
Unlinkable Randomizable Signature and Its
Application in Group Signature ?

Sujing Zhou1,2 and Dongdai Lin1

1 SKLOIS Lab, Institute of Software, Chinese Academy of Sciences,
Beijing, P. R. China, 100080

2 Graduate School of the Chinese Academy of Sciences,
Beijing, P. R. China, 100039

{zhousujing,ddlin}@is.iscas.ac.cn

Abstract. We formalize a generic method of constructing efficient group
signatures, specifically, we define new notions of unlinkable randomizable
signature, indirectly signable signature and Σ-protocol friendly signa-
ture.
We conclude that designing efficient secure group signatures can be
boiled down to designing ordinary signatures satisfying the above three
properties, which is supported by observations that almost all currently
known secure efficient group signatures have alternative constructions in
this line without deteriorating the efficiency.

Keywords: Digital Signature, Group Signature, Randomizable Signa-
ture, Sigma-protocol.

1 Introduction

In brief, a group signature scheme is composed of the following steps: (1) GM,
the group manager, along with some third trusted party, chooses the security
parameters as well as a group secret key and a group public key. (2) Any group
member candidate is required to choose his member secret key, and run an in-
teractive protocol with GM to join in the group, during which GM generates
a signature on the member secret key blindly, i.e., not knowing the secret key
value, the signature is also called member certificate. (3) Any group member can
generate group signatures using his group signing key which includes member
secret key and member certificate.

A common paradigm of constructing group signatures [1–4] is as follows:
GM adopts an ordinary signature scheme to generate membership certificate for
group members, i.e., sign on some secret key known only to members. The group
signature is in fact a non-interactive zero-knowledge proof of knowledge of mem-
ber certificate and member secret key, transformed in Fiat-Shamir’s heuristic
method [5] from interactive proofs.
? Supported by 973 Project of China (No.2004CB318004), 863 Project of China (No.

2003AA144030) and NSFC90204016. This is the full version of the paper at Inscrypt
07, and appended with an important note Appendix D.

2

Recently, a kind of randomizable signatures (given a signature of a mes-
sage, someone other than the signer can get a new signature with respect to the
same message) have been adopted in some schemes [6–9] to generate member-
ship certificates. The following construction of group signature has been widely
recognized: to sign on a message, a member firstly randomizes his member cer-
tificate, then generates a proof of knowledge of member secret key and part
of the randomized member certificate. This method might result in more effi-
cient group signature because the relation between member secret key and other
items is much simplified due to concealing only part of the randomized member
certificate instead of concealing it all in previous constructions.

We formalize the characteristics of randomizable signatures that are required
to build secure efficient group signatures. Specifically, we define new notions
of unlinkable randomizable signature, indirectly signable signature, Σ-protocol
friendly signature.

We conclude that designing efficient secure group signatures can be boiled
down to designing ordinary signatures satisfying the above three properties,
which is supported by observations that almost all currently known secure ef-
ficient group signatures (except [10]) have alternative constructions in this line
without deteriorating the efficiency, i.e., the signature schemes used to generate
member certificates in the group signature can be modified into randomizable
signatures with unlinkability, indirectly signability and Σ-protocol friendliness.
For example, the scheme in [7] can be seen as the randomizable version of the
well known ACJT scheme [4], satisfying the above three characteristics.

Apart from pointing out the obvious alternative constructions of some current
group signatures, we propose the more complicated alternative constructions of
others. They include the alternative construction of the scheme [11] from ran-
domizable signatures (denoted as NSN04*). We propose two new randomizable
signatures (denoted Wat05+, ZL06+) resulting in new efficient group signatures.
We also slightly improve the scheme with concurrent join [12] by replacing the
member certificate generation signature with an randomizable signature (de-
noted as BBS04+).

Organization. The new notions of unlinkable randomizable signature, indi-
rectly signable signature, Σ-protocol friendly signature are presented in Section
3, where you can also find the new randomizable signatures satisfying the above
three properties: NSN04*, Wat05+, ZL06+. A generic construction of group sig-
natures from the above randomizable signature is described in Section 4.1 as
well as its security analysis (Section 4.2). We present the slight improvement to
the group signature with concurrent join [12] in Section 4.3.

2 Preliminary

Notations. If (P, V) is a non-interactive proof for relation ρ, P (x,w,R) denotes
the operation of generating a proof for (x,w) ∈ ρ under the common reference
string R, V (x, π,R) denotes the operation of verifying a proof π.

3

Definition 1 (wUF-ATK[13]) A signature scheme DS=(Gen, Sig, Ver) is
wUF-ATK secure (ATK ∈ {CMA, ACMA}), i.e., weakly unforgeable against
ATK attack, if for every probabilistic polynomial-time algorithm A, it holds that

AdvwUF−ATKDS,A = Pr{(pk, sk)←Gen(1k), (m,σ)←AOSig(sk,.)(pk,ATK) :

V er(pk,m, σ) = 1,m /∈ Q} < ε(k)

where ε(k) is a negligible function, the probability is taken over the coin tosses
of algorithms Gen, Sig and A. Q denotes the set of queries to oracle OSig(sk,.)
made by A.

3 The New Notions

3.1 Unlinkable Randomizable Signature (URS)

Definition 2 (Randomizable Signature) A randomizable signature scheme
is a digital signature scheme that has an efficient signature randomization algo-
rithm Rnd besides algorithms (Gen,Sig,Ver):
– Gen: N→K: a probabilistic polynomial-time algorithm with input k (called

security parameter), output (pk, sk) ∈ K, where K is a finite set of possible
keys; pk is called public key, sk is secret key kept to the signer, i.e., the
owner of the instance of the signature scheme.

– Sig: K×M→S: a probabilistic polynomial-time algorithm with input (sk,m),
where sk is the same output from K above, m ∈ M , M is a finite set of
possible messages. Output is σ = (Υ,Ξ) ∈ S, where Υ is randomly chosen
and independent from m, Ξ is calculated from Υ , m and sk.

– Ver: K×M×S→{0, 1}: a deterministic polynomial-time algorithm with input
(pk,m, σ), output 1 if σ is valid, i.e., σ is really computed by the owner of
the signature instance, output 0 otherwise.

– Rnd: M × S → S: a probabilistic polynomial-time algorithm with a message
m and a signature (Υ,Ξ) on it, output a (Υ ′, Ξ ′) 6= (Υ,Ξ) that is also a
signature on m.

Expunlink−bA (k), b ∈ {0, 1}: (pk, sk) $←− Gen(1k), (m0, Υ0, Ξ0,m1, Υ1, Ξ1) $←−
A(sk, pk), If Ver(pk, m0, 〈Υ0, Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1, Ξ1〉) = 0, return 0.

(Υ ′, Ξ ′) $←−Rnd(mb, Υb, Ξb), b′ ← A(sk, pk, Ξ ′). return b′.

Definition 3 (Perfectly Unlinkable) A randomizable signature rDS = (Gen,
Sig, Ver, Rnd) is perfectly unlinkable if for any algorithm A, the distribution of
output of Expunlink−bA (k) (defined above) are the same for b ∈ {0, 1}, that is

Pr{Expunlink−1
A (k) = 1} = Pr{Expunlink−0

A (k) = 1}.

The above equation is identical to

Pr{Ξ ′ $←− Rnd(m1, Υ1, Ξ1)|(pk, sk) $←− Gen(1k), (〈m0, Υ0, Ξ0〉, 〈m1, Υ1, Ξ1〉)
$←− A(sk)}

= Pr{Ξ ′ $←− Rnd(m0, Υ0, Ξ0)|(pk, sk) $←− Gen(1k), (〈m0, Υ0, Ξ0〉, 〈m1, Υ1, Ξ1〉)
$←− A(sk)}.

4

Definition 4 (Statistically Unlinkable) A randomizable signature rDS = (Gen,
Sig, Ver, Rnd) is statistically unlinkable if for any algorithm A, the statistical
distance between output of Expunlink−bA (k) (defined above) for b ∈ {0, 1} is negli-
gible, that is∑

|Pr{Expunlink−1
A (k) = 1} − Pr{Expunlink−0

A (k) = 1}| < ε(k),

where the sum is over all random choices of Gen, A and Rnd.

Definition 5 (Computationally Unlinkable) A randomizable signature rDS
= (Gen, Sig, Ver, Rnd) is computationally unlinkable if for any probabilistic
polynomial time algorithm A, the probability between output of Expunlink−bA (k)
(defined above) for b ∈ {0, 1} is negligible, that is

Pr{Expunlink−1
A (k) = 1} − Pr{Expunlink−0

A (k) = 1} < ε(k)

The above definitions of unlinkability can be further weakened by not allow-
ing the adversary obtain the secret key, but granting access to signing oracle
Osig(sk, .) as in experiment Expw−unlink−bA (k) defined below. Then we get weak
perfectly unlinkability, weak statistically unlinkability, weak computationally un-
linkability analogously.

Expw−unlink−bA (k), b ∈ {0, 1}: (pk, sk) $←− Gen(1k), (m0, Υ0, Ξ0, m1, Υ1, Ξ1)
$←− AOsig(sk,.)(pk), If Ver(pk, m0, 〈Υ0, Ξ0〉) = 0 or Ver(pk, m1, 〈Υ1, Ξ1〉) = 0,

return 0. (Υ ′, Ξ ′) $←−Rnd(mb, Υb, Ξb), b′ ← AOsig(sk,.)(pk, Ξ ′). return b′.

Definition 6 (Unlinkable Randomizable Signature) A (perfectly, statisti-
cally, computationally) URS urDS=(Gen,Sig,Ver,Rnd) is a randomizable signa-
ture that is also (perfectly, statistically, computationally) unlinkable respectively.

3.2 Σ-protocol Friendly Randomizable and Indirectly Signable
Signature

Definition 7 (Σ-protocol Friendly Randomizable Signature) A random-
izable signature rDS=(Gen, Sig, Ver, Rnd) is Σ -protocol friendly if there exits
a Σ -protocol P for relation R = {(Ξ, 〈Υ , m〉)|V er(pk, m, 〈Υ , Ξ〉) = 1}, that
is [14]
– P is of 3-move form, and if Prover and Verifier follow the protocol, Verifier

always accepts.
– From any Ξ and any pair of accepting conversations with different initial

message from Prover on input the same Ξ, one can efficiently compute (Υ,m)
such that (Ξ, 〈Υ , m〉) ∈ R.

– There exists a polynomial time simulator M, which on input Ξ, and a random
second message sent from Verifier, outputs an accepting conversation with
the same probability distribution as between the honest Prover, Verifier on
input Ξ.

5

The following concept of indirectly signable is actually a restatement of sig-
natures on committed message [6].

Definition 8 (Indirectly Signable) A signature is indirectly signable if there
exists a one way function f (as defined in Chapter 9.2.4, [15] or more techni-
cally as in Chapter 2.2, [16]) and an efficient algorithm Sigf that Sig(sk,m) =

Sigf (sk, f(m)). That is Pr{(pk, sk, f) $←− Gen(1k), m $←− M , v ← f(m), σ ←
Sigf (sk, v) : Ver(pk, m, σ) = 1} = 1, and for any probabilistic polynomial time

algorithm A, Pr{(pk, sk, f) $←− Gen(1k), m $←− M , v ← f(m), m′ ← A(sk, v) :
m′ = m} < ε(k).

Actually signatures with above characteristics have been proposed and adopted
explicitly or implicitly [7, 6, 8, 9], see Table 1 (the scheme on the right is the cor-
responding URS signature with indirect signability and Σ-protocol friendliness
with respect to the scheme on the left).

To illustrate the unlinkable randomness, take Scheme A in [6] as an example
(shown in Table 1). If we set Υ =NULL, Ξ = (a, b, c), it is not even computation-
ally unlinkable, because anyone can check if (m1, a

′, b′, c′) or (m0, a
′, b′, c′) is a

valid signature. That is why group signatures adopting the above signature only
result in selfless anonymity (a weaker anonymity where the adversary should not
know the message m)[9].

If we set Υ = (a), Ξ = (b, c), then it is still not even computationally unlink-
able, but is weak computationally unlinkable assuming DDH is hard over group
G1.

If we further set Υ = (a, b), Ξ = (c), then it is perfectly unlinkable. So
it is rather easy to come up with an unlinkable randomizable signature, just
reveal the randomized signature as less as possible. But revealing too little of
the randomized signature may lose Σ-protocol friendliness.

ACJT [4] CL02 [7]

Let n = pq be an RSA modulus. Se = [2le − 2µe , 2le + 2µe], Sm = [2lm − 2µm ,
2lm + 2µm], Ss = [2ls − 2µs , 2ls + 2µs], µe > lm.

Gen. a, c
$←− QR∗n, sk = (p, q), pk = (n,

a, c, Se, Sm).

Sig. If |m| = lm, e
$←− Se ∩ Prime, A ←

(amc)
1
e mod n.

Ver. Given m, (e, A), check if |m| = lm,
Ae = amc mod n.

Rnd. -

Gen. a, b, c
$←− QR∗n, sk = (p, q), pk = (n,

a, b, c, Se, Sm, Ss).

Sig. If |m| = lm, e
$←− Se ∩ Prime, s

$←−
Ss, A ← (ambsc)

1
e mod n. Υ = (e,

s), Ξ = (A)
Ver. Given m, (Υ , Ξ) = (e, s, A),

check if |m| = lm, |s| = ls, A
e =

ambsc mod n.
Rnd. Given m, (Υ , Ξ) = (e, s, A), choose

random r with length lr = ls−le−1,
Υ ′ = (e, s+ re), Ξ ′ = (Abr).

CL04 [6] CL04+

6

Let G1 = 〈g〉, G2 = 〈g̃〉 be p order cyclic groups that there exists a bilinear map
e : G1 ×G2 → G3.3

Gen. x, y
$←− Z∗p , sk = (x, y), X = g̃x, Y = g̃y, pk = (p, g, g̃, G1, G2, e, X, Y).

Sig. d
$←− G1, Υ =NULL, Ξ = (d, dy,

dx+mxy).
Ver. Given m, (Υ , Ξ) = (a, b, c), check

if e(a, Y) = e(b, g̃), e(a, X)e(b,
X)m = e(c, g̃).

Rnd. Given m, (Υ , Ξ) = (a, b, c), r
$←−

Z∗p , Υ ′ =NULL, Ξ ′ = (a′, b′, c′) =
(ar, br, cr).

Sig. d
$←− G1, s

$←− Z∗p , Υ = (s), Ξ = (ds,
dsy, dx+mxy).

Ver. Givenm, (Υ , Ξ) = (s, a, b, c), check
if e(a, Y) = e(b, g̃), e(a, X)e(b,
X)m = e(c, g̃)s.

Rnd. Given m, (Υ , Ξ) = (s, a, b, c), r1,

r2
$←− Z∗p , Υ ′ = (s′) = (r2s), Ξ

′ =
(a′, b′, c′) = (ar1r2 , br1r2 , cr1).

BBS04 [8] BBS04+

Gen. x
$←− Z∗p , w = g̃x, h1

$←− G1. sk = (x), pk = (p, G1, G2, g, g̃, h1, e, w).

Sig. s
$←− Z∗p , A← (hm1 g)

1
x+s .

Ver. Given m, (s, A), check if e(A,
wg̃s) = e(hm1 g, g̃).

Rnd. -

Sig. s, t
$←− Z∗p , A ← (hm1 g)

t
x+s , Υ = (s,

t), Ξ = (A).
Ver. Given m, (Υ , Ξ) = (s, t, A), check

if e(A, wg̃s) = e(hm1 g, g̃t).

Rnd. Given m, (Υ , Ξ) = (s, t, A), r
$←−

Z∗p , Υ ′ = (s, rt), Ξ ′ = (Ar).

Table 1: Comparison of signatures and URS.

3.3 Some New Unlinkable Randomizable Signatures

NSN04*. As we have mentioned, the ACJT scheme [4] has an alternative con-
struction utilizing URS CL02. As for the scheme in [11], no similar alternative
has been proposed. In this section, we propose a new URS NSN04*, which can
be adopted to build a new efficient group signature.

[11] NSN04*.

Let G be a p order additive cyclic group, and e : G × G → G′ a bilinear map on
G = 〈P 〉.
Gen. γ

$←− Z∗p , Ppub = γP , P0
$←− G, sk = (γ), pk = (p,G,G′, P, P0, Ppub, e).

Sig. a
$←− Z∗p , A = 1

γ+a
[mP + P0].

Ver. Given m, (a, A), check if e(A,
Ppub + aP) = e(mP + P0, P).

Rnd. -

Sig. (a, b, c)
$←− Z∗p

3, A = 1
γ+a

[mP +
(b + γc)Ppub + P0], Υ = (a, b, c),
Ξ = (A).

Ver. Given m, (Υ , Ξ) = (a, b, c, A),
check if e(A, Ppub + aP) = e(mP +
bPpub + P0, P)e(cPpub, Ppub).

Rnd. Given m, (Υ , Ξ) = (a, b, c, A), r
$←−

Z∗p , Υ ′ = (a′, b′, c′) = (a, b + ra,
c+ r), Ξ ′ = (A′) = (A+ rPpub).

3 Note that the parameters here are according to the setup in [9], i.e., a SXDDH hard
curve. We also have some comments on the two schemes at Appendix D.

7

Lemma 1. NSN04* is wUF-ACMA if q-SDH problem in G is hard, where q is
polynomial in |p|. See Appendix A for the proof.

NSN04* is indirectly signable if we define f(m) = mP assuming Compu-
tational Diffie-Hellman problem on G is hard. Obviously, NSN04* is perfectly
unlinkable because each randomized Ξ ′ only consists of one element that is gen-
erated independently and randomly each time.

NSN04* is Σ-protocol friendly, because there exists an efficient Σ-protocol
for the relation {(m, a, b, c)|e(A, Ppub)e(A, P)a = e(P , P)me(Ppub, P)be(P0,
P)e(Ppub, Ppub)c}.

Wat05+. The recently proposed signature in [17], which is provable secure
under CBDH assumption (Computational Bilinear Diffie-Hellman assumption)
without random oracle, is also an URS if only we change a bit on it, see the
following restatement with an extra algorithm Rnd.

Wat05+

Let G, G′ be two p order cyclic groups, and there exists a bilinear map e :
G×G→ G′. G = 〈g〉.

Gen. Set secret key sk = (x), pk = (e, g1, g2, u, u′, ui, i = 0, .., l), where g1, g2, u,
u′, ui are all elements from G, g1 = gx, l is the maximum binary length of a
message to be signed.

Sig. Given a message m with length at most l, the signature (Υ , Ξ) is Υ = (s),

Ξ = (a, b) = (gr, gx2 (u′
∏l
i=1 u

mi
i)r)us, where s

$←− Zp. Note that (a, bu−s) is
a signature of m according to the scheme in [17].

Ver. Given a message m and its signature (Υ , Ξ) = (s, a, b), it is a valid signature
on m if e(b, g) = e(u′, a)e(g2, g1)

∏l
i=1 e(ui, a)mie(u, g)s.

Rnd. On input pk, message m, and a signature (Υ , Ξ), where Υ = (s), Ξ = (a, b),

choose (r1, r2)
$←− Zp × Zp, set Υ ′ = (s′) = (s + r1), Ξ ′ = (a′, b′) = (agr2 ,

b(u′
∏l
i=1 u

mi
i)r2ur1). The new randomized signature on m is (Υ ′, Ξ ′).

Wat05+ is wUF-ACMA. The proof is easy, omitted here.
Wat05+ is Σ-protocol friendly, because there exits efficient Σ-protocol for

the relation {(m1, ...,ml, s)| e(b, g)= e(u′, a) e(g2, g1)
∏l
i=1 e(ui, a)mie(u, g)s}.

Wat05+ is indirectly signable if we define f(m) =
∏l
i=1 u

mi
i , it is one way

if l = O(k), where k is the security parameter. That is because the probability
of f(m) = f(m′) for m 6= m′ is about 1/p, i.e., the solution to f(m) = c for a
random c ∈ G is unique non-negligibly. To obtain the unique solution, 2l tests
must be carried out.

Wat05+ signature is perfectly unlinkable, because a′ and b′ are obtained from
independent random variables.

Note that the original scheme Wat05 [17] is already utilized in the compact
group signature [18]. But Wat05+ has not been adopted anywhere.

ZL06+. ZL06+ is a new URS similar to the standard signature proposed in
[19].

8

ZL06+4

Let G1 be a p order cyclic group that exists a bilinear map e : G1 ×G2 → G3.
G1 = 〈g〉, G2 = 〈g̃〉.

Gen. Select (x, y)
$←− Z∗p ×Z∗p , set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y. The secret key

is sk = (x, y), public key is pk = (X, Y , X̃, Ỹ , g, g̃, e, p).
Sig. Given a message m ∈ Zp, its signature is (Υ , Ξ), where Υ = (s), Ξ = (a,

b) = (gr, gr(x+my)+sx+xy), (r, s)
$←− Z∗p × Zp.

Ver. Given a signature (Υ , Ξ) = (s, a, b) of m, check if e(b, g̃) = e(a, X̃Ỹ m)e(X,

Ỹ)e(X, g̃)s. If the equation holds, then accept (Υ , Ξ) as a valid signature of
m, otherwise reject it as invalid.

Rnd. On input pk, message m, and a signature (Υ , Ξ) = (s, a, b), choose random r1,
r2 ∈ Zp×Zp, output (Υ ′, Ξ ′) where Υ ′ = (s′) = (s+r1), Ξ ′ = (a′, b′) = (agr2 ,
b(XY m)r2Xr1).

ZL06+ is wUF-ACMA secure under the assumption proposed in [19]. The
proof is easy, omitted here.

ZL06+ is Σ-protocol friendly, because there exits efficient Σ-protocol for the
relation {(m, s)| e(b, g̃) = e(a, X̃) e(a, Ỹ)m e(X, Ỹ)e(X, g̃)s}.

ZL06+ is indirectly signable if define f(m) = gm assuming Computational
Diffie-Hellman problem on G1 is hard.

ZL06+ signature is perfectly unlinkable, because a′ and b′ are obtained from
independent random variables.

4 Group Signature from URS

Definition 9 (Group Signature [20]) A group signature is a signature scheme
composed of the following algorithms between GM (including IA, issuing author-
ity, and OA, opening authority), group members and verifiers.
– Setup: an algorithm run by GM (IA and OA) to generate group public key
gpk and group secret key gsk.

– Join: a probabilistic interactive protocol between GM (IA) and a group mem-
ber candidate. If the protocol ends successfully, the candidate becomes a new
group member with a group signing key gski including member secret key
mski and member certificate certi; and GM (IA) adds an entry for i (de-
noted as regi) in its registration table reg storing the protocol transcript, e.g.
certi. Sometimes the procedure is also separated into Join and Iss, where
Join emphasize the part run by group members as well as Iss denotes the
part run by IA.

– GSig: a probabilistic algorithm run by a group member, on input a message
m and a group signing key gski = (mski, certi), returns a group signature
σ.

– GVer: a deterministic algorithm which, on input a message-signature pair
(m,σ) and GM’s public key gpk, returns 1 or 0 indicating the group signature
is valid or invalid respectively.

4 Note that we have some comments on this scheme at Appendix D.

9

– Open: a deterministic algorithm which, on input a message-signature pair
(m,σ), secret key gsk of GM (OA), and the registration table reg, returns
identity of the group member who signed the signature, and a proof π.

– Judge: a deterministic algorithm with output of Open as input, returns 1 or
0, i.e., the output of Open is valid or invalid.

4.1 Generic Construction of GS

Select an URS DS= (Ks,Sig,Ver,Rnd) which is indirectly signable with a one
way function f , a probabilistic public encryption PE= (Ke, Enc,Dec).

Define the following relations:
ρ: (x,w) ∈ ρ iff x = f(w).
ρ1: (〈pke, pks, C, Ξ〉, 〈w, Υ , r〉) ∈ ρ1 iff Ver(pks, w, (Υ , Ξ))=1

and C=Enc (pke, f(w), r) and (pks, ·)← Ks, (pke, ·)← Ke.
ρ2: (〈pke, C,m〉, 〈w〉) ∈ ρ2 iff Dec(pke, w, C) = m and (pke, .)← Ke.
Assume (P, V), (P1, V1) and (P2, V2) are non-interactive proofs for relation

ρ, ρ1 and ρ2, which have access to common reference string R, R1 and R2 re-
spectively. Let SIM , SIM1, SIM2 be their corresponding simulation algorithm.
The detailed definition of non-interactive proof is referred to [20].

(P, V) is also defined to be with an online extractor (in the random oracle
model), i.e., it has the following features (let k be the security parameter) [21]:

1© Completeness: For any random oracle H, any (x, w) ∈ ρ, and any π ←
PH(x, w, R), it satisfies Pr {V H(x, π, R) = 1} ≥ 1 − ε1(k), where ε1(k) is a
negligible function.

2© Online Extractor: There exists a probabilistic polynomial time algorithm
K, the online extractor, such that the following holds for any algorithm A. Let
H be a random oracle, QH(A) be the answer sequence of H to queries from A.
Let w ← K(x, π, QH(A)), then as a function of k, Pr{(x, w) /∈ ρ, V H(x, π,
R) = 1} < ε2(k), where ε2(k) is a negligible function.

GS is constructed as follows, see Table 5 for the details.
Setup. Select an instance of DS and PE, let secret key of DS be the secret

key of IA, secret key of PE be the secret key of OA.
Join. User i selects its member secret key ski in message space of DS, com-

putes pki = f(ski), generates π, a non-interactive zero-knowledge proof of knowl-
edge of ski for relation ρ. IA checks the correctness of π and generates a DS
signature on ski: certi = Sigf (sks, pki) = Sig(sks, ski), sets regi = pki. The
group signing key of i is gski = (certi, ski).

GSig. On input (gpk, gski, m), parse certi into (Υ , Ξ), firstly derive a
new certification (Υ ′, Ξ ′) = Rnd(gpk, ski, Υ , Ξ); then encrypt pki with PE:
C = Enc(pke, pki, ri) where ri is random; then generate π1, a non-interactive
zero-knowledge of proof of knowledge of (ski, Υ ′, ri) for relation ρ1; in the end,
transform π1 into a signature on m using any method of transforming a non-
interactive zero-knowledge proof into a signature [5, 22–24], we also use π1 to note
the transformed signature for simplicity. The group signature on m is σ = (C,
Ξ ′, π1).

10

GVer. On input (gpk, m, σ), parse σ as (C, Ξ ′, π1), check the correctness
of π1, return 1 if it is correct, return 0 otherwise.

Open. On input (gpk, ok, reg, m, σ), parse σ as (C, Ξ ′, π1). OA firstly checks
the validity of the group signature σ on m, if it is not valid, stops; otherwise
decrypts C to get M , and generates π2, a proof of knowledge of decryption key
ok for relation ρ2. If M = pki for some pki in reg, return the corresponding index
or identity and π2, else returns zero and π2.

Judge. Check the correctness of π2, return 1 if it is correct, return 0 other-
wise.

Algorithm Setup(1k):

R
$←− {0, 1}P (k), R1

$←− {0, 1}P1(k),

R2
$←− {0, 1}P2(k), (pks, sks)← Ks(1

k),

(pke, ske)← Ke(1
k),

gpk = (R, R1, R2, pke, pks),
ok = (ske), ik = (sks).
return (gpk, ok, ik).

Algorithm Join:

User i
pki,π−−−→ IA: User selects ski, pki =

f(ski), π = P (pki, ski, R)

User i
certi←−−− IA: IA checks if V (pki, π,

R) = 1, calculates certi = Sigf (sks, pki),
sets regi = pki.
User i: sets gski = (pki, ski, certi).

Algorithm GSig(gpk, gski,m):
Parse certi as (Υ , Ξ),
Parse gpk as (R, R1, R2, pke, pks),
(Υ ′, Ξ ′) = Rnd(gpk, ski, Υ , Ξ);
C ← Enc(pke, pki, ri), ri random;
π1 = P1(〈pke, pks, m, C, Ξ ′〉, 〈ski, Υ ′,
ri〉, R1).
σ = (C, Ξ ′, π1).
return σ.

Algorithm GVer(gpk,m, σ):
Parse σ as (C, Ξ ′, π1),
Parse gpk as gpk = (R, R1, R2, pke, pks),
Return V1(〈pke, pks, C, Ξ ′〉, π1, R1).

(Note that π1 here denotes the signature
on m transformed from the non-interactive
proof.)

Algorithm Open(gpk, ok, reg,m, σ):
Parse gpk as gpk = (R, R1, R2, pke,
pks),
Parse σ as (C, Ξ ′, π1),
If GVer(gpk, m, σ) = 0, return ⊥.
M ← Dec(ske, C),
If M = regi, ∃i, id← i, else id← 0.
π2 = P2(〈pke, C, M〉, 〈ske〉, R2),
return (id, τ), where τ = (M , π2).

Algorithm Judge(gpk, reg,m, σ, i,M, π2):
Parse gpk as gpk = (R, R1, R2, pke, pks),
Parse σ as (C, Ξ ′, π1),
If GVer(gpk, m, σ) = 0, return ⊥.
return V2(〈pke, C, M〉, π2, R2).

Table 5: Algorithms Setup, GSig, GVer, Open, Judge of GS.

Comparison. The above generic construction can be seen as a particular
case of the construction in [20]:

In [20], the group signature is σ = (C, π1) = (Enc(pke, 〈i, pki, Υ , Ξ, s〉, ri),
π1), where s = S(ski, m) and π1 is a proof of knowledge of (pki, Υ , Γ , s, ri)
satisfying Ver(pks, 〈i, pki〉, (Υ , Ξ)) = 1, C = Enc(pke, 〈i, pki, Υ , Ξ, s〉, ri), and
V (pki, m, s) = 1. (S, V) is the signature generation and verification algorithms
of an independent signature scheme.

11

However in this construction, the group signature is σ = (C, Ξ ′, π1) =
(Enc(pke, pki, ri), Ξ ′, π1), where π1 is a transformed signature of the proof
of knowledge of (ski, Υ ′, ri) satisfying Ver(pks, ski, (Υ ′, Ξ ′)) = 1 and C =
Enc(pke, f(ski), ri).

The construction is more efficient in that less items are encrypted in C and
the relation between member secret key, member certificate and other items
is much simplified, thus efficient proof of knowledge of encrypted context is
obtained.

4.2 Security Proofs

The above generic group signature utilizing unlinkable randomizable signature
can be proved secure according to the proof methods for the security results in
[20] under a variant model (see Appendix B).

Lemma 2. The above GS is anonymous if DS is computationally unlinkable,
PE is IND-CCA2, (P1, V1) is a simulation sound, computational zero-knowledge
proof, (P2, V2) is a computational zero-knowledge proof.

Lemma 3. The above GS is traceable if DS is wUF-ACMA, (P1, V1), (P2, V2)
are sound proofs of knowledge and (P, V) is a proof of knowledge with online
extractor (in random oracle model).

Lemma 4. The above GS is non-frameable if f(·) is one way function, (P, V)
is a computational zero-knowledge proof, (P1, V1) and (P2, V2) are sound proofs
of knowledge.

Note that there is a gap between the generic construction GS and the realiza-
tion of it by adopting the Σ-protocol friendly URS’ we have described earlier (the
reason we require Σ-protocol friendliness is from efficiency consideration), be-
cause Σ-protocols (after they are transformed into non-interactive forms [5]) are
not guaranteed simulation sound. It can be fixed in proof by utilizing rewinding
techniques [25, 26] so that an adversary, even after it has been given simulated
group signatures, can not generate a valid group signature unless the ciphertext
therein is correctly constructed.

4.3 Improvement to a Group Signature

Review of KY05’s Scheme.
Setup. At first, select the following public parameters:
– two groups G1 = 〈g1〉, G2 = 〈g2〉 of order p(length is lp bits), and there

exists a bilinear map e : G1 ×G2 → GT .
– an RSA modulus n of ln bits.
– three integer ranges S, S′, S where S′ ⊂ S ⊂ Zφ(n), the upper bound of S′′

is smaller than the lower bound of S.
– an RSA modulus N of lN bits, choose G ∈ QRN2 so that 〈G〉 is also N -th

residues,]〈G〉 = φ(N)/4.

12

Then IA selects 1© γ, δ
$←− Zp, set w = gγ2 , v = gδ2; 2© α, β

$←− Zp, u
$←− G1, set

u′ = uα/β , h = uα(u′)β = u2α; 3©g, f1, f2, f3
$←− QRn; 4© a collision resistant

hash function HASH.
OA selects 1© a1, a2, a3

$←− ZbN/4c, set H1 = Ga1 , H2 = Ga2 , H3 = Ga3 ; 2© a
universal one-way hash function family UOHF, and a hash key hk.

Group public key gpk = {g1, g2, u, u′, h, w, v, g, f1, f2, f3, n, N , G, H1,
H2, H3, hk, G1, G2, GT , e, UOHF}. Group secret key gsk = {γ, δ, a1, a2, a3}.

Join. A user selects x = x1x2, x1
$←− S′′, sends x to IA; IA checks whether

x ∈ S′, if that is the case, selects r $←− Z∗p , s $←− Z∗p , calculates σ ← g
s

γ+x+δr
1 ,

sends (r, s, σ) to the user; the user checks if e(σ,wgx2v
r) = e(g1, g2)s, if so, sets

cert = (x, r, s, σ), msk = (x1, x2).
GSig. If a user with member certificate (x, σ, r) and member secret key (x1,

x2) wants to generate a group signature on m, he firstly computes T1, T2, T3,
T4, T5, C0, C1, C2 as follows.

T1 = uz, z $←− Zp in G1; T2 = (u′)z
′
, z′ $←− Zp in G1; T3 = hz+z

′
σ in

G1; T4 = gyfx1
1 , y $←− S(1, 2ln−2) in QRn; T5 = gy

′
fx2
2 f t3, y′ $←− S(1, 2ln−2) in

QRn; C0 = Gt, t $←− S(1, 2lN−2) in Z∗N2 ; C1 = Ht
1(1 + N)x in Z∗N2 ; C2 =‖

(H2H
H(hk,C0,C1)
3)t ‖ in Z∗N2 .

Then he generates a signature of knowledge by applying the Fiat-Shamir
heuristic [5] on a proof of knowledge of the fourteen witnesses θz, θz′ , θx, θxz,
θxz′ , θr, θrz′ , θx1 , θx2 , θy, θy′ , θyx2 , θt that satisfy the following relations:

T1 = uθz , T2 = (u′)θz′ , 1 = T−θx1 uθxz , 1 = T−θx2 (u′)θxz′ ,

1 = T−θr1 uθrz , 1 = T−θr2 (u′)θrz′ , T4 = gθyf
θx1
1 , 1 = T

−θx2
4 gθyx2 fθx1 ,

T5 = gθy′ f
θx2
2 fθt3 , θx ∈ S′, θx′ ∈ S′′, C0 = Gθt ,

C1 = Hθt
1 (1 +N)θx , C2

2 = (H2H
H(hk,C0,C1)
3)2θt ,

e(g1, g2)/e(T3, w) = e(T3, v)θre(T3, g2)θxe(h, g2)−θxz−θxz′ e(h, v)−θrz−θrz′ e(h,w)−θz−θz′

The realization of the above signature of knowledge is quite standard, so we
omit it here. The output is (T1, T2, T3, T4, T5, C0, C1, C2, c, sz, sz′ , sxz, sxz′ ,
sr, srz, srz′ , sx, sx1 , sx2 , sy, sy′ , syx2 , st).

GVer. The verification is achieved by checking the above proof of knowledge,
omitted here.

Open. Firstly the group signature is verified as well as the relation C2
2 =

C
2(a2+a3H(hk,C0,C−1))
0 is checked. If all the tests pass, OA computes x = (C1C

−a1
0 −

1)/N , then checks if there exists a matching member certificate in the database
maintained by IA.

Group Signature KY05+.
Replacing the member certificate signature with the following BB04+ signa-

ture, the scheme in [12] can be improved.

BB04+

Let G1, G2 be two p order cyclic groups, and there exists a bilinear map
e : G1 ×G2 → G3. G1 = 〈g〉, G2 = 〈g̃〉.

13

Gen. It chooses x
$←− Z∗p , y

$←− Z∗p , and sets sk = (x, y), pk = (p, G1, G2, g, g̃, X,
Y , e), where X = g̃x, Y = g̃y.

Sig. On input message m, secret key sk, and public key pk, choose (s, t)
$←− Z∗p

2,

compute A = g
t

x+m+ys , output the signature (Υ , Ξ) where Υ = (s, t), Ξ = (A).

Note that (s, A
1
t) is a valid [27] signature on m.

Ver. On input pk, message m, and purported signature (Υ , Ξ) = (s, t, A), check
that e(A, XY sg̃m) = e(gt, g̃).

Rnd. On input pk, message m, and a signature (Υ , Ξ) = (s, t, A), choose r
$←− Z∗p ,

output (Υ ′, Ξ ′) where Υ ′ = (s′, t′) = (s, rt), Ξ ′ = (A′) = (Ar).

It is easy to prove the wUF-ACMA of BB04+, similar to the original scheme
[27]. Obviously, BB04+ is perfectly unlinkable because each randomized Ξ ′ only
consists of one element that is generated independently and randomly each time,
but it is not indirectly signable because m must be known to calculate a signature
on it. BB04+ is Σ-protocol friendly, because there exists an efficient Σ-protocol
for the relation {(m, s, t)|e(A, X)e(A, Y)se(A, g̃)m = e(g, g̃)t}.

Now we turn back to the group signature of KY05+. Public parameters and
algorithms Setup, Join, Open are exactly as [12], except that key-setup for linear
ElGamal encryption is eliminated.

GSig. If a user with member certificate (x, σ, r) and member secret key (x1,
x2) wants to generate a group signature on m, he firstly computes (σ′, s′, T4,
T5, C0, C1, C2) as described in the following table.

σ′ = σr
′
, s′ = r′s r′

$←− Z∗p in G1

T4 = gyfx1
1 y

$←− S(1, 2ln−2) in QRn

T5 = gy
′
fx2
2 f t3 y′

$←− S(1, 2ln−2) in QRn

C0 = Gt t
$←− S(1, 2lN−2) in Z∗N2

C1 = Ht
1(1 +N)x in Z∗N2

C2 =‖ (H2H
H(hk,C0,C1)
3)t ‖ in Z∗N2

Then he generates a signature of knowledge by applying the Fiat-Shamir
heuristic [5] on a proof of knowledge of the nine witnesses (θx, θx1 , θx2 , θy, θy′ ,
θyx2 , θt, θr, θs′) that satisfy the specified relations in the following table.

gθyf
θx1
1 = T4, gθy′ f

θx2
2 fθt3 = T5, T

−θx2
4 gθyx2 fθx1 = 1,

e(σ′, wgθx2 vθr) = e(g1, g2)θs′ , Gθt = C0, Hθt
1 (1 +N)θx = C1,

(H2H
H(hk,C0,C1)
3)2θt = C2

2 , θx ∈ S′, θx′ ∈ S′′.

Note that the number of witnesses that need proving is fewer than that of
[12]. Thus a group signature of KY05+ is (σ′, T4, T5, C0, C1, C2, c, sr, sx, sx1 ,
sx2 , sy, sy′ , syx2 , st, ss′), about 7|p| = 1190 bits shorter than [12].

If we view x = x1x2 as a one way function since factoring of x is hard,
KY05+ is an application of the proposed generic construction on BB04+ except
that a non-interactive zero-knowledge proof of knowledge with online extractor

14

is not adopted in Join. The security of it follows from that of proposed generic
construction and [12].

References

1. J. Camenisch and M. Stadler, “Efficient group signatures schemes for large groups,”
in Advances in Cryptology - CRYPTO’97, LNCS 1296, pp. 410–424, Springer, 1997.

2. J. Camenish and M. Michels, “A group signature scheme with improved efficiency,”
in Advances in Cryptology - ASIACRYPT’98, LNCS 1514, pp. 160–174, Springer,
1998.

3. J. Camenisch and M. Michels, “A group signature scheme based on an RSA-
variant,” in Technical Report RS-98-27, BRICS, University of Aarhus, 1998.

4. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably
secure coalition-resistant group signature scheme,” in Advances in Cryptology -
CRYPTO’00, LNCS 1880, pp. 255–270, Springer, 2000.

5. A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification
and signature problems,” in Advances in Cryptology - CRYPTO’86, LNCS 263,
pp. 186–194, Springer, 1987.

6. J. Camenisch and A. Lysyanskaya, “Signature schemes and anonymous credentials
from bilinear maps,” in Advances in Cryptology - CRYPTO’04, LNCS 3152, pp. 56–
72, Springer, 2004.

7. J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient protocols,” in
Security in Communication Networks - SCN’02, LNCS 2576, pp. 268–289, Springer,
2002.

8. D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in Advances in
Cryptology - CRYPTO’04, LNCS 3152, pp. 45–55, Springer, 2004.

9. G. Ateniese, J. Camenisch, B. de Medeiros, and S. Hohenberger, “Practical group
signatures without random oracles,” Cryptology ePrint Archive, Report 2005/385.

10. X. Boyen and B. Waters, “Full-domain subgroup hiding and constant-size group
signatures,” in Public Key Cryptography - PKC’07, LNCS 4450, pp. 1–15, Springer,
2007.

11. L. Nguyen and R. Safavi-Naini, “Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings,” in Advances in Cryptology - ASI-
ACRYPT’04, LNCS 3329, pp. 372–386, Springer, 2004.

12. A. Kiayias and M. Yung, “Group signatures with efficient concurrent join,” in
Advances in Cryptology - EUROCRYPT’05, LNCS 3494, pp. 198–214, Springer,
2005.

13. H. Delfs and H. Knebl, Introduction to Cryptography : Principles and Applications.
Springer, December 2001.

14. I. Damg̊ard, On Sigma-protocols. http://www.daimi.au.dk/˜ivan/CPT.html, 2005.
15. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography.

CRC Press, 1996.
16. O. Goldreich, Foundations of Cryptography, vol. Basic Tools. Cambridge University

Press, 2001.
17. B. Waters, “Efficient identity-based encryption without random oracles,” in Ad-

vances in Cryptology - EUROCRYPT’05, LNCS 3494, pp. 114–127, Springer, 2005.
18. X. Boyen and B. Waters, “Compact group signatures without random oracles,”

in Advances in Cryptology - EUROCRYPT’06, pp. 427–444, Springer, 2006. Full
paper at http://eprint.iacr.org/2005/381.

15

19. S. Zhou and D. Lin, “Shorter verifier-local revocation group signatures from bilin-
ear maps,” in Cryptology and Network Security - CANS’06, LNCS 4301, pp. 126–
143, Springer, 2006. Full text at http://eprint.iacr.org/2006/286.

20. M. Bellare, H. Shi, and C. Zhang, “Foundations of group signatures: The case of
dynamic groups,” in Topics in Cryptology – CT-RSA’05, LNCS 3376, pp. 136–153,
Springer, 2005. Full Paper at http://www-cse.ucsd.edu/˜mihir/papers/dgs.html.

21. M. Fischlin, “Communication-efficient non-interactive proofs of knowledge with
online extractor,” in Advances in Cryptology - CRYPTO’05, LNCS 3621, pp. 152–
168, Springer, 2005.

22. M. Bellare and S. Goldwasser, “New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs,” in Advances in
Cryptology - CRYPTO’89, LNCS 435, pp. 194–211, Springer, 1990.

23. R. Cramer and I. Damg̊ard, “Secure signature schemes based on interactive proto-
cols,” in Advances in Cryptology - CRYPTO’95, LNCS 963, pp. 297–310, Springer,
1995.

24. M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in Advances in
Cryptology - CRYPTO’06, LNCS 4117, pp. 78–96, Springer, 2006.

25. D. Pointcheval and J. Stern, “Security arguments for digital signatures and blind
signatures,” Journal of Cryptology, vol. 13, no. 3, pp. 361–396, 2000.

26. A. Kiayias and M. Yung, “Secure scalable group signature with dynamic joins
and separable authorities,” International Journal of Security and Networks,
vol. 1, no. 1/2, pp. 24–45, 2006. Also titled with “Group Signatures: Prov-
able Security, Efficient Constructions and Anonymity from Trapdoor-Holders” at
http://eprint.iacr.org/2004/076.

27. D. Boneh and X. Boyen, “Short signatures without random oracles,” in Advances
in Cryptology - EUROCRYPT’04, LNCS 3027, pp. 56–73, Springer, 2004.

28. D. Boneh and H. Shacham, “Group signatures with verifier-local revocation,” in
ACM conference on Computer and Communications Security - CCS’04, pp. 168–
177, ACM Press, 2004.

29. S. Zhou and D. Lin, “Unlinkable randomizable signature and its ap-
plication in group signature,” in Inscrypt’07, 2007. Full paper at
http://eprint.iacr.org/2007/213.

30. J. Groth, “Fully anonymous group signatures without random oracles,” in Ad-
vances in Cryptology - ASIACRYPT’07, LNCS ????, pp. ??–??, Springer, 2007.

A Proof of Lemma 1

Proof. Suppose there exists an adversary B to the signature, we now construct an
adversary A to resolve q-SDH problem ([27]) in G: to calculate (c, 1

z+cQ), c ∈ Z∗p
given a random tuple (Q, zQ, ..., zqQ).
B should be given public key of the signature and access to oracle Sig an-

swered byA, obtaining qsig(≤ q−1) message-signature pairs (mi, ai, bi, ci, Ai), i =
1, ..., qsig, B wins by outputting a forgery, i.e., a new message-signature (m∗, a∗,
b∗, c∗, A∗) that m∗ /∈ {m1, ...,mqsig}. There may be two different types of
forgeries. The first type, a∗ 6= ai,∀i; the second type, a∗ = al,∃l ∈ [1, qsig].
A will choose a random bit from {1, 2} to indicate its guess for the forgery
type, and simulate accordingly. (Note that A = 1

γ+a [mP + (b+ γc)Ppub + P0] =
1

γ+a [mP + (b− ac)Ppub + P0] + cPpub).

16

Type 1. a∗ 6= ai,∀i.
A selects ai

$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, and s $←− Z∗p ,
let f(y) =

∏qsig
i=1 (y + ai), γ = z, sets public key as P = f(z)Q, Ppub = zf(z)Q,

P0 = sf(z)Q, which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, A firstly selects bi, ci
$←− Z∗p , calcu-

lates Ai = 1
z+ai

[miP + (bi − aici)Ppub + P0] + ciPpub, which is computable from
(Q, zQ, ..., zqQ) since (z + ai)|f(z).

The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1
z+a∗ [m∗P + (b∗ − a∗c∗)Ppub +

P0] + c∗Ppub, i.e., A∗ − c∗Ppub = 1
z+a∗ [(m∗ + s + (b∗ − a∗c∗)z)

∏qsig
i=1 (z + ai)Q],

the probability of m∗ + s = (b∗ − a∗c∗)a∗ is negligible otherwise B can be
invoked to solve discrete logarithm problem in G if z is chosen by A and sQ
is given as a discrete logarithm challenge. Then there exist g(z), r 6= 0 mod p
that (m∗ + s + (b∗ − a∗c∗)z)

∏qsig
i=1 (z + ai) = g(z)(z + a∗) + r, so (a∗, 1

z+a∗Q),
computable from A∗ and (Q, zQ, ..., zqQ), is a resolution to the q-SDH challenge.

Type 2. a∗ = al,∃l ∈ [1, qsig].

A selects ai
$←− Z∗p , i ∈ [1, qsig] that are not equal to each other, t $←− Z∗p , and

d
$←− Z∗p , let f(y) =

∏qsig
i=1 (y+ ai), γ = z− al, sets public key as P = f(z−al)

z Q =∏qsig
i=1,i6=l(z − al + ai)Q, Ppub = (z − al)P , P0 = tzP + dP = t

∏qsig
i=1 (z − al +

ai)Q+ dP , which are computable from (Q, zQ, ..., zqQ).

When B queries about a signature on mi, i 6= l, A firstly selects bi, ci
$←− Z∗p ,

calculates Ai = 1
z−al+ai [miP+(bi−aici)Ppub+P0]+ciPpub, which is computable

from (Q, zQ, ..., zqQ) since (z − al + ai)|f(z − al).
When B queries about a signature on ml, A firstly selects bl, cl, s ∈ Z∗p so

that bl − alcl = (d + ml)a−1
l , and s = t + (d + ml)a−1

l , then it can be verified
that mlP + (bl − alcl)Ppub + P0 = szP , so Al = 1

γ+al
[mlP + (bl − alcl)Ppub +

P0] + clPpub = sP + clPpub is computable.
The forgery (m∗, a∗, b∗, c∗, A∗) satisfies A∗ = 1

γ+a∗ [m∗P + (b∗ − a∗c∗)Ppub +
P0] + c∗Ppub, i.e., A∗ − c∗Ppub = 1

z [m∗ − al(b∗ − a∗c∗) + d + (b∗ − a∗c∗ +
t)z]

∏qsig
i=1,i6=l(z−al+ai)Q, the probability of m∗−al(b∗−a∗c∗)+d = 0 mod p is

negligible otherwise B can be invoked to solve discrete logarithm problem in G
if z is chosen by A and dQ is given as a discrete logarithm challenge. Then there
exist g(z), r 6= 0 mod p that [m∗−al(b∗−a∗c∗)+d+(b∗−a∗c∗+t)z]

∏qsig
i=1,i6=l(z−

al + ai) = g(z)z + r, so (0, 1
zQ), computable from A∗ and (Q, zQ, ..., zqQ), is a

resolution to the q-SDH challenge. Note that any algorithm for 1
zQ can be used

to calculate a (c 6= 0, 1
z+cQ).

B A Formal Model of Group Signature - A Variant of [20]

[20]’s model assumes that IA can not delete contents of the registration table
Reg; OA is assumed only partially corrupted in considering traceability, i.e.,
OA will abide by specified algorithm Open. The existence of a secure (private
and authentic) channel between any prospective group member and IA is also
assumed.

17

For simplicity, we additionally assume that IA will not generate a new group
signing key for an existing member, nor will IA modify existing records in Reg;
OA will not report an existing member to be non-existent or another existing
member after it has opened a group signature according to specified algorithms.

The additional assumption about IA can be guaranteed by introducing an
additional trusted third authority CA independent from IA as explicitly defined
in the model of [20]: every member is given a user public key from CA and a
user secret key kept to himself; in Join, a member signed on whatever he has
generated and sent to IA; IA stores the signed transcript in registration table;
execution of Open should reveal the signer identity and stored transcript carrying
a signature by the signer.

The additional assumption about OA can be guaranteed by granting accesses
of reading/seaching Reg to judgers (the executors of algorithm Judge).

We define the oracles similar to [20]. It is assumed that several global vari-
ables are maintained by the oracles: HU , a set of honest users; CU , a set of
corrupted users; GSet, a set of message signature pairs; and Chlist, a set of
challenged message signature pairs. Note that not all the oracles will be avail-
able to adversaries in defining a certain security feature.

AddU (i): If i ∈ HU ∪CU , the oracle returns ⊥, else adds i to HU , executes
algorithm Join.

CrptU (i): If i ∈ HU ∪ CU , the oracle returns ⊥, else CU ← CU ∪ {i}, and
awaits an oracle query to SndToI.

SndToI (i,Min): If i /∈ CU , the oracle returns ⊥; else it plays the role of IA
in algorithm Join replying to Min.

SndToU (i,Min): If i ∈ HU ∪CU , the oracle returns ⊥, else it plays the role
of user i in algorithm Join, HU ← HU ∪ {i}.

USK (i): If i ∈ HU , the oracle returns ski and gski, CU ← CU ∪ {i},
HU ← HU \ {i}; else returns ⊥.

RReg (i): The oracle returns regi.
WReg (i, s): The oracle sets regi = s if i has not been added in reg.
GSig (i, m): If i /∈ HU , the oracle returns ⊥, else returns a group signature

σ on m by user i. GSet← GSet ∪ {(i,m, σ)}.
Ch (b, i0, i1, m): If i0 /∈ HU ∪ CU or i1 /∈ HU ∪ CU , the oracle returns

⊥, else generates a valid group signature σ with ib being the signer. Chlist ←
Chlist ∪ {(m,σ)}.

Open (m, σ): If (m,σ) ∈ Chlist, the oracle returns ⊥, else if (m,σ) is valid,
the oracle returns Open(m,σ).

CrptIA: The oracle returns the secret key ik of IA.
CrptOA: The oracle returns the secret key ok of OA.
We say an oracle is over another oracle if availability of the oracle implies

functions of another oracle. For example, WReg is over RReg since the adversary
can try to remember everything it has written to Reg; CrptIA is over CrptU,
SndToI since knowledge of ik enables the adversary answer the two oracles itself;
CrptOA is over Open. Note that we do not let CrptIA (CrptOA) over WReg

18

(RReg) to provide flexibility when accesses to the database Reg are granted by
an independent DBA (database administrator).

Correctness. For any adversary that is not computationally restricted, a
group signature generated by an honest group member is always valid; algorithm
Open will always correctly identify the signer given the above group signature;
the output of Open will always be accepted by algorithm Judge.

Experiment ExpcorrGS,A(k)

(gpk, ik, ok)
$←− Setup(1k); HU ← ∅;

(i,m)
$←− A(gpk : AddU,RReg),

If i /∈ HU , return 0;
σ ← GSig(gpk, gski,m); (j, τ)← Open(gpk, ok, reg,m, σ),
If GVer(gpk,m, σ) = 0, or j 6= i, or Judge(gpk, i, reg,m, σ, τ) = 0,
then return 1 else return 0.

Table 10. Correctness.

Anonymity. Imagine a polynomial time adversary A, whose goal is to dis-
tinguish the signer of a group signature σ ← Ch(b, i0, i1,m) between i0, i1, where
i0, i1,m are chosen by A itself.

Naturally the adversary A might want to get the group signing keys of i0, i1
or some other honest group members (through oracle USK); it might want to
obtain some group signatures signed by i0, i1 (through oracle GSig); it might
want to see some outputs of OA (through oracle Open except (m,σ)); it might
also try to corrupt some group members by running Join with IA (through
oracles CrptU and SndToI); it might observe the communication of some honest
members joining in (through SndToU if IA is corrupted, not available otherwise);
it might want to write to, read from Reg (through oracles WReg, RReg); or A
might corrupt IA (through oracle CrptIA). Obviously A should not be allowed
to corrupt OA.

A group signature GS=(Setup, Join, GSig, GVer, Open, Judge) is anonymous
if the probability for any polynomial time adversary to win is negligible, i.e., the
value of AdvanonGS,A defined below is negligible.

AdvanonGS,A(k) = Pr{Expanon−1
GS,A (k) = 1} − Pr{Expanon−0

GS,A (k) = 1},

where experiments Expanon−bGS,A (k) are defined as in the above description.
If {i0, i1} ⊆ HU , and CrptIA is not queried, the group signature is selfless

anonymous [28].
If {i0, i1} ⊆ CU , and CrptIA is not queried, the group signature is anonymous

in the sense of [26].
If {i0, i1} ⊆ HU , and CrptIA is queried, the group signature is anonymous

in the sense of [20].

19

We define a group signature GS is anonymous if {i0, i1} ⊆ CU and CrptIA
is queried in the above game, (in this case GSig is implied if CrptIA is queried),
i.e., the corresponding experiments are defined as in Table 11.

Experiment Expanon−bGS,A (k), b ∈ {0, 1}
(gpk, ik, ok)

$←− Setup(1k); CU ← ∅, HU ← ∅, Chlist← ∅;

d
$←− A(gpk: CrptIA, Open, SndToU, USK, Ch(b, ., ., .), WReg),

Return d.

Table 11. Anonymity.

Traceability. Imagine a polynomial time adversary A, whose goal is to pro-
duce a valid group signature (m,σ), the output of Open on which points to a
non-existent member or an existing corrupted member but can not pass Judge.

Naturally the adversary A might corrupt some group members by running
Join with IA (through oracles CrptU and SndToI); it might want to see some
outputs of OA (through oracle Open); it might want to read from (through ora-
cles RReg); or A might corrupt OA directly (through oracle CrptOA). Obviously
A should not be allowed to corrupt IA and query WReg. Note that A might not
bother to query about honest group members for they are of little help for it.

A group signature GS is traceable if the probability for any polynomial time
adversary to win is negligible, i.e., the value of AdvtraceGS,A defined below is negli-
gible.

AdvtraceGS,A(k) = Pr{ExptraceGS,A(k) = 1},

where experiment ExptraceGS,A(k) is defined as in the above description.
If CrptOA is not queried, the group signature is secure against misidentifi-

cation attack [26].
If CrptOA is queried, the group signature is traceable in the sense of [20].
We define a group signature GS is traceable if CrptOA is queried in the above

game, i.e., the corresponding experiment is defined as in Table 12.

Experiment ExptraceGS,A(k)

(gpk, ik, ok)
$←− Setup(1k); CU ← ∅, HU ← ∅;

(m,σ)
$←− A(gpk : CrptOA, CrptU, SndToI, RReg).

If GVer(gpk,m, σ) = 0, return 0,else (i, τ)← Open(gpk, ok,Reg,m, σ).
If i = 0 or (Judge(gpk, reg,m, σ, τ) = 0 and i ∈ CU) then return 1, else return 0.

Table 12. Traceability.

20

Non-frameability. Imagine a polynomial time adversary A, whose goal is
to produce a valid group signature (m,σ), the output of Open on which points
to an existing honest member ih and the result passes Judge.

Naturally the adversary A might want to get the group signing keys of some
group members (through oracle USK); it might want to obtain some group
signatures signed by some honest group members (through oracle GSig); it might
want to see some outputs of OA (through oracle Open); it might also try to
corrupt some group members by running Join with IA (through oracles CrptU
and SndToI); it might observe the communication of some honest members
joining in (through SndToU if CrptIA is queried, not available otherwise); it
might wait until more group members has joined in (through AddU); it might
want to write to, read from, Reg (through oracles WReg, RReg); or A might
corrupt OA or IA directly (through oracle CrptOA and CrptIA). Obviously A
should not be allowed to query CrptU (ih), SndToI (ih,.), USK (ih).

A group signature GS is non-frameable if the probability for any polynomial
time adversary to win is negligible, i.e., the value of AdvnfGS,A defined below is
negligible.

AdvnfGS,A(k) = Pr{ExpnfGS,A(k) = 1},

where experiment ExpnfGS,A(k) is defined as in the above description.
If CrptIA and CrptOA are queried, the group signature is secure against

framing attack [26] or non-frameable [20].
We define a group signature GS is non-frameable if CrptIA, CrptOA are

queried in the above game, and the corresponding experiment is defined as in
Table 13.

Experiment ExpnfGS,A(k)

(gpk, ik, ok)
$←− Setup(1k); CU ← ∅, HU ← ∅, GSet← ∅;

(m,σ, i, τ)
$←− A(gpk : CrptIA, CrptOA, SndToU, GSig, USK, WReg).

If GVer(gpk,m, σ) = 0, return 0.
Else if i ∈ HU and Judge(gpk, reg,m, σ, τ) = 1
and (i,m, .) /∈ GSet, return 1, else return 0.

Table 13. Non-frameability.

Definition 10 A group signature scheme is secure if it is anonymous, traceable
and non-frameable.

C Security Proofs of the Generic Construction

C.1 Proof of Lemma 2

Note that the difference between our construction 4 and the generic construction
in [20] is that, our ultimate group signature is σ = (C,Ξ ′, π1) = (Enc(pke, pki, ri),

21

Ξ ′, π1), where π1 is a proof of knowledge of (ski, Υ ′, ri) satisfying Ver(pks,
ski, (Υ ′, Ξ ′)) = 1 and C = Enc(pke, f(ski), ri); while the ultimate group sig-
nature of [20] is σ = (C, π1) = (Enc(pke, < i, pki, Υ, Ξ, s >, ri), π1), where
s = S(ski,m) and π1 is a proof of knowledge of (pki, Υ, Γ, s, ri) satisfying
Ver(pks, < i, pki >, (Υ,Ξ)) = 1, C = Enc(pke, < i, pki, Υ, Ξ, s >, ri), and
V (pki,m, s) = 1. (S, V) is the signature generation and verification algorithms
of an independent signature scheme.

So we have more information to expose than [20], i.e., Ξ ′, because the signa-
ture we adopted is perfectly unlinkable, it does not affect the anonymity of the
generated group signature at all. Then we can follow the proof of [20].

The proof follows [20]. Suppose B is an adversary to anonymity of GS, it
can be invoked to construct an adversary Ac, c ∈ {0, 1} to the public encryption
scheme PE, an adversary As to simulation soundness of (P1, V1), adversaries
D1 and D2 to zero-knowledge of P1 and P2 respectively, these adversaries will
answer the oracle queries from B.

Description of Ac. Ac is given the public key pke and accesses to oracles
ChPE(b, ., .) and Dec(ske, .).
Ac selects keys (pks, sks) for DS, chooses common reference strings (R,R1, R2)

for proofs P, SIM1, SIM2. Ac gives gpk = (pke, pks, R,R1, R2) to B. Ac answers
oracle queries from B as follows:

CrptIA: returns sks.
Open (m, σ): If (m,σ) = (m,C,Ξ ′, π1) is valid and C is not returned by

Ch(c, ., .), queries oracle Dec(ske, .), and generates a simulation proof for ρ2.
SndToU (i,.): Runs algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski, Υ, Ξ), deletes i from HU and adds i to the cor-

rupted member set CU .
Ch(c, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input

(gpk, gskic ,m) except that the encryption is replaced by the response from a
query to ChPE(b,M0,M1) (Mc = (pkic), Mc = (0|Mc|)), and the proof for ρ1 is
replaced by SIM1.

WReg (i, s): If i is a new member, sets regi = s.
Ac outputs what B outputs unless B has generated a new group signature

(m, σ̂)=(m,C, Ξ̂, π̂) from the challenge (m,σ)=(m,C,Ξ ′, π1), in which case Ac
outputs c.

Description of As. As is given the common reference string R1 of SIM1

and access to oracle SIM1.
As setups GS as in algorithm Setup except that P2 is replaced by its simu-

lation SIM2.
As gives gpk = (pke, pks, R,R1, R2) to B. As answers oracle queries from B

as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) = (m,C,Ξ ′, π1), is valid and C is not returned by

Ch(b, ., .), runs algorithm Open since As knows ok(= ske), and generates a
simulation proof for ρ2.

SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .

22

USK (i): Returns (pki, ski, Υ, Ξ), deletes i from HU and adds i to the cor-
rupted member set CU .

Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input
(gpk, gski1 ,m) except that always encrypts M0 = (0|pk1|) no matter the value
of b, and the proof for ρ1 is replaced by the response from a query to SIM1,
returns (C,Ξ ′, π1).

WReg (i, s): If i is a new member, sets regi = s.
As fails unless B has generated a new group signature (m, σ̂) = (m, C, Ξ̂,

π̂) from the challenge (m, σ) = (m, C, Ξ ′, π1), in which case As outputs (pke,
pks, m, C, Ξ̂) and π̂.

Description of D1. D1 is given the common reference string R1, and access
to oracle Prove1(.) which may be P1 or SIM1.
D1 setups GS as in algorithm Setup except that P2 is replaced by a simulation

SIM2.
D1 gives gpk = (pke, pks, R,R1, R2) to B and answers oracle queries from B

as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) is valid, runs algorithm Open since D1 knows ok(=

ske), and generates a simulation proof for ρ2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski, Υ, Ξ), deletes i from HU and adds i to the cor-

rupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input

(gpk, gskib ,m) except that generates π1 by querying oracle Prove1.
WReg (i, s): If i is a new member, sets regi = s.
D1 returns 1 if output of B equals b, returns 0 otherwise.
Description of D2. D2 is given the common reference string R2, and access

to oracle Prove2(.) which may be P2 or SIM2.
D2 setups GS as in algorithm Setup.
D2 gives gpk = (pke, pks, R,R1, R2) to B and answers oracle queries from B

as follows:
CrptIA: returns sks.
Open (m, σ): If (m,σ) is valid, runs algorithm Open since D2 knows ok(=

ske), and generates the proof for ρ2 by querying oracle Prove2.
SndToU (i,.): Runs as algorithm Join, adds i to the honest member set HU .
USK (i): Returns (pki, ski, Υ, Ξ), deletes i from HU and adds i to the cor-

rupted member set CU .
Ch(b, i0, i1): If i0, i1 are existing members, runs algorithm GSig on input

(gpk, gskib ,m).
WReg (i, s): If i is a new member, sets regi = s.
D2 returns 1 if output of B equals b, returns 0 otherwise.
It follows from the same analysis in [20] that

AdvanonGS,B(k) ≤Advind−ccaPE,A0
(k) + Advind−ccaPE,A1

(k) + AdvssSIM1,As(k)

+ 2(AdvzkP1,SIM1,D1
(k) + AdvzkP2,SIM2,D2

(k)).

23

C.2 Proof of Lemma 3

The proof follows [20]. Suppose B is an adversary to traceability of GS, it can
be invoked to construct an adversary Ads to the digital signature scheme DS,
the adversary will answer the oracle queries from B.

Description of Ads. Ads is given the public key pks and access to oracle
Sig(sks, .).
Ads selects keys (pke, ske) for PE, chooses common reference stringsR,R1, R2

for relation ρ, ρ1 and ρ2 respectively. Ads gives gpk = (pke, pks, R,R1, R2) to B.
Ads answers oracle queries from B as follows:

CrptOA: returns ske.
CrptU (i): If i is not a group member yet, adds i to the corrupted members

set CU .
SndToI (i,.): Parses the input into (pki, π) from which extracts ski using

the online extractor algorithm K of (P, V) by manipulating the random oracle,
queries oracle Sig(sks, ski).

RReg (i): If i exists in Reg, returns regi.
If B wins with non-negligible probability, i.e., outputs a valid group signature

(m,σ) = (m,C,Ξ ′, π1) and i = 0, where (i, τ)← Open(ske,m, σ). Another case
that i > 0 will not occur because of the correctness of GS and the assumptions
for GS in our model (Appendix B).

From generalized forking lemma [26], (GVer be the predicate), in random
oracle model, there exist (m,C,Ξ ′, c, s), (m,C,Ξ ′, c′, s′) from which (w, Υ ′, r)
can be extracted, (Υ ′, Ξ ′) is a valid DS signature on w, and w is not queried to
Sig(sks, .).

It follows from the same analysis in [20] that

AdvtraceGS,B(k) ≤ 2−k + AdvwUF−acmaDS,Ads (k).

C.3 Proof of Lemma 4

The proof follows [20]. Suppose B is an adversary to non-frameability of GS, it
can be invoked to construct an adversary Af to the one way function f , the
adversary will answer the oracle queries from B.

Description of Af . Af is given y in the range of the one way function f .
Af sets up GS as in algorithm Setup, selects a random variable ι ∈ [1, n(k)],

n(k) is the maximum number of queries from B.
Af gives gpk = (pke, pks, R,R1, R2) to B and answers oracle queries from B

as follows:
CrptIA: returns sks.
CrptOA: returns ske.
SndToU (i,.): If i = ι, sets pki = y, and runs Join by simulating a proof for

relation ρ; otherwise runs exactly as algorithm Join. Then adds i to the honest
member set HU .

USK (i): If i = ι, Af stops and restarts again; otherwise if i ∈ HU , returns
(pki, ski, Υ, Ξ), deletes i from HU and adds i to the corrupted member set CU .

24

GSig (i, m): If i ∈ HU and i = ι, runs algorithm GSig except that replacing
proof P1 by the simulation SIM1; otherwise if i ∈ HU , runs GSig exactly.
GSet← GSet ∪ {(i,m, σ)}.

WReg (i, s): If i is a new member, sets regi = s.
Af returns 1 if B outputs a valid group signature that (ι,m, σ) /∈ GSet and

Judge(gpk, reg, m,σ, τ) = 1 where (ι, τ) = Open(m,σ).
Parse (ι,m, σ) into (ι,m,C,Ξ ′, c, s), then there exist (ι,m,C,Ξ ′, c, s), (m,C,

Ξ ′, c′, s′) in random oracle model according to generalized forking lemma [26],
(GVer be the predicate), so (w, Υ ′, r) can be extracted, where (Υ ′, Ξ ′) is a valid
DS signature on w, and f(w) = y.

It follows from a similar analysis in [20] that AdvnfGS,B(k) ≤ ε(k)+n(k)Advowf,Af (k),
where ε(k) is negligible.

D A Note on Some Group Signatures and Anonymous
Credentials from Bilinear Maps

We show that some group signature schemes and anonymous credentials from
bilinear maps are flawed, in particular, any one other than valid group members
can also generate valid group signatures. We also provide a fix to some of the
flawed schemes.

D.1 Review of Camenisch-Lysyanskaya’s Scheme

Camenisch-Lysyanskaya’s group signature scheme is based on the following basic
signature scheme:

Scheme A in [6].
Let G1 = 〈g〉 be p order cyclic groups that there exists a bilinear map e :

G1 ×G1 → G2.

– Gen. x, y $←− Z∗p , sk = (x, y), X = gx, Y = gy, pk = (p, g, g, G1, G2, e, X, Y).

– Sig. d $←− G1, σ = (d, dy, dx+mxy).

– Ver. Given m, σ = (a, b, c), check if e(a, Y) = e(b, g) and e(a, X)e(b,
X)m = e(c, g).

To obtain a group signature, the above signature is firstly modified into the
following scheme with randomization (as described in [29]).

– Sig. d $←− G1, s $←− Z∗p , σ = (s, ds, dsy, dx+mxy).

– Ver. Given m, σ = (s, a, b, c), check if e(a, Y) = e(b, g) and e(a, X)e(b,
X)m = e(c, g)s.

25

– Rnd. Given m, σ = (s, a, b, c), r1, r2
$←− Z∗p , σ′ = (s′, a′, b′, c′) = (r2s, ar1r2 ,

br1r2 , cr1).

The group signature is as follows: a group member chooses a member secret
key k, sends gk to the group manager; the group manager signs on k as above
to get (s, a, b, c), i.e., the member certificate; to generate a group signature,
the member firstly randomizes his member certificate to get (s′, a′, b′, c′), then
encrypts e(gk, g) using Cramer-Shoup’s encryption scheme into (c1, c2, c3, c4),
and computes the following proof of signature:

Σ = SK{(k, s, u) :e(a′, X̃)e(b′, X̃)k = e(c′, g)s, c1 = gu, c2 = hu, c3 = y1
ugk,

c4 = (y2y
H(c1,c2,c3)
3)u}(m),

where u is a random value chosen by the encryption scheme, and g, h, y1, y2, y3

are public key of the encryption scheme.
A group signature consists of (a′, b′, c′, c1, c2, c3, c4, Σ) and is valid if Σ is

valid and if e(a′, Y) = e(b, g) holds.

Forgery of Camenisch-Lysyanskaya’s Scheme The flaw of Camenisch-
Lysyanskaya’s scheme is that any one can generate a valid signature on 0 given
the public key of Scheme A: a = gr, b = Y r, c = Xr, where r is randomly chosen
from Z∗p . So is the case of Scheme B, C, D in [6].

To obtain a forgery of the group signature, the adversary computes a = grs,
b = Y rs, c = Xr, where r, s are randomly chosen from Z∗p , sets (s, a, b, c) as
his member certificate; to generate a group signature, the adversary does the
subsequent procedure as exactly as a valid group member. It is easy to see
that the forgery is successful because verifiers can not distinguish a proof of
knowledge of a zero value from any non-zero values. A similar forgery exists for
the anonymous credential scheme in [6].

D.2 Review of Zhou-Lin’s Schemes

The VLR Group Signature Scheme The Verifier-Local Revocation group
signature in [19] is based on the following basic signature scheme.

Scheme 1 Let G1, G2, G3 and bilinear map e be as described above.

– Gen. Select (x, y) $←− Z∗p × Z∗p , x 6= y, set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y.
The secret key is (x, y), public key is (X,Y, X̃, Ỹ , g, g̃, e, p).

– Sig. Given a message m ∈ Z∗p , its signature is (U, V), where U = gr, V =

gr(x+my)+xy, r $←− Z∗p \ {1}.
– Ver. Given a signature (U, V) of m, check if e(V, g̃) = e(U, X̃Ỹ m)e(X, Ỹ). If

the equation holds, then accept (U, V) as a valid signature of m, otherwise
reject it as invalid.

26

– Rnd. Given a signature (U ,V) of m, U ′ = Ugr
′
, V ′ = V (XY m)r

′
, where

r′
$←− Z∗p .

The VLR group signature is : a group member chooses his secret key k, com-
mits it (without information theoretic hiding) to C = Y k. The group manager,
as the signer of Scheme 1, signs blindly on k, i.e., outputs (U , V) as the mem-
ber certificate. When the group member is asked to produce a group signature
of a message, he firstly randomizes his member certificate to get (U ′, V ′), then
generates a proof of signature of k:

Σ = SK{k : e(V ′, g̃) = e(U ′, X̃Ỹ k)e(X, Ỹ)}(m).

The Full Group Signature Scheme One of the full group signature schemes
in [29] is based on the following signature that is a generalization of Scheme 1.

Scheme 2 Let G1, G2, G3 and bilinear map e be as described above.

– Gen. Select (x, y) $←− Z∗p × Z∗p , set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y. The
secret key is sk = (x, y), public key is pk = (X, Y , X̃, Ỹ , g, g̃, e, p).

– Sig. Given a message m ∈ Z∗p , its signature is σ = (a, b) = (gr, gr(x+my)+sx+xy),

where (r, s) $←− Z∗p × Zp.
– Ver. Given a signature σ = (s, a, b) of m, check if e(b, g̃) = e(a, X̃Ỹ m)e(X,
Ỹ)e(X, g̃)s. If the equation holds, then accept σ as a valid signature of m,
otherwise reject it as invalid.

– Rnd. On input pk, message m, and a signature σ = (s, a, b), choose random
r1, r2 ∈ Zp × Zp, output (s′, a′, b′) = (s+ r1, ag

r2 , b(XY m)r2Xr1).

The group signature is as follows: a group member chooses a member secret
key k, sends gk to the group manager; the group manager signs on k as above
to get (s, a, b), i.e., the member certificate; to generate a group signature, the
member firstly randomizes his member certificate to get (s′, a′, b′), then encrypts
gk using an appropriate encryption scheme into C, and computes the following
proof of signature:

Σ = SK{(k, s, ...) : e(b′, g̃) = e(a′, X̃)e(a′, Ỹ)ke(X, Ỹ)s, ...}(m),

where “...” is to be determined by the specific encryption scheme. A group
signature consists of (a′, b′, C,Σ) and is valid if Σ is valid.

Forgeries As the flaw in Camenisch-Lysyanskaya’s scheme, any one can gener-
ate a valid signature on 0 given the public key of Scheme 1: a = grY −1, b = Xr,
where r is randomly chosen from Z∗p .

Similarly any one can generate a valid signature on 0 given the public key of
Scheme 2: a = grY −1, b = Xr+s, where r, s are randomly chosen from Z∗p .

27

D.3 Fixes

The reason of the above forgeries is that for a standard signature as Camenisch-
Lysyanskaya’s Scheme and Scheme 1, 2, the message space is limited to Z∗p ; so the
the resulting group signature should include a proof of knowledge of k 6= 0 mod p
but were neglected in the original proposals.

So a natural method to fix the above flaws is modifying the concerned proofs
of signature so that k 6= 0 mod p is included. But that will make the implemen-
tation of the proof of signature less efficient for no such efficient proof techniques
have been provided.

The method adopted in [9] is modifying the Scheme A in [6] into a new sig-
nature scheme CL+ so that a forgery of certificate on 0 could be easily detected:
a signature on m has the form of (a, ay, ax+xym, am, amy), and the underlying
groups are limited to SXDDH groups, i.e., DDH should be hard on both groups
G1 and G2. Thus the forgery of a group signature from valid underlying signa-
ture on 0 can be found by checking if the fourth element is 1 (in Zp). But this
method is not sufficient for a full group signature scheme with strong anonymity.

A better method would be enhancing the message space of the underlying
signature scheme into the whole space Zp. Inspired by the scheme in [30], the
flawed group signatures can be fixed by the following method: add a public key
T = e(z, g̃), a secret key z; the member certificate becomes (Û , V̂)=(U, V z) in
the VLR scheme (Section D.2) and (ŝ, â, b̂) = (s, a, bz) in the full scheme (Section
D.2); the corresponding proof of signature becomes

SK{k : e(V̂ , g̃) = Te(Û , X̃Ỹ k)e(X, Ỹ)}(m)

and
SK{(k, s, ...) : e(b̂, g̃) = Te(â, X̃)e(â, Ỹ)ke(X, Ỹ)s, ...}(m).

As for the schemes in [6], the randomization algorithm Rnd should also be
modified:

– Sig. d $←− G1, s $←− Z∗p , σ = (s, ds, dsy, dx+mxyz).

– Ver. Given m, σ = (s, a, b, c), check if e(a, Y) = e(b, g) and e(a, X)e(b,
X)mT = e(c, g)s.

– Rnd. Given m, σ = (s, a, b, c), r1, r2
$←− Zp, σ′ = (s′, a′, b′, c′) =

(r2s, ar2gsr1r2 , br2Y sr1r2 , cXr1).

Alternatively the VLR scheme (Section D.2) and the full scheme (Section
D.2) can be fixed by directly substituting z for xy in the underlying signatures,
as described in the following taking the full scheme as an example:

– Gen. Select (x, y, z) $←− Z∗p
3, set X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y. The

secret key is sk = (x, y, z), public key is pk = (X, Y , X̃, Ỹ , g, g̃, e, p, T),
where T = e(gz, g̃).

28

– Sig. Given a messagem ∈ Z∗p , its signature is σ = (a, b) = (gr, gr(x+my)+sx+z),

where (r, s) $←− Z∗p × Zp.

– Ver. Given a signature σ = (s, a, b) of m, check if e(b, g̃) = e(a, X̃Ỹ m)e(X,
g̃)sT . If the equation holds, then accept σ as a valid signature of m, other-
wise reject it as invalid.

– Rnd. On input pk, message m, and a signature σ = (s, a, b), choose random
r1, r2 ∈ Zp × Zp, output (s′, a′, b′) = (s+ r1, ag

r2 , b(XY m)r2Xr1).

