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Abstract. Kallahalla et al. presented a RSA-based Forward Key Rotation mechanism in secure 
storage scheme PLUTUS to ensure that the key used for encrypting updated files is related to the 
keys for all files in the file group. The encryption scheme based on Forward Key Rotation is such 
a scheme that only the authorized person is allowed access to the designated files and the previous 
versions. In this paper, we present a Forward Key Rotation storage scheme based on discrete 
logarithm and discuss its security. Moreover, we propose another improved Forward Key storage 
scheme from pairing on elliptic curves. Compared to the scheme presented by Kallahalla et al., our 
scheme uses relatively short keys to provide equivalent security. In addition, the re-generated keys 
can be verified to ensure that the keys are valid in the improved scheme. 
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1. Introduction 
As more information becomes available in digital format, enormous quantities of data are created. 
With the increasing requirement to both temporarily and permanently retain information, the 
secure storage technique is attracting much attention. In a data storage system, the storage medium 
for preserving the information is an important target to a malicious attacker. Once the attacker 
breaks the system, he can gain unauthorized information, disclose some valuable secrets or 
prevent the access of legitimate users. In order to avoid these risks, the researchers have proposed 
many potential systems for securing stored information, such as NASD [2][3], PASIS [4][5], CFS 
[6], SNAD [7][8] and PLUTUS [1], and so on. Moreover, all these researches come into being a 
field of computer research. Currently, the major target of a secure storage system is ensuring 
information confidentiality, integrity and availability without substantially degrading performance. 

Kallahalla et al. [1] present a secure storage scheme, PLUTUS, in 2003. The primary goal of the 
scheme is to provide file owners with direct control over authorizing access to their files as well as 
scalable key management. Key revocation is a major problem in secure storage system. Due to the 
proliferation of keys and the use of file groups, the key revocation is very complicated. Since 
several files in the file system are encrypted with the same key, key revocation will result in mass 
re-encryption. However, Kallahalla et al designed a key rotation scheme to alleviate the negative 
effects. The key rotation scheme can make the updated secret key relate to the previous versions. 
For the user of PLUTUS, when he is allowed access to a certain re-encrypted files using given 
file-group key, then he can generate previous versions from the given key. In other words, any 
valid user can re-generate the matching key for a given file if he has the latest file-group key. 
Therefore, we call the key rotate scheme designed by Kallahalla Forward Key Rotate (FKR) 
scheme. 
  The security of the FKR presented by Kallahalla et al. is based on the RSA. However, limited 
by the prime generation technique, producing a pair of suitable keys used in RSA scheme is not an 
easy thing. Moreover, until now there is no way to show the strength of the RSA is equivalent to 
that of decomposing a large number. Currently, RSA based schemes use relatively long keys 
compared to the security they provide. In this aspect, a scheme based on elliptic curves provides 
much shorter keys. As the requirement of practice, it is necessary to design other KFR storage 
scheme related to different intractable problems. 
  In this paper, we first present a FKR storage scheme based on discrete logarithm and discuss its 
security. Subsequently, we present an improved FKR storage scheme from pairings on elliptic 
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curves. Compared to the mechanism presented by Kallahalla et al., the improved scheme provides 
relatively short keys to perform the same function. Moreover, the user can verify the validity of 
the re-generated keys via bilinear pairings. 
  The paper is organized as follows. In section2, we will review Kallahalla et al.’s KFR scheme. 
Some complexity assumptions are presented in section 3. We propose our FKR storage scheme 
based on discrete logarithm in section 4. In section 5, we discuss the security of the proposed FKR 
storage scheme. Subsequently, we present an improved KFR storage scheme in section 6. Finally, 
we draw the conclusions in section 7. 
 
2. Kallahalla et al.’s Forward key rotation scheme 

Kallahalla et al. [1] proposed a Forward Key Rotation scheme used in PLUTUS system in 2003. 
In this section, we will briefly review their FKR scheme. Suppose that there exists a secure RSA 
encrypt scheme as defined in [13]. Let  be a user who will establish a FKR scheme,  be 
the public key of  and  be the matching private key. 

0U 0e

0U 0d
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The security of the scheme is based on RSA. Kallahalla et al. simplify the key management of 

PLUTUS using this FKR scheme. 
 
3. Background 
 
3.1 Complexity Assumptions 
We assume that a prime  is chosen at random such that p 1p −  has a large prime factor . Let q
g  be an element of order . Define the following problems. q
⎯ Computation Diffie-Hellman [CDH]: Given ,a bg g  for unknowns , 

compute

*, qa b Z∈
*ab
pg Z∈ . 

⎯ Decision Diffie-Hellman [DDH]: Given , ,a b cg g g  for unknowns , decide 

whether

*, , qa b c Z∈
?

ab cg g= . 

⎯ K-Exponent Assumption [k-E] [9]: Given
2

{ , , , , }
kx x xg g g g for unknown x , 

compute
1 *kx

pg Z
+

∈ . 

3.2 Bilinear Maps 
Let  be a cyclic multiplicative group generated by1G g , whose order is a prime  and  be a 
cyclic multiplicative group of the same order q . Assume that the discrete logarithm in both  
and  is intractable. A bilinear pairing is a map e :

q 2G

1G

2G 1 1G G G2× →  and satisfies the following 
properties:  

1. Bilinear: . For all( , ) ( , )a b abe g p e g p= g , 1p G∈  and , qa b Z∈ , the equation holds. 
2. Non-degenerate: There exists 1p G∈ , if ( , ) 1e g p = , then g O= . 
3. Computable: For 1,g p G∈ , there is an efficient algorithm to compute . ( , )e g p

Typically, the map  will be derived either from the modified Weil pairing [10][11] or the Tate 
pairing [12] on an elliptic curve over a finite field. Pairings and other parameters should be 
selected in proactive for efficiency and security. In group , the CDH and K-E assumptions 
defined in 3.1 are intractable. However, the DDH assumption is tractable. 

e

1G

   
3.3 General Scheme 
A FKR storage scheme consists of four algorithms. 

1. Initialize. Given the security parameter l , the algorithm outputs the system parameters. 
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2. Key Generation ( i ). Input the number , output -th secret key i i iK  used to encrypt 
-th files. i

3. Encrypt ( 1iK + , iK , iFile ). Input two secret keys ( 1iK + , iK ) and a file iFile . The algorithm 
encrypts iFile  using ( 1iK + , iK ), and outputs the corresponding ciphertext . iEF

4. Decrypt ( ,iEF 1iK + , iK ). Input the ciphertext  and the secret keys (iEF 1iK + , iK ). The 
algorithm decrypts the ciphertext using the secret key ( 1iK + , iK ) and outputs the 
corresponding plaintext iFile . 

 
3.4 Security Notions 
We define adaptively chosen ciphertext security of a FKR storage scheme. Security is defined 
using the following game between an Attacker and Challenger. 

1. Setup. The Challenger initializes the system. The Challenger gives the Attacker the 
resulting system parameters. 

2. Query phase 1. The Attacker adaptively issues encrypt queries and 
decryption queries , respectively. The Challenger simulates Encrypt and 
Decrypt respectively, and responds with matching answers. 

1 2. , , mq q q

1 2. , , nq q q

3. Challenge. Once the Attacker decides that Query phase 1 is over it outputs two 
equal length files 0 1( , )File File  to the Challenger. The Challenger picks a random 
bit {0,1}λ ∈ , and encrypts the message Fileλ . It gives ciphertext  to the Attacker. C

4. Query phase 2. The Attacker continues to adaptively issue encryption and decryption 
queries. The Challenger responds as in the phase 1. These queries may be asked 
adaptively as in Query phase 1. Note that the decrypt query jq C=  is not permitted, 
where . 0 j n≤ ≤

5. Guess. Finally, the Attacker outputs a guess  for ' {0,1}λ ∈ λ  and wins the game 
if 'λ λ= .  

The storage scheme is secure against chosen ciphertext attack, if the Attacker has a negligible 

advantage ' 1Pr( )
2

ε λ λ= = −  to win the game. 

 
4. Forward Key Rotation Storage Scheme 
In this section, we will design a FKR storage scheme related to discrete logarithm. We suppose 
that Server who has a series of files 1 2{ , , , n}File File File  will establish the FKR storage scheme 
and a user Alice asks to access it. Let  be a large prime and p g  be a cyclic multiplicative 
group generated by g , whose order is a prime  such thatq | ( 1)q p − . There exists a pair of security 
algorithms , where the algorithm  is a secure encryption algorithm based on discrete 
logarithm, and  is the matching decryption algorithm.  

( , )E D E
D

Step1. Server chooses a random number  and computes *
qr Z∈ mod

ir
iK g= p  as a secret key. 

Step2. Server generates the encrypted files
1
( || )

ii K i iEF E K File
+

= , where  denotes the 
concatenate of and b . Thereafter, Server publishes all encrypted files. 

||a b

a
When Alice asks to access to the FKR storage scheme at the point , Server sends the secret key j

1jK +  to Alice. Since Alice can obtain any encrypted files, she can compute  

1
|| ( )

jj j K jK File D EF
+

=  
and get jK  and jFile . Similarly, Alice can obtain 1jK −  and 1jFile −  via jK  and 1jEF − .  

However, by the K-E assumption defined in section 3.1, Alice can’t produce the secret key 
2jK +  using jK  and 1jK + . In other words, Alice doesn’t have ability to decrypt  even 

though she has secret key . 
1jEF +

1i jK ≤ +

   
5. Security 
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The security of the scheme is partly based on the algorithms ( , . Thereby, we assume that these 

two algorithms are secure. Given

)E D
2

{ , , , }
ir r rg g g , one can’t deduce 

1irg
+

 by the K-E assumption 
mentioned in section 3.1. It means that if Server gives an access point at , one can’t access to the 
files

j

kFile , where . k j>
  Then we will give the following theorem to show the security of the proposed storage scheme. 

Theorem. We assume that an attacker Eve who can, with success probability ε , break the 
FKR storage scheme within a timeτ  by asking Encrypt and Decrypt oracles at most Eq  
and Dq  queries respectively, then there exists a challenger Alice who running in a time 'τ  
can solve the DDH problem with success probability 'ε , where  

'ε ε= ,         ' ( 1)E D Eq q tτ τ= + + + D , 
where EDt  is the time for performing an encryption or decryption algorithm. 
  Proof. We assume that Eve is an attacker who has the ability to break the storage scheme. Then 
there exists a challenger Alice who can solve the DDH problem by running Eve as a subroutine. 
The system chooses a random bit  and a random number . The challenger Alice is 

given

{0,1}b∈ *
qr Z∈

2 1 1

{ , , , , , , }
i ir r r r rk

g g g T g g
− +

. If 1b = , the system sets , otherwise, chooses a random 
number

irT g=
*
pT Z∈ . 

The attacker Eve is allowed to issue Encrypt, Decrypt and Challenge queries. The challenger 
Alice will simulate the corresponding oracles to output the answers.  

 
Query Phase 1. The attacker Eve is allowed to issue following queries. 

  Encrypt queries. Eve chooses a random number [1, ]j k∈ , and takes any file jFile , and then 
issues query on ( , )jj File .  

⎯ If , Alice computesj i≠
1
( ||

j
)j K j jEF E K File

+
= , and outputs jEF as the answer, where 

1

1

jr
jK g

+

+ = and
jr

jK g= . 
⎯ If , Alice outputs error messages and halts. j i=

  Decrypt queries. Eve chooses a random number [1, ]j k∈ , and takes any ciphertext , and 
then issues query on . 

jEF
( , )jj EF

⎯ If , Alice computesj i≠
1

|| ( )
jj j K jK File D EF
+

= , and outputs jK  and jFile  as the 

answer, where 
1

1

jr
jK g

+

+ = and
jr

jK g= . 
⎯ If , Alice outputs error message and halts. j i=

  Since above simulation is perfect, the attacker Eve can’t distinguish the simulated result from 
the actual results. The above queries can be asked several times. When Eve decides this phase is 
over, he issues challenge query.  
 
  Challenge query. Eve outputs two equal length files 0File  and 1File to Alice. Upon receiving 
the two files, Alice chooses a random bit {0,1}λ ∈ , and computes 

1
( || )

ii KEF E T Fileλ+
=  

where 
1

1

ir
iK g

+

+ = . Thereafter, Alice sends to Eve as the answer. iEF
  Note that the Challenge query is allowed only once.  
 
  Query Phase 2. The attacker Eve continues to adaptively issue encryption and decryption 
queries. The challenger Alice will respond as in the phase 1. However, decryption query j iq EF=  
is not permitted. We assume that Eve issues at most Eq  encrypt queries and Dq  decrypt queries. 
 

Guess. After receiving the answer from Alice, Eve outputs his guess 'λ . If 'λ λ= , Alice decides 
, otherwise .  1b = 0b =

  Since Eve has ability to break the scheme with non-negligible probabilityε , i.e. outputs 'λ λ=  
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with probabilityε , then the challenger Alice can solve DDH with the same probability.  
□ 

 
6. Improved scalable FKR storage scheme 
In section 4, we have presented a FKR storage scheme based on discrete logarithm. However, in 
practice some devices only have limited capability, so we should design a scheme which can 
provide shorter keys. Thereby, an improved FKR storage scheme from pairing on elliptic curve is 
presented in this section. In this scheme the re-generated keys can be verified via bilinear pairings. 
Thus also provide a measure for a user to verify the validity of the plaintext. 

Let  and  be two groups that support a bilinear map as defined in section 3.2. There 
exists a pair of security algorithms , where the algorithm  is a secure encryption 
algorithm based on elliptic curves, and  is the matching decryption algorithm. 

1G 2G
( , )E D E

D
Step1. Server chooses a random number  and computes *

qr Z∈
ir

iK g=  as a secret key, 

where 1

irg G∈ . 
Step2. Server generates the encrypted files

1
( || )

ii K i iEF E K File
+

= . Thereafter, Server publishes 
all encrypted files. 

When Alice asks to access to the FKR storage scheme at the point , Server sends the secret key j

1jK +  to Alice. Since Alice can obtain any encrypted files, she can compute  

1
|| ( )

jj j K jK File D EF
+

=  
and get jK  and jFile . Similarly, Alice can obtain 1jK −  and 1jFile −  via jK  and 1jEF − . 
  Step3. After computing jK  and 1jK − , Alice performs the following step to verify the validity 
of the re-generated keys. 

?

1 1( , ) ( , )j j je K K e K K+ − = j . 
If above equation is true, the re-generated keys are valid. Otherwise, Alice outputs error messages.  
   
7. Conclusions 
Secure storage is a crucial problem in the Internet. Motivated by Kallahalla’s forward key rotation 
and the requirement of the short key schemes, we present two FKR storage scheme. One is based 
on discrete logarithm, and another is from bilinear pairing on elliptic curve. The latter storage 
scheme is suitable for implementation in many scenarios, especially those where the storage 
capability of the users is limited. 
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