
Unlinkable Divisible Digital Cash without Trusted Third Party ∗

Pawel Pszona and Grzegorz Stachowiak, University of Wroclaw, Poland

July 5, 2007

Abstract

We present an efficient divisible digital cash scheme which is unlinkable and does not require
Trusted Third Party. The size of the coin is proportional to the size of the primes we use,
i.e., hundreds of bytes. The computational and communication complexity of the protocol is
proportional to a polynomial of the size of the primes and polylogarithm of the maximum
number of pieces to which a coin can be subdivided.

Keywords: digital cash, divisibility, unlinkability

1 Introduction

Electronic cash has drawn much attention since it was introduced by Chaum [8]. Its basic idea
is to provide an electronic payment scheme that ensures that the payer stays anonymous to the
merchant during a transaction, yet the payer isn’t able to cheat the merchant by spending false
(forged) coins.

Anonymity should also hold between a user and a bank (even though the bank issues the
coin, it shouldn’t be able to determine which user a payment comes from, given the transcript
of this payment). Additionally, in order to prevent the merchant from accepting a false coin,
the scheme has to force the user to prove in a sound fashion that she uses a valid coin.

The security of real cash depends on the difficulty of reproducing it. Since this is not the case
with electronic cash and a user may want to spend more than she is allowed to (this is called
double-spending), the system has to guarantee that this situation is detected and the identity
of a cheating user is disclosed.

There are two major kinds of electronic cash systems – on-line schemes (e.g. [15], [3]), where
the bank participates in each payment between a user and a merchant, and off-line schemes,
where a merchant is on his own as to decide whether to accept a payment or not. After the
payment is executed, the merchant presents the bank with a transcript of that payment and
this payment’s value is added to his bank account. Most proposed schemes are off-line, as they
seem more suitable for real world applications.

It would be nice to have a system where a coin could be transferred between users many
times before being deposited to a bank. However, as shown in [11], a transferred coin would
have to grow in size (to store all of its spending history), worsening the scheme’s efficiency.
Therefore most proposed schemes don’t support transferability.

A problem arises with the value of a payment. Many proposed schemes (e.g. [10], [2]) are
exact schemes. This means that a coin may be spent only using all of its value in a single

∗A very similar result was independently obtained by Sébastien Canard and Aline Gouget and published on
Eurocrypt 2007 (paper “Divisible E-Cash Systems Can Be Truly Anonymous”).

1



payment. Therefore, to perform a payment worth of v, one has to use separate coins whose
values add up exactly to v. It would be desirable to have some more convenient solution.

This is why the concept of divisibility was introduced [18]. It states that a coin can be
subdivided into many pieces that can be spent independently and whose values add up to the
original value of the coin. Efficient divisible electronic cash schemes enable paying any amount
of cash by running the payment protocol O(log N) times, where N is the divisibility precision.

Since its introduction, divisible digital cash was studied by many authors [7, 17, 18, 13].
Another solution is to use compact wallets [4]. Such a wallet enables storing N coins of the

same value by storing a couple of numbers of length K for which problems like factorization or
discrete logarithm are intractable (they should have a couple hundreds of bytes). Conducting
a single payment takes time proportional to poly(K) · polylog(N). However, spending multiple
coins stored in a wallet takes time linear in the number of coins being spent, which is much
worse than the complexity of a divisible scheme (with N as the divisibility precision). For
example, paying 100$ using a wallet that stores coins worth 1 cent requires 10000 executions
of a payment protocol, while in the same setting our scheme runs the payment protocol just 5
times (the number of 1’s in the binary representation of 10000).

Divisible electronic cash schemes of previous authors have their flaws as well. Most (e.g.
[17], [7]) don’t achieve unlinkability, i.e., it is easy to link all payments coming from the same
coin or user. Identifying the user remains hard from the cryptographic point of view, but
other techniques (like checking the locality of payments, their value etc.) may lead to tracing
the user without breaking the cryptosystem the scheme is based on. Nakanishi and Sugiyama
[16] proposed a scheme where payments are unlinkable (although not fully, as described in our
analysis of unlinkability). Their scheme, however, requires the existence of a trusted third party
(TTP) to identify double-spenders. This is a big drawback, because no user is anonymous to the
TTP, which contradicts the basic principle of digital cash stating that a user behaving correctly
shall never be identified.

Our work can be seen as an attempt to join the advantages of schemes presented in [4]
and [16]. Namely, we propose a scheme that supports efficient protocols and coin storage,
divisibility, anonymity, unlinkability and protection against double-spending, all without the
need for a trusted third party.

The big picture of our scheme is as follows. The withdrawal procedure is similar to the one in
[4]. Also almost the same is proving that the commitment presented by the user in a store is one
of a valid coin. We adopt the binary tree approach to the coin storage and divisible payments.
Node values in our tree are computed from the coin secret in a way similar to [16]. They are
used to assure that two payments using the same node send the same values related to the node
and thus enable detection of double-spending. These values also allow computing the values
for the node’s all descendants. Identifying a double-spender is similar to that presented in [4],
except in our protocol the double-spending equation depends on the coin secret as well as on
the node being spent. It also allows to compute double-spending equations for all descendants
of a node, therefore allowing identification of double-spenders violating the divisibility rules.

This paper is organized as follows: in Section 2 we describe the requirements for a digital
cash protocol, Section 3 gives an overview of the zero knowledge proofs used. The scheme is
presented in Section 4. Section 5 provides the security and efficiency analysis of the proposed
scheme. Section 6 concludes the paper.

2 Requirements

We now briefly describe the conditions that we think an unlinkable divisible digital cash scheme
should satisfy. The list (based on [16]) is as follows:

2



Anonymity. The payer who didn’t violate the protocol can’t be identified from the information
sent during payment.

Unlinkability. It’s infeasible to link any two payments executed by the same user (even without
learning the payer’s identity), unless the payments lead to double-spending.

Unforgeability. Neither a coin nor a transcript of a payment of an honest user can be forged.

Exculpability. A user can be identified as a double-spender only if she really is guilty. Addi-
tionally, even if a user was caught double-spending, she is only responsible for payments
she indeed double-spent (i.e., she cannot be framed into making other payments).

Divisibility. User can perform any payment worth no more than the coin’s total value (as long
as it is a multiplicity of the minimal value subdivided from the coin).

No double-spending. All double-spending attempts will be detected and the user who tries
to spend more than the coin’s total value will be identified.

3 Preliminaries

3.1 Pedersen Commitment

In our protocols, we make use of the Pedersen commitment scheme [19]. Let G be a group of
prime order p and (g1, . . . , gn, gn+1) be its generators. To commit to the values (v1, . . . , vn) ∈ Z

n
p ,

the user randomly chooses r ∈ Zp and computes C = (
∏n

i=1 gvi

i ) gr
n+1 as her commitment.

3.2 Zero knowledge proofs

In this paper we use the notation introduced in [6] to describe zero knowledge proofs for proving
statements about discrete logarithms. This notation is as follows: PK{(α, β, . . .) : Pred1 ∧
Pred2∧. . .} denotes a zero knowledge proof of knowledge of values α, β, . . . that satisfy predicates
Pred1, P red2, . . ., where they appear as exponents. In general, Greek letters denote values that
we are proving to know. We now describe few kinds of proofs which are used in our construction.
All of these proofs are secure under the Discrete Logarithm Assumption.

3.2.1 Proof of knowledge of representation

Let G be a group and g1, . . . , gk ∈ G. We call these values bases. We wish to prove the knowledge
of representation of the values y1, . . . , yn ∈ G to these bases. The corresponding proof is denoted
as

PK
{
(α1, . . . , αm) : y1 =

l1∏

j=1

g
αe1j

b1j
∧ . . . ∧ yn =

ln∏

j=1

g
αenj

bnj

}
,

where li ∈ {1, . . . , k} is the number of bases in the representation of yi, eij ∈ {1, . . . , m} are
indices to values from {α1, . . . , αm} that appear as exponents in the representation of yi, and
bij ∈ {1, . . . , k} are indices to values from {g1, . . . , gk} that appear as bases in the representation
of yi. Note that the proof of knowledge of discrete logarithm is an instance of this type of proofs.

An example of this kind of proofs is

PK
{
(α1, α2, α3) : y1 = gα1

1 gα2
2 ∧ y2 = gα2

2 gα3
3 ∧ y3 = gα3

1

}
.

An efficient construction of such proofs is described in [6].

3



3.2.2 Proof that two values committed in different groups are in {0, 1} and
are equal

The following proof is in part based on the proof that a committed value is in {0, 1} by Damg̊ard
[1]. Our proof can be seen as simultaneously executing two instances (one for each commitment)
of a similar proof, but for common challenges (to assure that the commitments hide the same
value).

Let G, G̃ be groups of prime orders p and p̃, respectively (without the loss of generality
we can assume that p ≤ p̃). The bases for commitments in these groups are g1, g2 ∈ G and

g̃1, g̃2 ∈ G̃. This protocol enables proving knowledge of values a ∈ Zp, ã ∈ Zp̃ and b ∈ {0, 1}
such that y = gb

1g
a
2 and ỹ = g̃b

1g̃
ã
2 . It makes use of the proof

PK{(α, α̃) : z = gα
2 ∧ z̃ = g̃α̃

2 },

which is as follows: Alice (prover) first chooses random r1 ∈ Zp, r2 ∈ Zp̃ and sends gr1
2 , g̃r2

2 to
Bob (verifier). He replies with a challenge c ∈ Zp. Then Alice sends y1 = r1 − ca mod p and
y2 = r2 − cã mod p̃. Bob accepts the proof if gr1

2 = zcgy1

2 and g̃r2
2 = z̃cg̃y2

2 .
Note that when the claim doesn’t hold, Alice can execute the protocol if she knows the

challenge c in advance (namely, she chooses y1 and y2 and in the first step of communication
sends values zcgy1

2 and z̃cg̃y2

2 to Bob). Also note that

PK{(α, α̃) : z = g1g
α
2 ∧ z̃ = g̃1g̃

α̃
2 } ≡ PK{(α, α̃) : z/g1 = gα

2 ∧ z̃/g̃1 = g̃α̃
2 }.

Therefore,
PK{(α, α̃) : (z = g1g

α
2 ∧ z̃ = g̃1g̃

α̃
2 ) ∨ (z/g1 = gα

2 ∧ z̃/g̃1 = g̃α̃
2 )}

can be composed from the two above proofs (i.e., PK{(α, α̃) : z = gα
2 ∧ z̃ = g̃α̃

2 } and PK{(α, α̃) :
z/g1 = gα

2 ∧ z̃/g̃1 = g̃α̃
2 }) using the disjunction trick [12] in the following way. Without the loss

of generality we can assume that the first claim doesn’t hold. Alice chooses challenge c1 ∈ Zp,
for which she constructs a fake transcript of this proof. She sends the commitment from this
transcript and a commitment for the second proof. For Bob’s challenge c she gives second
proof’s response to challenge c2 = c− c1 mod p. Bob accepts the proof if both proofs verify and
c1 + c2 = c mod p.

This proof is denoted as

PK{(α, α̃, β) : y = gβ
1 gα

2 ∧ ỹ = g̃β
1 g̃α̃

2 ∧ β ∈ {0, 1}}.

3.2.3 Proof of equality of two values committed in different groups

As before, we have groups G and G̃ of order p and p̃, respectively, and bases g1, g2 ∈ G, g̃1, g̃2 ∈
G̃. Using the following protocol Alice is able to prove the knowledge of values a, b ∈ Zp and
ã ∈ Zp̃, such that y = gb

1g
a
2 and ỹ = g̃b

1g̃
ã
2 .

This proof is denoted as

PK{(α, α̃, β) : y = gβ
1 gα

2 ∧ ỹ = g̃β
1 g̃α̃

2 ∧ 0 ≤ β < p}

and can be obtained using the previous proof as a subroutine in the following way.
First, let’s note that any value x ∈ Zp can be represented by (x0, . . . , xk) ∈ {0, 1}k+1, such

that x = x0 +2x1 +22x2 + · · ·+2k−1xk−1 +(p−2k)xk where k = ⌊lg x⌋ (this representation does
not need to be unique). The idea is that Alice first computes the representation (b0, . . . , bk) of
b and makes commitments to bi’s in the two groups:

Ci =
(
g2i

1

)bi

gri

2 , C̃i =
(
g̃2i

1

)bi

g̃r̃i

2 i = 0, . . . , k − 1

Ck =
(
gp−2k

1

)bk

grk

2 , C̃k =
(
g̃p−2k

1

)bk

g̃r̃k

2

4



(for random ri ∈ Zp, r̃i ∈ Zp̃) and proves that these commitments open to the same values bi:

PK
{
(αi, α̃i, βi) : Ci =

(
g2i

1

)βi

gαi

2 ∧ C̃i =
(
g̃2i

1

)βi

g̃α̃i

2 ∧ βi ∈ {0, 1}
}

i = 0, . . . , k − 1

PK
{
(αk, α̃k, βk) : Ck =

(
gp−2k

1

)βk

gαk

2 ∧ C̃k =
(
g̃p−2k

1

)βk

g̃α̃k

2 ∧ βk ∈ {0, 1}
}

Finally, she proves that (b0, . . . , bk) is a representation of b in y:

PK
{
(α, α′, β) :

k∏

i=0

Ci = gβ
1 gα′

2 ∧ y = gβ
1 gα

2

}

and in ỹ:

PK
{
(α̃, α̃′, β) :

k∏

i=0

C̃i = g̃β
1 g̃α̃′

2 ∧ ỹ = g̃β
1 g̃α̃

2

}
.

3.2.4 Proof that a committed value is a discrete logarithm of another com-
mitted value

Let G, G̃ be groups of prime orders p and p̃, respectively (p|p̃ − 1) such that G is a subgroup

of Z
∗

p̃. Given y, g1, g2, h ∈ G and ỹ, g̃, h̃ ∈ G̃, this protocol enables proving knowledge of values

a, b1 ∈ Zp, b2 ∈ Zp̃ such that y = ga
1hb1 and ỹ = g̃ga

2 h̃b2 . Its construction is based on a proof that
appeared in [20] and requires K rounds (for a security parameter K) to be executed between
Alice (prover) and Bob (verifier), where each round is as follows:

1. Alice selects random w, r1 ∈ Zp and r2 ∈ Zp̃. She then sends Bob values t1 = gw
1 hr1 and

t2 = g̃gw
2 h̃r2 .

2. Bob responds with c ∈ {0, 1}.

3. if c = 0, Alice reveals w, r1 and r2 to show that she has generated t1, t2 in the right way;
Bob checks that t1 = gw

1 hr1 and t2 = g̃gw
2 h̃r2 .

4. if c = 1, Alice sends values A = w− a mod p, B = r1 − b1 mod p, C = r2 − b2g
w−a
2 mod p̃;

Bob checks that t1 = gA
1 yhB and t2 = ỹgA

2 h̃C .

This proof is denoted as

PK
{
(α, β1, β2) : y = gα

1 hβ1 ∧ ỹ = g̃gα
2 h̃β2

}
.

3.2.5 Proof that a committed value is a discrete logarithm of one of two
committed values

This proof is denoted as

PK
{
(α, β1, β2) : y = gα

1 hβ1 ∧
(
ỹ = g̃gα

2 h̃β2 ∨ ỹ = g̃gα
3 h̃β2

) }

and can easily be obtained from the previous proof. To see this, let’s note that this proof can
equivalently be written as

PK
{
(α, β1, β2) :

(
y = gα

1 hβ1 ∧ ỹ = g̃gα
2 h̃β2

)
∨

(
y = gα

1 hβ1 ∧ ỹ = g̃gα
3 h̃β2

)}
.

The above proof can be carried out with the use of the disjunction trick [12] as before (namely,
fix a challenge c′ for one of the proofs, then on challenge c execute one proof for c′ and the other
for c′′ = c − c′).

5



3.3 CL signatures

Let p be a prime, G be a cyclic group of order p, and g̃1, g̃2, g̃3 ∈ G. Let g̃s
1g̃

x
2 g̃r

3 be a Pedersen
commitment to (s, x). Just like [4], in our protocols we use the signature scheme introduced by
Camenisch and Lysyanskaya [5] and refer to it as the ”CL signatures”. The main advantage of
CL signatures lies in two efficient protocols:

– a protocol for obtaining a blind signature on (s, x) (i.e., the user presents the signer with
a Pedersen commitment to (s, x), and the signer signs (s, x) without learning anything
about it);

– a protocol for proving the knowledge of a CL signature (i.e., the user presents the verifier
with a Pedersen commitment to (s, x) and proves that she knows the signer’s CL signature
on (s, x) without revealing anything about (s, x) or the signature itself).

CL signatures are secure under the Strong RSA Assumption. We don’t discuss how CL signa-
tures actually work as all we need are the protocols described above.

3.4 Binary tree approach

As in the previous divisible digital cash protocols, we utilize the binary tree approach. It states
that a coin worth of 2l−1 dollars is represented by a binary tree of l levels, where leaves represent
unitary amounts (one dollar) of cash and each internal node’s value is the sum of the values
assigned to its children. Nodes in such a tree are numbered in the standard way, i.e., n0 is the
root node and ni1...ij0 and ni1...ij1 are respectively left and right children of ni1...ij

. Spending
a value 2l−j dollars is realized by revealing some values assigned to a node ni1...ij

. To prevent
double-spending, the following divisibility rule is introduced:

– a user can spend at most one node on each root to leaf path;

We make use of this approach in a slightly modified way. We add an auxiliary level to the
tree adding two children to each leaf obtaining l + 1 levels instead of l. Monetary values are
assigned in the standard way to all internal nodes, i.e., nodes beyond the auxiliary level. Based
on the coin secret x, x-values for each node are computed in a way similar to [16]. Figure 1
presents four highest levels of a tree representing 1024$.

n0 [1024$]

n00 [512$] n01 [512$]

n000 [256$] n001 [256$] n010 [256$] n011 [256$]

n0000 n0001 n0010 n0011 n0100 n0101 n0110 n0111

Figure 1: Tree representing a coin worth of 1024$

During the payment with a node ni1...ij
, x-values for its children are revealed (ni1...ij

’s x-
value is kept secret). The idea is that from a node’s x-value all x-values for its descendants
can be computed. The size of the numbers in the protocol assures with high probability that

6



all x-values of all nodes in all circulating coins are different. So if two x-values of the leaves
appearing in different transactions are the same it is the sign that double-spending occurred.

In our construction in order to identify a double-spender an additional value for a spent node
is revealed. It is called the T -value and is based on the T -value used in [4]. It is chosen in a way
that enables computing T -values for all descendants of a node whose T -value is revealed. This
T -value includes randomness (provided by a cryptographic hash function). So when double-
spending takes place, two T -values for a node (for which known child x-values are the same)
aren’t equal with overwhelming probability and thus allow revealing the identity of a double-
spender.

4 The protocol

Setup. This stage is executed by a bank only once for each coin value v = 2l−1 dollars.

1. The bank generates a chain of prime numbers p1, p2, . . . , pl+1 such that there exist
values νi < 2k and pi+1 = νipi + 1 (i = 1, . . . , l), where k is a parameter.
Furthermore, the bank generates groups Gp1 , . . . , Gpl

such that Gpi
is a subgroup of

order pi of Z
∗

pi+1
and Gpi

=< gpi
> (Gpi

is a cyclic group generated by gpi
).

Then the bank chooses elements h(1,0), h(1,1) ∈ Gp1 , h(2,0), h(2,1) ∈ Gp2 , . . ., h(l,0),
h(l,1) ∈ Gpl

such that discrete logarithms between them and their respective group’s
generators are unknown.

2. The bank creates an empty database for storing the history of deposited payments.
Each payment’s entry contains x-values and T -values for all leaves that are descen-
dants of a spent node and an additional value R (a pseudorandom number used in
the payment protocol – it will be discussed later).
The database should also enable efficient searching for x-values (e.g., it could be sorted
by x-values).

3. The bank sets up parameters for CL signatures (i.e., n = pq and a cyclic group G of
order n).

4. The bank chooses a group G of prime order p (p > pl+1), and picks its generators
g, ĝ ∈ G.

Then the bank makes all generated values public.

Open account. This is executed only once between a user U and a bank.

1. The user randomly chooses her secret key s ∈ Zp and computes her public key pkU =
ĝs ∈ G.

2. The user sends pair of values (pkU , IDU ) for identification purposes and keeps s secret.

Withdrawal. This is executed when a user U wishes to withdraw a coin worth of 2l−1. This
part is almost the same as in the scheme presented in [4].

1. The user goes to the bank to get a coin. Both the user and the bank contribute
randomness to the coin’s serial number x. Let ḡ and h̄ be generators for Gp1 . The

user randomly selects x′ ∈ Zp1 and commits to it by computing A′ = ḡx′

h̄r′

for
r′ ∈ Zp1 and sending A′ to the bank. The bank responds with random x′′ ∈ Zp1 .
The user computes x = x′ + x′′ mod p1. Both the user and the bank independently
compute A = A′ḡx′′

= ḡxh̄r′

.

2. The user computes Pedersen commitment to (s, x): C = g̃s
1g̃

x
2 g̃r

3 for g̃1, g̃2, g̃3 ∈ G and
random r ∈ Zp and sends it to the bank. First, she proves that the x used in C is
appropriate:

PK{(σ, ρ, ρ′, ξ) : A = ḡξh̄ρ′

∧ C = g̃σ
1 g̃ξ

2g̃
ρ
3 ∧ 0 ≤ ξ < p1}.

7



Then she proves that s in C is the same as in pkU :

PK{(σ, ρ, ξ) : pkU = ĝσ ∧ C = g̃σ
1 g̃ξ

2g̃
ρ
3}.

3. Using the protocol for CL signatures on C, the user gets the bank’s signature on
values (s, x).

Coin representation. After executing the withdrawal protocol, a user has a coin, i.e., bank’s
CL signature on (s, x). Since explicitly revealing x violates at least the unlinkability
requirement, spending has to be done in some other fashion.

In our scheme a coin is represented using a binary tree as shown in Figure 1. With each
node of that tree we associate an x-value, which depends only on x and the node’s location
in the tree. By xi1...ij

we denote the x-value associated with node ni1...ij
. The computation

of x-values goes as follows:

x0 = x

xi1...ij ij+1 = h
xi1...ij

(j,ij+1) j = 1, . . . , l

Figure 2 shows an example of a tree with x-values computed this way.

x0 = x

x00 = hx0

(1,0) x01 = hx0

(1,1)

x000 = hx00

(2,0) x001 = hx00

(2,1) x010 = hx01

(2,0) x011 = hx01

(2,1)

x0000

(hx000

(3,0))

x0001

(hx000

(3,1))

x0010

(hx001

(3,0))

x0011

(hx001

(3,1))

x0100

(hx010

(3,0))

x0101

(hx010

(3,1))

x0110

(hx011

(3,0))

x0111

(hx011

(3,1))

Figure 2: x-values for the tree

Payment. A user wishes to spend the node ni1i2...ij
of the coin whose secrets are (s, x) to a

merchant. Doing this she pays 2l−j dollars. The node’s address (i1 . . . ij) isn’t revealed.
The user shows that values sent during that payment are generated from the coin secret
x in the correct way applying zero knowledge proofs.

Note that we only describe how to spend a certain node, not how to choose which nodes
to spend to realize a payment.

1. The user generates a Pedersen commitment to (s, x): C = g̃s
1g̃

x
2 g̃r

3 and, using protocol
for CL signatures, proves that she knows bank’s signature on (s, x).

2. Both the user and the merchant compute R ∈ Zp by putting data like merchant’s
identity, exact time of transaction etc. as an input to a cryptographic hash function.

3. The user sends values Ti1...ij
= (gxi1+···+xi1...ij )Rĝs, xi1...ij0 and xi1...ij1 to the mer-

chant.

4. The user proves that the values xi1...ij0 and xi1...ij1 are generated from the x that ap-
peared in C and according to the protocol. To do this, she chooses bases for Pedersen

8



commitments in Gp1 , . . . , Gpj
: g1, h1 ∈ Gp1 , . . . , gj , hj ∈ Gpj

, randomly selects values
r1 ∈ Zp1 , r2 ∈ Zp2 , . . . , rj ∈ Zpj

and computes Pedersen commitments to the x-values

on the path from the root to the node being spent: C1 = g
xi1

1 hr1
1 , C2 = g

xi1i2

2 hr2
2 ,

. . . , Cj = g
xi1...ij

j h
rj

j .The user then sends values (g1, h1, . . . , gj, hj , C1, . . . , Cj) to the
merchant. Now the user is ready to execute following proofs of knowledge.
First, she proves that the root’s x-value is the same as x in the opening of C:

PK{(σ, ρ, ρ1, ξ) : C = g̃σ
1 g̃ξ

2g̃
ρ
3 ∧ C1 = gξ

1g
ρ1

2 ∧ 0 ≤ ξ < p1}.

Then she executes the proofs for x-values on the path (for i = 1, . . . , j − 1):

PK
{
(ξi−1, ρi, ρi+1) : Ci = g

ξi−1

i hρi

i ∧
(
Ci+1 = g

h
ξi−1
(i+1,0)

i+1 h
ρi+1

i+1 ∨ Ci+1 = g
h

ξi−1
i+1,1

i+1 h
ρi+1

i+1

)}

Finally, the user proves correctness of xi1...ij0 and xi1...ij1:

PK
{
(ξj−1, ρj) : Cj = g

ξj−1

j h
ρj

j ∧ xi1...ij0 = h
ξj−1

(j,0)

}

PK
{
(ξj−1, ρj) : Cj = g

ξj−1

j h
ρj

j ∧ xi1...ij1 = h
ξj−1

(j,1)

}
.

5. The user proves that her secret key s from C is used also in Ti1...ij
:

PK{(α, σ, ξ, ρ) : C = g̃σ
1 g̃ξ

2g̃
ρ
3 ∧ Ti1...ij

=
(
gR

)α
ĝσ}.

6. The user proves that the power of gR in Ti1...ij
is of the right form. To do this,

she computes commitments C̃1 = g̃xi1 h̃r̃1 , C̃2 = g̃xi1i2 h̃r̃2 , . . . , C̃j = g̃xi1...ij h̃r̃j for

g̃, h̃ ∈ G and random r̃1, . . . , r̃j ∈ Zp. Then she executes the proof:

PK
{
(ξ, ρ, σ) :

j∏

i=1

C̃i = g̃ξh̃ρ ∧ Ti1i2...ij
= (gR)ξĝσ

}

and proves that C̃1, . . . , C̃j are correct (hide the same x-values as C1, . . ., Cj):

PK{(ξ0, ρ1, ρ̃1) : C1 = gξ0

1 hρ1

1 ∧ C̃1 = g̃ξ0 h̃ρ̃1 ∧ 0 ≤ ξ0 < p1}

...

PK{(ξj−1, ρj , ρ̃j) : Cj = g
ξj−1

j h
ρj

j ∧ C̃j = g̃ξj−1 h̃ρ̃j ∧ 0 ≤ ξj−1 < pj}.

Note: The Fiat-Shamir heuristic [14] turns interactive proofs of knowledge into non-interactive
ones. It works the following way: the prover determines the challenge by applying a
cryptographic hash function H to the commitments that appear in the proof and some
additional values (R in our case) and then responds to this challenge.

We use this heuristic on all proofs that appear in our protocol to assure the unforgeability
of a payment’s transcript.

Deposit. It is executed between a merchant (who wants to exchange digital cash received
during payment into true money) and a bank.

1. The merchant gives the bank a transcript of a payment. The bank checks its validity
and, if it is correct, goes to the following step.

2. Let the spent node be ni1i2...ij
. From the values xi1i2...ij0 and xi1i2...ij1 the bank is

able to compute x-values and T -values for all leaves whose ancestor is ni1i2...ij
(note

9



that

Ti1i2...ijb =
(
gxi1+···+xi1...ij

+xi1...ijb
)R

pkU

=
((

gxi1+···+xi1...ij

)R
pkU

)
(gxi1...ijb)

R

= Ti1...ij

(
gR

)xi1...ijb

for b ∈ {0, 1}). If any of those x-values already appeared in bank’s X database, trigger
the identification of double-spenders algorithm, otherwise add x-values, T -values and
R to the database.

Identification of double-spenders. Bank needs to identify a double-spender if in its database
there are two identical x’s.

We argue that an accidental equality of these values for different leaves or different coins
is almost impossible. We can treat x’s as chosen at random, so the birthday paradox’
analysis applies. For example, if the primes used are K bits long and bank issues A coins,
each with a divisibility precision of N , then the probability of a collision is small as long
as A · N ≪ 2K/2.

In such case the corresponding T1, T2 on level l and R1, R2 are also in the bank database.

We have T1 =
(
gxi1+···+xi1...il

)R1
pkU , T2 =

(
gxi1+···+xi1...il

)R2
pkU . With huge probability

R1 6= R2. Bank can recover pkU by computing

(
T R2

1 /T R1
2

)(R2−R1)
−1

= pk
(R2−R1)(R2−R1)

−1

U = pkU

thus the identity of a double-spender is revealed.

5 Analysis

5.1 Security and other properties

5.1.1 Cryptographic assumptions

First we state the cryptographic assumptions on which the security of our system depends.

Strong RSA Assumption [4]. Given an RSA modulus n and a random element g ∈ Z
∗

n,
it is hard to compute h ∈ Z

∗

n and an integer e > 1 such that he ≡ g mod n. The modulus n is
of a special form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Discrete Logarithm Assumption. Given elements g, h ∈ G it is hard to compute x
such that h = gx.

Hash functions. In order to use the Fiat-Shamir heuristic we assume the existence of
cryptographic hash functions.

Our assumption. Let p1, p2, . . . , pl, pl+1 be a chain of primes such that there exist values
νi and pi+1 = νipi + 1 for i = 1, . . . , l, let G be a group of a prime order p (p > pl+1)
generated by g and let Gpi

be a subgroup of Zpi+1 of order pi for i = 1, . . . , l. Furthermore, let
h(1,0), h(1,1) ∈ Gp1 , h(2,0), h(2,1) ∈ Gp2 , . . ., h(l,0), h(l,1) ∈ Gpl

(our scheme’s h-values).
Our assumption can be formulated as follows. Let x1, x2, . . . , xj be a chain of x-values that

come from some x1 (i.e., xi+1 = hxi

(i,bi)
for bi ∈ {0, 1}). We are given three values: h

xj

(j,0), h
xj

(j,1)

10



and t = gx1+···+xj , and three other values: h
x′

k

(k,0), h
x′

k

(k,1) and t′ where x′

1, x
′

2, . . . , x
′

k is another

chain of x-values.
The assumption states that there is no probabilistic polynomial-time algorithm that distin-

guishes triples for which x′

1 = x1 and t′ = gx′

1+···+x′

k from triples for which x′

1 and t′ are random
in their groups unless x′

1 = x1 and one of x-chains contains another.
Here ‘distinguishes’ means that the algorithm returns 0 or 1 and 1 is returned substantially

more often (in the sense of probability) if the equality holds.

Discussion. Our assumption can be seen as a generalization of the assumption that testing
the equality of discrete logarithms is infeasible.

The Nakanishi-Sugiyama protocol [16] depends on a variation of that assumption. In terms
of our scheme it could be formulated as follows: Let us have two x-chains: x1, x2, . . . , xj and
x′

1, x
′

2, . . . , x
′

k, none of which is contained in the other. Their assumption states that knowing

only h
xj

(j,0) and h
x′

k

(k,0), it is infeasible to decide whether x1 = x′

1.

This could be generalized by assuming that the additional knowledge of h
xj

(j,1) and h
x′

k

(k,1) does

not help.
It could be generalized even further by assuming that infeasibility holds when we add two

more values to the input. They are s = gxj and s′ = gx′

k (when x′

1 = x1) or random s′ = gr

(when x′

1 6= x1).
In our assumption we replaced s and s′ with two other values. They are t = s · gx1+···+xj−1

and t′ = s′ · gx′

1+···+x′

k−1 (or t′ = gr). Since we believe there is no special relation between
x1 + · · · + xj−1 and xj , replacing s by t should not affect feasibility of our decision. The same
can be said about s′ and t′.

5.1.2 Meeting the requirements

We now show that our scheme meets the requirements stated in section 2 under the aforemen-
tioned assumptions.

Anonymity. Note that it is enough to prove unlinkability and anonymity will follow (obviously,
if one could identify owners of the payments, he would be able to tell if these payments
come from the same user or not). Therefore we shall focus on the unlinkability requirement.

Unlinkability. Recall we mentioned that unlinkability in [16] is not full. The reason is that
the addresses of spent nodes are disclosed (and thus if two payments’ addresses are in the
ancestor-descendant relation and the identification of double-spenders procedure fails, then
we know that these payments came from different users), as in our scheme no information
is revealed on the location of the node being spent other than the tree level the node is on.

We shall now present the definition of unlinkability. For us, it means that no probabilistic
polynomial-time adversary A representing a coalition of the bank and merchants (behaving
accordingly to our scheme’s description) has non-negligible advantage in distinguishing two
payments executed by the same user from two payments executed by different users.

We will first discuss which values disclosed during the payment with a node ni1...ij
are

possibly useful for A. Clearly, xi1...ij0, xi1...ij1, R and Ti1...ij
might be useful. However,

it proves that these are the only potentially useful values. The reason is that any other
disclosed value is either a Pedersen commitment (which does not reveal anything about
its secret) or a part of a transcript of a zero-knowledge proof. We can generate indistin-
guishable data generating random elements of respective groups as Pedersen commitments
and zero-knowledge proof transcripts using a simulator. In the random oracle model these
data are equivalent to those obtained from a real transaction.

11



Therefore any algorithm that would break our scheme’s unlinkability (decide whether two
payments come from the same user) should work given just these four values for each
payment. Due to our cryptographic assumption there are no such algorithms.

Unforgeability. There are three questions to consider when discussing unforgeability:

– can the coin be forged?

– can the payment be realized without the knowledge of a coin?

– can the transcript of a payment be forged?

The answers to all of these questions are ”no”. Coin’s unforgeability follows from the
unforgeability of the CL signatures. The payment cannot be realized without a coin
because the proof of knowledge of a CL signature (that is a part of the payment protocol)
cannot be forged for verifier’s random challenge, and note that in our case the challenge is
provided by a cryptographic hash function whose output is close to random. The transcript
of a payment cannot be forged by a similar argument, since it is infeasible to forge the
proof of the knowledge of a user’s secret key (that also appears as a part of the payment
protocol) for verifier’s random challenge.

Exculpability. As shown above, forging the transcript of a payment requires the knowledge
of a user’s secret key. The protocol for identifying the double-spender only computes her
public key, thus providing no useful information on her secret key. Computing the secret
key from the values available to the adversary is in contradiction to the Discrete Logarithm
Assumption and therefore is infeasible.

Divisibility. As in previous divisible cash schemes, divisibility is accomplished by allowing the
user to pay any node of a coin’s representation to the merchant.

No double-spending. Our scheme enforces the user to provide the merchant with correct
x-values and T -values. If double-spending occurs, then some leaf’s x-values for the two
payments are the same and double-spending is detected.

As stated before, detected double-spending leads to identifying the double-spender if only
the values R for the two payments aren’t equal. But this happens with a huge probability
because R is an output of the cryptographic hash function depending on the the transaction
details among many factors.

5.2 Complexity

The setup stage is executed only once, so even if it wasn’t very efficient, it wouldn’t hurt very
much. However, it takes time proportional to poly(K) · polylog(N). The complexity of open
account and withdrawal procedures is asymptotically the same as in [4]. To pay an arbitrary
amount of cash, one needs to run the payment protocol O(log N) times. The complexity of
spending any node is proportional to poly(K) · polylog(N) and is comparable to [16]. The
complexity of deposit (without double-spending detection) is the same as that of payment.

The bank’s database has to be large enough to store all x-values for all coins ever issued
by the bank (i.e., if bank plans on issuing at most A coins with the divisibility precision N ,
it should have size O(AN)). Since the database is sorted, searching for a value and inserting
a new value can be done quickly (in time logarithmic in the size of the database). Thus the
complexity of double-spending detection is the same as in [4, 16].

Additionally during the deposit it would be enough for the bank just to check the correctness
of the data presented by the merchant on-line, and then check for double-spending off-line.

12



6 Conclusions and problems

We have presented a divisible digital cash scheme, where unlinkability is achieved without the
need for a trusted third party. Our scheme preserves good complexity of previous divisible
schemes. It is possible that the complexity of our scheme could be further improved if we
applied more efficient zero knowledge protocols than those from subsections 3.2.3 and 3.2.4.
The security of our scheme is also based on a strong ad-hoc assumption rather than a well-
studied one – we do not know if our assumption reduces to any of well-studied problems.

References

[1] Fabrice Boudot, Berry Schoenmakers, Jacques Traoré: A fair and efficient solution to
the socialist millionaires’ problem, Discrete Applied Mathematics 111, pp. 23-36, Elsevier
(2001).

[2] Stefan Brands: Untraceable off-line cash in wallets with observers, Advances in Cryptology

– CRYPTO ’93, LNCS 773, pp. 302-318, Springer Verlag (1994).

[3] Ernest Brickell, Peter Gemmell, David Kravitz: Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change, SODA ’95, pp. 457-466, ACM (1995).

[4] Jan Camenisch, Susan Hohenberger, Anna Lysyanskaya: Compact e-cash, Advances in

Cryptology – EUROCRYPT ’05, LNCS 2494, pp. 302-321, Springer Verlag (2005).

[5] Jan Camenisch, Anna Lysyanskaya: A signature scheme with efficient protocols, Security

in Communication Networks ’02, LNCS 2576, pp. 268-289, Springer Verlag (2002).

[6] Jan Camenisch, Markus Stadler: Efficient group signature schemes for large groups, Ad-

vances in Cryptology – CRYPTO ’97, LNCS 1296, pp. 410-424, Springer Verlag (1997).

[7] Agnes Chan, Yair Frankel, Yiannis Tsiounis: Easy come – easy go divisible cash, Advances

in Cryptology – EUROCRYPT ’98, LNCS 1403, pp. 561-575, Springer Verlag (1998).

[8] David Chaum: Blind signatures for untraceable payments. Advances in Cryptology –

CRYPTO ’82, pp. 199-203, Plenum Press (1982).

[9] David Chaum: Security without identification: transaction systems to make big brother
obsolete, Communications of the ACM 28, 10, pp. 1030-1044 (1985).

[10] David Chaum, Amos Fiat, Moni Naor: Untraceable electronic cash, Advances in Cryptology

– CRYPTO ’88, pp. 319-327, Springer Verlag (1988).

[11] David Chaum, Torben Pedersen: Transferred cash grows in size, Advances in Cryptology –

EUROCRYPT ’92, LNCS 658, pp. 390-407, Springer Verlag (1992).

[12] Ronald Cramer, Ivan Damg̊ard, Berry Schoenmakers: Proofs of partial knowledge and
simplified design of witness hiding protocols, Advances in Cryptology – CRYPTO ’94, LNCS
839, pp. 174-187, Springer Verlag (1994).

[13] Tony Eng, Tatsuaki Okamoto: Single-term divisible electronic coins, Advances in Cryptol-

ogy – EUROCRYPT ’94, LNCS 950, pp. 306-313, Springer Verlag (1994).

[14] Amos Fiat, Adi Shamir: How to prove yourself: practical solutions to identification and
signature problems, Advances in Cryptology – CRYPTO ’86, LNCS 263, pp. 186-194 (1986).

[15] Toru Nakanishi, Mitsuaki Shiota, Yuji Sugiyama: An efficient on-line electronic cash with
unlinkable exact payments, 7th Information Security Conference – ISC’04, LNCS 3225, pp.
367-378, Springer Verlag (2004).

[16] Toru Nakanishi, Yuji Sugiyama: Unlinkable divisible electronic cash, 3rd International

Workshop on Information Security, LNCS 1975, pp. 121-134, Springer Verlag (2000).

13



[17] Tatsuaki Okamoto: An efficient divisible electronic cash scheme, Advances in Cryptology –

CRYPTO ’95, LNCS 963, pp. 438-451, Springer Verlag (1995).

[18] Tatsuaki Okamoto, Kazuo Ohta: Universal electronic cash, 11th Annual International

Cryptology Conference on Advances in Cryptology, LNCS 576, pp. 324-337, Springer Verlag
(1991).

[19] Torben Pedersen: Non-interactive and information-theoretic secure verifiable secret sharing,
Advances in Cryptology – CRYPTO ’91, LNCS 576, pp. 129-140, Springer Verlag (1991).

[20] Markus Stadler: Publicly verifiable secret sharing, Advances in Cryptology – EUROCRYPT

’96, LNCS 1070, Springer Verlag (1996).

A Node spending strategy

So far we have only presented the way of spending a single node. However, in practice one
payment has to be realized by spending few nodes, whose values add up to the value of a
payment. It is important to choose such a set of nodes for a payment, that using them does not
force next payments to use an enormous number of nodes. We shall present a solution to that
problem.

The first strategy requires us to assure that there is at most one open node on each level of
the tree (a node is open when none of its children has been spent and its parent is not available
to be spent or the node itself is root). When we wish to spend a node on level j, there are two
possibilities:

• there is an open node on this level – then we use this node;

• there are no open nodes on this level – then we choose v – the lowest open node above the
jth level and spend w – any node on jth level that is a descendant of that node. After
realizing this, w’s sibling becomes open, as well as every sibling of any node on the path
from v to w. Additionally, v becomes unavailable. The open node property is maintained,
since there were no open nodes on the levels from j to v’s level before.

B Unlinkability

Recall that our goal is to show that no probabilistic polynomial-time adversary A has non-
negligible advantage in distinguishing payments realized by the same user from payments realized
by two different users under the aforementioned assumptions.

We already discussed why only xi1...ij0, xi1...ij1, R and Ti1...ij
may be useful for A.

We are now ready to get to the point. Assume that there exists a randomized polynomial-
time algorithm A that, given two sets of values: (xi1...ij0, xi1...ij1, Ti1...ij

, R) and (x′

i′1...i′
k
0,

x′

i′1...i′
k
1, T ′

i′1...i′
k
, R′), has non-negligible advantage in deciding whether these payments come

from the same user.
Now let (h

xj

(j,0), h
xj

(j,1), t = gx1+···+xj ) and (h
x′

k

(k,0), h
x′

k

(k,1), t′) be an instance of our assumption.

We will show how to use A to solve it (determine if t′ is of the correct form).
First, we randomly choose the public key pkU = ĝu of a user whose payments we will

simulate. Then we generate the first payment. We set it as (h
xj

(j,0), h
xj

(j,1), T = tRĝu, R), for

random R. Computing the second payment is similar: we randomly choose R′ and get the

second payment: (h
x′

k

(k,0), h
x′

k

(k,1), T ′ = t′R
′

ĝu, R′). We give generated values to A and return its
response.

Why does this work? If t′ = gx′

1+···+x′

k , then T ′ = t′Rĝu = gR(x′

1+···+x′

k)ĝu. Otherwise,
t′ = gx′

1+···+x′

k ĝv for some non-zero v and T ′ = t′Rĝu = gR(x′

1+···+x′

k)ĝRv+u. Since ĝ has

14



prime order p, then ĝRv 6= 1 and therefore ĝu′

= ĝRv+u 6= ĝu. Value T = tRĝu is always of
the form gR(x1+···+xj)ĝu, so the A’s response is equivalent to deciding whether (h

xj

(j,0), h
xj

(j,1),

t = gx1+···+xj ) and (h
x′

k

(k,0), h
x′

k

(k,1), t′) are of the desirable form (x1 = x′

1, t
′ = gx′

1+···+x′

k) which

solves our cryptographic assumption.

15


