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Abstract

In this work we present a new way to construct 3-resilient Boolean functions of 9 variables
with nonlinearity 240. Such function have been discovered very recently in [1] and [2] by heuristic
search. We find these functions by exhaustive search in the class of functions symmetric under
cyclic shifts of the first seven variables. The exhaustive search was reduced significantly by using
of special techniques and algorithms which can be helpful in other similar problems. Also we
construct some new functions that attain the upper bound on nonlinearity of higher number of
variables.
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1 Introduction

Boolean functions with high nonlinearity and correlation immunity have an important significance
in cryptography since these functions allow to construct ciphers resistant to various attacks. In this
work by means of optimized computer exhaustive search we have constructed Boolean functions
with extremal characteristics of nonlinearity and correlation immunity. More exactly, we construct
3+2i-resilient functions of 9+3i variables with nonlinearity 28+3i− 24+2i, i ≥ 0. Our construction
is different from constructions in [1] and [2] where heuristic search were used.

2 Definitions and the formulation of main result

Boolean function f is called m-resilient if for any substitution of any m constants instead of any
arguments, the fraction of vectors where the obtained subfunction takes the value 1 is equal to one-
half. The nonlinearity of a function f is the distance between this function and the class of linear
functions. As the distance between functions we take the Hamming distance: d(f, g) = |{x|f(x) 6=
g(x)}|. For m-resilient functions of n variables it was proved the upper bound on nonlinearity
2n−1 − 2m+1 [7, 8, 10]. It follows the problem of a construction of functions that attain this
upper bound. Below we denote by (n, m, nl) the class of m-resilient functions of n variables with
nonlinearity nl. In the work [3] it were found all (7, 2, 56) (totally 72), (5, 1, 12) (totally 8) functions
symmetric relatively cyclic shifts of variables (so named rotation symmetric functions). Also in [9]
it were given direct constructions of (n, m, 2n−1−2m+1) functions for n−2 ≥ m ≥ 0.6n−1. In this
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paper we succeed to construct (9, 3, 240)-functions the existence of which was the open problem.
Earlier these functions were looked in the class of rotation symmetric functions but in [4] it was
proved that this class does not contain desired functions. We will look for these functions in larger
(by cardinality) class of functions invariant under cyclic shifts of only the first 7 arguments. We
have checked also the class of functions invariant relatively cyclic shifts of the first 8 arguments but
it does not appear (9, 3, 240) functions there.

There are exist 20 classes of an equivalence for 7-dimension Boolean vectors relatively a cyclic
shift. The last 2 bits increase the total number of equivalence classes up to 20 · 4 = 80. Thus, our
space of search has the size 280. The direct exhaustive search of such big number of functions is
practically impossible in our time, therefore, we will use different methods based on some properties
of Walsh coefficients in order to reduce the search space.

3 Walsh coefficients of desired functions

A Walsh coefficient Wf (u) of a Boolean function f is called the value
∑

x∈F n
2

(−1)f(x)+<u,x>. It is easy

to express the nonlinearity of a function f via Walsh coefficients: nl(f) = 2n−1 − 1
2 max

u∈F n
2

|Wf (u)|.

The desired functions have the nonlinearity 240, so |Wf (u)| ≤ 32 for each u. On the other hand,
by Sarkar Identity ([5])

∑
u∈F n

2 ,u∈w
Wf (u) = 2n − 2|w|+1wt(fw) where wt(f) is the weight of the

function f , fw is the function obtained from f by the substitution of ones instead of all variables
at the positions of unit bits of w, u ∈ w is the majorization relation. The right side is always
divisible by 32 because of 3-resiliency of our function. Individual Walsh coefficients can be easily
expressed via sums of the left sides, therefore, they are divisible by 32 too. Thus, the Walsh
coefficients can take only values 0, 32 and −32. Moreover, if the weight of u is less or equal to
3, we can substitute constants instead of variables at the positions of unit bits of u and obtain
that Wf (u) =

∑
xi1

,xi2
,...xik

(−1)xi1
+...+xik

∑
xj1

,...xjl
(−1)f(x) = 0 where i1, . . . , ik — unit bits of u

whereas j1, . . . , jl — zero bits of u.

4 Definition and properties of matrix A

It is obvious that under the permutation of variables the Walsh coefficients are permuted by the
same way. Therefore it is possible to split them into the same 80 classes of an equivalence. We
number these classes of an equivalence as c1, . . . , c80.

Let ci and cj be two classes of an equivalence. We define the number aij =
∑

x∈ci
(−1)<u,x>

where u ∈ cj (this expression does not depend on the choice of u since under the permutation of
coordinates neither the inner product nor the set of vectors x are not changed). All such numbers
form the matrix which we denote by A. This matrix allows to calculate easily Walsh coefficients
via the values of a function. Let us represent the function f by the row v where in the position i it
is written 1 if f(x) = 0, x ∈ ci, and −1 if f(x) = 1, x ∈ ci. Let us represent the Walsh coefficients of
the function f by the column w where wi = Wf (u), u ∈ ci. Then using the definition of the matrix
A and the definition of Walsh coefficients we obtain that w = vA.

Theorem 1 Let ci and cj be the classes of an equivalence whose representatives have the 8th bit
equal to 0. Let ci′ and cj′ be the classes of an equivalence obtained from ci and cj, correspondently,
by reverting the 8th bit. Then aij = ai′j = aij′ = −ai′j′.
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Proof. The sums for the numbers aij , ai′j , aij′ , ai′j′ are distinguished only by the multiplier
(−1)u8x8 . This multiplier is different from 1 only in the case u8 = 1 and x8 = 1 which corresponds
to classes ci′ and cj′ . ut

A similar statement is true for the 9th bit. An idea to use the similar symmetry of the matrix
A was stated in the work [4] but we have used more simple way to decompose the matrix A into 2
parts above. In [4] the class ci was mapped to ci which is obtained from ci by the inversion of the
first 7 bits that gives one more way to decompose the matrix A into 2 parts. Thus, the choice of
the family of functions invariant under cyclic shifts of some first variables generates a matrix with
a rich family of symmetries that can also help in the solution of other problems.

5 The algorithms of exhaustive search

The symmetric property of the matrix A allows to reduce an exhaustive search significantly. We
split the classes of an equivalence into 2 groups. Put into G0 all classes that have elements with the
9th bit is equal to 0, and put into G1 all remained classes. We split vectors v and w that represent
our function and Walsh coefficients, correspondently, by the same way. Then the matrix A takes

the form

(
B B
B −B

)
, and we obtain w0 = v0B + v1B and w1 = v0B − v1B where B is the minor

40 × 40 of the matrix A formed by rows and columns from G0. All coordinates in w0 and w1 are
divisible by 32, therefore all coordinates in v0B and v1B are divisible by 16. In order to find all
vectors v0 for which all coordinates z0 = v0B are divisible by 16 we split G0 into 2 subgroups of
|G0|/2 = 20 elements (the way of a decomposition doesn’t matter). We split the vector v0 in the
same way. Thus, we obtain z00 = v00C0 + v01C1 where the matrices C0 and C1 of size 20× 40 are
obtained after the decomposition of the matrix B into 2 parts according to the decomposition of
G0. Now we calculate the vectors v00C0 and v01C1 for all vectors v00 and v01. We obtain two sets
of 220 vectors. For all vectors v00 and v01 we construct the vectors of residues v00C0 and −v01C1

by modulo 16. Now we sort vectors according to these vectors of residues (we compare vectors of
residues lexicographically). After this it is possible to select in each set the groups of vectors with
the same vectors of residues and to find all pairs of groups from different sets which have the same
vectors of residues in linear time. For each such pair of groups we obtain all possible desired vectors
v0 combining all vectors from a group in the first set with all vectors from a group in the second
set. Their number is appeared to be 8880903. Now for each vector v0 we construct the vector of
residues of components v0B by modulo 32 (its components will be only 0 and 16). In order to a pair
of vectors v0 and v1 gives the vector w with coordinates divisible by 32, these vectors of residues
must coincide. Therefore, we sort all vectors v0 according to their vectors of residues and find the
groups of vectors with the same vectors of residues in linear time. Then for each pair of vectors
from the same group we check the obtained vector w. If the vector w satisfies all conditions, we
have found the required function since for 3-resiliency it is sufficient that all Walsh coefficients with
the weight at most 3 are zeroes, and for the equality of the nonlinearity to 240 it is enough that all
components of the vector w are upper bounded by 32. In fact, we check even more tight conditions.
As a result, after 5 hours of calculations it were founded 423634 different 3-resilient functions with
nonlinearity 240. The groups of vectors v0 with the same vectors of residues were relatively large:
from 100 until 30000 vectors, therefore for the speeding up of calculations we applied additional
methods. At first, if in some position in the vectors v0B and v1B the values are equal by modulo
32 then either in v0B + v1B or in v0B − v1B we obtain the number with the absolute value 64
in this position. Thus, the final vector w will not satisfy to our conditions. Therefore, for each
vector v0 we constructed the mask in which for every position in the vector v0B it was written 0
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if the coordinate is less than 32 by the absolute value, and 1 otherwise. We deleted the positions
with numbers comparable with 16 by modulo 32 from the mask since in these positions the result
value 16 ± 16 of the vector’s w component is always equal to allowable value 0, 32 or −32. Thus,
the necessary condition that a pair of vectors is desired is the absence of digits with 1 in both
masks. This condition can by quickly checked by computer using the bitwise ”AND” operator.
Besides, the task of the search of disjoint masks can appear in other problems in the theory of
Boolean functions. In the next section we describe algorithms that can speed up calculations in
this case. The first of these algorithms was used in our calculations that had allowed to speed up
the calculations a little more.

6 The search of disjoint masks

Suppose that we have t-bit masks m1, . . . ,mn that have uniform distribution over the Boolean cube
Bt.

Theorem 2 Denote by k = n2
(

3
4

)t
the average number of pairs of disjoint bit masks. There exists

the algorithm of their finding using at most O(nα + k) time in average where α = log2(1 + ϕ) =
1.388..., ϕ = 1.618... is the golden section. (We assume that we can check if two given masks are
intersected using one operation.)

Proof. We will prove the bound by induction on n. Moreover, we suppose that the first masks
are choosing from some set of masks A and the second masks are choosing from some set of masks
B. Let us assume that for n ≤ N we need C(nα + k) + C1n log(n) operations in order to find all
pairs of disjoint masks for |A| ≤ n, |B| ≤ n, and ϕC(nα + k) + C1n log(n) operations in the case
|A| ≤ n, |B| ≤ 2n. Let us prove these bounds for 2N ≥ n > N .

Let |A| ≤ n, |B| ≤ n. If t = 0 then we simply output all possible pairs of masks. This requires
Ck operations. In other case we split masks in A and B into 2 classes by the first bit. We put
into A0 all masks that begin with 0, and put into A1 all masks that begin with 1. This requires
C2n operations. If the deviation |A1| − |A|/2 is greater than n0.51 then we simply check all pairs of
masks from A and B. Since the probability of this event is decreasing exponentially when n grows,
it requires o(n) operations in average, therefore we can neglect this term. In the case of a small
deviation, we start our algoritm recursively for the sets of masks A and B0, and also A0 and B1.
The total number of operations will be at most

C((n/2 + n0.51)α + k) + C1(n/2 + n0.51) log(n/2 + n0.51) + ϕC((n/2 + n0.51)α + k)+

C1(n/2 + n0.51) log(n/2 + n0.51) + C2n =

(1 + ϕ)C((n/2)α + k + o(n)) + o(n) + C1n log(n) + C2n− C1 log(2)n ≤

C
1 + ϕ

2α
(nα + k) + C1n log(n) = Cnα + k + C1n log(n).

In the second inequality we use the fact that we can choose C1 as large as possible, in particular,
greater than C2/ log(2). We have proved the first sentence of the theorem. For the second sentence
(|A| ≤ n, |B| ≤ 2n) we act by the same way. The number of operations is at most

C((n + n0.51)α + k) + C1(n/2 + n0.51) log(n/2 + n0.51) + ϕC((n/2 + n0.51)α + k)+

C1(n/2 + n0.51) log(n/2 + n0.51) + C2n =
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C(1 +
ϕ

2α
)(nα + k) + o(n) + C1n log(n) + (C2n− C1 log(2)n) ≤

C(1 +
ϕ

1 + ϕ
)(nα + k) + C1n log(n) =

Cϕ(nα + k) + C1n log(n).

ut
This algorithm was used in calculations. In reality the distribution of masks is not uniform

and the algorithm works worse. It is possible to modify the algorithm for the case of unequal
probabilities for the appearance of zero and one — we should just switch sets so that |A| < |B| (in
the recursion call the sets A and B are used non symmetrically!). However, in this case it is hard
to obtain a tight bound for the number of operations since the ratio of cardinalities of A and B
can take an infinite set of values.

It is possible to decrease the exponent α in the bound O(nα + n2βt) by increasing β. This kind
of algorithms is effective when the number of solutions is very small (that is why they were not
used in our case).

Theorem 3 For any s there exists an algorithm of the finding of all pairs of disjoint masks which
works for O(nα + n2βt/s) operations in average (in assumption that all masks are equiprobable)
where β = 1− 2 · 2−s + 3 · 2−2s, α = 1 + 1/s, |A| ≤ n, |B| ≤ n.

Proof. If t < s, we simply check all pairs of masks that demands Cn2 = O(n2βt) operations.
In the opposite case we split all masks in |A| and |B| into 3 groups: we put into A0 and B0 all
masks where the first s bits are equal to 1, we put into A1 and B1 all masks where the first s bits
are equal to 0, and we put into A2 and B2 all remained masks. Then we solve subproblems for
the pairs of sets (A0, B1), (A1, B0), (A1 ∪ A2, B1 ∪ B2). We will prove the bound on the number
of operations by induction. By the same way as in the previous theorem it is possible to neglect
the nonuniformity of the distribution of sets into parts and the linear number of operations for the
fulfillment of this decomposition. Then we can estimate the number of operations by the value

C(n/2s)α + Cn2βt/s−1/22s + C(n/2s)α + Cn2βt/s−1/22s+

+C(n(1− 1/2s))α + Cn2βt/s−1(1− 1/2s)2 =

Cnα(2(1/2s)α + (1− 1/2s)α) + Cn2βt/s(2/22s + (1− 1/2s)2)/β =

Cnα(2/2s+1 + (1− 1/2s)α) + Cn2βt/s <

Cnα(1/2s + (1− 1/2s)) + Cn2βt/s = Cnα + Cn2βt/s.

This proves the inductive step (the base is obvious since we can take as large constant C as we
want). ut

7 The analysis of constructed functions

For each of 423634 functions we have considered 4 subfunctions of 7 variables (decomposing by the
last 2 variables) and calculated the degree of their resiliency. It is appears that in 400594 functions
all subfunctions are only 1-resilient and in 23040 functions all subfunctions are 2-resilient. It is not
appeared functions in which the part of subfunctions are 1-resilient and the part of subfunctions
are 2-resilient. Moreover, it is appeared that the nonlinearity of these 2-resilient subfunctions is
equal either 48 or 56, and also the number of subfunctions with nonlinearity 56 can be equal to
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either 0 (4608 functions) or 2 (18432 functions). The example of a function without subfunctions
with nonlinearity 56:
791C92A7 1EE2C659 9867C768 A5693996 6B5499A9 349EC636 D0AB1E65 2FC1D269
1AECE525 65936A99 CB3116DA E14E3C96 9C2762D9 C3E2971C A55A6768 3C5998A7

The example of a function with two subfunctions with nonlinearity 56:
F5191A96 1A6C9CE3 38C6C9A7 96A76750 8CA76E51 C36539B8 A7D0619B 721E5C8E
635A91EC B49AC707 5C2B3E64 8DD1A279 619A9E66 9E656169 1EE5E119 C338699E

Also it were found 3840 functions which are decomposed into two 3-resilient subfunctions of 8
variables with nonlinearity 112 (we decompose by the last variable). It allows (see [6]) to construct
functions of the form (9 + 3i, 3 + 2i, 28+3i − 24+2i). The example of a function that admits such
decomposition:
96C307DA AA71B54C 664EF138 5C3989A7 E5919C3A 1C8F7266 32AD8E55 5BE0C369
619A9E66 9E656169 1EE5E119 C338699E E51B1AD4 926C9DA3 3CC269A7 96976658
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