
Bilateral Unknown Key-Share Attacks in Key

Agreement Protocols

Liqun Chen
Hewlett-Packard Laboratories

Filton Road, Bristol BS34 8QZ, UK
liqun.chen@hp.com

Qiang Tang∗

Département d’Informatique, École Normale Supérieure
45 Rue d’Ulm, 75230 Paris Cedex 05, France

qiang.tang@rhul.ac.uk

June 1, 2007

Abstract

Unknown Key-Share (UKS) resilience is a basic security attribute
in authenticated key agreement protocols, whereby two entities A and
B should not be able to be coerced into sharing a key between them
when in fact either A or B thinks that s/he is sharing the key with
another entity C. In this paper we revisit some definitions of this
attribute, the existing UKS attacks and the method of proving this
attribute in the Bellare-Rogaway (BR) model in the literature.

We propose a new UKS attack, which coerces two entities A and
B into sharing a key with each other but in fact A thinks that she is
sharing the key with another entity C and B thinks that he is sharing
the key with another entity D, where C and D might or might not be
the same entity. We call this attack a Bilateral Unknown Key-Share
(BUKS) attack and refer to the existing UKS attacks, which are against
one entity only, as a Unilateral UKS (UUKS) attack. We demonstrate
that a few well-known authenticated key agreement protocols, some
of which have been proved holding the UUKS resilience property, are
vulnerable to the BUKS attack. We then explore a gap between the
traditional BR-type proof of UUKS resilience and a BUKS adversary’s

∗The work was partially done when the author was a full-time Ph.D student at Royal
Holloway, University of London.

1

behavior, and extend the BR model to cover the BUKS resilience at-
tribute. Finally we provide a simple countermeasure to prevent a key
agreement protocol from BUKS attacks.

Keywords: authenticated key agreement, unknown key-share re-
silience, bilateral unknown key-share resilience, the Bellare-Rogaway
model

1 Introduction

Generally speaking, in a key agreement protocol where two entities A and B
establish a key between them, the key authentication property means at least
one of the following four assurances is true: 1. Implicit key authentication
from A to B (or B to A) is the assurance for entity B (or A) that A (or
B) is the only other entity that can possibly be in possession of the key. 2.
Explicit key authentication from A to B (or B to A) is the assurance for
entity B (or A) that A (or B) is the only other entity that is in possession of
the key. 3. Implicit mutual key authentication is the assurance for the two
entities that only the other entity can possibly be in possession of the key.
4. Explicit mutual key authentication is the assurance for the two entities
that only the other entity is in possession of the key.

The concept of Unknown Key-Share (UKS) attacks originated from the
discussion about the key authentication property in authenticated key agree-
ment protocols by Diffie, Oorschot and Wiener in 1992 [15]. They proposed
the first UKS attack, where a dishonest entity C tempts two honest entities
A and B to establish a key shared between them. At the end of the attack,
A believes she shares the key with B, but B mistakenly believes the key is
shared with C.

Let us recall the interesting hypothetical scenario described in [15], where
the UKS attack can have damaging consequences. Assume that B were a
bank and A and C were two account holders. A might make a deposit by
running the key agreement protocol with B. Because B has been misled
by C in the protocol, C could get credit for the deposit made by A; so
eventually C might benefit and both A and B may be hurt. This scenario
shows a fact that since B ends up the protocol by sharing a key with A
but accepting C’s identity, the protocol fails to provide (either implicit or
explicit) key authentication from either A or C to B.

In the literature, a number of existing key agreement protocols have
been shown vulnerable to UKS attacks, including MTI/A0 [22] attacked by
Menezes et al. [23], the STS-MAC variant of the Station-to-Station (STS)
protocol [15] attacked by Blake-Wilson and Menezes [7], the revised STS-

2

MAC protocol [7] and the KAP-HY98 protocol [17] attcked by Baek et
al. [2, 19], the MQV protocol [21, 23] attacked by Kaliski [1], and the Harn-
Lin’s modified MQV protocol [16] attacked by Zhou et al. [26].

In the existing UKS attacks, the entity which is misled to accept a wrong
identity of the partner entity is either the initiator or the responder but not
both of them. Based on [7], the first case is called a UKS attack against
the initiator and the second one is called a UKS attack against the respon-
der. Since these UKS attacks are against one entity only, we refer them as
Unilateral UKS (UUKS) attacks, and the corresponding attribute as UUKS
resilience.

Some researchers have worked on how to give a formal proof of the UUKS
resilience property for a number of authenticated key agreement protocols,
for example [12, 14]. Their works are based on the Bellare-Rogaway (BR)
model [3, 5].

Our major contributions in this paper are as follows. After revisiting
some definitions of the UUKS attack, we propose a new UKS attack, which
coerces two entities A and B into sharing a key with each other but in fact
A thinks that she is sharing the key with another entity C and B thinks
that he is sharing the key with another entity D, where C and D might or
might not be the same entity.

We call this new attack a Bilateral Unknown Key-Share (BUKS) attack
and the corresponding attribute BUKS resilience. We demonstrate that
three well-known types of authenticated key agreement protocols, namely
Shoup’s DHKE protocols in [25], the modified STS protocols proposed in [8]
and the modified Oakley protocol again in [8], are vulnerable to the BUKS
attack. Considering some of these protocols have been proved holding the
UUKS resilience property in the BR model, we explore what is the gap
between the traditional BR-type proof of UUKS resilience and a BUKS
adversary’s behavior. Finally we extend the BR model to cover the BUKS
resilience attribute.

The remainder of this paper is organised as follows. The concept of
a BUKS attack is described in Section 2. Three examples as to how the
BUKS attack affects three sets of well-known protocols are demonstrated in
Section 3. In Section 4, we review the traditional formal proof of the UUKS
resilience attribute and other well-studied security properties in the BR
model. In Section 5 we explore the gap between the existing BR-type proof
and a BUKS adversary’s behavior, and then provide modifications to the
BR model, in order to cover the BUKS resilience attribute. In Section 6, we
suggest a simple countermeasure to protect an authenticated key agreement
protocol from the BUKS attack. We finally conclude the paper in the last

3

section .

2 The Concept of a BUKS Attack

For a two-party authenticated key agreement protocol, the following three
conditions may be expected to be held:

• Condition 1. There are two honest players, say A and B. For an honest
player, we mean that he or she knows a valid long-term authentication
key and follows the protocol specification properly.

• Condition 2. At the end of the protocol A and B share the same key.

• Condition 3. Both A and B correctly accept each other’s identity as
their key sharing partner, that implies the property of (either implicit
or explicit) mutual key authentication between A and B.

Blake-Wilson and Menezes in 1999 [7] proposed the first formal definition
of the UKS attack, which has been adopted by many researchers after that.
The definition was stated as follows.

Definition 1. An unknown key-share attack on an authenticated key agree-
ment protocol is an attack whereby an entity A ends up believing it shares
a key with another entity B and although this is in fact the case that B
mistakenly believes the key is instead shared with an entity C 6= A.

In this definition, Conditions 1 and 2 have not been clearly addressed,
but we can expect that they are held. As to Condition 3, it is restricted that
A accepts the correct identity of her key sharing partner B, but B accepts a
wrong identity of his key sharing partner. So a protocol, which suffers from
this type of UKS attacks, will not hold key authentication from A to B, but
will hold key authentication from B to A. Obviously, the attack defined in
Definition 1 is a UUKS attack. Note that for simplicity, hereinafter we do
not distinguish that the key authentication property is implicit or explicit.

To make the definition more general, in other places (e.g. [12, 14]), the
UKS attack is defined as follows.

Definition 2. An unknown key-share attack on an authenticated key agree-
ment protocol is an attack whereby an entity A is coerced into sharing a
key with an entity B when in fact A thinks that she is sharing the key with
another entity C.

4

In this definition, Condition 1 has not been clearly addressed, but again
we can expect that it is held. It is explicitly addressed that Condition 2 is
held. As to Condition 3, it is explicitly addressed that A accepts a wrong
identity of her key sharing partner. But there is no restriction whether
B accepts the correct identity of his key sharing partner A or not. So a
protocol, which suffers from this type of UKS attacks, will not hold key
authentication from B to A, but it may or may not hold key authentication
from A to B.

In both of the above definitions, one of the two honest players is definitely
a victim. The difference between these two definitions is that in Definition 1,
the other player is not a victim, but in Definition 2, the other player may or
may not be a victim. We can then think about that Definition 1 is a special
case of Definition 2. In the following discussion, we propose another special
case of Definition 2, which is opposite to Definition 1. We assume that the
other player is also a victim. We call the new case a Bilateral Unknown
Key-Share (BUKS) attack and define it as follows.

Definition 3. A bilateral unknown key-share attack on an authenticated key
agreement protocol is an attack whereby two honest entities A and B ends
up sharing a key between them but A believes it shares the key with another
entity C, and B believes it shares the key with another entity D, where C is
not equal to B and D is not equal to A.

In this definition, it is clearly addressed that both the entities A and B
are honest and victims. The entities C and D may or may not be the same
entity, and they may or may not be honest. A protocol, which suffers from
the BUKS attacks, will hold neither key authentication from B to A nor
from A to B.

Following the hypothetical scenario for the UUKS attack originally given
in [15] and specified in Section 1, we can see a similar hypothetical scenario
where a BUKS attack can have damaging consequences as follows. Suppose
that B is an honest service provider selling e-goods over the Internet, A is an
honest customer buying an e-good over the Internet, C is a dishonest entity
pretending an honest service provider and D is a dishonest entity pretending
an honest customer. Every entity has a universally verifiable certificate,
which is issued by a trusted third party and within each certificate is the
public key and the e-post address of the holder. When A searches an e-good
over the Internet, C hijacks this request and responds to A’s request. But
meanwhile, C colludes with D and forwards A’s request to B by using D’s
identity instead of A’s. After that the two protocols, respectively between
A and C and between D and B, are concurrently running. At the end of

5

these two protocols, A and B share a key, which is then used to protect the
negotiation on what e-good A wants and what the price B offers. After a
successful bargain, A pays an e-cash that is encrypted under C’s certified
public key and B sends the e-good to the certified e-post address of D.

3 Examples of BUKS Attacks

In this section, we will demonstrate BUKS attacks against three types of
protocols: (1) the four DHKE protocols (called DHKE, DHKE-1, DHKE-2
and DHKE-3) proposed by Shoup in [25], (2) the two modified STS protocols
proposed in [8] and (3) the alternative Oakley protocol in [8].

A general solution used to protect many earlier key agreement protocols
against UKS attacks was inclusion of the principal identities either in signed
messages or in encrypted messages. We will show that this general solution
may be strong enough to prevent from UUKS attacks, but certainly is not
strong enough to prevent from the BUKS attack.

3.1 Analysis of the DHKE protocols

In [25], Shoup proposed a set of four DHKE protocols (called DHKE, DHKE-
1, DHKE-2 and DHKE-3), and proved them secure, where security of DHKE
was proved in the static corruption mode and security of the other three
was proved in both the adaptive corruption mode and the strong adaptive
corruption mode. In this subsection, we will take DHKE-1 as an example
to show how it suffers from the BUKS attack. Note that the same attack
also applies to DHKE, DHKE-2 and DHLE-3 in the same way.

3.1.1 Description of the scheme

Let the users be denoted as Ui (i ≥ 1) with unique identity IDi. The system
generates the following parameters: a digital signature scheme (KeyGen,
Sign, Verify), a group G of prime order q, a generator g of G, a family of
pair-wise independent hash functions Hk indexed by a bit string k, and a
pseudorandom function BitGen. Every user Ui chooses a public/private key
pair (pki, ski) for the digital signature scheme. It is assumed that Ui’s public
key consists of the public key of the signature scheme and a description of
G and g, while the private key consists of the private key of the signature
scheme. Let Certi be the certificate that binds Ui’s public key with its
identity.

If Ui and Uj want to establish a session key, they perform as follows.

6

1. Ui randomly selects si from Zq, and sends (gsi , σi, Certi) to Uj , where

σi = Sign(gsi ||IDj ; ski).

2. Uj randomly selects sj from Zq, and sends (gsj , k, σj , Certj) to Ui,
where k is a random hash function index and

σj = Sign(gsi ||gsj ||k||IDi; skj).

3. Ui computes (k1, k2) = BitGen(Hk(gsisj)), where BitGen is a bit gener-
ation function, sends k1 to Uj and keeps k2 as an established session
key. Ui believes that Uj is the only other entity that can possibly be
in possession of k2.

4. Uj computes (k1, k2) = BitGen(Hk(gsisj)), verifies whether k1 matches
to the received k1 value, and accepts k2 as an established session key
if the verification succeeds. Uj then believes that Ui is the only other
entity that is in possession of k2.

3.1.2 Description of the attack

Suppose that if there are two sessions, one is for {U1, U2} and the other one
is for {U3, U4}. Suppose also that U2, U3 are malicious, then they can mount
a BUKS attack, which is depicted in Fig. 1.

Session 1 Session 2

U1 U2 U3 U4

1. gs1 , σ1, Cert1−−−−−−−−−→
1. gs1 , σ3, Cert3−−−−−−−−−→
2. gs4 , k, σ4, Cert4←−−−−−−−−−−−

2. gs4 , k, σ2, Cert2←−−−−−−−−−−−
3. k1−→

3. k1−→

Figure 1: The BUKS attack to DHKE-1

7

Note that U3 sends its first message in the second session after U2 receives
U1’s first message in the first session, and U2 sends its first message in the
first session after U3 receives U4’s first message in the second session, and U3

sends its second message in the second session after U2 receives U1’s second
message in the first session.

It is easy to see that, both sessions end successfully, U1 and U4 compute
the same session key k2, and U1 and U4 share the same key although they
accept the identities of U2 and U3 respectively as their key sharing partner.

3.2 Analysis of two Modified STS protocols

Bellare, Canetti, and Krawczyk [4] proposed a modular approach to con-
struct authenticated key agreement protocols. Using this approach, given a
key agreement protocol which is secure in an authenticated communication
network, that a authenticated protocol which is secure in an unauthenticated
communication network can be obtained by employing a message authenti-
cator. The protocols described in this section is generated using this modular
approach based on a typical Diffie-Hellman key agreement protocol, where
a signature-based message authenticator is employed.

There are two modified STS protocols specified in [8], Protocol 5.16
and Protocol 5.17. Both of them suffer from the BUKS attack, although
Protocol 5.17 makes use of a Message Authentication Code (MAC) algorithm
to enhance security.

3.2.1 Description of the protocol

Let the users be denoted as Ui (i ≥ 1) with unique identity IDi. The system
generates the following parameters: a digital signature scheme (KeyGen,
Sign, Verify), a group G of prime order q, a generator g of G. Every user
Ui generates a public/private key pair (pki, ski) for the digital signature
scheme. If Ui and Uj want to establish a session key, they perform as follows
by following Protocol 5.16.

1. Ui randomly selects si from Zq, and sends gsi to Uj .

2. Uj randomly selects sj from Zq, and sends (gsj , σj) to Ui, where σj is
computed as follows:

σj = Sign(gsj ||gsi ||IDi; skj).

8

3. Ui verifies σj , and sends σi to Uj , if the verification passes, otherwise
aborts the protocol execution.

σi = Sign(gsi ||gsj ||IDj ; ski).

At the end of the protocol execution, the session key is computed as
K = gsisj .

In [8], another modified STS protocol, Protocol 5.17, makes use of Mes-
sage Authentication Codes (MACs). The only difference from the above
protocol is computation of the following two values:

σj = (Sign(gsj ||gsi ; skj), MACKij (g
sj ||gsi))

and the third message is

σi = (Sign(gsi ||gsj ; ski), MACKij (g
si ||gsj)),

where Kij is derived from the value K. In the BUKS attack described in
the next subsection, we include these two protocols without distinguishing
between them.

3.2.2 Description of the attack

Suppose that if there are two sessions, one is for {U1, U2} and the other one
is for {U3, U4}. Suppose also that U2, U3 are malicious, then they can mount
a BUKS attack, which is depicted in Fig. 2.

Note that U3 sends its message in the second session after U2 receives
U1’s message in the first session, and U2 sends its message in the first session
after U3 receives U4’s message in the second session.

It is easy to see that, both sessions end successfully, U1 and U4 compute
the same session keys, and U1 and U4 share the same key although they
accept the identities of U2 and U3 respectively as their key sharing partner.

3.3 Analysis of an alternative Oakley protocol

We now take a look at another type of authenticated key agreement protocol,
which is based on encryption instead of signatures. We choose a modified
Oakley protocol, which is introduced in [8]. The original Oakley protocol
was given in Internet RFC 2412 [24].

9

Session 1 Session 2

U1 U2 U3 U4

1. gs1

−→
1. gs1

−→
2. gs4 , σ4←−−−−

2. gs4 , σ2←−−−−
3. σ1−→

3. σ3−→

Figure 2: The BUKS attack to the modified STS protocol

3.3.1 Description of the protocol

Let the users be denoted as Ui (i ≥ 1) with unique identity IDi. The system
generates the following parameters: an encryption scheme (KeyGen,Enc, Dec),
a group G of prime order q, a generator g of G. Every user Ui generates a
public/private key pair (pki, ski) for the encryption scheme. If Ui and Uj

want to establish a session key, they perform as follows.

1. Ui first takes a cookie CKi, which was pre-agreed with Uj , arranges an
indication of the set of used algorithms list and collects Uj ’s domain
identity IDj and the domain public key pkj . Ui then randomly selects
a nonce ni and si, and sends σ1 together with (CKi, ti, list, IDj) to
Uj , where ti and σ1 are computed as follows:

ti = gsi and σ1 = Enc(IDi‖IDj‖Enc(ni; pkj); pkj).

2. Upon the receipt of the first message from Ui, Uj first decrypts ni,
takes a cookie CKj , which again was pre-agreed with Ui, and ar-
ranges a responded indication of the particular algorithm set algo. Uj

then randomly selects a nonce nj and sj , and sends σ2 together with
(CKj , CKi, tj , algo) to Ui, where tj and σj are computed as follows:

tj = gsj and k = Hash(ni, nj) and

σ2 = (Enc(IDj‖IDi‖nj ; skj),MAC(IDj‖IDi‖tj‖ti‖algo; k)).

10

3. Upon the receipt of the first message from Uj , Ui first decrypts the
nonce nj , computes k and verifies MAC in σj . If the verification fails,
Ui aborts the protocol execution. Otherwise Ui sends σ3 together with
(CKi, CKj) to Uj , where σ3 is computed as follows:

σ3 = MAC(IDi‖IDj‖ti‖tj‖algo; k).

At the end of the protocol execution, the session key is computed as
K = gsisj .

3.3.2 Description of the attack

Suppose that if there are two sessions, one is for {U1, U2} and the other one
is for {U3, U4}. Suppose also that U2, U3 is malicious, then they can mount
a BUKS attack, which is depicted in Fig. 3.

Session 1 Session 2

U1 U2 U3 U4

1 CK1, t1, list, U
′
2, σ1−−−−−−−−−−−−−−→

1∗ CK3, t1, list, U
′
4, σ

∗
1−−−−−−−−−−−−−−→

2∗ CK4, CK3, t4, algo, σ2←−−−−−−−−−−−−−−−−
2 CK2, CK1, t4, algo, σ∗2←−−−−−−−−−−−−−−−−
3 CK1, CK2, σ3−−−−−−−−−−→

3∗ CK3, CK4, σ
∗
3−−−−−−−−−−→

Figure 3: The BUKS attack to the alternative Oakley protocol

Note that messages 1∗, 2∗ and 3∗ are sent after messages 1, 2 and 3
respectively, and that the values σ∗1, σ∗2 and σ∗3 are computed by changing
to the appropriate keys, identities and cookies from the values σ1, σ2 and
σ3 respectively.

It is easy to see that, both sessions end “successfully”, and U1 and U4

at the end share the same key between them, although they both accept a
wrong entity’s identifier.

11

4 The BR Model and its Existing Extensions

The pioneering work in investigating complexity-theoretic security models
for key agreement protocols originates from the work of Bellare and Rog-
away [3, 4]. The security notions in [3, 4] were originally proposed for key
distribution protocols in the symmetric-key setting (of two-party and three
party cases), but they are widely adopted for building security models for
key agreement protocols. Blake-Wilson et al. [5, 6] adapted this model into
public-key setting for two-party key agreement protocols. Bresson et al. [9]
adapted this model for authenticated group key agreement protocols.

There are a number of other adapted variants of the Bellare-Rogaway
model (e.g. those in [12, 14]), but we omit a full enumeration of them. In
the literature, these models are said to be indistinguishability-based, which
simply comes from the fact that the session key security of a protocol is
evaluated by the (computational) indistinguishability between the session
key and a random string.

The other type of complexity-theoretic model is those based on the simu-
latability techniques. In such models, the session key security of a protocol is
evaluated by the (computational) simulatability between the ideal-world and
the real-world protocol executions. The first model of this type is proposed
by Bellare, Canetti, and Krawczyk [4], and later Shoup further developed
this concept [25]. There are also a number adapted variants of these secu-
rity models (e.g. Canetti and Krawczyk in [10]), but we also omit a full
enumeration of them.

In this section we first review the BR model, and discuss how the model
was extended in a number of different ways to cover some well-known secu-
rity properties. We then argue that the model and its existing extension do
not cover the BUKS resilience property. So we need a further extension to
the model in order to cover this property.

4.1 Overview of the BR model

In the Bellare-Rogaway model, each party involved in a session is treated as
an oracle. An oracle Πs

i,j denotes the s-th instance of party Ui involved with
a partner party Uj in a session. The oracle Πs

i,j may accept at any time, and
once accepts it should hold a partner identifier pid = Uj (the identifier of
the oracle with which it assumes it is communicating), a session identifier
sid, and a session key sk.

The security of a key agreement protocol is evaluated by an attack game
played between an adversary A and a hypothetical challenger C which sim-

12

ulates the protocol executions. In each attack game, the adversary can
interact with oracles by issuing some specified queries which are answered
by the challenger.

1. Send(Πs
i,j , x). Upon receiving the message x, oracle Πs

i,j executes the
protocol and responds with an outgoing message m or a decision to
indicate accepting or rejecting the session. If the oracle Πs

i,j does not
exist, it will be created; if x = λ (a specifical symbol) the oracle is an
initiator, otherwise it is a responder. In many existing papers, it is
required that i 6= j, i.e., a party will not run a session with itself.

2. Reveal(Πs
i,j). If the oracle has not accepted, the challenger returns ⊥;

otherwise, it reveals the session key.

3. Corrupt(i). The challenger responds with Ui’s long-term private key.
Note that this is normally said to be the weak corruption model. In
the case of a strong corruption model, the challenger returns all the
ephemeral states of the unaccepted and unaborted oracles, besides the
long-term private key.

4. Test(Πs
i,j). The challenger C acts on the input of the fresh oracle Πs

i,j ,
randomly chooses b ∈ {0, 1} and responds with the session key, if b = 0,
or a random sample from the distribution of the session key otherwise.

For the security analysis, two types of oracles are defined: one is a partner
oracle and the other is a fresh oracle.

Definition 4. Given any oracle, let its session identifier be the concate-
nation of the exchanged messages in the session, then two oracles Πs

i,j and
Πt

j,i are partner oracles if they have the same session identifier1. An oracle
Πs

i,j is fresh if it satisfies the following requirements:

1. Πs
i,j has accepted;

2. Πs
i,j has not been issued any Reveal query;

3. If a partner oracle Πt
j,i exists, Πt

j,i has not been issued any Reveal query;

4. Neither Ui nor Uj has been issued any Corrupt query.

1If two oracles hold the same session identifier, they are said to have matching conver-
sions.

13

It is worth mentioning an alternative definition of partner oracles in [20],
where Πs

i,j and Πt
j,i are partner oracles to each other if the following condi-

tions hold. Let sk stand for a session key, sid stand for a session identifier, i.e.
the transcripts of the session, and pid stand for a partner’s identity. When
running the protocol, if oracles Πs

i,j holding (sk; sid; pid) and Πt
j,i holding

(sk′; sid′; pid′) have both accepted and the following conditions hold :

1. sid = sid′, sk = sk′, pid = Uj and pid′ = Ui;

2. Ui is an initiator and Uj is a responder or vice versa;

3. No oracle in the game besides Πs
i,j or Πt

j,i accepts with a session iden-
tifier equal to sid.

The attack game for modelling session key security, played between an
adversary A and a hypothetical challenger C, is defined as follows:

1. The adversary A issues any of the following types of oracle queries:
Send, Reveal, and Corrupt. At some point, the adversary chooses a
fresh oracle Πs

i,j and issues a Test(Πs
i,j) query.

2. The challenger C randomly chooses b ∈ {0, 1} and responds with the
session key, if b = 0, or a random sample from the distribution of the
session key otherwise.

3. The adversaryA can continue querying the oracles as in the first phase,
but neither Reveal query to the tested oracle Πs

i,j or its partner Πt
j,i (if

it exists) nor Corrupt query to Ui or Uj . The adversary terminates by
outputting a guess b′ for b.

In this attack game, the adversary wins if b′ = b, and its advantage is
defined to be

AdvE(k) = |Pr[b′ = b]− 1
2
|.

Definition 5. A key agreement protocol is defined to AK-secure, if it satisfies
the following requirements:

1. In the presence of a benign adversary, which faithfully conveys mes-
sages, on Πs

i,j and Πt
j,i , both oracles always accept holding the same

session key, and this key is distributed uniformly on {0,1}k;

2. AdvE(k) is negligible.

14

Note that in Definition 5, we may require that even one oracle acts
maliciously (for example, randomness is not sampled from a uniform distri-
bution), the session key of its partner oracle is still distributed uniformly on
{0,1}k.

4.2 The existing extensions of the BR model

Besides the property of unknown-key-share (UKS), the following security
properties are also commonly required by an authenticated key agreement
protocol:

• Known session key security, i.e., that the compromise of one session
key should not compromise other session keys.

• Forward secrecy, i.e., that if long-term private keys of one or more
of the entities are compromised, the secrecy of previously established
session keys should not be affected. In the literature there are three
cases for different levels of this property: (1) the property holds if an
adversary gets either one of the two player’s long-term private key; (2)
the property holds if an adversary gets both of the two player’s long-
term private keys; (3) In the identity-based key agreement protocols,
the property holds if an adversary gets the master private key of the
Key Generation Centre (KGC).

• Key-compromise impersonation resilience, i.e., that compromising an
player’s long-term private key will allow an adversary to impersonate
this player, but it should not enable the adversary to impersonate
other player to this player.

• Key control, i.e., that neither entity should be able to force the session
key to be a preselected value.

We now take a look at whether the definition of a AK-secure key agree-
ment protocol under the BR model in Section 4.1 implies the above proper-
ties naturally and what kinds of extension have been proposed in order to
cover them. But we do not take the property of key control into account,
because most of the well-known authenticated key agreement schemes in-
cluding these discussed in this paper hold this property at the same level,
as discussed in [24].

The property of known-key security is implied by the definitions. It fol-
lows by the following two properties of the model, as addressed in [12]: (i)

15

the adversary A is allowed to make Reveal queries to any oracle except for
Πs

i,j and Πt
j,i to obtain any session keys except for the key shared between

Πs
i,j and Πt

j,i , called Kij , and (ii) after knowing all the other keys, her ability
to distinguish between Kij and a random number is still negligible. There-
fore, the knowledge of any other session keys does not help A to deduce any
information about Kij .

The definitions cover UUKS resilience property. To show this we recall
a small sketch, given in [12], of a proof by contradiction as follows: Suppose
Π is a AK-secure protocol and suppose that Π is susceptible to the unknown
key-share attack. Then A has a non-negligible probability of making an
oracle Πs

i,j accept holding a key K where Ui believes that there has been a
matching conversation with Πt

j,i and K is shared with Uj , but K is in fact
shared with some other oracle Πv

x,y (usually y = i here). By the definitions
of the security model, A can make a Reveal query to Πv

x,y to obtain K
because it is neither Πs

i,j nor Πt
j,i . A can then choose oracle Πs

i,j to answer
the test query. Πs

i,j will answer the test query (because both Πs
i,j and Πt

j,i are
unopened and both Ui and Uj are uncorrupted) and A will win the game.
AdvE(k)would therefore be non-negligible, contradicting the definitions.

The definitions do not imply the key-compromise impersonation prop-
erty, because the model does not allow the adversary to corrupted either Ui

oracle or Uj . A simple extension has been used in the literature, e.g. [12, 20],
where the adversary is allowed to make a Test query to any oracle Πs

i,j where
Ui (but not Uj) has been corrupted in the first step of the attack game. How-
ever, it is assumed that, although the adversary may know the long term
key of the tested oracle, the adversary is not allowed to control over the the
ephemeral secret of this oracle (otherwise the adversary can trivially win the
game).

The definitions do not imply the forward secrecy property, again, because
the model does not allow the adversary to corrupted either Ui oracle or Uj .
A simple extension has also been used in the literature, e.g. [11, 20], where
an adversary is allowed to make a Test query to any oracle Πs

i,j where either
Ui or Uj or both Ui and Uj might be corrupted in the third step. However,
it is assumed that, although the adversary may know the long term key
of these two oracles, the adversary is not allowed to control over the the
ephemeral secret of any of two oracles if they are corrupted (otherwise the
adversary can trivially win the game).

It is not difficult to see that these existing extensions are still not able to
cover the BUKS resilience property. An obvious fact is that in the BR model
and its existing extensions, the adversary is not allowed to corrupt Uj in the
first step of the attack game, which implies that the attack game cannot

16

cover the situation where Uj acts maliciously in the protocol execution or
Uj is compromised by the adversary. However this is not the major reason
why the BUKS resilience property cannot be analyzed under the BR model
and its existing extensions.

A non-trivial point is that the BR model and its existing extensions
do not distinguish a special oracle, which is not a partner oracle of the
test oracle because it does not have a matching conversation with the test
oracle. However it does have a distinguishable attribute since it shares the
established session key with the test oracle. In the BR model and its existing
extensions, any oracle except the test oracle and its partner oracles can be
corrupted and revealed. The speciality of this oracle in the BUKS attack is
that it is not compromised by a BUKS adversary. Therefore, there is a gap
between the traditional BR-type security proof and the BUKS adversary’s
behavior. In the next session, we take this type of oracles into account when
making a further extension of the BR model. As a result, the extended BR
model implies the BUKS resilience property.

5 New BR Model Extension to Cover BUKS

In this section, we present a new extension to the BR model in order to cover
the BUKS resilience property. We then take the modified STS protocol as
an example to demonstrate that this protocol is insecure under the extended
model.

5.1 The proposed extension

We first define a new type of partner oracles, which are called semi-partner
oracles.

Definition 6. Πs
i,j and Πt

u,v are semi-partner oracles to each other if when
running the protocol, Πs

i,j holding (sk; sid; pid) and Πt
u,v holding (sk′; sid′;

pid′) have both accepted and the condition sk = sk′ holds.

Compared with the definition of partner oracles in [20], a pair of semi-
partner oracles might not hold the conditions of sid = sid′, pid = Uu and
pid′ = Ui.

We now describe an attack game for modelling the BUKS resilience prop-
erty. The game is identical to the attack game for session key security, except
that an adversary A is allowed to issue the Test query to any oracle Πs

i,j ,
which satisfies the following conditions:

17

1. Πs
i,j has accepted and has not been issued any Reveal query; Ui has not

been corrupted.

2. If a partner oracle Πt
j,i exists, then Πt

j,i has not been issued any Reveal
query; Uj might have been corrupted, but the adversary is not allowed
to control over the ephemeral secret which forms the input to Πs

i,j
2;

3. If a semi-partner orale Πw
u,v exists, Uu has not been corrupted.

Compared with the definition of a fresh oracle in Definition 4, the ora-
cle Πs

i,j above might have corrupted partner oracles and incorrupted semi-
partner oracles. Note that in this game the adversary is allowed to make a
Reveal query to a semi-partner oracle if it is not a partner oracle. So if the
test oracle has a semi-partner oracle, the adversary can easily win the game.

In a general speak, any two-party authenticated key agreement protocol
fails to hold the BUKS resilience property, under this extended BR model,
as long as there are a pair of semi-partner oracles. In the other words, in
the authenticated key agreement protocol, if no such a pair of semi-partner
oracles exist, we can argue that the protocol holds the property of BUKS
resilience.

Inherently, we have the following definition for a key agreement protocol
to be AK-secure with BUKS resilience.

Definition 7. A key agreement protocol is said to AK-secure with BUKS
resilience, if it is AK-secure and any adversary has only negligible advantage
in the above game.

5.2 Further analysis of the modified STS protocol

We now show why the modified STS protocol is insecure in this extended
BR model. We reuse the attack specified in Section 3.2.2, and show that the
adversary could win the game for modelling BUKS resilience with a non-
negligible advantage. During the attack, the adversary A asks the following
queries:

1. Send(Πs
12, λ), where A is responded with m1 = gs1 and s1 is the

ephemeral secret.

2. Send(Πu
43,m3), where m3 = m1 and A is responded with

m4 = (gs4 , σ4), σ4 = Sign(gs4 ||gs1 ||ID3; sk4),

and s2 is the ephemeral secret.
2Otherwise the adversary can trivially win the game.

18

3. Corrupt(U2), where A is responded with U2’s private signing key.

4. Send(Πs
12,m2), where

m2 = (gs4 , σ2), σ2 = Sign(gs4 ||gs1 ||ID1; sk2),

and is responded with σ1 where

σ1 = Sign(gs1 ||gs4 ||ID2; sk1),

5. Corrupt(U3), where A is responded with U3’s private signing key.

6. Send(Πu
43, σ3), where

σ3 = Sign(gs1 ||gs4 ||ID4; sk3),

7. Test(Πs
12), where A is responded with a value k′.

8. Reveal(Πu
43), where A is responded with a session key k = gs1s2 , be-

cause obviously Πu
43 is not the partner oracle but a semi-partner oracle

of the test oracle Πs
12. A terminates the game by outputting a guess

b′ = 0 if k = k′, otherwise b′ = 1.

Since the session key accepted by Πu
43 is identical to the session key

accepted by Πs
12, A wins the game with the probability 1. The game is valid

according to our extended BR model in Section 5.1, because the adversary
does not control over the ephemeral secret of U2 but only its long-term
private signing key, and the adversary does not corrupt U4.

6 A Simple Countermeasure

One possible countermeasure to prevent an authenticated key agreement
protocol from the BUKS attack is to add the identifiers of the parties and
the transcripts of the protocol as part of input to a key derivation function.

For example, in the DHKE-1 protocol of Section 3.1.1, the value Hk(gsisj)
can be replaced with

Hk(Ui||Uj ||gsi ||σi||Certi||gsj ||σj ||Certj ||gsisj).

In the modified STS protocol of Section 3.2.1, the established session key
K = gsisj can be replaced with

K = H(IDi||IDj ||gsi ||σi||pki||gsj ||σj ||pkj ||gsisj),

19

where H is a key derivation function. A similar change can be made in the
alternative Oakley protocol of Section 3.3.1.

In practice, it is very important to include the certificates (or certified
public keys) in the computation of the session key, since, due to various
reasons, it might be hard to guarantee that an identifier will never be used
by two different users.

By taking the modified STS protocol as an example again, we can show
that this simple countermeasure works. After adding the player identifiers
and the protocol transcripts into the session key derivation, the key com-
puted by Πs

12 is not equal to the key computed by Πu
43 with a reasonably

large probability. So the two oracles are no longer a pair of semi-partners.
Therefore the BUKS resilience attribute holds.

Note that adding the identifiers and transcripts into the key derivation
function is not a new solution. The same idea has been used in many papers
for different purposes; for example, it was suggested by Choo, Boyd and
Hitchcockin in [18] and by Cheng and Chen in [13] to help security proof.

7 Conclusions

In this paper, we have proposed a new UKS attack, namely the BUKS at-
tack, and demonstrated that some well-known authenticated key agreement
protocols are vulnerable to it. We have also investigated the gap between
the traditional BR-type proof of UUKS resilience and a BUKS adversary’s
behavior, and provided a modification of the proof and these protocols to
cover the BUKS resilience attribute.

References

[1] Jr. B. S. Kaliski. An unknown key-share attack on the MQV key agree-
ment protocol. ACM Transactions on Information and System Security,
4(3):275–288, 2001.

[2] J. Baek, K. Kim, and T. Matsumoto. On the significance of unknown
key-share attacks: How to cope with them? In xx, editor, Proc. of
Symposium on Cryptography and Information Security, page xx, 2000.

[3] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In D. R. Stinson, editor, Advances in Cryptology – Crypto 1993, volume
773 of Lecture Notes in Computer Science, pages 110–125. Springer-
Verlag, 1993.

20

[4] M. Bellare and P. Rogaway. Provably secure session key distribution:
the three party case. In STOC ’95: Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, pages 57–66. ACM
Press, 1995.

[5] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols
and their security analysis. In M. Darnell, editor, Proceedings of Cryp-
tography and Coding, 6th IMA International Conference, volume 1355
of Lecture Notes in Computer Science, pages 30–45. Springer, 1997.

[6] S. Blake-Wilson and A. Menezes. Entity authentication and authen-
ticated key transport protocols employing asymmetric techniques. In
B. Christianson, B. Crispo, T. Lomas, and M. Roe, editors, Proceed-
ings of Security Protocols, 5th International Workshop, volume 1361 of
Lecture Notes in Computer Science, pages 137–158. Springer, 1997.

[7] S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the
station-to-station (sts) protocol. In H. Imai and Y. Zheng, editors, Pro-
ceedings of the Second International Workshop on Practice and Theory
in Public Key Cryptography, volume 1560 of Lecture Notes in Computer
Science, pages 154–170. Springer, 1999.

[8] C. Boyd and A. Mathuria. Protocols for Authentication and Key Es-
tablishment. Springer-Verlag, 2004.

[9] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Prov-
ably authenticated group Diffie-Hellman key exchange. In Proceedings
of the 8th ACM Conference on Computer and Communications Secu-
rity, pages 255–264. ACM Press, 2001.

[10] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In B. Pfitzmann, editor, Ad-
vances in Cryptology — Eurocrypt 2001, volume 2045 of Lecture Notes
in Computer Science, pages 453–474. Springer-Verlag, 2001.

[11] L. Chen, Z. Cheng, and N. Smart. Identity-based key agreement proto-
cols from pairings. Cryptology ePrint Archive: Report 2006/199, 2006.

[12] L. Chen and C. Kudla. Identity based authenticated key agreement
protocols from pairings. In Proc. of the 16th IEEE Computer Security
Foundations Workshop — CSFW 2003, pages 219–233. IEEE Com-
puter Society Press, 2003.

21

[13] Z. Cheng and L. Chen. On security proof of Mccullagh-Barreto’s key
agreement protocol and its variants. International Journal of Security
and Networks, 2(3/4):251–259, 2007.

[14] Z. Cheng, L. Chen, R. Comley, and Q. Tang. Identity-based key agree-
ment with unilateral identity privacy using pairings. In K. Chen, R. H.
Deng, X. Lai, and J. Zhou, editors, Proceedings of the Second Inter-
national Conference on Information Security Practice and Experience,
volume 3903 of Lecture Notes in Computer Science, pages 202–213.
Springer, 2006.

[15] W. Diffie, P. Oorschot, and M. Wiener. Authentication and authenti-
cated key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.

[16] L. Harn and H. Y. Lin. Authenticated key agreement without using
oneway hash functions. Electronics Letters, 37(10):1429–1431, 2001.

[17] S. Hirose and S. Yoshida. An authenticated diffie-hellman key agree-
ment protocol secure against active attacks. In H. Imai and Y. Zheng,
editors, Proceedings of the first International Workshop on Practice and
Theory in Public Key Cryptography, volume 1431 of Lecture Notes in
Computer Science, pages 135–148. Springer, 1998.

[18] C. Boyd K. Choo and Y. Hitchcock. On session key construction in
provably-secure key establishment protocols: revisiting chen & kudla
(2003) and mccullagh & barreto (2005) id-based protocols. In Pro-
ceedings of Mycrypt 2005, volume 3715 of Lecture Notes in Computer
Science, pages 116–131. Springer-Verlag, 2005.

[19] J. Baek K. Kim. Remarks on the unknown key share attacks. IEICE
TRANSACTIONS, E83-A(12):2766–2769, 2000.

[20] C. Kudla and K. G. Paterson. Modular security proofs for key agree-
ment protocols. In B. K. Roy, editor, Advances in Cryptology — ASI-
ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science,
pages 549–565. Springer-Verlag, 2005.

[21] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient
protocol for authenticated key agreement. Des. Codes Cryptography,
28(2):119–134, 2003.

[22] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-
key-distribution systems. IEICE TRANSACTIONS, E69(2):99–106,
2000.

22

[23] A. Menezes and S. Vanstone. Some new key agreement protocols pro-
viding mutual implicit authentication. In Proceedings of the Second
Workshop on Selected Areas in Cryptography, pages 22–32, 1995.

[24] H. Orman. The oakley key determination protocol. The Internet Soci-
ety. RFC 2412, 1998.

[25] V. Shoup. On formal models for secure key exchange. Technical report,
IBM Research Report RZ 3120, 1998.

[26] H. Zhou, L. Fan, and J. Li. Remarks on unknown key-share attack
on authenticated multiple-key agreement protocol. Electronics Letters,
39(17):1248–1249, 2003.

23

