A kilobit special number field sieve factorization

Kazumaro Aoki', Jens Franke?, Thorsten Kleinjung?,
Arjen K. Lenstra®, and Dag Arne Osvik?

L NTT, 1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
2 University of Bonn, Department of Mathematics, Beringstrae 1, D-53115 Bonn, Germany
3 EPFL IC LACAL, INJ 330, Station 14, 1015-Lausanne, Switzerland

Abstract. We describe how we reached a new factoring milestone by completing the first
special number field sieve factorization of a number having more than 1024 bits, namely the
Mersenne number 21939 — 1. Although this factorization is orders of magnitude ‘easier’ than
a factorization of a 1024-bit RSA modulus is believed to be, the methods we used to obtain
our result shed new light on the feasibility of the latter computation.

1 Introduction

Proper RSA security evaluation is one of the key tasks of practitioning cryptologists.
This evaluation includes tracking progress in integer factorization. In this note we
present a long awaited factoring milestone. More importantly, we consider to what
extent the methods we have developed to obtain our result, and which are under
constant refinement, may be expected to enable us or others to push factoring capa-
bilities even further.

We have determined the complete factorization of the Mersenne number 21939 —1
using the special number field sieve integer factorization method (SNFS). The factor
5080711 was already known, so we obtained the new factorization of the composite
1017-bit number (2'%% —1)/5080711. The SNFS, however, cannot take advantage of
the factor 5080711. Therefore, the difficulty of our SNFS factoring effort is equivalent
to the difficulty of the effort that would be required for a 1039-bit number that is very
close to a power of two. This makes our factorization the first SNFS factorization
that reaches the 1024-bit milestone. The previous SNFS record was the complete
factorization of the 913-bit number 635 — 1 (cf. [1]).

Factoring an RSA modulus of comparable size would be several orders of magni-
tude harder. Even factoring a 768-bit RSA modulus would be substantially harder
than a 1024-bit ‘special’ one. Simply put, this is because RSA moduli require usage
of the general number field sieve algorithm (NFS), which runs much slower than the
SNFS on numbers of comparable size. Nevertheless, the aspects of our effort where
we made most progress apply equally well to NFS as they apply to SNFS. They will

therefore also have an effect on the assessment of feasibility of NFS-based factoriza-
tions such as those of RSA moduli. This need for re-assessment is the main reason
that we feel that our result should be reported in the cryptologic literature.

Descriptions of the SNFS and NF'S catering to almost all levels of understanding
are scattered all over the literature and the web (cf. [15]). There is no need to
duplicate any of these previous efforts for the purposes of the present paper. It suffices
to know that both SNFS and NFS consist of the following major steps (cf. [9]).

Polynomial selection. Decide on polynomials to sieve with. For SNFS this does
not require any computational effort, for NF'S it pays off to spend a considerable
effort to find ‘good’ polynomials. Since we factored 2% — 1 using the SNFS our
choice was easy and is reported in Section 3.

Sieving. For appropriately chosen parameters, perform the sieving step to find suf-
ficiently many relations. Though finding enough relations is the major computa-
tional task, it can be done in embarrassingly parallel fashion. All relevant data
for our effort are reported in Section 3.

Filtering. Filter the relations to produce a matrix. See Section 4 for the effort
involved in our case.

Matrix. Find linear dependencies modulo 2 among the rows of the matrix. In the-
ory, and asymptotically, this requires an effort comparable to the sieving step.
But because it does not seem to allow the same level of parallelization as the
sieving step, this easily constitutes the bottleneck of a large factorization effort,
much more so than the sieving step. So far, this step has been carried out at a
single location and requires many weeks, if not months, of dedicated computing
time on a full cluster (typically consisting of on the order of a hundred compute
nodes). Consequently, our matrix-handling capabilities were limited by accessi-
bility and availability of large single clusters. The major point where our effort
distinguishes itself from previous work is that we did the matrix step in parallel
as four independent jobs on different clusters at various locations. Further work
and fine-tuning in this area can have a major impact on what can realistically be
achieved, matrix-wise, and therefore factoring-wise. The details are reported in
Section 5.

Square root. For each dependency in turn a square root calculation in a certain
number field is performed, until the factorization is found (which happens for each
dependency with probability > 1/2, independent of the other dependencies). The
details, and the resulting factorization, are reported in Section 6.

Sections 3 through 6, with contents related to our factorization of 2!%3? —1 as indicated

above, are followed by a discussion of the wider consequences of our approach in

Section 7. Furthermore, in Section 2 we describe how the number 2'9 — 1 was
selected as the target number for our kilobit SNFS attempt.

Throughout this paper M and G denote 10° and 107, respectively, and logarithms
are natural.

2 Selecting a kilobit SNF'S target number

Once the decision had been reached to attempt a kilobit SNFS factorization by a
joint effort, it remained to find a suitable target number to factor. In this section we
describe the process that led to our choice of 219 — 1.

Regular RSA moduli were ruled out, since in general they will not have the
special form required for SNFS. Special form numbers, however, are not especially
concocted to have two factors of approximately the same size, and have factors of a
priori unknown sizes. In particular, they may have factors that could relatively easily
be found using factoring methods different from SNFS, such as Pollard’s p — 1 or p
method, or the elliptic curve method (ECM, cf. [11]). Thus, for all kilobit special form
numbers under consideration, we first spent a considerable ECM effort to increase
our confidence that the number we would eventually settle for would not turn out
to have an undesirably small factor, i.e., a factor that could have been found easier
using, for instance, ECM.

Of the candidates that we tried, a 304-digit factor of 103" — 1 turned out to have
a 50-digit prime factor (found by ECM after 2,652 curves with first phase bound
43M), for a 306-digit factor of the number known as 2,2062M a 47-digit factor was
found (by ECM, after 4,094 curves with the same bound), for a 307-digit factor of
2,2038M a 49-digit factor was found (ECM with 5,490 curves and same bound), and
1031 — 1 was similarly ruled out after ECM found a 64-digit factor (11,214 curves
with 850M as first phase bound and corresponding GMP-ECM 6.0 default second
phase bound 12,530G, cf. [2]).

The 307-digit number (2'% — 1)/5080711 withstood all our ECM efforts: 1,472
curves with first and second phase bounds 850M and 12,530G, respectively, and
256,599 curves with bounds 1,100M and 2,480G, failed to turn up a factor. This
calculation was carried out on idle PCs at NTT. It would have required more than
125 years on a single Opteron 2.2GHz with 4GB RAM. Based on the number of
curves and the bounds used, it is estimated that a 65-digit factor would be missed
with probability about 3.4%, a 70-digit one with probability 53.2%, and an 80-digit
factor with probability 98.2%. Given the ECM failure and the substantial effort spent
on it, we settled for the 307-digit factor of 2193 —1 for our kilobit SNFS factorization
attempt.

The software used for the ECM attempt was GMP-ECM 6.0 [18] and Prime95
24.14 [16] on a variety of platforms.

3 Parameter selection and sieving

In this section we present the polynomials that we used for the SNFS factorization
of 21939 — 1 and give a superficial description of the sieving step.

With 1039 = 1 + 6 - 173 it follows that the polynomials g(X) = X — 2" and
f(X) = 2X% — 1 have the root 2'™ in common modulo 2'% — 1. As customary,
everything related to g(X) is referred to as the ‘rational side’, as opposed to the
‘algebraic side’ for f(X). In the sieving step we find sufficiently many relations:
coprime integers a, b with b > 0 such that both norms bg(a/b) = a — 2'™b and
b8 f(a/b) = 2a® — b5 have only small prime factors. Here ‘sufficiently many’ depends
on the meaning of ‘small’. What we deem to be ‘small’ depends in the first place on
the memory sizes of the machines used for sieving and on the matrix size that we
should be aiming for given what matrix size we think we can handle. This means
that ‘small’ cannot be too large. In the second place, the expected time until we have
enough relations should be acceptable too, which implies that ‘small’ cannot be too
small either. The choice made always involves this trade-off and is given below. The
theoretical justification, and parameter choice, can be found in the NFS literature
(cf. [9]).

To find relations we used so-called special ¢’s on the rational side combined with
lattice sieving: primes ¢ dividing bg(a/b), such that each ¢ leads to an index ¢ sub-
lattice L, of Z?. Most of the 40M special ¢’s between 123M and 911M were used
(though the results of some small regions of ¢’s were for organizational reasons not
included in the later steps). For most special ¢’s the rectangular region of size 26 x 21
in the upper half plane of L, was sieved via lattice sieving. For the special ¢’s less
than 300M this was done with factor bases consisting of all (prime, root) pairs for
all primes up to 300M on the algebraic side and all primes < 0.9¢ on the rational
side, but up to 300M on both sides for the special ¢’s larger than 300M/. Running
our lattice siever with these parameters required approximately 1GB RAM, which
was available on most machines we were using. A small fraction of the special ¢’s
was used on machines with smaller amounts of memory with factor base bounds of
120M on both sides. Large primes (i.e., factors beyond the factor base bounds) up to
238 were accepted on both sides, without trying hard to find anything larger than 23¢
and casting aside cofactors larger than 2'%5. Also, cofactor pairs were not considered
for which the quotient of the probability of obtaining a relation and the time spent
on factoring was below a certain threshold, as described in [8].

4

After a period of about 6 months, at first using PCs and clusters at NTT and
the University of Bonn, but later joined by clusters at EPFL, we had collected
16, 570,808,010 relations. Of these relations, 84.1% were found at NTT, 8.3% at
EPFL, and 7.6% at the University of Bonn. The total CPU time would be 95 years
when scaled to a 3GHz (dual core) Pentium D, or about 100 years on a 2.2GHz
Athlon64/Opteron. This boils to 190 Pentium D core years and to about 2.5 rela-
tions per seconds per core. The relations required more than a terabyte of diskspace,
with copies held at NTT, EPFL, and the University of Bonn.

We used the sieving software from [7].

4 Filtering

Because of the special ¢’s the raw data as produced by the sieving step will contain a
considerable number of duplicates. In our case 2,748,064, 961 duplicates were iden-
tified, resulting in a uniqued set of 13,822,743, 049 relations. This took less than ten
days on two 2GHz Opterons with 4GB RAM each.

Next the singletons were removed: these are relations in which a prime or (prime,root)
pair occurs that does not occur in any other relation. This step is combined with the
search for cliques, i.e., combinations of the relations where the large primes match
up, as fully described in [3]. This took less than 4 days on single cores of 113 3GHz
Pentium D processors. Finally, the same hardware was used for 69 hours for a fi-
nal filtering step that produced a 66, 718,354 x 66, 718, 154 matrix of total weight
9,538, 688, 635.

Overall the CPU time required to produce the matrix from the raw relations was
less than 2 years on a 3GHz Pentium D. It was completed in less than a week, since
most of the uniqueing was done during the sieving.

As usual we did some ‘over-sieving’, i.e., a smaller number of relations sufficed
to produce an over-square, but harder to solve, matrix. More specifically, at 14.32G
relations (of which 12.34G were unique) we found an 82, 848, 491 x 82, 848, 291 matrix
of weight 10,003, 376,265, but this matrix was obtained using suboptimal settings
and the relations involving 38-bit primes were not used. At 15.61G relations (13.22G
unique), using better settings and all relations found, we obtained a 71,573,531 X
71,773,331 matrix of weight 9, 681, 804, 348. We do not know at which point precisely
we had enough relations to build a matrix. But from our figures it follows that, since
2% 2% /1og(2%) ~ 20.9G, finding 0.68 * 2 x 7(2%) (non-uniqued) relations sufficed to
construct a matrix. This low value 0.68 compared to previous efforts is due to the
relatively large bound 23% on the large primes.

5

5 The matrix step

In the matrix step linear dependencies modulo 2 among the rows of the 66, 718, 354 x
66, 718, 154 matrix were sought. This was done using the block Wiedemann algorithm
with block length 4 times 64. The details of this algorithm are described in Section 5.1
below. It resulted in 50 dependencies which gave, after quadratic characters tests, 47
useful solutions. We are still trying to find out why we got only 50 dependencies as
opposed to the expected 200 ones.

The major part of the calculation (the matrixxvector multiplies, cf. steps 2 and
4 in Section 5.1 below) was carried out in parallel on a cluster of 110 3GHz Pentium
D processors (with 2 cores per processor) at NTT and a cluster of 96 2.66 GHz Dual
Core2Duo processors (with 4 cores per node) at EPFL. On the latter cluster one or
two jobs were run on a varying number of the 96 processors. Scaled to the processors
involved, the entire computation would have required 59 days on the Pentium cluster,
which is 35 Pentium D core years, or 162 days on 32 nodes of the other cluster, i.e.,
56 Dual Core2Duo core years. It should be noted that each of two parallel jobs
running on the Pentium D cluster runs about 1.5 times slower than a single job,
whereas the load was about 1. This seems to indicate that the same wall-clock time
can be achieved on a cluster of 110 single core 3GHz Pentium Prescott processors
on a similar network. The relatively poor performance of the cluster at EPFL is
probably caused by the fact that the four cores per Dual Core2Duo node share a
single network connection. The cluster at NTT has torus topology and the nodes are
connected with gigabit ethernet. Transferring intermediate data between NTT and
EPFL takes about half a day over the Internet.

The computation took place over a period of 69 days, due to several periods of
inactivity caused by a variety of circumstances. In principle it could have been done
in less than 59 days: if we would have done everything at NT'T under ideal conditions
(no inactivity), it would take 59 days, but if we would have used both clusters under
ideal conditions it should take less time. The software we used for the matrix step
was written by the second and third author.

A relatively minor step of the calculation (the Berlekamp-Massey step, cf. step
3 in Section 5.1 below) took 8 hours on 64 cores at the University of Bonn. On 72
cores at EPFL it took a bit less than 7 hours.

5.1 The block Wiedemann algorithm

We give a brief description of the block Wiedemann algorithm (see [6], and for the
Berlekamp-Massey algorithm [17]). Let B be a d x d matrix over Fy. The block
Wiedemann algorithm depends on two parameters m,n € N and heuristically finds

6

n solutions of Bv = 0. For our matrix d = 66, 178, 354 and we used m = 512 =64 -8
and n = 256 = 64-4. It consists of the following five steps (suppressing some technical
details):

1. Random vectors x1,...,x,, and 21, ..., 2, are chosen and y; = Bz, forl =1,....,n
are computed. It is possible to choose z; as unit vectors to simplify the next step.

2. Fori=1,...,2 4+ 44 O(1) the scalar products al(,? = (a1, B'y;) are computed.
We used i < 393, 216. Denote the polynomial

>t

of n x m matrices over Fy by A.
3. (Berlekamp-Massey step) In this step a polynomial F' of n X n matrices is con-
structed such that
FA=G+1tFE

holds with deg(F),deg(G) < £+ 0O(1) and ¢ = £ 4+ 4 + O(1). For us the values
were approximately deg(F) = deg(G) = 260,600 and ¢ = 391,000. Writing

F= Zdeg tj this is equivalent to the orthogonality of the n vectors
Zfl(] Bdeg (1 S l S n)
to the vectors (BT)'zy, 0 <i < 4 L 1<k<m.
4. For k,l =1,...,n the vectors vy, = Zj fl(,g)Bdeg(F)_jzk are computed.

5. With high probability B - >, vz = 0 holds for [= 1,...,n. The vectors v; =
> & i for which this holds are output as solutions.

For the complexity analysis the first and the last step can be neglected. The
second and the fourth step require (1 4)d + O(1) resp. d + O(1) matrix vector
multiplications. If the vectors x; are chosen as unit vectors the scalar product calcu-
lations in the second step become trivial. In the fourth step additional computations
are required, equivalent to n2d additions in F5. These can be neglected as long as
n is much smaller than the square root of the weight of B (which we can assume).
In both steps we have to store the matrix B and two auxiliary vectors for doing the
multiplications. Additionally, in step four n vectors need to be stored.

For the Berlekamp-Massey step we used the sub- quadratic algorithm from [17]

with FFT for polynomial multiplication. Its complexity is O~~~ m+" d'+t°M) and its

space requirement is O(%")d).

For small m and n most of the time is spent in steps 2 and 4. The total number
of matrix vector multiplications, namely (2 4 %)d, will be minimal for m — oo. So,
n being chosen, m should be chosen as large as possible such that the Berlekamp-
Massey step does not dominate the run time resp. space requirements.

The computations in steps 2 and 4 can be parallelized in several ways. First, the
calculation of By, can be done simultaneously for different [. These computations
are completely independent. Notice that for current computers there is almost no
difference in doing one or, e. g., 64 such computations. So, we might set n = 64n’
and do the computations on n’ independent computers or clusters thereof. We used
n’ = 4 and ran the 4 computations on two clusters, sometimes 2 jobs in parallel per
cluster. This ability to spread the computation across different clusters is the crucial
difference between our block Wiedemann approach and many previous factoring ef-
forts that relied on the block Lanczos method [5,12]. Unlike block Wiedemann, block
Lanczos does not allow this type of independent distribution, roughly speaking be-
cause it requires the inversion of an n x n matrix modulo 2 per iteration, which would
obviously lead to considerable communication and synchronization issues when run
at different locations.

Second, the calculation of Bv for a vector v can be parallelized. As opposed to
the above, this requires a lot of communication. More precisely, for a cluster with
n1 X ng nodes in a torus topology the communication required for one multiplication
is approximately nil + n% per node. When n; and ny are chosen approximately equal,
the communication costs deteriorate as the square root /niny of the number of
participating nodes. At NTT we mostly used n; = 11 and ny = 10. At EPFL we
used 8 x 8 on 64 cores (sometimes two simultaneous jobs totalling 128 cores, i.e., 32
processors), 10 x 8 on 80 cores, and 12 x 12 on 144. Lower numbers of cores were
noticeably more efficient per core: when going from 64 to 144 cores we did not get a
speed-up of more than 100% (as one would hope for when increasing the number of
cores by more than 100%), but only a speed-up of approximately 50%.

A wider collaboration would lead to a larger n’ and thus larger n and m. Given
currently available hardware and the fact that we used a little more than 128GB of
memory to run the Berlekamp-Massey step with our parameters, it might be possible
to increase m and n by a factor 4. This would increase the run time by a factor 16.
Given our 8 hours on 64 cores, this would result in slightly more than 5 days on
existing hardware, which is feasible. Unless a much bigger cluster is used, increasing
m and n by larger amounts seems to be difficult at the moment.

Finally, we mention a promising idea that we have experimented with. If approx-
imately the same amounts of time are spent on computation and communication, it
is possible to run two different jobs simultaneously on a single cluster, in such a way

that one job is computing while the other is communicating, and vice versa. If run as
independent—but intertwined—jobs (as we did), this approach requires the matrix
to be stored twice. Combining the two chunks in a single job in such a way that
they have non-overlapping computational and communication needs would require
the matrix to be stored just once.

6 The square root step

Each independent solution has a chance of at least 50% to lead to a factorization.
The main calculation per solution involves the computation of a square root of a
huge algebraic number that factors into small prime ideals whose norms are known.
To calculate this square root we used Montgomery’s square root method [13] as
described in [14] and implemented by Friedrich Bahr as part of his diploma thesis.
The first three solutions all led to the trivial factorization, the fourth one produced
the following 80-digit prime factor

55853666619936291260749204658315944968646527018488637648010052346319853288374753

with prime 227-digit cofactor

20758181946442382764570481370359469516293970800739520988120838703792729090324679
38234314388414483488253405334476911222302815832769652537609141018910524199389933
4109711624358962065972167481161749004803659735573409253205425523689

thereby completing the factorization of 21939 — 1.

Preparing the data for 4 solutions simultaneously took 2 hours, and processing
thereafter took 1.8 hours per solution, all run times on a 2.2GHz Opteron.

Note that our attempt to select a special number with a large smallest factor
was only partially successful: with more luck we would have found the 80-digit factor
using ECM.

7 Discussion

As far as we are aware our factorization is the first kilobit factorization achieved using
the special number field sieve. It must be stressed, and was already pointed out in the
introduction, that our work does not imply that 1024-bit RSA moduli can now be
factored by a comparable effort. Quite on the contrary, according to all information
available to us, and as far as we know to anyone else in the open community, factoring
a 1024-bit RSA modulus is still beyond the capabilities of anyone with resources a
few orders of magnitude larger than ours. We estimate that the effort we spent would
suffice to factor a 700-bit RSA modulus.

Nevertheless, our work showed that one major hurdle is not as unsurmountable as
some thought it would be: unlike previous efforts we managed to distribute the major
computation of the matrix step into 4 chunks whose completion did not require any
interaction. It required a huge data exchange among our three locations. This was
enabled by the advancement of the Internet, allowing relatively efficient, economical,
and convenient communication among geographically dispersed locations at speeds
up to about 100megabits per second. It remains a subject of further research how the
adverse effects of wider parallelization can be addressed and how substantially larger
chunks could be handled per location. But, the beginning is there, and without any
doubt our work will inspire further work in this area and lead to more and better
results.

Until our work there were two major factoring milestones on our way to 1024-bit
RSA moduli. One of these milestones, a kilobit SNF'S factorization, is now behind us.
The next one, and the only remaining major milestone before we would face 1024-bit
RSA moduli, is the factorization of a 768-bit RSA modulus. We have no doubt that
768-bit RSA moduli are firmly within our reach, both as far as sieving effort and size
of the matrix problem are concerned. If it would indeed be reached, as is now safe
to predict, factoring a 1024-bit RSA modulus would begin to dawn on the horizon
of what is practically possible for the open community.

It is unclear how long it will take to get there. But given the progress we keep
making, and given that we consistently keep reaching our factoring milestones, it
would be unwise to have much faith in the security of 1024-bit RSA moduli for more
than a few years to come. To illustrate, substantiate, and quantify this remark, note
that the first published factorization of a 512-bit RSA modulus is less than a decade
ago (cf. [4]) and that

T(1024) 1
<o X
T(768) 5

T(768)
T(512)’

where
T(b) = exp(1.9231n(2%)Y3(In(In(2%)))¥?)

is a rough growth rate estimate for the run time of NF'S when applied to a b-bit RSA
modulus (cf. [10]). A more precise estimate, involving the o(1) which we omitted in
T'(b), would result in a value that is even smaller than % This means that by the
time we manage to factor a 768-bit RSA modulus—something we are convinced we
are able to pull off—the relative effort of factoring a 1024-bit RSA modulus will look
at least 5 times easier than the relative effort of factoring a 768-bit RSA modulus
compared to a 512-bit one. As a final remark we note that since 1989 we have seen
no major progress in factoring algorithms that can be run on existing hardware, but

10

just a constant stream of refinements. There is every reason to expect that this type
of progress will continue.

References

1.

2.

10.
11.
12.
13.
14.
15.
16.
17.

18.

K. Aoki, Y. Kida, T. Shimoyama, H. Ueda, http://wuw.crypto-world.com/announcements/SNFS274.
txt.

K. Aoki, T. Shimoyama, R311 is factored by ECM, Proceedings of SCIS 2004, no.2E1-1, Hiroshima,
Japan, Technical Group on Information Security (IEICE) (in Japanese).

S. Cavallar, Strategies for filtering in the number field sieve, proceedings ANTS IV, Springer-Verlag,
LNCS 1838, 209-231.

. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, P. L. Montgomery, B. Murphy, H. te Riele, P. Zim-

mermann, et al., Factoring a 512-bit RSA modulus, Proceedings Eurocrypt 2000, Springer-Verlag,
LNCS 1807, 1-18.

D. Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear algebra and its
applications 192 (1993), 33-60.

D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm,
Math. of Comp. 62 (1994), 333-350.

J. Franke, T. Kleinjung, Continued fractions and lattice sieving; proceedings SHARCS 2005; http:
//www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf.

T. Kleinjung, Cofactorisation strategies for the number field sieve and an estimate for the sieving step
for factoring 1024-bit integers; proceedings SHARCS 2006; http://www.hyperelliptic.org/tanja/
SHARCS/talks06/thorsten.pdf.

A. K. Lenstra, H. W. Lenstra, The development of the number field sieve, Springer-Verlag, LNM 1554,
1993.

A. K. Lenstra, E. R. Verheul, Selecting cryptographic key sizes, J. of Cryptology 14 (2001), 255-293.

H. W. Lenstra, Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649-673.

P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF'(2), Proceedings Eu-
rocrypt’95, Springer-Verlag, LNCS 921, 106-120.

P. L. Montgomery, Square roots of products of algebraic numbers, http://ftp.cwi.nl/pub/pmontgom/
sqrt.ps.gz.

P. Nguyen, A Montgomery-like square root for the number field sieve, Proceedings ANTS III, Springer-
Verlag, LNCS 1423, 151-168.

C. Pomerance, A tale of two sieves, http://www.ams.org/notices/199612/pomerance.pdf.

Prime95, http://www.mersenne.org/freesoft.htm.

E. Thomé, Subquadratic computation of vector generating polynomials and improvement of the block
Wiedemann algorithm, Journal of symbolic computation 33 (2002), 757-775.

P. Zimmermann, http://gforge.inria.fr/projects/ecm/.

11

