
Differential Cryptanalysis in Stream Ciphers

Eli Biham1 Orr Dunkelman?2

1Computer Science Department, Technion.
Haifa 32000, Israel

biham@cs.technion.ac.il
2Katholieke Universiteit Leuven,

Dept. of Electrical Engineering ESAT/SCD-COSIC.
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

orr.dunkelman@esat.kuleuven.be

Abstract. In this paper we present a general framework for the appli-
cation of the ideas of differential cryptanalysis to stream ciphers. We
demonstrate that some differences in the key (or the initial state or the
plaintext) are likely to cause predicted differences in the key stream or in
the internal state. These stream differences can then be used to analyze
the internal state of the cipher and retrieve it efficiently. We apply our
proposed ideas to stream ciphers of various designs, e.g., regularly clocked
LFSRs, irregularly clocked LFSRs such as A5/1, and permutation-based
stream ciphers such as RC4.

Keywords: Differential cryptanalysis, Stream ciphers, RC4, A5/1, LILI-
128, LILI-II, Trivium, Toyocrypt.

1 Introduction

Differential cryptanalysis [6] was suggested as a general method for analyzing
various cryptographic primitives. The technique was widely applied to block
ciphers and hash functions, and many new constructions of these primitives are
specifically designed to withstand this attack.

The ideas of differential cryptanalysis were also used in the analysis of several
public key cryptosystems. Patarin’s 2R cryptosystem [27] was analyzed using
differential cryptanalysis due to its block-cipher like description [4]. Recently,
attacks on another multivariate public key cryptosystem using differential tech-
niques was presented in [17, 13].

Differential ideas were also used in differential fault analysis [7]. In this kind
of attack, the attacker can introduce errors during the computation, leading to
an error in the output. By examining the difference between an unfaulty compu-
tation and a faulty one, the attacker can deduce information on the computation.

These ideas were used in various cryptanalytic attacks on stream ciphers. For
example, in [30] it is shown that two IVs with some given difference may produce

? The research presented in this paper was partially supported by the Clore scholarship
programme.

the same key stream. Other works on stream ciphers also explored differences,
but till now, no comprehensive approach for these ideas in the framework of
stream ciphers has been presented.

In this paper we show that differential ideas can be used in the world of stream
ciphers. We show that a key difference (or even an initial value difference) can be
used to predict the stream differences (with some probability). This phenomena
is easily observed and detected where the key loading procedure and the key
updating procedure are linear (as in an LFSR), as well as in nonlinear procedures
that initialize the internal state of the stream cipher (like in RC4 [28]).

We define the terms differential characteristics and differential for stream
ciphers. We note that as there are several types of stream ciphers, the terms is
not a simple adaptation of the block cipher terms. For example, in synchronous
stream ciphers, the differential characteristics can be defined either from the
(key, IV) pair into the internal state, from the internal state to itself or from
the internal state of the stream cipher into the key stream. As in cryptanalysis of
block ciphers, differential characteristics are concerned with the exact evolution
of differences, while differentials are only concerned with the input and output
differences.

We then show that it is possible to use these characteristics to analyze stream
ciphers. We show that the existence of good characteristics in a stream cipher is
an evidence for a problem in the cipher’s design. Moreover, differential charac-
teristics can be used to explain many of the previous attacks on stream ciphers.

We discuss several attack scenarios: We start by discussing distinguishing
attacks in the presence of several streams produced by different (key, IV) pairs.
We continue with the use of differentials for key recovery attacks. Finally, we
show a speed up in exhaustive search in the presence of differentials. We also
shortly discuss the effects of our works on differential fault analysis of a stream
cipher.

After defining the concept of differential characteristics in stream ciphers,
we analyze a generic LFSR-based stream cipher (with a nonlinear combining
function). We present a simple differential attack on Toyocrypt that requires
only two streams of 128 bits each. We then show that the ideas are applicable
also for nonlinearly clocked LFSRs, e.g., the GSM stream cipher A5/1 [9], which
uses three LFSRs that are irregularly clocked. We also show that even ciphers
based on permutations, such as RC4 [28], are susceptible to differential attacks.

By combining the results, we present a framework that stream cipher design-
ers must be aware of. A stream cipher which has no high probability differentials
(or even impossible differentials) is expected to be immune to resynchronization
attacks, related-key attacks, and re-keying attacks. The last statement is even
stronger for self synchronizing stream ciphers or ciphers that propose authen-
ticated encryption, where the attacker can introduce differences through the
plaintext (or ciphertext) as well.

Section 2 describes previous works and related ideas. In Section 3 we define
differential characteristics and differentials for stream ciphers. Section 4 presents
the differential characteristics for LFSRs and for A5/1 and ways for using them

2

in cryptanalysis. Section 5 suggests differential characteristics for RC4 along
with ways of using them for the reconstruction of the internal state. In Section 6
we show how to describe previously published attacks on stream ciphers using
the concept of differential characteristics, and interpret these new description.
In Appendix A we give a short description of some of the ciphers we attack. We
apply our results to Trivium, LILI-128 and LILI-II in Appendix B. Appendix C
contains a short description of how to deal with differentials to increase the speed
of exhaustive key search. Finally, Section 7 summarizes this paper.

2 Related Concepts

There are several approaches for attacking stream ciphers that are relatively
close to the ones presented in this paper. These approaches are mostly ad-hoc
techniques used to break a specific stream cipher.

In his attack on LILI-128 [11], Babbage considers several streams produced
by the same key with different IVs [2]. This model is a realistic one, as most
stream ciphers are designed to support a fixed key with a multiple possible IVs.

The keying mechanism of LILI-128 loads the XOR of the key and IVs into the
state machine without any processing. When the same key is used with different
IVs, guessing a small part of the key (as done in Babbage’s attack) leads to the
knowledge of a small part of the internal state in many key streams. This was
used to attack LILI-128 with about 64 output streams (produced under the same
key with different public IVs) with time complexity of about 239 operations.

Another related concept is in the attacks presented in [15, 21, 23], where RC4
is analyzed. In these attacks, by using different known IVs, it is possible to gather
statistical information on the internal state of RC4. While in Babbage’s attack
any set of IVs would be suitable to the attack, in these attacks on RC4, the
attacker waits for IVs that generate some specific internal state that has some
easy to identify property. Once the property is identified, it discloses information
about the secret key (as for different keys different IVs achieve this property).

In [30] a different approach is presented in an attack on Py [30]. The attack
uses different IVs with a fixed key. While the RC4 attacks usually wait for some
internal state to be generated, this attack on Py [5] shows that for any given
key, there is a set of 216 IVs of which two are expected to initialize the same
internal state. Hence, for these IVs, the same output stream is expected. This
attack has the strictest conditions of the other attacks, as it assumes a chosen
IV scenario (which is still a very probable model).

The concept of weak key classes is also related to our work. Some of the
applications of our proposed concepts reduce the time complexity of various
attacks, like exhaustive key search, for special groups of keys. Just like in block
ciphers, there are keys for which the encryption process is not as strong as for
most keys. In the case of stream ciphers, this approach is usually applicable to
ciphers where some components depend on the key alone, and are not updated.
For example, in the attack on ABCv2 [1] presented in [29] it was shown that if
the key initialization leads to 32 internal constants whose least significant bits

3

are all set to 0, then there is a bias in one of the bits of the stream words. This
bias is then used for a standard distinguishing and key recovery attacks. One can
view also the attacks on RC4 as a weak keys attacks (as the statistical property
holds for some of the (key,IV) pairs).

We note that our framework can treat even the cases of a repeated nonce
(IVs) attacks which recently been proposed against several authenticated en-
cryption schemes [31]. In the scenario of repeated nonce, the attacker can ask
for the encryption/decryption of different messages under the same (key,IV) pair.
When the encryption process is independent of the texts, this has no effect on the
security, but when the encryption process depends on the provided plaintexts,
i.e., in a synchronous stream cipher or in an authenticated-encryption mode of
operation, this might result in interesting attacks as presented in [26, 31].

3 Differential Characteristics of Stream Ciphers

There are several kinds of stream ciphers: synchronous, self synchronizing, and
those which provide authentication. Each of these options defines the interface
that the stream cipher has and thus defines the possible differentials for the
cipher.

3.1 Synchronous Stream Ciphers

Most of the stream ciphers are synchronous stream ciphers which provide no au-
thentication. In this case, the stream cipher’s only input is the keying material
(that might include the IV). These ciphers can be defined using a set of three
algorithms — an internal state initialization procedure S = INIT (key, IV),
where S denotes the internal state, an internal state update function S =
UPDATE(S), and and an output function KS = OUTPUT (S) that produces
the key stream.

For such ciphers there are three types of differential characteristics:

– (∆key, ∆IV)
INIT
−−−−→ ∆S, where a difference in the key or the IV generates a

difference in the internal state,

– ∆S
UPDATE
−−−−−−−→ ∆S through the internal state update function,

– ∆S
OUTPUT
−−−−−−−→ ∆KS, where a difference in the internal state generates a key

stream difference.

It is also possible to define the concatenation of these characteristics, i.e., (∆key, ∆IV)
INIT+OUTPUT
−−−−−−−−−−−−−→

∆KS. Moreover, if (∆key, ∆IV)
INIT
−−−−→ ∆S has probability p1 and ∆S

UPDATE
−−−−−−−→

∆KS has probability p2, then (∆key, ∆IV)
INIT+UPDATE
−−−−−−−−−−−−→ ∆KS has probabil-

ity p1 · p2 (assuming the characteristics are independent of each other).
Up till now we discussed differential characteristics, i.e., a prediction on the

exact evolution of differences through the various functions of the cipher. Just
like in block ciphers, we are usually interested only in the input and the output

4

differences. Such a prediction is named in block ciphers a differential and we use
the same name for stream ciphers as well. A differential of a stream cipher is a
prediction that a given input difference (be it the key, the IV, or the internal
state) produce some output difference (be it the key stream or the internal
state). As in block ciphers, we are not interested in what exactly happens in
the cipher when the differential is satisfied, but only with the probability of the
differential. We note that just like in block ciphers, it is hard to compute the
exact probability of a given differential, but we can of course use the probability
of a given characteristic with the same input and output differences as a lower
bound.

The reader might wonder whether the above separation is necessary, as for
such stream ciphers the attacker can control only the difference (∆key, ∆IV)
and observe only the differences of the key stream. We shall demonstrate later,
that even differentials from the internal state to the key stream may be very
useful for cryptanalysis.

3.2 Self Synchronizing Stream Ciphers

For self synchronizing stream ciphers, or ciphers that offer an authenticated en-
cryption, the UPDATE and the OUTPUT functions have an additional input,
the plaintext. In case of authenticated encryption, there is an additional algo-
rithm TAG, which transforms the internal state into a MAC tag. While in case
of self synchronizing stream ciphers, there is a decryption process. The handling
of the latter case is similar to the OUTPUT function though being its inverse
(with a fixed state).

We now summarize the functions for such stream ciphers:

– S = INIT (K, IV), where K is the key and IV is the IV.
– S = UPDATE(S, P), where P is the plaintext word.
– C = OUTPUT (S, P), where C is the resulting ciphertext word.
– (S, P) = DECRY PT (S, C), where C is the ciphertext word and where P is

the resulting plaintext word.
– tag = TAG(S), which is the tag produced by the internal state (if authen-

ticated encryption is offered).

The possible characteristics in this case are:

– (∆key, ∆IV)
INIT
−−−−→ ∆S, where a difference in the key or the IV generates a

difference in the internal state,

– ∆S
UPDATE
−−−−−−−→ ∆S through the internal state update function,

– (∆S,∆P)
UPDATE
−−−−−−−→ ∆S is the differential that predicts the difference in

the internal state given the current difference of the internal state and the
difference in the plaintext word.

– (∆S,∆P)
OUTPUT
−−−−−−−→ ∆C is the differential that predicts the ciphertext dif-

ference given the internal state difference and the plaintext difference.

5

– (∆S,∆C)
DECRY PT
−−−−−−−→ (∆S,∆P) is the differential that predicts the plaintext

difference given the internal state difference and the ciphertext difference.

– ∆S
TAG
−−−→ ∆tag is the differential that predicts the tag difference.

4 Differentials of LFSR Based Stream Ciphers

Let us consider the most basic stream cipher design — an LFSR (with a primitive
feedback polynomial) with a combining logic which outputs one bit of key stream
each clock. We shall assume that this LFSR is initialized with a (key, IV) pair
of the length of the LFSR. Then the LFSR starts to produce key stream.

It is easy to see that given two (key, IV) pairs, denoted by (k1, IV1) and
(k2, IV2), such that ∆k = k1 ⊕ k2 and ∆IV = IV1 ⊕ IV2 are known, then the
difference in the internal state is known for any given number of clocks. This
allows to estimate the output difference of the combining function, i.e., we can
estimate the key stream differences. For example, when all the bits that the
combining function uses have no difference, then there is no difference in the key
stream. There are cases for which the difference would have some probability,
e.g., if there is a difference in only one bit which is combined through a monomial
of degree 3, there is portability of 1/4 that there is a difference in the key streams
in the corresponding bit.

This fact can also be used to distinguish the output of the stream cipher under
two related keys (or IV s) from two random strings. Moreover, in some cases, it
can be used to identify information about the internal state. For example, in the
previous example, where the only difference to the combining function is in one
bit that enters a monomial of degree 3, in case there is a difference in the output
stream, we can detect the values of two bits of the LFSRs.

4.1 Differential Cryptanalysis of Toyocrypt-HS1

We demonstrate the above concept on Toyocrypt-HS1 [32], which is a 128-bit
key stream cipher. The cipher is composed of a 128-bit LFSR which is initialized
with a 128-bit key and outputs each round one bit using the combining function

f(s0, . . . , s127) = s127

⊕62
i=0 sisαi

⊕
s10s23s32s42

⊕
s1s2s9s12s18s20s23s25s26s28s33s38s41s42s51s53s59

⊕
Π62

i=0si

where αi ∈ {63, . . . , 125} is a constant list of indices with the property that each
of the values appears once.1

4.1.1 Distinguishing Attack on Toyocrypt It is easy to see that given two
keys whose difference is known, the differences in the LFSRs can be predicted for

1 We adopt the notations of [32], i.e., the LFSR is clocked and s127, the most significant
bit, is fed back through the one-to-many LFSR configuration.

6

the consecutive stream. For example, if the key difference is in bit s126, then the
key stream difference is zero in the first bit and one in the second bit necessarily.

Thus, given two streams generated by related keys, we check whether the
first output bit is the same and the second one differs. If this is the case, we
output that the stream cipher in use is Toyocrypt. Otherwise, the cipher cannot
be Toyocrypt. The attack has a success rate of 75% (it might deduce that a
different stream cipher is Toyocrypt in 25% of the cases).

Given several pairs of output streams, we can increase the success rate of
the attack. If any of the pairs of streams lead to the conclusion that the pair
was not produced using Toyocrypt, then the cipher is necessarily not Toyocrypt.
Otherwise, given s pairs of streams, the probability of error is 0.25s.

4.1.2 Improving Exhaustive Key Search of Toyocrypt We can also
improve the time complexity of an exhaustive key search using the above dif-
ferential. Assume that the attacker tries a key K, for which the first bit of the
key stream does not agree with the actual key stream. Then, the key K ⊕ s126

can also be automatically discarded without any consideration, reducing the ex-
pected time complexity of an exhaustive key search by a factor of 2126 trials.
This fact might seem unnatural, as we are given only one key stream, but as
the differential has probability 1 it can be used to predict (one bit of) the key
stream, thus resulting in the ability to try two keys at the expense of one.

Thus, even though the exhaustive key search attack does not require the
related-key model, it can still benefit from the existence of differentials. This
has a close relation to the ideas of complementation properties. For example,
DES’s complementation property can be viewed as a related-key differential
with probability 1. Using it, there is a speed up in exhaustive key search by a
factor of 2.

4.1.3 Differential Key Recovery Attack on Toyocrypt Toyocrypt-HS1
is updated in a one-to-many manner (i.e., bit s127 is XORed into several bits
during the clocking of the LFSR). Thus, differences that are introduced in a
relatively least significant position, do not propagate through the LFSR for a
long period of time (thus maintaining the low hamming weight of the difference).
For example, if the difference is ∆S = s0, then it would take 128 clockings in
order for this difference to affect other bits.

Given two key streams produced by two keys whose initial state difference
is ∆S = s0 it is possible to reconstruct most of the internal state. This follows

from the fact that the differential ∆S = s0

OUTPUT
−−−−−−−→ sα0 = ∆KS holds with

probability 1. If sα0 = 0 then there is no difference in the first bit of the key
streams, while otherwise there is a difference.2 We note that the next bit may

2 We can assume that s1, . . . , s62 are not all 1. Otherwise, if the described attack fails
in retrieving the internal state, we may deduce that this assumption is wrong, thus
disclosing 62 bits of the internal state, and allowing for repetition of the attack with
the required modifications.

7

produce various differences (as s1 is part of several nonlinear terms). However,
with probability 1 − 2−17 the difference in the second bit discloses the value of
sα1 in a similar manner. Thus, by disregarding the output difference when there
is a difference in s10, s23, s32, or s42, almost the entire register can easily be
recovered with a success rate of (1 − 2−17)17 = 0.99987. The remaining seven
bits (corresponding to s0, sα10−10, sα23−23, sα32−32, sα42−42, s126, and s127) can
easily be recovered by exhaustive search.

4.2 Differential Cryptanalysis of A5/1

Our technique can be applied to irregularly clocked LFSRs, where the number
of clocks of the LFSR is determined by some pseudo-random controller. A5/1 is
the stream cipher used to protect the privacy of GSM calls. The key length is
64 bits, and the IV (called a frame number) is 22-bit long. The key and the IV
are used to initialize 3 LFSRs which are irregularly clocked. The description of
A5/1 can be found in Appendix A.1

The combined 86 bits are used to linearly initialize an internal state of 64 bits.

Thus, A5/1 has many equivalent differentials of the form (∆K,∆IV)
INIT
−−−−→ ∆S.

Each state difference ∆S (after loading the 86 bits) has exactly 222 possible
(∆K,∆IV) tuples that generate ∆S.

The best differential3 (for which ∆S 6= 0 after loading the key and frame
number) has input difference (∆k, ∆IV) = (0000015F102D07E2x, 08EDB3x).
With probability 1 it leads to two internal states S1 = (R1

1, R
1
2, R

1
3) and S2 =

(R2
1, R

2
2, R

2
3) that have a difference ∆S = S1⊕S2 = (R1

1⊕R2
1, R

1
2⊕R2

2, R
1
3⊕R2

3) =
(0, 000800x, 0), i.e., R1

1 ⊕R2
1 = 0, R1

2 ⊕R2
2 = 000800x, and R1

3 ⊕R2
3 = 0.

Each of the two states is clocked for 100 clocks using the irregular clocking
mechanism. At the beginning there is no difference in the bits that enter the
clocking mechanism, and thus, the number of times each register in S1 is clocked
is equal to the number of times its counterpart is clocked in S2. Therefore, the
difference in R2 propagates till it arrives to bit R2[20]. The next time R2 is
clocked after this event, the bit difference is fed back to register R2, and the
difference between the states becomes (0, 200001x, 0). After another clocking of
R2 the difference between R1

2 and R2
2 is 000003x, i.e., in bits R2[0, 1].

The difference between the R2 values continues to propagate, i.e., clocked
whenever R1

2 and R2
2 are clocked (which happens together, as both registers

have no difference in the clock controlling bits), until the difference reaches the
clock controlling bit. Our findings show that with probability of 0.197 = 2−2.346

the difference between the states becomes (0, 001800x, 0), i.e., all registers were
clocked the same number of times, and the difference does not affect the clock
controlling bits anymore.

From this point, again, there is no difference in the clock controlling bits,
and the difference of R2 propagates with probability 1, until the difference in
3 There are 222 (key, frame number) tuples that lead to exactly the same internal

state. The differential we describe can start in 222 − 1 other values for (∆key, ∆IV)
tuples that lead to a difference (0, 000800x, 0) after the loading of the keys.

8

Event Number of Internal Probability
Times R2 State

was Clocked Difference

After key initialization 0 (0, 000800x, 0) 1
When the difference arrives R2[21] 10 (0, 200001x, 0) 1
When the difference leaves R2[21] 11 (0, 000003x, 0) 1
When the difference arrives clocking 20 (0, 000600x, 0) 1
When the difference passes clocking 22 (0, 001800x, 0) 2−2.346

When the difference leaves R2[21] 32 (0, 000005x, 0) 1
When the difference arrives clocking 40 (0, 000500x, 0) 1
When the difference passes clocking 43 (0, 002800x, 0) 2−2.890

When the difference leaves R2[21] 53 (0, 00000Fx, 0) 1
When the difference arrives clocking 60 (0, 000780x, 0) 1
When the difference passes clocking 64 (0, 007800x, 0) 2−3.439

When the difference leaves R2[21] 74 (0, 000011x, 0) 1

Table 1. The evolution of A5/1 internal state differences from a (∆key, ∆IV) differ-
ence of ∆key = 0000015F102D07E2x and ∆IV = 08EDB3x.

R2 is 300000x. As before, this difference affects the least significant bits of R2

every time R2 and R∗
2 are clocked. This difference evolves into (0, 000500x, 0) and

passes through the clocking mechanism with probability 0.135 = 2−2.890. Then,
the difference wraps round the register to become (0, 00000Fx, 0). This difference
propagates to (0, 000011x, 0) with probability 0.092 = 2−3.439. We outline the
evolution of the difference of the internal states in Table 1.

After 100 clockings in which the output is discarded, A5/1 starts to output
key stream bits. When the output stream starts to pour out, the difference in the
output streams can be identified (if the two states have the predicted difference).

The problem is that the exact difference is unknown, as the exact number
of times register R2 was clocked during the initialization is unknown. However,
the most probable number of clockings of register R2 is 76 [24]. This number of
clockings is encountered with probability 0.092, i.e., with probability 0.197·0.135·
0.092 ·0.092 = 0.000225 ≈ 1/4442 the difference between the two states is indeed
(0, 000044x, 0). We note that there are several similar differentials in which the
number of times R2 was clocked is slightly different (and whose probabilities are
slightly lower than 1/4442).

If the above differential holds, the first output bit has a zero difference, i.e.,

(0, 000044x, 0)
OUTPUT
−−−−−−−→ 0 with probability 1. Actually, the first three bits of

the output stream are necessarily without a difference, and with probability of
at least 0.58 (the output stream may not necessarily differ even if there is a
difference in the number of times each register is clocked) the first four bits have
a zero difference.

We have experimentally verified the differentials with several tests of million
samples each. Table 2 lists the most probable R2 differences that were encoun-

9

Difference Probability Standard
Average Minimal Maximal Diviation

200008x 0.001017 0.000962 0.001062 0.00002828
000011x 0.000988 0.000957 0.001025 0.00001934
300004x 0.000984 0.000937 0.001043 0.00002826
000022x 0.000915 0.000874 0.000962 0.00002275
380002x 0.000880 0.000836 0.000934 0.00002815
3C0001x 0.000779 0.000727 0.000809 0.00002385
000044x 0.000778 0.000741 0.000822 0.00002650
1E0000x 0.000612 0.000581 0.000659 0.00002277
000088x 0.000611 0.000572 0.000671 0.00002982
0F0000x 0.000477 0.000448 0.000496 0.00001472
000110x 0.000458 0.000432 0.000487 0.00002367

Average corresponds to the average observed probability of all samples.
Maximal corresponds to the sample with the maximal observed probability.
Minimal corresponds to the sample with the minimal observed probability.
The standard deviation is of the probabilities observed in various samples.

Table 2. R2 differences after initialization from an initial difference of (0, 800x, 0) when
R1 and R3 have no difference. Each test had 1,000,000 test samples.

tered when R1 and R3 have no difference. As can be seen from the table, the
actual probability that internal state difference ∆S = (0, 000800x, 0) develops
into ∆S = (0, 000044x, 0) after 100 clocks is actually 0.000778 ≈ 1/1285, which
is about 3.5 times larger than the predicted value. This is explained by two fac-
tors. First, our probability calculation takes into consideration at most 10 bits of
each register (i.e., if the difference in the number of times each register is clocked
becomes the same only after 11 clockings of any of the registers then we did not
count it as part of the probability of a “right” transition). The second factor is
the fact that it appears that internal states which pass one of the iterations, are
more likely to pass another iteration and

We note that the most probable difference in R2 after the initialization is
200008x, which corresponds to 73 clockings of R2 during the initialization. This
is explained by the fact that for pairs of values for which the differential holds, R2

is slightly less likely to be clocked (as the register values satisfy some conditions).
The difference in R2 is with probability 0.0085 one of the top 11 possible

values, and in total with probability of about 0.01, the differential is followed
(up to the number of times R2 is clocked).

4.3 Differential Attacks on A5/1

The differentials of A5/1 can be used in several ways: The simplest way is when
two related encryptions are performed. In the related-key model [3], the attacker
can observe several output streams produced by different (but related) keys.
As in the case of Toyocrypt-HS1, when two output streams have a difference

10

predicted by the differential, we can use the correlations between the internal
state and the stream differences to learn information about the internal state.

For example, by identifying that the difference has just passed bit R2[21],
we know that the registers R1

2 and R2
2 were clocked. The disclosed information

reduces the number of possible internal states that the attacker has to check.
In the case of A5/1 this information can also be used as an indication on

how many times R1
2 and R2

2 were clocked during the initialization phase. Thus,
we can use the streams produced by the respective keys in attacks that require
this knowledge, e.g., the attack of [24].

4.3.1 Speeding Exhaustive Key Search Another instance when the dif-

ferentials can be used is in an exhaustive key search. Assume that ∆S
OUTPUT
−−−−−−−→

∆KS, given a key stream KS if a tested internal state S produces KS ⊕∆KS,
then it is very likely that the actual internal state is S ⊕ ∆S. We explore this
approach in Appendix C.

4.3.2 Differential Fault Analysis of A5/1 The final scenario where these
differentials can be used is in differential fault analysis [7]. In the attack, a fault
is introduced to some of the computation (memory, computation, etc.), and
the change (or lack of it) in the output is used for the attack. Essentially, the
differentials can be found in case of a fault is introduced in R2[11], and then
used to retrieve the internal state.

5 Differential Cryptanalysis of RC4

RC4 [28] is a widely spread stream cipher. It is used in many security protocols
like SSL, IPsec, and WEP. As such, it received a lot of cryptanalytic atten-
tion [15, 16, 19–21, 25]. Despite all the weaknesses found both in RC4 and in the
way it is used, until now no shortcut attacks on RC4 are known. We give the
description of RC4 in Appendix A.2. We note that all additions and subtractions
with respect to RC4 are done modulo 256.

5.1 Differentials of RC4

In [19] it was shown that there are good differentials for keys of length 256
bytes. The difference between the two keys is in the last byte, so that after the
initialization, the two internal states differ in three bytes. Another differential
suggested in [19] is to have in the last two bytes a difference of the form (+δ,−δ)
for some non-zero δ. In both cases the output streams are expected to be the
same in the first few bytes.

As keys of 256 bytes are very rarely used, we concentrate on keys of 256 bits
which are more common (e.g., used in some WEP implementations). Thus, a

11

difference in the key affects the internal state several times during the initializa-
tion phase. This leads to a more complex differentials in the internal state, and
of course, in the output stream.

Let K and K∗ be two 256-bit keys. Let K[j] by the j’th byte of the key, and
let the key K∗ be:

K∗[i] =

K[i] i = 0, . . . , 29
K[i] + 1 i = 30
K[i]− 1 i = 31

(1)

During the initialization phase, the first thirty steps of the initialization are
the same (as the key bytes are the same). If the value of j is updated to be 30
when i = 30 (for a random key this event happens with probability 2−8), then
j∗ = 31. Due to this difference, the two states, denoted by S and S∗, respectively,
differ in bytes 30 and 31, as in S no swap is performed, while in S∗ the two values
S∗[30] and S∗[31] are swapped. In the next step i = 31, if j is updated to 31
(which again happens with probability 2−8), then j∗ is updated to 30. After the
second swap in S∗, the two states become the same. The overall probability that
the two states are the same after 32 steps of initialization is4 2−16.

The same event can happen for i = 62, 63 in the initialization (again with
probability 2−16), and again when i = 32m−2, 32m−1, for m = 3, . . . , 7 during
the the initialization. As this happens eight times before the initialization of
the states is complete, the probability that S = S∗ after initialization is5 2−128.
Once such two keys are found, they produce the same output stream, as there
is no difference in the state after the state initialization.

Note that we can have the two consecutive bytes with the difference in any
location in the key, i.e., have a difference of the form K[20] = K∗[20] − 1,
K[21] = K∗[20] + 1. This does not affect the probability that the two keys
generate the same internal permutation. Thus, each key has 62 counterparts (31
possible pairs of consecutive bytes, and two options for the difference (−1,+1)
or (+1,−1)). Each of these 62 differences has probability 2−128 to generate the
same output stream.

5.1.1 Exhaustive Key Search on RC4 This observation means that the
time complexity of exhaustive key search on 256-bit RC4 is 2256 − 62 · 2128, as
in case the differential holds (which we can check given only one of the keys),
we do not need to check two keys, but only one of them. To identify whether a
given key generates the same internal state as another keys, we check the value
of j during the initialization. For example, if the value of j when i = 30 + 32m
is j = 30 + 32m and when i = 31 + 32m the value of j is j = 31 + 32m, for all
m = 0, . . . , 7, then the key K that caused these values, has a counterpart K∗,

4 Another key difference is (2,−2,−2, 2) (i.e., difference of 2 in bytes 28 and 31, and
difference of −2 in bytes 29 and 30). For this key difference, the probability of the
transition is slightly lower, i.e., 254

256
· 2−16. The difference (3,−3, 0,−3, 3) also passes

this phase with probability (254
256

)2 · 2−16.
5 For keys with the difference (2,−2,−2, 2) the probability is 2−128.1.

12

for which the internal state is the same after initialization. This K∗ does not
need to be checked, as it causes the same internal state.6

5.2 Differential Attacks on RC4

Consider two keys with difference as shown in Equation (1). With probability
2−112 they generate the same state after 254 steps of the initialization. Then, the
last two steps of initialization affect four state bytes. Thus, there is a difference
between the states in eight positions. This leads to two output streams that are
very close to each other at the beginning, just like in the case of [19].

As long as j evolves in the same way for the two keys, the number of bytes
in which the internal state defers remains eight. Thus, we expect that about 32
RC4 output bytes are generated before j defers for the two keys. Each of these
32 output bytes has probability (248/256)2 = 0.938 to be equal in the two key
streams, so we expect that about 30 of these 32 bytes are equal in the two key
streams. One can incorporate this fact to the exhaustive key search on RC4 to
further reduce its time complexity (Appendix C).

It is also possible to extract some probabilistic key information about the key
once these two cases are found. When the above process happens, then 30 = j =
29 + S[30] + K[30] and 31 = j = 30 + S[31] + K[31]. There is a high probability
(of about 0.79) that S[30] was not altered by the key initialization process so
far. If this is the case, then S[30] = 30, and thus K[30] = 227. The same is true
for S[31] and K[31], leading to the fact that when such a pair is found, it is
very likely that K[31] = 226. Thus, 256-bit keys which do not affect S[30] and
S[31] in the first 30 steps of initializations and satisfy K[30] = 227,K[31] = 226,
are more likely (along with their counterpart) to satisfy the above differential
characteristic.

We note that these observations can be adapted to any key length of RC4.
However, for keys shorter than 22 bytes (176 bits), the probability of two keys
to generate the same internal state in the manner described earlier is so small,
such that the expected number of pairs of keys which satisfy the characteristic
is smaller than 1. Thus, for short keys there might be no such instances. On the
other hand, as the key grows longer, the number of times the initialization process
has some probability is reduced. For example, keys of 256 bytes have probability
2−16 to generate the same internal state. When taking into consideration all
the 2 · 255 characteristics a given 256-bit key can be paired to generate the
same internal state, the time complexity of exhaustive key search becomes about
22048−22041. We note that the number of internal states is about 21700 (of which
21684 are consistent with RC4’s initialization and update procedures), hence it
is obvious that many keys lead to the same internal state.

Another use for differentials of RC4 is in combination with the attack by
Mantin based on the glimpse property [23]. In that attack, the attacker uses the
glimpse property that states that if z is the output word, then Pr[S[j] = i−z] ≈
6 Using all the other differentials, the total number of possible states for a 256-bit key

is about 2256 − 866 · 2128.

13

2/256 (rather than the expected 1/256). The extra 1/256 probability is due to
the case j = S[i] + S[j]. The attack is based on the standard use of a bias of
some event. Thus, as the bias of this property is about 1/256, the attacker needs
about c · (1/256)2 samples for the application of the attack.

Assume that we have a differential7 that predicts ∆S[i] = δ1, ∆S[jafter] =
−δ1 and ∆jbefore = −δ1. If this is the case, ∆jafter is expected to be 0, as ∆i = 0
as well, then we expect ∆z = i− δ1 as well whenever the glimpse holds (which
happens with probability 1/256). Thus, if the probability of the differential is
p1, then with probability p1/256 we expect that the specific output byte have a
difference i− δ1.

This value is below the value expected for a random stream. However, if there
exists a second differential of this form (with δ2 instead of δ1 and with probability
p2 instead of p1), then we can use three streams (reusing one of the streams),
and the value of the specific output byte is known in all three of them with
probability p1 · p2/256. If p1 and p2 are sufficiently high (i.e., p1 · p2 > 1/256),
then this event can be easily detected with probability higher than the random
case, thus clearly indicating when the glimpse property is satisfied. This can be
used to reduce the required key stream used in [23], and even reduce the time
complexity, as the cases for which the glimpse property is satisfied are easily
identifiable.

Another implication our result have is on attacks based on time-memory
tradeoff on the internal state. For long keys the possible internal states does not
compromise a set in the size of the key (i.e., have the same number of internal
states as number of keys). This can slightly improve such attacks on RC4.

6 Describing Previous Attacks Using the Differential
Notations

As we noted earlier, there are several attacks on stream ciphers titled as differen-
tial attacks. These attacks do have a differential behavior, as they are concerned
with the difference that are caused due to a difference in the plaintext or IVs.

6.1 A Differential Attack on Py and PyPy

In [30] a differential in the key/IV-setup of Py (and PyPy) is given. The differ-
ential shows that with probability 2−23.2 two IVs which differ in two consecutive
bytes are likely to produce the same internal state. This property is then used
to retrieve the key, as the specific IVs for which the differential holds suggest
information about the key.

The IV setup of Py and PyPy accepts an IV of size ivsize and initialize a
byte permutation P along with a byte array of size ivsize called EIV . For this
process, the authors of [30] have observed that if there is a difference ∆iv[i] = 1

7 Note that we need a differential that predicts several things, and we are not concerned
in the exact differential path that led to this situation.

14

and ∆iv[i + 1] 6= 0 for any byte i ≥ 1, then the first loop of the IV initialization
is the same.

Then, s is updated to have a difference of 1 (up to carry) when the difference
is introduced. This difference affects s0, and in turn EIV [i]. In the next round,
there is a probability of about 2−8 that the difference in s is canceled, which
leads to a difference after the second IV initialization process in EIV [i].

In the second loop this process is repeated, while this time, the attacker
needs that the difference in EIV [i] is canceled as well as the difference in s
(when processing iv[i] and iv[i + 1]). Each of these two events happens with
probability 2−16, and the resulting differential has a total probability of 2−24.
In reality, due to the structure of the basic internal permutation() and carry
issues, the actual probability is slightly higher, i.e., 2−23.2.

6.2 A Differential Attack on Helix

In [26] the stream cipher Helix [14] is attacked. Helix offers an authenticated
encryption with keys of 256 bits and IVs of 128 bits. The user key is used
to generate a “working key” which along with the IV (called nonce) interact
with the plaintext and the internal state to produce the output word. After
the encryption of the message, the internal state is manipulated to extract an
authentication tag.

The attack of [26] is against Helix when the same key is used with the same
IV several times. While in this case there is no reason to believe the encryption
to be secure, the attacker is able to extract information about the internal state
of the cipher. This is due to a differential from the input to the output word. If
the same internal state is achieved (due to the same (key, IV) pair), and there
is an input difference ∆ in the plaintext word, the attacker observes a ∆′ output
difference in the output word (the following key stream word)8, and thus it is
possible to identify the two respective internal state words x, y, as they satisfy:

∆′ = (x + y)⊕ (x + (y ⊕∆)).

This equation corresponds to the fact that the difference ∆ is introduced to the
word y (by means of XOR), which is then added with x and the result is the
output word. Thus, it is claimed that given 93 pairs with specially chosen ∆’s it
is possible to find x and y efficiently.

We note that the differential (∆S = 0,∆P = ∆)
UPDATE+OUTPUT
−−−−−−−−−−−−−−−−→ ∆KS =

∆′ is conditional on the values of x and y. While for x = 0 it is always holds
that ∆ = ∆′, for other values of x it is possible to associate probabilities of the
differential (y is equal to an XOR of a fixed unknown word and the plaintext
word). For example, setting ∆ = ∆′ = 1x, we obtain that the differential holds
with probability 1/2, but when it holds then the least significant bit of x is nec-
essarily zero. In [26] an algorithm for finding the possible (x, y) pairs is given
using 93 values for ∆ (and observing which differential was chosen).

8 We note that the actual difference that is observed is ∆′ ≪ 29.

15

7 Summary

We have presented a new technique for the analysis of stream ciphers. The
existence of differential characteristics and differentials in the stream cipher has
several implications with respect to the security of stream ciphers. Thus, stream
cipher designers should take these issues into consideration when designing new
stream ciphers.

Stream ciphers with high probability differentials are susceptible to many
attacks: distinguishing and key recovery in the related-key/IV model, faster ex-
haustive key searches, and fault analysis. Stream ciphers that also offer authenti-
cated encryption are also susceptible to repeated nonce attacks, as well as forging
of the tags in case there exist good differentials.

We also found out that even characteristics that deal with the evolution of
internal state differences (without considering their affect on the output) can be
used for analysis. These characteristics are especially useful for exhaustive key
search or time-memory tradeoff attack which aim the internal state of the cipher
rather its key space.

Thus, we conclude that differential cryptanalysis is a versatile and important
tool in the cryptanalyzer toolbox, even when she tries to break stream ciphers.

8 Acknowledgments

The authors would like to thank Ed Dawson for providing us with [32].

References

1. Vladimir Anashin, Andrey Bogdanov, Ilya Kizhvatov, Sandeep Kumar, ABC
Is Safe And Sound, eSTREAM submission, 2006. Available online at
http://www.ecrypt.eu.org/stream/papersdir/079.pdf.

2. Steve Babbage, Cryptanalysis of LILI-128, preproceedings of NESSIE 2nd work-
shop, Egham, 2001.

3. Eli Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Cryptology, vol. 7, number 4, pp. 229–246, Springer-Verlag, 1994.

4. Eli Biham, Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes
(2R), Advances in Cryptology, proceedings of EUROCRYPT 2000, Lecture Notes
in Computer Science 1807, pp. 408–416, Springer, 2000.

5. Eli Biham, Jennifer Seberry, Py: A fast and secure stream cipher us-
ing rolling arrays, eSTREAM submission, 2005. Available online at
http://www.ecrypt.eu.org/stream/p2ciphers/py/py p2.ps.

6. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

7. Eli Biham, Adi Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
Advances in Cryptology, proceedings of CRYPTO 97, Lecture Notes in Computer
Science 1294, pp. 513–525, Springer, 1997.

8. Dan Boneh, Richard A. DeMillo, Richard J. Lipton, On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract), Advances in Cryptology,
proceedings of EUROCRYPT 97, Lecture Notes in Computer Science 1233, pp. 37–
51, Springer, 1997.

16

9. Marc Briceno, Ian Goldverg, David Wagner, A Pedagogical Implementation of the
GSM A5/1 and A5/2 “voice privacy” encryption algorithms. Available online at
http://www.scard.org/gsm/a51.html.

10. Andrew Clark, Ed Dawson, Joanne Fuller, Jovan Dj. Golic, Hoon Jae Lee, William
Millan, Sang-Jae Moon, Leone Simpson, The LILI-II Keystream Generator, pro-
ceedings of ACISP 2002, Lecture Notes in Computer Science 2384, pp. 25–39,
Springer, 2002.

11. Ed Dawson, Andrew Clark, Jovan Dj. Golic, William Millan, Lyta Penna, Leonie
R. Simpson, The LILI-128 Keystream Generator, preproceedings of NESSIE 1st
workshop, Leuven, 2000.

12. Christophe De Cannière, Bart Preneel, Trivium Spec-
ifications, eSTREAM proposal, available on-line at
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium p3.pdf, 2005.

13. Vivien Dubois, Pierre-Alain Fouque, Jacques Stern, Cryptanalysis of SFLASH
with Slightly Modified Parameters, Advances in Cryptology, proceedings of EU-
ROCRYPT 2007, Lecture Notes in Computer Science 4515, pp. 327–341, Springer,
2007.

14. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, Ta-
dayoshi Kohno, Helix: Fast Encryption and Authentication in a Single Crypto-
graphic Primitive, proceedings of Fast Software Encryption 10, Lecture Notes in
Computer Science 2887, pp. 330–346, Springer, 2003.

15. Scott R. Fluhrer, Itsik Mantin, Adi Shamir, Weakness in the key scheduling algo-
rithm of RC4, proceedings of SAC’01, Lecture Notes in Computer Science 2259,
pp. 1–24, Springer, 2001.

16. Scott R. Fluhrer, D. A. McGrew, Statistical Analysis of the Alleged RC4 Stream
Cipher, proceedings of Fast Software Encryption 6, Lecture Notes in Computer
Science 1978, pp. 19–30, Springer, 2001.

17. Pierre-Alain Fouque, Louis Granboulan, Jacques Stern, Differential Cryptanalysis
for Multivariate Schemes, Advances in Cryptology, proceedings of EUROCRYPT
2005, Lecture Notes in Computer Science 3494, pp. 341–353, Springer, 2005.

18. Martin Hell, Thomas Johansson, Willie Meier, Grain — A Stream Cipher for Con-
strained Environments, preproceedings of ECRYPT’s Symmetric Key Encryption
Workshop, Aarhus, 2005.

19. Alexander L. Grosul, Dan S. Wallach, A Related-Key Analysis of RC4, Rice Uni-
versity technical report TR00-358, 2000.

20. Lars R. Knudsen, Willie Meier, Bart Preneel, Vincent Rijmen, S. Verdoolagee,
Analysis Methods for (Alleged) RC4, Advances in Cryptology, proceedings of ASI-
ACRYPT 1998, Lecture Notes in Computer Science 1514, pp. 327–341, Springer,
1998.

21. Itsik Mantin, Adi Shamir, A Practical Attack on Broadcast RC4, proceedings of
Fast Software Encryption 7, Lecture Notes in Computer Science 2355, pp. 152–164,
Springer, 2001.

22. Itsik Mantin, Predicting and Distinguishing Attacks on RC4 Keystream Generator,
Advances in Cryptology, proceedings of EUROCRYPT 2005, Lecture Notes in
Computer Science 3494, pp. 491–506, Springer, 2005.

23. Itsik Mantin, A Practical Attack on the Fixed RC4 in the WEP Mode, Advances
in Cryptology, proceedings of ASIACRYPT 2005, Lecture Notes in Computer Sci-
ence 3788, pp. 395–411, Springer, 2005.

24. Alexander Maximov, Thomas Johansson, Steve Babbage, An Improved Correlation
Attack on A5/1, proceedings of SAC’04, Lecture Notes in Computer Science 3357,
pp. 1–18, Springer, 2004.

17

25. Ilya Mironov, (Not So) Random Shuffles of RC4, Advances in Cryptology, pro-
ceedings of CRYPTO 2002, Lecture Notes in Computer Science 2442, pp. 304–319,
Springer, 2002.

26. Frédéric Muller, Differential Attacks against the Helix Stream Cipher, proceedings
of Fast Software Encryption 11, Lecture Notes in Computer Science 3017, pp. 94–
108, Springer, 2004.

27. Jacques Patarin, Louis Granboulan, Asymmetric Cryptography with S Boxes, pro-
ceedings of ICICS’97, Lecture Notes in Computer Science 1334, pp. 369–380,
Springer, 1997.

28. Ronald L. Rivest, RSA security Response to weaknesses in key scheduling algorithm
of RC4, Technical note, RSA Data Security, Inc., 2001. [The structure of RC4 was
never published officially, it was leaked in 1994 to the Internet. This note confirms
that the leaked code is indeed RC4].

29. Hongjun Wu, Bart Preneel, Cryptanalysis of ABC v2, 2006. Available online at
http://www.ecrypt.eu.org/stream/papersdir/2006/029.pdf.

30. Hongjun Wu, Bart Preneel, Attacking the IV Setup of Py
and Pypy, eSTREAM website, 2006. Available online at
http://www.ecrypt.eu.org/stream/papersdir/2006/050.pdf.

31. Hongjun Wu, Bart Preneel, Differential-Linear Attacks against the
Stream Cipher Phelix, eSTREAM website, 2006. Available online at
http://www.ecrypt.eu.org/stream/papersdir/2006/056.pdf.

32. Author unknown, Cryptographic Techniques Specifications TOYOCRYPT-HS1,
2000.

A Short Descriptions of Several Stream Ciphers

A.1 A Short Description of A5/1

The stream cipher A5/1 [9] is used to protect GSM cellular phone conversations
in most European countries and in the USA. It consists of three LFSRs whose
outputs are XORed to produce the output of the cipher. Each step, the LFSRs
are irregularly clocked. One bit is extracted from any of the LFSRs, and the
majority of these bits is computed. A register whose bit agrees with the majority
is clocked, while if the bit disagrees with the majority then the register is not
clocked. Thus, each step two or all three registers are clocked.

The three registers are denoted by R1, R2, and R3. The lengths of R1, R2,
and R3 are 19, 22, and 23 bits, respectively. The registers are updated according
to their primitive polynomials, which are summarized in Table 3, along with
the location of the bit that enters the clocking mechanism. We use little endian
notations, i.e., the output bit of the register is the most significant bit of the
register while the least significant bit is the new bit fed back to the register. We
denote the j’th bit of the i’th register by Ri[j].

The initialization step takes the 64 bit key K along with a 22-bit frame
number (which is publicly known value) and loads them into the registers in a
linear manner. All three registers are initialized to zero. All registers are clocked
and the output is fed back and XORed with the next key bit (or frame number
bit). After loading the 86 bits (64 bits of key plus 22 bits of frame number)

18

Register Length Primitive Clock-controling Feedback Taps
Number in bits Polynomial bit (LSB is 0)

1 19 x19 + x5 + x2 + x + 1 8 18,17,16,13
2 22 x22 + x + 1 10 20,21
3 23 x23 + x15 + x2 + x + 1 10 22,21,20,7

Table 3. The A5/1 Registers Parameters

into the 64 bits of the registers, the state is irregularly clocked 100 times, and
the output is discarded. In each round afterwards, the registers are irregularly
clocked and the XOR of the most significant bit of each of the registers is used
as the output.

A.2 Description of RC4

RC4 accepts keys of variable length. In most applications the key length is in
the range of 40 to 256 bits. RC4 treats the key as a byte array K[·] of l ≤ 256
bytes. The internal state is a byte array of 256 entries S[·] initialized to S[i] = i,
and then, the key is mixed into the array using the following procedure:

– j := 0
– for i := 0 to 255 do

• j := j + S[i] + K[i mod l] (mod 256)
• swap(S[i],S[j])

– i := j := 0

We note that all addition operations with respect to RC4 are done modulo 256.
After the initialization, RC4 outputs one stream byte each round. Just before

the byte stream is generated, the internal state is updated according to the
following procedure:

– i + +; i := i (mod 256)
– j := j + S[i] (mod 256)
– swap(S[i],S[j])
– output S[S[i] + S[j]]

B Examples of Other Stream Ciphers Susceptible to
Differential Cryptanalysis

B.1 Differentials of Trivium

Trivium [12] is a hardware oriented stream cipher which was selected to the
third phase of the eSTREAM project. The cipher is based on three LFSRs with
a combined length of 288 bits, where each round the registers affect each other.

We denote the internal state of the cipher by s1, . . . s288, where the first
register is composed of (s1, . . . , s93), the second is composed of (s94, . . . , s177),
and the last one is composed of (s178, . . . , s288). The combined output and update
function is as follows:

19

– Let t1 = s66 ⊕ s93, let t2 = s162 ⊕ s177, and let t3 = s243 ⊕ s288.
– Output z = t1 ⊕ t2 ⊕ t3.
– Update the ti’s according to

t1 = t1⊕s91 ·s92⊕s171; t2 = t2⊕s175 ·s176⊕s264; t3 = t3⊕s286 ·s287⊕s69;

– Update the registers as follows:

(s1, . . . , s93) = (t3, s1, . . . , s92); (s94, . . . , s177) = (t1, s94, . . . , s176);

(s178, . . . , s288) = (t2, s178, . . . , s287);

The initialization loads the 80-bit key to s1, . . . , s80, the 80-bit IV to s94, . . . , s173,
and sets all the remaining bits (besides s286, s287, and s288 which are set to 1) to
0. Then the cipher is clocked for 4 ·288 = 1152 cycles without producing output.

Considering a pair of (key, IV) values such that there is a difference only in
bit IV1 give rise to the following differential. The difference in IV1 becomes a
difference in bit s94 which does not affect other bits until it arrives to position
s162 (after 68 rounds). Then it causes a difference in t2, leading to a difference in
bit 178. When the difference arrives to s171 it affects s94, starting the propagation
of a difference through the second register. The difference continues to propagate
until it arrives to position s175 then, if s176 is zero, then the difference does
not propagate into t2. This happens in the next clocking as well, and thus, the
difference after the initial difference arrived (and passed) s177 is only in positions
s102, s178, and s194. Thus, after 84 clockings, the one bit difference evolves into
a three bit difference with probability 2−2.

This difference evolves after 77 more rounds with probability 2−2 into the
difference s12, s28, s99, s178, s184, s255, and s271. After another 71 rounds, the dif-
ference becomes s1, s7, s30, s36, s52, s81, s99, s100, s108, s126, s178, s194, s244, s250

with probability 2−6. After a total of 377 initialization rounds the internal state
has a difference of s10,s16,s19,s22,s25,s28,s34,s43, s46,s52,s55,s61,s64,s70, s79,s82,
s91,s106,s112,s115,s118,s124,s130, s133,s139,s169,s175,s184,s187,s190, s214,s217,s220, s226,
s235, s238,s241,s244,s253,s256, s259,s286 with probability 2−78, in the following
round, the probability drops below 2−79, which means that for a given key,
there are not enough IV pairs for which at least one follows the differential.
Moreover, the differential best differential for the initialization we could find has
probability of 2−840, which means that this highly unlikely that any of the keys
has an IV pair for which the differential holds.

B.2 LILI-128

A positive example for the strength of differential cryptanalysis is the LILI-
128 stream cipher [11] for which the relation between keys was exploited in [2].
LILI-128 has two LFSRs. The first LFSR, LFSRc of 39 bits, outputs (using a
nonlinear function) how many clocks (i.e., 1, 2, 3, or 4 clocks) the second LFSR,
LFSRd of 89 bits, should be clocked. The output of LILI-128 is application of

20

a nonlinear function on selected bits from the second LFSR. The initialization
just loads the key XORed with the IV into the two registers.

We first note that LILI-128 has several sets of differentials that predict with
probability 1 that there is no difference in the first few bits of the output stream.
For example, there are 279 differentials of the form of a difference in one bit of
LFSRd which predict no difference in the first bit of the input. We note that
there are also very good differential when there is a difference only in LFSRc.
For example, flipping bit 11 of LFSRc has no affect on the output for 22 rounds
(3 rounds until bit 8 is fed back, and 19 more rounds till the difference in the
feedback affects the number of times LFSRd is clocked).

We now present a simple key recovery attack on LILI-128 based on differential
cryptanalysis. We define four internal state differences ∆IV 4 = e50 (i.e., bit 50
of IV which is loaded to bit 11 of LFSRd), ∆IV 3 = e49, ∆IV 2 and ∆IV 1. We
start with several pairs of (key, IV), such that ∆key = 0 and ∆IV = ∆IV 4.
If after one clocking of the cipher we obtain no difference in all the pairs, we
are assured that the first clocking of LFSRd was not 4 bits. In case there is a
difference we get that the clockings of LFSRd was of 4, and thus, bits 12 and
20 of LFSRd are 1.

The same can be repeated with (key, IV) pairs with differences ∆key = 0
and ∆IV = ∆IV 3. If we found out that LFSRd was not clocked by 4 bits,
then this test check whether LFSRd was clocked by 3 bits. We continue and
identify two bits of LFSRc and the amount of bits clocked in the first round.
We can then repeat the attack (taking into consideration the number of times
the register LFSRd was clocked). We can repeat the attack 20 more times, and
retrieve the entire LFSRc, which is then can be easily used to retrieve LFSRd.

The probability that a difference in bit 7 leads to a difference in the output
is 1/2, and for 10 tests, the probability that there is no output difference in all of
them is 2−10. Thus, about 10 (key, IV) pairs are sufficient to verify whether the
number of clockings is 1 (or 2, or 3). Thus, the expected number of (key, IV)
pairs for retrieving two bits of LFSRc is 25.9 Thus, the entire LFSRc can be
easily retrieved (with probability over 98%) using 500 (key, IV) pairs.

B.3 LILI-II

The stream cipher LILI-128 has been improved in LILI-II [10]. The improve-
ment is based on increasing the length of LFSRc to 128 bits and the length of
LFSRd to 127 bits. Also, the combining function for LFSRd has been improved
(to depend on 12 bits of LFSRd rather than on 10). Finally, the key and IV
initialization procedure have been changed. LFSRc is first initialized to be the
XOR of the key and IV and LFSRd is initialized to the XOR of the the key
without its first bit and the IV without its last bit. Then, the cipher is used to
produce 255 bits of output, and the first 128 bits are loaded into LFSRc, and
the remaining 127 bits are loaded into LFSRd. Then, the cipher is again used to

9 In the rare event that all possible shifts “fail”, i.e., non has output difference, we can
ask for more pairs until the right shift is determined.

21

generate 255 bits of output, where as before the first 128 are loaded into LFSRc,
and the rest are loaded into LFSRd.

If a pair of (key, IV) pairs, (k1, IV1) and (k2, IV2), satisfy that k1⊕k2 = IV1⊕
IV2 = 1128 (where 1128 is a string of 128 bits of 1), then the two (key, IV) produce
the same initial state, and therefore, produce the same 255 bits of stream, which
in turn would produce the same 255 bits of stream, which results in the same
pseudo random string.

C Differentially Weak Keys and Their Effect on
Exhaustive Key Search

The existence of differentials from the key schedule to the output or from the
internal state to the output can be used to speed up exhaustive key search. The
main idea is to reduce the need to check all keys by checking only one out of
two keys/internal states, and discarding the counterpart in case the differential
does not hold.

Consider for example A5/1. Two internal states which differ only in bit R2[11]
after the key initialization generate an output difference of 80 bits with prob-
ability 0.197 · 0.135 = 0.0266 ≈ 1/37.6. These are the first 80 rounds of the
differential suggested in Table 1. As during the trial test of a given internal
state we can check whether it has a counterpart that satisfies the differential
requirement for the internal state, we can easily check whether the generated
stream differs from the given stream in the same places predicted by the dif-
ferential. When this happens, the attacker can discard another internal state
without affecting the success of the attack. Thus, in this specific case, the at-
tacker performs (1 − 1/37.6) trials on average for each possible internal state,
the exhaustive search time is reduced by a factor of about 2.6%.

We note that due to the existence of other much shorter differentials, an
easy early abort strategy can be used in conjunction with this approach. The
resulting combination prevents discarding all guesses that are found out to be
wrong after 10 clockings, but as the majority of the wrong internal states are
discarded by the early abort by that time, there is no real affect on the time
complexity of the attack.

Finally, we note that these ideas can be used also in the case of guess-and-
determine attacks, where the attacker guesses parts of key/internal state in order
to retrieve the remaining unknown information. Returning to the example of
A5/1, the common approach is to guess the two shorter registers R1 and R2,
and construct the possible values for R3. Again, using differentials, it is possible
to easily identify wrong guesses.

We conclude that if an attacker has a differential for a stream cipher with
probability p, she can speed up the time of exhaustive key search by a similar
factor. Multiple differentials can also be used, but one must be careful to take
into consideration the dependence between them.

22

