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Abstract. Broadcast encryption schemes enable senders to efficiently
broadcast ciphertexts to a large set of receivers in a way that only non-
revoked receivers can decrypt them. Identity-based encryption schemes
are public key encryption schemes that can use arbitrary strings as public
keys. We propose the first public key broadcast encryption scheme that
can use any string as a public key of each receiver. That is, identity-based
broadcast encryption scheme. Our scheme has many desirable proper-
ties. The scheme is fully collusion resistant, and the size of ciphertexts
and that of private key are small constants. The size of public key is
proportional to only the maximum number of receiver sets to each of
which the ciphertext is sent. Note that its size remains to be so although
the number of potential receivers is super-polynomial size. Besides these
properties, the achieving the first practical identity-based broadcast en-
cryption scheme itself is the most interesting point of this paper. The
security of our scheme is proved in the generic bilinear group model.

Keywords: broadcast encryption, identity-based, bilinear map, revocation, dy-
namic

1 Introduction

Broadcast encryption schemes are cryptosystems that enable senders to effi-
ciently broadcast ciphertexts to a large set of receivers such that only this cho-
sen receivers can decrypt them. Their notion was first introduced by Berkovits
in [4] and was given formal analysis by Fiat and Naor in [14]. Many schemes,
such as [14, 1, 21, 20, 16, 13, 3, 15, 2, 9], have been proposed since then, and their
main purpose is to decrease private key size, ciphertext size, public key size, and
computational costs for encryption and decryption.

One notable broadcast encryption scheme is that proposed by Boneh et al.
in [9]. This is a public key broadcast encryption scheme that features many
desirable properties. Particularly notable is the fact that both the receiver’s
private key size and ciphertexts size are small constants when broadcasting to
any set of receivers. However, the length of its public key is proportional to the
number of potential receivers.

Identity-based encryption schemes are public key cryptosystems that can use
any string as a public key of each receiver. If the public key broadcast encryption
is identity-based, senders are able to send ciphertexts to any set of receivers who



had never engaged any setup procedure with the system. This implies that its
public key size does not depend on the number of potential receivers. None of
previous schemes has achieved such a property.

In this paper we propose the first identity-based broadcast encryption scheme
that has many desirable property. 1 It is fully collusion resistant, its ciphertexts
excluding the information to specifies receiver set is short constant length, each
private keys is short constant length, and the length of its public key is pro-
portional to only the maximum number of receiver sets. Although the required
computational costs are proportional to the square of the number of receivers
when the set of receivers is newly determined, the computational costs that is
required for each sender and each receiver are small constants as long as mes-
sages are encrypted for the same set of receivers as previous one. When some
receivers are added or removed from the set of receivers, the computational costs
required for each sender and each receiver are proportional to the product of the
number of receivers in this set and that of added and removed receivers.

The security of our scheme is proved in the generic bilinear group model
under existence of random oracles. The random oracle model and generic group
model are much weaker security model than the standard model. In fact, there
are protocols whose security can be proved in the random oracle model but are
not secure at all when the random oracle is instantiated. However, these weak
protocols are only those who have special and artificial structure. No natural
scheme with a security proof in the generic group model are vulnerable. At
the end of paper, we mention that our scheme does not in fact require random
oracles. And we discuss how the security of our scheme can be proved outside of
the generic bilinear group model.

Our scheme is the most advantageous over the previous scheme, such as
Boneh’s scheme in [9], when the number of potential receivers is huge but the
maximum size of its receiver set is rather small and receivers set does not change
drastically on an average day. Example of such a case is when all Internet users
are potential receivers and some of them form a group based on their identities
and communicate each other. Beside such a direct application, our scheme is
a new primitive and has a potential to be employed by many application as a
building block.

Our paper is organized as follow. Section 2 defines the algorithms and se-
curity requirements of identity-based broadcast encryption schemes. Section 3
introduce the generic bilinear group model and a related theorem that our proof
of security depends on. Section 4 proposes our scheme, the first identity-based
broadcast encryption scheme. Section 5 proves that security of our scheme in the
generic bilinear group model. Section 6 analyzes the performance of our scheme.
Section 7 discusses how much the security of our scheme depend on the random
oracles model and the generic bilinear group model, and then it also discusses
about the technique to make our scheme secure under chosen ciphertext attacks.
Section 8 concludes our paper.

1 The scheme itself was originally proposed in [24] without a proof of its security.



2 Model of Identity-Based Broadcast Encryption

2.1 Algorithms

Three types of players participate in identity-based broadcast encryption schemes:
a managerM, sender E , and receivers. We let n be the maximum size of receiver
sets to each of which ciphertext is sent.

An identity-based broadcast encryption scheme consists of four algorithms:
Setup, KeyExt, Enc, and Dec.

Setup: A probabilistic setup algorithm for a manager M that, given a security
parameter 1k, size of identity string ℓ, and the maximum size n of receiver
sets, outputs a public key pkey and a master key mkey. Here, pkey includes
n, ℓ, k, and descriptions of shared key space KS and a ciphertext space HS.
pkey is published and mkey is given to onlyM.

(pkey,mkey)← Setup(k, ℓ, n)

We note that n determines only the maximum size of receiver sets to each
of which ciphertexts are sent. While ℓ determines the number of potential
receivers which is superpolynomial of ℓ if the scheme is identity-based.

KeyExt: A probabilistic key extraction algorithm forM that, given mkey, pkey,
and an identity string id ∈ {0, 1}ℓ of receiver, outputs a private key skeyid

for receiver of identity id

skeyid ← KeyExt(pkey,mkey, id)

Enc: A probabilistic encryption algorithm for senders that, given a receiver set
S and a public key pkey, outputs a shared key key ∈ KS and a header
hdr ∈ HS. Here, each element in S is in {0, 1}ℓ and |S| ≤ n.

(key, hdr)← Enc(S, pkey).

Dec: A probabilistic decryption algorithm for receivers that, given a receiver set
S, a header hdr for a receiver set S, id ∈ S, skeyid, and the public key pkey,
outputs key.

key← Dec(S, id, skeyid, hdr, pkey).

2.2 Security

We introduce security requirements of identity-based broadcast encryption schemes.

Definition 1. Consider the following key distinguishing game between a chal-
lenger C and a probabilistic polynomial-time adversary A.

1. C, that is given maximum number of receivers n ∈ N, a security parameter
k, a size of identity string ℓ, and a random tape, runs Setup to output pkey

and mkey. pkey is given to A while mkey is kept secret.



2. A may adaptively sends the key extraction queries described bellow. During
this phase, A may also send a challenge query described below for once and
only once.
Key extraction query: A sends id ∈ {0, 1}ℓ to C. Then, C runs skeyid ←

KeyExt(pkey,mkey, id) and returns skeyid to A.
Challenge query: A sends S∗ such that each element in S∗ is in {0, 1}ℓ

and |S∗| ≤ n. Then, C runs (key0, hdr∗)← Enc(S∗, pkey) and randomly
chooses key1 ∈ KS. Then, C randomly chooses b ∈ {0, 1} and returns
(keyb, hdr∗)

3. After the above phase is over, A outputs b′ ∈ {0, 1}.
4. At the end of the game, C outputs ⊥ if A asked key extraction query with

respect to id ∈ S∗, else output 1 if b = b′ and 0 if b 6= b′.

Let AdvA(k, ℓ, n, b) be the probability that C outputs b ∈ {0, 1} after the game
with A, where the probability is taken over random tapes of C and A.

We say an identity-based broadcast encryption scheme is key indistinguish-
able under adaptive key extraction attacks if the

|AdvA(k, ℓ, n, 0)−AdvA(k, ℓ, n, 1)|

is negligible in k for any probabilistic polynomial-time A in the above game.

3 Preliminaries

Our scheme leverages bilinear groups that has the following properties.

Definition 2. Bilinear groups

1. G and GT are cyclic groups of prime order p.
2. e : G × G → GT is an efficient map such that:

(i) Bilinear: for all u, v ∈ G, and α, β ∈ Z/pZ, we have e(uα, vβ) = e(u, v)αβ.
(ii) Non-degenerate: if g ∈ G is a generator of G, then e(g, g) is a generator

of GT .

We prove the security of our scheme in the generic bilinear group model. We
here briefly review this model. The generic group model introduced in [22] is
extended to the generic bilinear groups model of prime order in [5].

Definition 3. The generic bilinear group model: Let us consider the case
the bilinear groups of prime order p are G and GT and g is a generator of G. In
this model, elements of G and GT appear to be encoded as unique random strings,
so that no property other than equality can be directly tested by the adversary.
There exist three oracles in this model. Those are, oracles that perform group
operations in each G and GT and an oracle that performs paring e. The opaque
encoding of an element in G is modeled as an injective function ψ : Z/pZ→ Σ ⊂
{0, 1}∗, which maps all α ∈ Z/pZ to the string representation ψ(gα) of gα ∈ G.
We similarly define ψT : Z/pZ → ΣT for GT . The attacker communicates with
the oracles using the (ψ, ψT )-representations of the group elements only.



We define a “General Bilinear Decision Problem” in the generic bilinear
group, which is a straight forward generalization of “General Diffie-Hellman
Exponent problem” of [7] in the generic bilinear group model [5].

Definition 4. General Bilinear Decision Problem: Let p be a prime and
let s and m be two positive integer constants. Let G and GT be order p cyclic
groups with an efficient bilinear mapping e : G × G → GT and g is a gen-
erator of G and gT = e(g, g). Let P = (p1, . . . , ps), Q = (q1, . . . , qs), P

′ =
(p′1, . . . , p

′
s), Q

′ = (q′1, . . . , q
′
s) ∈ Fp[X1, . . . , Xm]s and where p1 = q1 = p′1 = q′1 =

1. Let P (x1, . . . , xn) denote (p1(x1, . . . , xm), . . . , ps(x1, . . . , xm)) and [P (x1, . . . , xm)]g =
([p1(x1, . . . , xm)]g, . . . , [ps(x1, . . . , xm)]g). We use similar notation for Q,P ′, Q′.

We say an algorithm B has an advantage ǫ solving general bilinear decision
problem with respect to (P,Q) and (P ′, Q′) if

|Pr[B([P (x1, . . . , xm)]g, [Q(x1, . . . , xm)]gT = 1]

−Pr[B([P ′(x1, . . . , xm)]g, [Q′(x1, . . . , xm)gT ) = 1]| > ǫ

where the probability is taken over random choice of x0, . . . , xm ∈R Z/pZ and
random tapes of B.

Definition 5. Dependent and Independent Polynomials: We say (P,Q)
and (P ′, Q′) are dependent if there exists tuple of s2 + s constants
{aij}i=1,...,s,j=1,...,s, {bi}i=1,...,s such that either

0 ≡

s
∑

i,j=1

aijpipj +

s
∑

i=1

biqi ∧ 0 6≡

s
∑

i,j=1

aijp
′
ip

′
j +

s
∑

i=1

biq
′
i

or

0 6≡

s
∑

i,j=1

aijpipj +

s
∑

i=1

biqi ∧ 0 ≡

s
∑

i,j=1

aijp
′
ip

′
j +

s
∑

i=1

biq
′
i

holds. We let (P,Q) 6∼ (P ′, Q′) denote this.
We say that a general bilinear decision problem with respect to (P,Q) and

(P ′, Q′) is independent if (P,Q) and (P ′, Q′) are not dependent. We let (P,Q) ∼
(P ′, Q′) denote this.

The general Diffie-Hellman Exponent problem in [7] is a special case of the
above problem when each of {pi = p′i}i=1,...,s is a polynomial of x1, . . . , xm−1,
Q = (1, f(x1, . . . , xm−1)), and Q′ = (1, xm).

Theorem 1. Let dP , dP ′ , dQ, and dQ′ be, respectively, the maximum degree of
polynomials in P, P ′, Q, and Q′ and let d = max(2dP , 2dP ′ , dQ, dQ′). In the
generic bilinear group model, no algorithm A that makes a total of at most qg
queries to the oracles computing group operations in G, GT , and e : G × G → GT

has an advantage ǫ in solving any of general bilinear decision problem with respect
to (P,Q) and (P ′, Q′) which are independent. Where,

ǫ =
(qg + 2s)2d

p
.

The proof of the theorem is given in Appendix A.



4 Proposed Scheme

We now propose our identity-based broadcast encryption scheme. LetH : {0, 1}ℓ →
Z/pZ be a cryptographic hash function. Our scheme is as in the following.

Setup: Given a n, ℓ, k ∈ N, Setup first chooses (G,GT , e) of size polynomial of k
and let param = (n, ℓ, p,G,GT , e). Then, it randomly chooses

P,Q ∈R G

ω, σ ∈R Z/pZ.

Next, it generates

P̃ = [ω]P

Q̃ = [ω]Q

(Pi)i=1,...,n = ([σi]P )

(Qi)i=1,...,n = ([σi]Q)

y = e(P̃ , Q).

Finally, it outputs

pkey =

(

param, y,

(

P1, . . . , Pn

Q̃, Q, Q1, . . . , Qn

))

mkey = (σ, P̃ )

KeyExt: Given id ∈ {0, 1}ℓ, pkey, and mkey, KeyExt generates

Iid = H(id)

skeyid = Kid =

[

1

σ + Iid

]

P̃

and then outputs skeyid

Enc: Given a set of identities S such that |S| ≤ n, Enc randomly chooses ρ ∈
Z/pZ and generates

key = K = yρ

hdr = (H1, H2,S) = ([ρ
∏

id′∈S

(σ + Iid′)]Q, [ρ]Q̃,S)

where Iid′ = H(id′). Finally, it outputs (key, hdr).
Dec: Given pkey, hdr = (H1, H2,S), and skeyid such that id ∈ S, it generates

v = e(Kid, H1) · e([
∏

id′∈S,id′ 6=id

Iid′ ]P −
∏

id′∈S,id′ 6=id

(σ + Iid′)]P,H2)

K = v
Q

id′∈S,id′ 6=id Iid′
−1



Note that [ρ
∏

id′∈S(σ + Iid′)]Q =
∑|S|

i=0([fi][σ
i]Q) = [f0]Q +

∑|S|
i=1([fi]Qi)

holds for some {fi ∈ Z/pZ}i=0,...,|S|. Here, {fi ∈ Z/pZ}i=0,...,|S| can be computed
from ρ and {Iid′}id′∈S with less than |S|2 multiplications and additions in Z/pZ
and H1 can be computed from these {fi}i=0,...,|S| and Q, {Qi}i=1,...,|S| with |S|
scalar multiplications and additions in G.

We also note that [
∏

id′∈S,id′ 6=id Iid′ ]P−
∏

id′∈S,id′ 6=id(σ+Iid′ )]P ) =
∑|S|−1

i=1 ([f ′
i ]Pi)

holds for some {f ′
i ∈ Z/pZ}i=1,...,|S|−1. Here, we do not need P , which is not

included in public key. Decryption also requires less than |S|2 multiplications
and additions in Z/pZ and |S| scalar multiplications and additions in G.

5 Security of the Proposed Scheme

Theorem 2. The proposed scheme is key-indistinguishable under adaptive key
extraction attacks in the generic bilinear group model with random oracle.

Proof. We first list elements that the adversary obtains from the game in the
generic bilinear group model. We assume hash function H is now considered as
a random oracle and suppose that the adversary asks at most q random oracle
queries. If A asks a key extraction query with respect to a string id ∈ {0, 1}ℓ

and it has never asked random oracle query with respect the query id, C asks
the random oracle a query for this string. We count this random oracle query as
the one asked by A. We assume the response to i-th query of the random oracle
is υi and let U be the set of integers {1, . . . , q}. We let

∏

j and
∏

j 6∈S denote
∏

j∈U and
∏

j 6∈S∧j∈U respectively. Similar notations are defined naturally.
Let α, β, σ, ω, ρ′ be variables and let us see what A obtains in the key distin-

guishing game in the generic bilinear group model.

Setup: Suppose G is a generator of G. Let

P = [α
∏

j

(σ + υj)]G , Q = [β
∏

j

(σ + υj)]G

P̃ = [ωα
∏

j

(σ + υj)]G , Q̃ = [ωβ
∏

j

(σ + υj)]G

Pi = ([σiα
∏

j

(σ + υj)]G) , Qi = ([σiβ
∏

j

(σ + υj)]G)

y = e(G,G)ωαβ
Q

j(σ+υj)2 .

Then, the data that A obtains from public key are ψ and ψT representation
of the following polynomials. They are, polynomials

ασ
∏

j

(σ + υj), . . . , ασ
n

∏

j

(σ + υj)

ωβ
∏

j

(σ + υj), β
∏

j

(σ + υj), βσ
∏

j

(σ + υj), . . . , ασ
n

∏

j

(σ + υj)



which are included in P, P ′ and a polynomial

αβ
∏

j

(σ + υj)
2

which is included in Q,Q′.

KeyExt: Since, skeyid = Kid =
[

1
σ+H(id)

]

P̃ , A obtains ψ representation of the

polynomial

ωα

n
∏

j 6=i

(σ + υj)

when it asked a key extraction query with respect id. Here we assume that
random oracle with respect to this string id is i-th query. Hence, this poly-
nomial is included in P and P ′.

Challenge: Valid encryptions with respect to S∗ are of the form (key∗, hdr∗) such
that

key∗ = K = yρ′

hdr∗ = (H1, H2,S
∗) = ([ρ′

∏

id′∈S∗

(σ + Iid′)]Q, [ρ′]Q̃,S∗),

Here, Iid = υi such that i-th random oracle query is with respect to this id.
Hence, letting ρ = ρ′

∏

j∈S∗(σ + υj), polynomials of which ψ, ψT represen-
tations A obtains are as in the following.
The distribution of challenge is that of valid ciphertext when b = 0, but that
of key∗ in it is independently distributed when b = 1. Therefore, polynomials

ρβ
∏

j

(σ + υj) , ρωβ
∏

j 6∈S∗

(σ + υj)

are included in both P and P ′ and

ρωαβ
∏

j 6∈S∗

(σ + υj)
∏

j

(σ + υj)

is included in only Q but not in Q′. Another random variable τ is included
in Q′ instead.

We assume no key extraction query with respect to id such that id ∈ S∗ is asked.
Here id is assumed to be i-th query to the random oracle.

Since A obtains ψ and ψT representations of (P,Q) when b = 0 and those
of (P ′, Q′), what we are required to prove is the independence of (P,Q) and
(P ′, Q′).

We assume they are dependent and find a contradiction. Since τ is indepen-
dent variable, we may assume that the following equation holds with respect to
(P,Q) because of the dependence:

s
∑

i=1

ciqi ≡
s

∑

i,j=1

aijpipj .



The equation should hold for each degree of polynomials. Let us see the terms
that contains ρωαβ. Then, there should be a set of coefficients c and {ai}i=1,...,n

inZ/pZ such that

cρωαβ
∏

j 6∈S∗

(σ + υj)
∏

j

(σ + υj) =
∑

i6∈S∗

ai(ρβ
∏

j

(σ + υj) · ωα
∏

j 6=i

(σ + υj))

holds for non zero c. Hence,

c
∏

j 6∈S∗

(σ + υj)
∏

j

(σ + υj) =
∑

i6∈S∗

ai(
∏

j

(σ + υj) ·
∏

j 6=i

(σ + υj))

⇔

c
∏

j

(σ + υj) =
∑

i6∈S∗

ai(
∏

j∈S∗

(σ + υj) ·
∏

j 6=i

(σ + υj))

⇔

c
∏

j 6∈S∗

(σ + υj) =
∑

i6∈S∗

ai(
∏

j∈S∗

(σ + υj)
∏

j 6∈S∗,j 6=i

(σ + υj))

should holds.
Inserting each υk such that k 6∈ S∗ into σ,

0 =
∑

i6∈S∗

a2i

∏

j∈S∗

(υk + υj)
∏

j 6∈S∗,j 6=i

(υk + υj)

= ak

∏

j∈S∗

(υk + υj)
∏

j 6∈S∗,j 6=k

(υk + υj)

Hence, for all k 6∈ S∗, ak = 0 holds. This implies c = 0 and contradicts to the
assumption of dependence. Hence, the independence is proved.

Now, counting the degrees and the number of polynomials, t-time adversary
wins the key distinguishing game with the probability at most,

ǫ ≤
2(t+ 2n+ 6)(n+ q + 1)

p
.

where we assumed t > q and that t is a polynomial of k. Since p which is chosen
to be superpolynomial of k, ǫ is negligible in k. Therefore, the theorem is proved.

6 Performance Analysis

Now we analyze the performance of our scheme. Many efficiency benchmarks
for broadcast encryption schemes exist. They are, length of ciphertext, length of
private key, length of public key, computational cost for encryption and decryp-
tion etc. Those values vary according to the size of receiver set, the number of
potential users, and how much its receiver set has changed. We compare these
efficiency with the scheme of Boneh et al. in [9].



Table 1. Comparison of schemes

Our scheme [10]

private key length O(1) O(1)

ciphertext length (excluding S) O(1) O(1)

public key length O(n) O(N = 2ℓ)

cost for encryption (for the same receiver set) O(1) O(1)

cost for decryption (for the same receiver set) O(1) O(1)

# of multiplication in Z/pZ or # of additions in G O(t2) O(t)

# of scalar multiplication in G O(t) −

In Table 1, n is the maximum size of receiver set S. N = 2ℓ is the maximum
number of users, i.e., potential receivers. t is the number of receivers who is in
either of previous receiver set or current receiver set but not in the other. As we
can see in this table, our scheme has most of nice features of Boneh’s scheme.
Although our scheme requires more computational power when receiver sets are
changed, its computational cost remains as small as the scheme is realistic in
use.

The main problem of our scheme is that the size of S is proportional to the
size of receiver set since its each element is of size ℓ. Hence, our scheme can not
be in advantageous position when its receiver sets vary very often.

Our scheme is the most advantageous over the previous scheme, such as
Boneh’s scheme in [9], when the number of potential receivers is huge but the
maximum size of its receiver set is rather small and receivers set does not change
drastically on an average day. Example of such a case is when all Internet users
are potential receivers and some of them form a group based on their identities
and communicate each other.

7 Fully Secure Scheme, Removing Random Oracle and

Generic Group Assumptions

From our scheme, we can construct a scheme that has key indistinguishability
under chosen ciphertext attacks. This is possible if we use the technique of [12].
With the technique of [23] and random oracle, our scheme can also acquire key
indistinguishability under chosen ciphertext attacks.

Although the security of our scheme is proved in the random oracle model.
It was not essential. We used random oracle so that we are able to determine
υi = H(id) before the game starts. However, If we consider rational polynomial
rather than polynomial for representing the values in G and GT in the generic
bilinear group, only essential property is that no υi and υj collude as long as i-th
and j-th queries are different. Hence, if we use rational polynomial and collision
resistant hash function, our scheme can be proved only in generic bilinear group
model.



Proving the security outside of the generic bilinear group model is possible
if we assume hardness of some problem in which adversaries are allowed to
call oracles, such as one that returns [ 1

σ+υ
]g when the adversary sent υ. Such

an approach is adopted in many works such as LRSW assumption in [17, 11].
However, we could not see any essential improvement as long as underlying
assumptions can be proved only in generic group model. Hence, we did not
choose this kind of approach. We believe a proof based on mild assumptions in
which adversaries are not allowed to call oracles, such as q-strong Diffie-Hellman
assumptions has a significance, even if these assumptions are proved in generic
group model. Constructing identity-based broadcast encryption whose security
can be proved in the standard model (or only with mild assumptions) is still an
open problem.

8 Conclusion

We have proposed the first truly identity-based broadcast encryption scheme
which has most of desirable properties that the previous nice scheme has. The
scheme is the most advantageous when the number of potential receivers is huge
but the maximum size of its receiver set is rather small and receive sets do not
change so often. Our scheme can also be an essential building block without no
alternative for other protocols.
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A Proof of Theorem 1

Proof. The proof is similar to that of Theorem A.2 in [7].
Consider an algorithm B that plays the following game with A. Algorithm B

maintains two lists of pairs,

LP = {(pi, ψP,i) : i = 1, . . . , τP }, LQ = {(qi, ψQ,i) : i = 1, . . . , τQ}

under the invariant that at step τ in the game, τP + τQ = τ + 2s. Here, pi ∈
Fp[X1, . . . , Xm] and qi ∈ Fp[X1, . . . , Xm] are multi-variate polynomials. The
ψP,i and ψQ,i are strings in {0, 1}k. The lists are initialized at step τ = 0 by
initializing τP = τQ = s. B chooses b ∈ {0, 1} at the beginning of the game.
We set p1, . . . , ps in LP and q1, . . . , qs in LQ to be, respectively, the polynomials
in P and Q if b = 0. We set them to be polynomials in P ′ and Q′ if b = 1.
Algorithm B completes the preparation of the lists LP and LQ by setting the
ψ-strings associated with distinct polynomials to random strings in {0, 1}k.



We can assume that A makes oracle queries only on strings obtained from B,
since B can make the strings in G and GT arbitrarily hard to guess by increasing
k.

We note that B can easily determine the index i of any given string ψP,i ∈ LP

and ψQ,i ∈ LQ. B starts the game by providing A with the value of p and a tuple
of strings

{ψP,i}i=1,...,s, {ψQ,i}i=1,...,s

meant to encode some tuple in Gs × Gs
T . Algorithm B responds to A’s oracle

queries as follows.

Group operation in G,GT . A query in G consists of two operands ψP,i and
ψP,j with 1 ≤ i, j ≤ τP and a selection bit indicating whether to multiply
or divide the group elements. To answer, let τ ′P ← τP + 1. Perform the
polynomial addition or subtraction pτ ′

P
= pi ± pj depending on whether

multiplication or division is requested. If the result pτ ′
P

= pl for some l ≤
τP , then set ψPτ ′

P
= pPl; otherwise, set ψPτ ′

P
to a new random string in

{0, 1}k \ {ψP1, . . . , ψPτP
}. Insert the pair (pτ ′

P
, ψPτ ′

P
) into the list LP and

update the counter τP ← τ ′P . Algorithm B replies to A with the string ψPτP
.

GT queries are handled analogously, this time by working with the list LQ

and the counter τQ.
Bilinear pairing. A query of this type consists of two operands ψP,i and ψP,j

with 1 ≤ i, j ≤ τP . To answer, let τ ′Q ← τQ + 1. Perform the polynomial
multiplication qτ ′

Q
= pi · pj . If the result qτ ′

Q
= ql for some l ≤ τQ, then

set ψQ,τ ′
Q

= pQl; otherwise, set ψQ,τ ′
Q

to a new random string in {0, 1}k \

{ψQ,1, . . . , ψQ,τQ
}. Insert the pair (qτ ′

Q
, ψQτ ′

Q
) into the list LQ and update

the counter τQ ← τ ′Q. Algorithm B replies to A with the string ψQ,τQ
.

After at most qg queries, A terminates and returns a guess b′ ∈ {0, 1}. At this
point B chooses random {x1, . . . , xm} For i = 1, . . . ,m, we set Xi = xi. It follows
that the simulation provided by B is perfect unless the chosen random values
for the variables X1, . . . , Xm result in an equality relation between intermediate
values that is not an equality of polynomials. In other words, the simulation is
perfect unless for some i, j one of the following holds:

1. pi(x1, . . . , xm) − pj(x1, . . . , xm) = 0, yet the polynomials pi and pj are not
equal.

2. qi(x1, . . . , xm) − qj(x1, . . . , xm) = 0, yet the polynomials qi and qj are not
equal.

Let fail be the event that one of these two conditions holds. When event fail

occurs, then B’s responses to A’s queries deviate from the real oracle’s responses
when the input tuple is derived from the vector (x1, . . . , xm) ∈ F

m
p .

We first bound the probability that event fail occurs. We need to bound the
probability that for some i, j we get (pi − pj)(x1, . . . , xm) = 0 even though
pi − pj 6= 0 or that (qi − qj)(x1, . . . , xm) = 0 even though qi qj 6= 0. By



construction, the maximum total degree of these polynomials is at most d =
max(2dP , 2dP ′ , dQ, dQ′). Therefore, for a given i, j the probability that a ran-
dom assignment to X1, . . . , Xn is a root of qi−qj is at most d/p. The same holds
for pi − pj . Since there are no more than 2( q+2s

2 ) such pairs (pi, pj) and (qi, qj)
in total, we have that

Pr[fail] ≤ (
q + 2s

2
)
2d

p
≤ (q + 2s)2d/p.

If event fail does not occur, then B’s simulation is perfect.
Since (P,Q) and (P ′, Q′) are independent, the distributions A is given are

exactly the same unless fail happens. Therefore, the theorem is proved.


