let the notation G, T, P, S, G,7 G**, and W be as defined before;

Let (ag, a1, ,an—1) be a solution of (to,t1, - ,tn—1), and the rank of matriz
, n—1 . 1 1 1
G = Y axG** does not exceedr. Given (oy, o, -+ al,_y) = (ad_,,al_, - ad_,
k=0
S ek g '
the rank of matriz G* = Y o), G* does not exceed r as well, and G* and G

=0
are actually of the same rank.

Proof. From Section 2.2, we raise the both sides of equations (5) and (6) to ¢'-th
powering, and for each 0 <1 <n — 1, we have

n—1 n—1n—1
i iy 0
(T7H(G@)" =Y af (9i-t-r o)’ 2 (8)
k=0 =0 j=0
and l . )
(P(S(2)))" =aW POW *at, )
where P" is derived from P by P”l) = Piqil,j—l’ W is generated from W with

’ l ’ ’
that W;; = Wi, ;1 Therefore, the rank of matrix W POW' cannot exceed

r as P! contains at most r nonzero rows. Equations (5) and (6) are identical,
hence (8) and (9) are identical too. Then we have

Gl = "21 af G*+0 = ' pOW', (10)
k=0
Substitute k by k + [, we get that
n—1 n—1
A= al_ " =Y akG™. (11)
k=0 k=0
Obviously, the rank of G'! is the same as that of P() and does not exceed 7, and
(afjﬁl, afjﬁlﬂ, . ,afllflfl) is a solution. O
The above proposition states that each solution (ag, a1, -, an—1) for (to,t1,-
is accompanied by n — 1 additional solutions (a;_;, a3 ;. ¢,- - ,afjﬁlil), 1<1<

n—1. These solutions are usually different. More precisely, we have the following.

Proposition 2. Let T be a randomly chosen linear transformation over F™,

and (ag, a1, -+, an_1) be a solution corresponding to T. Set (af, o, -+, al,_|) =

l L l
(aifﬁaifﬂrl""7a(7117l71)7 0<!I<n-—1. Then

Prob(al = a¥ : j#k,0<i,j,k<n—1)<On*q™).

) tn—l)
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Proof. Since T is a randomly chosen linear transformation over F*, (ag, a1, -, an—_1)
is a random vector with entries chosen from K = GF(¢") . By the birthday para-
dox, we have

Prob(a; =a? :j#i,0<i,jl<n—1)<1—(1—ng ™" (12)
Since
1—(1—ng™)" <O(n*¢ "), (13)
we have _
Prob(al =af : j#k,0<i,jk<n-—1)
— Prob(a; = a? :j#1i,0 <i,j,l <n—1) (14)
<O(n*q™™)
O

This means even if we fix one variable like ty to be 1 or two variables if
r is even, we still expect that there should be at least n different solutions.
Therefore, we can conclude that mostly each variable of the overdefined (n—r)n
quadratic equations system in n+r(n—r) variables from Kipnis-Shamir’s attack
has at least about n different solutions. This reminds us the case of the famous
challenges of cyclic equations.

It is now clear that for this kind of equations system we can not find the
solutions by relinearization [12] technique. Then one may ask how about the XL
[13] algorithm, which is the improved relinearization algorithm. We will argue
that for this kind of equations system we can not find the solutions by XL
algorithm easily as well.

The key point is the observation that to any system of multivariate polyno-
mial equations, if one variable has d different solutions, we should not be able
to solve this system directly by the XL algorithm with the maximum degree of
this variable arisen in terms lower than d.

Proposition 3. Let Py(zo, -, 2pn-1) =0, -+, Pp_1(z0, -, Zn—1) = 0 be any
set of m multivariate polynomial equations in n variables over K; for each x;,
0 <i<mn-—1, if z; has d different solutions By, ---,B4—1 in K, we can not
determine the values of x; directly by the equations generated by relinearization
or XL algorithm with the maximum degree of this variable arisen in terms lower

than d.

Proof. We can prove it by contradiction. Suppose we get the exact d values
of z; by the equations generated by relinearization or XL algorithm with the
maximum degree of this variable arisen and noted as d', and d < d. To get the
exact values of x;, the last step of relinearization or XL algorithm is linearization
to get a univariate polynomial equation just with one variate x;. While, we all
know that the degree of univariate polynomial equation must be at most d and
lower than d. The contradiction is that we can not get d different values of x;
Bo, -+, B4—1 by solving a univariate polynomial equation with the degree lower
than d. O
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The first proposition in this section shows that each variable of the quadratic
equations system generated by Kipnis-Shamir’s attack has at least n solutions;
the second proposition in this section supposes that for each variable, we expect
to have n different solutions in general; and this proposition shows that if we
want to get the solutions of (¢o,t1,- -, t,—1) by XL algorithm, we must raise the
degree of monomials at least to n in the solving process. This is quite different
from what Kipnis and Shamir claimed which should be log(D), which has nothing
to do with n. This means the complexity of the attack should be more what was
claimed.

We will confirm this with our computer experiment. Furthermore, in our
experiment, we have given a toy example that even if we raise the degree of
monomials by relinearization or XL algorithm to n or even larger than n, we
still can not find the solutions.

3.2 What About Courtois’ MinRank Attack?

Courtois [2] tried to improve the Kipnis-Shamir’s attack for basic HFE. From
the matrix G’ above, instead of by relinearization, he proposed to solve it by
MinRank [3] attack directly. Taken (¢o,%1,---,tn—1) as variables, he suggested
that we could derive a set of equations from the fact that every (r +1) x (r +

1) submatrix of G’ has determinant 0. Therefore, there are (Tz1)2 equations
with about (ril) monomials, and it is expected that there are more than (Tj_l)

equations linearly independent so that this equation system can be solved by
Gaussian reduction.

However, (tg,t1,---,tn—1) has at least about n solutions because this Min-
Rank attack does also use the fact that the rank of G' can not exceed r as in
Kipnis-Shamir’s attack, and in the equations of MinRank attack, the degree of
monomials is not larger than r + 1. For r + 1 < n, we can not solve this system
by Gaussian reduction from Proposition 3, and we need to go up to degree n to
find the solutions.

4 Computer Experiments

We have programmed some experiments of Kipnis-Shamir’s attack and MinRank
attack on a Pentium IV 2.9GHz PC with 512M memory. Our experiments works
on the simplest case, where 7 is 2. From the theoretical argument above, we can
fix the variable t) = 1 € K to decrease the number of solutions, and also we
can fix one new variable to 1 when we simulate Kipnis-Shamir’s attack because
r = 2 is even. Surely, we also have the experiments without fixing any variable,
and they behave essentially in the same way.

4.1 Experiment on Kipnis-Shamir’s Attack

We choose ¢ = 2, n € {5,6,---,12}, r = 2, s0 F = GF(2) and K = GF(2");
choose P(x) = az® and two random invertible linear transformations 7" and S,
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where a # 0 is randomly chosen from K. Following the description in Section
2.2, we derive the quadratic equation system and then try to solve it. In [12]
Kipnis and Shamir intended to solve this system by the relinearization technique,
while we just use the XL algorithm to simulate it, with the advantage of less
monomials. For each n, select the degree of the parameter [18] needed for XL

algorithm to be D = 4 and record the result of experiment in Table 1.

Table 1. Experiment of Kipnis-Shamir’s Attack with D =4, n € {5,6,---,12}.

n=5|n=6|n=7|{n=8|n=9|n=10|n=11|n=12
equations n(n — r) 15 24 35 48 63 80 99 120
variables r(n —r) +n—2| 9 12 15 18 21 24 27 30
monomials of degree < D| 715 | 1820 | 3876 | 7315 | 12650 | 20475 | 31465 | 46376
monomials not emergence| 105 280 621 1211 | 2150 | 3555 5560 8316
number of XL monomials| 610 | 1540 | 3255 | 6104 | 13995 | 16920 | 25905 | 38060
number of XL equations | 825 | 2184 | 4760 | 9120 | 10500 | 26000 | 40194 | 59520
rank of the matrix 556 | 1408 | 2983 | 5605 | 9658 | 15586 | 23893 | 35143

As the same for each n € {5,6, 7,8}, select the parameter D = 5 and record
the experimental result in Table 2.

Table 2. Experiment of Kipnis-Shamir’s Attack with D =5, n € {5,6,7,8}.

n=5n=6n=7|n=28
equations n(n — r) 15 24 35 48

variables r(n —r) +n—2| 9 12 15 18

monomials of degree < D| 2002 | 6188 | 15504 | 33649
monomials not emergence| 182 | 588 | 1539 | 3465
number of XL monomials| 1820 | 5600 | 13965 | 30184
number of XL equations | 3300 [10920| 28560 | 63840
rank of the matrix 1738 | 5363 | 13403 | 29020

In both tables, line 4 is the number of the monomials of degree < D in
r(n — 1) + n — 2 variables. For not all these monomials would appear in the
equations in the XL computation, line 5 is the number of these not emerging in
the equations; line 6 is the difference of line 4 and line 5, and it is the number of
the monomials of those equations; line 7 is the number of equations. For the data
of line 7 is larger than that of line 6, we try to solve this system by Gaussian
reduction as linearization technique. However, it does not work even that XL
equations are much more than XL monomials. Then we get the rank of matrix
recorded in line 8, which is formed by that each equation as a row and each
monomial as a column. In both tables, each number of line 8 is smaller than
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what is needed to solve the equations, and it is unable to recover the variables
t07t17 T atn—l-

4.2 Toy Example of Whether XL Terminates

In Section 4.1, we have showed that when D = 4 or 5 and n € {5,6,---,12},
XL can not terminate because we can not solve the equations system directly by
Gaussian reduction. Therefore, here we fix n = 5 and keep all other parameters
as before, except that D € {4,5,6,7}. Well, n(n — r) = 15 equations and r(n —
r)+n—2 = 9 variables of the generated quadratic equation system are invariable
as n and r fixed. The result of experiment is recorded in Table 3.

Table 3. Experiment of Increasing D for Solving Equations by XL.

D=4|D=5|D=6|D=7
monomials of degree < D| 715 2002 | 5005 | 11440
monomials not emergence| 105 182 294 450

number of monomials 610 1820 4711 | 10990
number of equations 825 3300 | 10725 | 30030
rank of the matrix 556 1738 4595 | 10834
difference of lines 4 and 6| 54 82 116 156

From this table, we find that the difference between the number of monomials
and rank of the matrix is increasing by the growth of D. We can not solve the
original equation system when increasing the parameter D of XL algorithm by
a few degrees.

4.3 Experiment of MinRank Attack

Similarly as the previous subsection, we choose ¢ =2, n € {5,6,---,10}; choose
two kinds of public key polynomials: » = 2 and P(z) = az®, and r = 3 and
P(x) = ax® + ba® + cx®, where a,b, and ¢ are random elements chosen from K,
respectively; choose two random invertible linear transformations 7" and S.

, +1)2 equations
with (";1) +(n—-2)(n—-1)+ (n — 1) monomials in n — 2 variables. We try
to solve the equation system by Gaussian reduction, and we also find that it is
impossible to be solved out. Then we record the rank of the matrix, which is
formed as above, in Table 4.

When P(z) = az®. Here we can fix two variables. There are ("

When P(z) = az® + bx® + cx®. Here r = 3, so we can fix one variable, and we
choose n € {6,7,8,9}. As the same as before, we can not solve out this equation

system of (Til)2 equations with (%) +n(";") + n(n — 1) + (%) + n monomials

in n — 1 variables. Then we record the rank of the matrix generated from the
equation system in Table 5.
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Table 4. Simulation of MinRank Attack of » = 2 and P(z) = ax®.

n=5|n=6|n=7\n=8|n=9|n=10
monomials of degree < r + 1| 20 35 56 84 120 165
rank of the matrix 15 29 49 76 111 155
difference of above two lines 5 6 7 8 9 10

Table 5. Experiment of MinRank Attack of r = 3 and P(z) = ax® + bz® + cab.

n=6|n=7\n=8|n=9
monomials of degree <r + 1| 126 210 330 495
rank of the matrix 90 161 266 414
difference of above two lines | 36 49 64 81

We can observe from Tables 4 and 5 that the difference between the number
of monomials of degree r + 1 and the rank of the matrix is equal to or larger
than n and very regular. Therefore, we can conclude that MinRank attack is
unsuccessful to recover the secret tg,t1, -, tp_1.

4.4 Experiment of Solving Equations by F),

Currently it is commonly recognized that the new Grobner basis algorithm Fy [7]
and F5 [8] are the most powerful tools to solve polynomial equations. Because Fy
is the only one which is publicly available, which is implemented in Magma, to
further understand the quadratic equation system generated by Kipnis-Shamir’s
attack, we should use the Magma implementation of the new Grobner basis Fj
to test if finding the solutions are indeed still polynomial. Because of our degree
argument, we expect Magma to run up to degree n and therefore we expect the
complexity to grow very fast. This time, we run the experiments on a 2.6GHz
AMD 64 computer in TU Darmstadt. As the same as above, we choose ¢ = 2
and 7 = 2. We fix two variables to reduce the number of solutions and then
we use Magma to try to find the Grobner basis of this system. The experiment
result shows that the structure of this Grobner basis is of triangular type in lex
order, and we get precisely n solutions from the Grébner basis. Meanwhile, our
program also verifies that they are indeed the solutions. Therefore, it supports
our theoretical argument. Table 6 keeps the running time and required memory
of each n specifically. In Figure 1, we use logarithmic coordinate and take n
as X-coordinate and running time and required memory as Y-coordinate each.
It shows the growing tendency of them by the increasing of n clearly. Though
the timing and memory data is much smaller than what we expected, but for
computing Grobner basis when increasing the degree n, the timing should be
exponential and not polynomial. The reason that the timing and the memory
is far less than what we expect is that the degree of the final Grobner basis is
indeed n. Also we want to emphasize that our result is just the simplest and
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the easiest case of the HFE family. We did some more experiments by increasing
r to 3 and 4, the result shows that the equations are much more difficult to
solve. This means that this system of highly overdefined equations have much
more structures that we still do not understand and much more theoretical and
experimental work are still needed to understand fully the complexity behavior.

Table 6. Experiment of Solving Equations by Fy

n=10\n = 11jn = 12|n = 13|n = 14|n = 15|n = 16|n = 17|n = 18
time (seconds) 0.1 | 016 | 0.3 | 0.51 | 0.9 1.5 2.5 4 6.7
memory (megabit)| 8.2 9.1 10 11.4 | 12.6 15 17 22 | 323
n =19|n = 20\n = 21|n = 22|n = 23|n = 24|n = 25|n = 26\n = 27
time (seconds) 10.8 | 16.3 | 32.7 | 50.5 63 91.7 | 121.5| 1714 | 218
memory (megabit)| 36 48 58 85 | 75.9 | 122 | 145 |136.4| 203

1000
1000

100

Time (seconds)

Memory (Mhbiis)

Fig. 1. Running Time and Required Memory.

5 Conclusion

We study the original Kipnis-Shamir’s attack on the HFE cryptosystems. We
show in theory and experiments that the original Kipnis-Shamir’s attack on
the HFE cryptosystems and the improved attack by Courtois can not work as
efficiently as claimed. Furthermore, we showed that even by the new Grobner
basis algorithm F), the complexity of the attack should be exponential and not
polynomial, though the performance of Fy is clearly far better than the XL
algorithm and more work is still needed to understand what is really going on.
The key point of our theoretical argument is back on the fact that when solving a
polynomial equation system, the degree parameter of the XL or similar algorithm
is bounded from below by the number of solutions.
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