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Abstract

The new symmetric cipher S-box construction based on matrix power function is presented.
The matrix consisting of plain data bit strings is combined with three round key matrices using
arithmetical addition and exponent operations. The matrix power means the matrix powered by
other matrix. The left and right side matrix powers are introduced. This operation is linked with
two sound one-way functions: the discrete logarithm problem and decomposition problem. The
latter is used in the infinite non-commutative group based public key cryptosystems. It is shown
that generic S-box equations are not transferable to the multivariate polynomial equations in
respect of input and key variables and hence the algebraic attack to determine the key variables
cannot be applied in this case. The mathematical description of proposed S-box in its nature
possesses a good “confusion and diffusion” properties and contains variables “of a complex type”
as was formulated by Shannon.

Some comparative simulation results are presented.

Keywords: symmetric cipher, S-box, matrix power, one-way function (OWF), resistance to
algebraic attack

1 Introduction

As it is known, the design criteria for the block ciphers as for other cryptographic systems are related
with the known cryptanalytic attacks. It is essential that after the new attack invention the old
design criteria must be changed. The new attack is the algebraic attack declared in (Schaumuller
– Bihl, 1983) and developed in (Courtois and Pieprzyk, 2002).

The old design criteria were oriented to the most powerful attacks such as linear and differ-
ential and were successfully satisfied for the several known ciphers, for example AES, Serpent,
Camellia Misty/Kasumi etc. It was shown that the non-linearity properties of the inverse function
in GF (2n) used as a single non-linear component in AES are close to optimality with respect to
linear, differential and higher-order differential attacks (Canteaut and Videau, 2002).

But nevertheless it is shown that many known “optimal” ciphers have a very simple algebraic
structure and are potentially vulnerable to the algebraic attack (Courtois and Pieprzyk, 2002). The
vulnerability is related to S-box description by implicit input/output and key variables algebraic
equations of polynomial type. For example the AES can be described by the system of multivariate
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quadratic equations in GF (28) for which the XL or XSL attack can be applied in principle. The
algebraic cryptanalysis methods are based on the creation of overdefined system of algebraic equa-
tions describing the cipher’s input/output variables and the round key. It is required the equations
to be of polynomial type. Then there is a principal opportunity to find the solution of these equa-
tions by some feasible algorithm that might be of sub-exponential time and recover the key from a
few plaintext/ciphertext pairs.

The algebraic attack changes some old security postulates (Courtois, 2005):

1. The complexity is no longer condemned to grow exponentially with the number of rounds.

2. The number of required plaintexts may be quite small (e.g. 1).

3. The wide trail strategy should have no impact whatsoever for the complexity of the attack.

Despite the fact that there are no practical results of breaking the entire AES by algebraic attack
yet, it is sensible to build the new design methods possessing a higher resistance to algebraic attack.
According to Courtois the design of ciphers will never be the same again and this is supported by
the declared new ideas for the S-box construction laying on the sufficiently large random S-boxes
to prevent all algebraic attacks one can think (Courtois et al., 2005).

The other helpful ideas could be found by looking back to the origin (Shannon, 1949). According
to Shannon, the complexity of breaking a secure cipher should require “. . . as much work as solving
a system of simultaneous equations in a large number of unknowns of a complex type”.

We would like to present here a certain interpretation and realization of Shannon, Courtois
and Pieprzyk complexity vision. In general, it is desirable the complexity of solving a system of
equations to be at least NP-hard. We propose here a certain S-box construction where input and
key variables seems to be “of a complex type” since the equations containing these variables are not
an algebraic ones. We think that Shannon’s principle of confusion and diffusion is also realized in
our S-box construction. It is related with the mixing principle of ergodic theory and can be realized
by two non-commutative operations. Actually the same is done in our S-box construction.

According to (Impagliazzo and Luby, 1989) with given any secure private key encryption scheme
one can construct a one-way function (OWF). The following theorem was proved (Goldwasser and
Bellare, 2001): there exists a secure private key encryption scheme if and only if there exists a
one-way function.

With reference to this theorem we would like to present S-box construction for the symmetric
key cipher. The starting point is a particular OWF postulation. Further this OWF is used for the
S-box construction.

One of postulated and traditional OWF is the modular exponent which inversion corresponds to
the discrete logarithm problem (DLP) (Menezes et al., 1997). We present here some generalization
of this OWF using a matrix group action problem in vectorial Galois field GFm(2n). The idea to
use the group or semigroup action problem in vectorial spaces for the asymmetric cryptographic
primitives’ construction can be found in (Monico, 2002). We have generalized this approach and
applied it to our S-box construction. As a result we have obtained some OWF which is linked
not only with a classical DLP but also with so called decomposition problem (DP), used in the
asymmetric cryptosystems based on the hard problems in infinite non-commutative groups (Sh-
pilrain and Ushakov, 2005). The same kind of DP is used also in two digital signature schemes
construction (Sakalauskas, 2004) and (Sakalauskas, 2005).
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We use the procedure of cipher key expansion to the round key and the latter is a little more
than three times longer than the plain data block. Key schedule can be realized by the pseudo
random number generator. The round key consists of three matrices. One of them is over GF (2n−1)
and two of them are over GF (2n). The latter matrices must be invertible. Some remarks on this
issue are presented in section 5.

The presented S-box is investigated with respect to the algebraic cryptanalysis (Courtois and
Pieprzyk, 2002). It is shown that the equations describing the S-box input/output and round key
variables are not polynomial and hence the XL or XSL methods do not suit in this case.

Some simulation results are presented for low dimensional example which is compared with
known APN power functions of Gold, Kasami and inverse type.

2 Preliminaries

Let us consider a set of binary strings of length (n−1) denoted by Fn−1
2 = {0, 1}n−1. The arithmetic

addition operation between two strings can yield the string of the same length or of the length n.
For example when n = 3, a = 01 and b = 10 the arithmetic addition of a and b gives 11, i.e.
01 + 10 = 11. If a = 11, then a + b = 11 + 10 = 101.

The set Fn
2 = {0, 1}n we can interpret as n-dimensional vector space over F2 = {0, 1}. According

to (Logachev et al., 2004) there is a natural isomorphism between the Fn
2 and Galois field GF (2n).

Hence any element a ∈ Fn
2 we interpret in the following ways: as an integer number represented by

the binary string; as an element of a vector space Fn
2 ; and as an element of GF (2n). The chosen

interpretation will be clear from the context.
Let us define a m×m matrices over GF (2n). The set of all matrices over GF (2n) we denote as

M . We do not introduce any internal operations in the set M . For further considerations we are
interested only in external operations performed in this set.

Let MG ⊂ M be a group of matrices over GF (2n) with the commonly defined matrix multipli-
cation operation and matrix inverse.

We now introduce a matrix group MG left and right action operations in the set M , denoted by
◦L and ◦R respectively. In a formal way ◦L is a mapping ◦L : MG×M → M and ◦R : M×MG → M .
Then ∀L,R ∈ MG and ∀X ∈ M there exist some Y, Z ∈ M such that L ◦X = Y and X ◦ R = Z.
Further for the simplicity the symbols ◦L and ◦R are omitted and replaced by the common action
operation ◦ which assignment to ◦L and ◦R is clear from the context.

The elements of matrices L, X, R, Y , Z we denote by the indexed set of its elements respectively,
e.g. by {xij} we denote matrix X.

We have chosen the following action operations which can be written for the matrix equation
L ◦X = Y elements

yij =
m∏

s=1

xlis
sj , (1)

and for the matrix equation X ◦R = Z elements

zij =
m∏

t=1

x
rtj

it . (2)

The multiplication and power operations are performed using GF (2n) arithmetics.
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Example 1. To give a simple example, let us assume that matrices have two rows and two
columns, i.e. m = 2.

In this case, matrix Y can be expressed in the following way

Y = L ◦X =

(
l11 l12

l21 l22

)
◦
(

x11 x12

x21 x22

)
=

(
xl11

11 xl12
21 xl11

12 xl12
22

xl21
11 xl22

21 xl21
12 xl22

22

)
.

Matrix Z can be expressed in the following way

Z = X ◦R =

(
x11 x12

x21 x22

)
◦
(

r11 r12

r21 r22

)
=

(
xr11

11 xr21
12 xr12

11 xr22
12

xr11
21 xr21

22 xr12
21 xr22

22

)
.

3 S-box construction

The S-box input data we denote by matrix D with elements being binary strings in vector space
Fn−1

2 . Using the certain key expansion procedure we can generate the round keys: matrix K over
Fn−1

2 and matrices L,R ∈ MG. Input/output and key matrices are all of the same m×m size.
S-box transformations of input data D to ciphered output data C are performed as following

D + K + 1 = X, (3)

L ◦X ◦R = C, (4)

where D + K + 1 denotes the arithmetical addition of matrices with elements of binary strings in
Fn

2 ; 1 is the matrix consisting of arithmetical unity elements in Fn
2 . Combining (3) and (4) we

obtain

L ◦ (D + K + 1) ◦R = C, (5)

From (3) we obtain a matrix X ∈ MZ which does not contain zero elements, i.e. is without zero
binary strings. By left-right action of matrix X with matrices L,R ∈ MG we obtain a ciphered
data C being a matrix in MZ . We can write now the implicit formula for an element cij

cij =
m∏

t=1

m∏
s=1

x
lis·rtj

st =
m∏

t=1

m∏
s=1

(dst + kst + 1)lisrtj (6)

where 1 is a bit string corresponding to arithmetical unit in Fn
2 .

Since MG is a group of matrices, then there exists the inverse matrix R−1 such that RR−1 =
R−1R = I, where I is the identity matrix. Then instead of using R we will use the R−1 for the
symmetry in this section.

The encryption operator corresponding to this S-box and depending of the round keys K, L,
R−1 we denote by ER′LK . Symbolically, using (6), the encryption procedure can be written by the
relation

ER′LK(D) = C. (7)

Example 2. Continuing previous example ciphered data matrix can be expressed like this one
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C = L ◦ (D + K + 1) ◦R′ =

=

(
l11 l12

l21 l22

)
◦
((

d11 d12

d21 d22

)
+

(
k11 k12

k21 k22

)
+

(
1 1
1 1

))
◦
(

r′11 r′12
r′21 r′22

)
=

=

(
l11 l12

l21 l22

)
◦
(

d11 + k11 + 1 d12 + k12 + 1
d21 + k21 + 1 d22 + k22 + 1

)
◦
(

r′11 r′12
r′21 r′22

)
,

here D is a S-box input data (plain data) matrix. From this expression we can express the cipher
data matrix elements

c11 = (d11 + k11 + 1)l11r′11(d12 + k12 + 1)l11r′21(d21 + k21 + 1)l12r′11(d22 + k22 + 1)l12r′21 ,

c12 = (d11 + k11 + 1)l11r′12(d12 + k12 + 1)l11r′22(d21 + k21 + 1)l12r′12(d22 + k22 + 1)l12r′22 ,

c21 = (d11 + k11 + 1)l21r′11(d12 + k12 + 1)l21r′21(d21 + k21 + 1)l22r′11(d22 + k22 + 1)l22r′21 ,

c22 = (d11 + k11 + 1)l21r′12(d12 + k12 + 1)l21r′12(d21 + k21 + 1)l22r′12(d22 + k22 + 1)l22r′22 .

Formally the decryption operator is E−1
R′LK = DK′L′R. We can write the following relations for

deciphering

DK′L′R(C) = DK′L′R(ER′LK(D)) =
= DK′L′R(L ◦ (D + K + 1) ◦R−1) =
= DK′L′(L ◦ (D + K + 1) ◦R−1 ◦R) =
= DK′L′(L ◦ (D + K + 1)) =
= DK′(L−1 ◦ L ◦ (D + K + 1)) =
= DK′(D + K + 1) =
= D + K + 1−K − 1 = D.

We have obtained that

DK′L′R(C) = D, (8)

when assumed that indexes L′ and R′ act as matrices L−1 and R−1 respectively and K ′ is expressed
as additive inverse, i.e. as (−K − 1) matrix.

For the validity of last equations the left-right action operations must satisfy the following
properties:

1. The action operations must be associative, i.e.

L ◦ (X ◦R) = (L ◦X) ◦R.

2. The action operations are both left and right invertible, i.e.

L−1 ◦ (L ◦X) = (L−1L) ◦X = I ◦X = X,

(X ◦R−1) ◦R = X ◦ (R−1R) = X ◦ I = X.
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Theorem 1. The action operations are associative.
Theorem 2. The action operations are both left and right invertible.
The proof of these theorems follows from the equation (6), matrix multiplication rule and inverse

matrix definition.
So we have defined valid encryption-decryption operators.

4 The security considerations

Security was considered from two points of view. The first one is a consideration of generic S-box
equations and their natural link with some sound one-way functions used in asymmetric cryptog-
raphy. The second one is the security analysis against known cryptanalytic attacks to the block
ciphers.

The proposed S-box uses the generalization of traditional modular exponent function which is
recognized as an OWF.

Some generalization of modular exponent is presented in (Monico, 2002) by introducing a group
or semigroup action operation in vector space. According to the author, the inverse action problem
is harder than classical DLP. Hence when using this group action problem we can reduce the value
of prime p for the Galois field GF (p).

In this paper we generalized the approach presented in (Monico, 2002) by introducing a left-
right group MG actions in the matrices set M , as matrix powers functions on elements of M . In
other words the matrix in M is powered by matrix from MG. The powering can be performed
either from the left or from the right side.

This action can be treated as a generalization of both classical DLP and DLP presented in
(Monico, 2002). The introduced action operation we name a matrix power and related OWF as
matrix power OWF. Then the OWF inversion problem might be called correspondingly as matrix
power DLP.

It can be seen that the constructed matrix power OWF is linked with the other kind of hard prob-
lem known as decomposition problem (DP) in cryptosystems based on the infinite non-commutative
groups (Shpilrain and Ushakov, 2005). The examples of using DP in the digital signature schemes
based on infinite non-commutative group representation level can be found in (Sakalauskas, 2004)
and (Sakalauskas, 2005). Using our notations, this problem can be stated as follows: by having X
and C in M , find L and R in MG from (4). Hence this DP is not equivalent to the classical matrix
DP. The introduced DP we call the matrix power DP. Then the security of constructed S-box relies
on the two simultaneous problems: the classical DLP and matrix power DP.

To determine the secret keys an adversary must simultaneously solve the system of (3) and (4)
matrices equations. The first equation is a linear, and the second one is a non-linear equation with
a simultaneous solution of classical DLP and matrix power DP.

Let us discuss the second approach of security consideration. We do not theoretically consider
the linear, differential or higher order differential attacks for the proposed S-box. First of all our
aim is to investigate the proposed S-box security against algebraic attack. The idea of algebraic
attack was presented in (Shaumuller – Bihl, 1982). The development of algebraic attack for some
known block ciphers, i.e. AES, Serpent, Camellia etc., was presented in (Courtois and Pieprzyk,
2002). As it is known the algebraic attack is based on S-box description by algebraic equations
relating plain data, cipher data and round keys. In general, the algebraic attack is applied to S-box
modeled as discrete input/output system described by the system of algebraic relations. The aim
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of algebraic attack is to find a key variables by solving the S-box system of equations having one
or more plaintext/ciphertext pairs.

For example the algebraic structure was constructed for AES and other ciphers (Murphy and
Robshaw, 2002), (Courtois and Pieprzyk, 2002), (Murphy and Robshaw, 2003), (Biryukov and
Canniere, 2003), (Cheon and Lee, 2004), (Courtois, 2004), (Courtois et al., 2005).

The main mathematical tools for the algebraic cryptanalysis are the XL algorithm (Courtois et
al., 2000) and its improved version – the XSL algorithm (Courtois and Pieprzyk, 2002) and (Cid
and Leurent, 2005). These methods are using the simple generic algebraic structure of ciphers
listed above. For example AES applies the inverse exponent function and hence can be described
by the overdefined multivariate quadratic polynomial system of equations. The XL (XSL) method
allows the construction of overdefined system of equations which can be solved by the linearization
method. Despite the conjecture that the solution of obtained system of equations is NP-hard, but
nevertheless the algebraic attack has a great potential threat to the ciphers listed above.

Let us turn again to the system (6) of m2 equations. We can say that to perform the XL (XSL)
attack this system must be transformed to certain system of multivariate polynomial equations.
Let us consider the problem to obtain a system of multivariate polynomial equations with respect
to the key variables. Each equation in (3) provides an injective mapping Fn−1

2 × Fn−1
2 → Fn

2 \{0},
where Fn

2 \{0} is the set Fn
2 without zero element.

The system of equations defined by matrix equation (5) contains the (6) type of equations. It
is evident that those equations are not polynomial with respect to the key variables lis, rtj and
kst. there is no transformation to obtain a system of polynomial equations with respect to the key
variables from (5). Hence the XL (XSL) methods and as a consequence the conventional algebraic
attack cannot be applied when the pair of plain/cipher data D = {dst} and C = {cij} is known.

Due to the fact that generic S-box equations are not vulnerable to the recently invented algebraic
attack, there is no sense to speak about its algebraic immunity as defined in by Courtois and
Pieprzyk. But nevertheless it is interesting to compare the complexity of presented S-box with
other ones using several convenient criteria. We perform this comparison by considering our S-
box as a vector Boolean function by evaluating its algebraic normal form (ANF), estimating its
non-linearity and other cryptographic criteria. This investigation does not provide the exhausting
information about the S-box security since these equations do not contain round key variables, but
only input/output relations. Moreover, vector Boolean functions could be constructed only for the
small dimension example. We considered a Matrix power S-box having 8 inputs and 12 outputs.
This corresponds to the values m = 2 (number of rows and columns) and n = 3. For each our
S-box realization we chose the concrete matrices K, L and R of order 2 × 2 and generated the
vector Boolean functions truth table and ANF for all m2n = 12 outputs. We randomly selected
four Matrix power S-boxes denoted by Matrix power 1-4.

First of all the main two criteria characterizing the resistance to the linear and differential crypt-
analysis were calculated: differential potential and non-linearity (Pommerening, 2005), (Logachev
et al., 2004). These criteria were also calculated for the following known exponential functions:
Gold, Kasami and inverse (Courtois et al., 2005). The S-boxes corresponding to these exponents
have 8 inputs and 8 outputs. All the computations were done in GF (28). The calculation results
are presented in Table 1.

As it seems, the two traditional resistance criteria of exponent S-boxes are better than the Matrix
power S-boxes. It is no surprise, since Gold, Kasami and inverse exponents are near to optimal with
respect to these criteria and are the representatives of almost perfect nonlinear (APN) functions.
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S-box

Exponent
power

Differential
potential

Non-
linearity

Gold 17 0.008 112
Kasami 241 0.063 104
Inverse 253 0.016 112

Matrix power 1 - 0.047 92
Matrix power 2 - 0.063 94
Matrix power 3 - 0.078 94
Matrix power 4 - 0.055 94

Table 1: The comparative cryptographic criteria of different S-boxes

S-box Term degree
2 3 4 5 6 7 8

Gold 23% 8% 6% 1% 0% 0% 0%
Kasami 50% 51% 47% 45% 28% 8% 0%
Inverse 55% 47% 48% 48% 46% 47% 0%

Matrix power 1 43% 50% 44% 51% 43% 23% 0%
Matrix power 2 46% 51% 47% 52% 48% 45% 8%
Matrix power 3 51% 50% 43% 51% 46% 52% 0%
Matrix power 4 46% 48% 41% 51% 49% 48% 8%

Table 2: The average non-linear terms percentage in ANFs of 8 bits S-boxes

The other way to estimate the non-linearity of S-box expressed by vector Boolean function is to
calculate the average number of non-linear terms presented in each ANF of each degree, beginning
from the second. The average is taken for all ANFs corresponding to different outputs. The
calculation results are presented in Table 2.

As it seems the average non-linear terms number of high degree is the highest in Matrix power
S-boxes. For example, the 8% of terms of the highest degree 8 shows that among 12 outputs of
Matrix power S-box this term presents in 1 output.

The number of rows of Matrix power S-box Boolean function truth table is 2m2(n−1) and hence
we cannot choose the next toy example for m = 3 and n = 4. The truth table will have 227 rows and
this is more than the computational limit of 225 for the calculation of listed above cryptographic
criteria.

5 Implementation

The main problem for the S-box implementation is to generate random round key matrices L and
R having their inverses from the cipher key. There are a lot of means to solve this problem with
different computation efficiency. One of the method is to use the certain non-commutative group
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representation in the set of matrix group GL(m,GF (2n)). The non-commutative group is presented
by finite sets of generators and relations. Then it is required to construct representation matrices
and their inverses for each initial group generator.

For random round key generation the random group element (word) is generated and is expressed
in the terms of group generators. The pseudo random number generator can be applied. If the
matrix L is required to be obtained then the group word is transformed to the matrix L by the
representation homomorphism. If the inverse matrix R−1 is required then the inverse group word
is taken and R−1 is obtained by applying the representation homomorphism to the inverse word.
These operations are computationally effective.

We do not consider this problem in detail and postpone this construction to be described in the
next papers.

The security parameters of our S-box are m (size of matrices) and n (length of binary strings).
We reckon that the values of parameter m from the set {4, 5, 6, 7, 8} and the values of n from the set
{8, 16, 32} could be computationally effective. The higher the values of m and n, the fewer matrix
power S-boxes are required for the cipher. We think that for m = 8 and n = 32 the application of
one round could be enough.

6 Discussion

We think that proposed S-box construction is resistant for the recent algebraic attack due the
complex type of its generic equations having relations with known OWFs.

We can also notice that in essence this S-box construction simply must guarantee a good Shan-
non’s confusion and diffusion properties. This is achieved due to the left-right matrix group action
introduction in the form of matrix power. As a result a large number of unknowns of a complex
type in the generic S-box relations are also presented.
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