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Abstract. This paper considers a recently introduced framework for
the analysis of physically observable cryptographic devices. It exploits
a model of computation that allows quantifying the effect of practically
relevant leakage functions with a combination of security and informa-
tion theoretic metrics. As a result of these metrics, a unified evaluation
methodology for side-channel attacks was derived that we illustrate by
applying it to an exemplary block cipher implementation. We first con-
sider a Hamming weight leakage function and evaluate the efficiency of
two commonly investigated countermeasures, namely noise addition and
masking. Then, we show that the proposed methodology allows capturing
certain non-trivial intuitions about the respective effectiveness of these
countermeasures Finally, we justify the need of combined metrics for the
evaluation, comparison and understanding of side-channel attacks.

1 Introduction

In [14], a unified framework for the analysis of cryptographic primitives against
side-channel attacks was introduced as a specialization of Micali and Reyzin’s
“physically observable cryptography” paradigm [8]. It exploits a model of com-
putation in which the effect of practically relevant leakage functions is evaluated
with a combination of security and information theoretic measurements. A cen-
tral objective of this framework was to provide a fair evaluation methodology for
side-channel attacks. This objective is motivated by the fact that side-channel
attacks may take advantage of different statistical tools (e.g. difference of means
[5], correlation [2], Bayesian classification [1], stochastic models [13]) and are
therefore not straightforward to compare. Additionally to the comparisons of
side-channel attacks, a more theoretical goal was the understanding of the un-
derlying mechanisms in physically observable cryptography.

Specifically, [14] suggests to combine the success rate of a well specified phys-
ical adversary1 with an information theoretic metric in order to capture the intu-
ition summarized in Figure 1. That is, an information theoretic metric (namely
the mutual information) should measure the average amount of information that
is available in some physical observations while a security metric measures how
efficiently an actual adversary can turn this information into a successful attack,
e.g. a key recovery that is the goal of most present research on side-channels.

⋆ Postdoctoral researcher funded by the Belgian Fund for Scientific Research (FNRS).
1 More precisely, [14] suggests either the success rate or the guessing entropy as possible

security metrics. This paper only considers the success rate.
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insecure cryptographic 

physical computer

(sufficient information available, 

turned into a successful attack)

powerful adversary,

strong physical computer

(little information available

turned into a successful attack)

secure cryptographic 

physical computer

(no information available,

no successful attack)

limited adversary,

weak physical computer

(some information available,

not exploited/exploitable by the adversary)

Fig. 1: Summary of side-channel evaluation criteria.

In this paper, we consequently study the relevance of the suggested method-
ology, by the analysis of a practical case. For this purpose, we investigate an
exemplary block cipher and consider a Hamming weight leakage function in dif-
ferent attack scenarios. First, we consider an unprotected implementation and
evaluate the information leakages resulting from various number of Hamming
weight queries. We discuss how actual block cipher components compare to ran-
dom oracles with respect to side-channel leakages. Then, we evaluate the secu-
rity of two commonly admitted countermeasures against side-channel attacks,
i.e. noise addition and masking. Through these experiments, we show that the
proposed evaluation criteria allows capturing certain non-trivial intuitions about
the respective effectiveness of these countermeasures. Finally, we provide some
experimental validations of our analysis and discuss the advantages of our com-
bination of metrics with respect to other evaluation techniques.

Importantly, in our theoretical framework, side-channel analysis can be viewed
as a classification problem. Our results consequently tend to estimate the secu-
rity limits of side-channel adversaries with two respects. First, because of our
information theoretic approach, we aim to evaluate precisely the average amount
of information that is available in some physical observations and to determine if
this information is sufficient to mount an attack, when an adversary is provided
with unlimited queries to the device. Second, because we consider (one of) the
most efficient classification test(s), namely Bayesian classification, it is expected
that the computed success rates also correspond to the best possible adversarial
strategy. We mention that the evaluation and comparison metrics to use in the
context of side-channel attacks are still under discussion. Our results intend to
show that both security and information theoretic metrics are useful, but other
similar metrics should still be investigated and compared.



2 Model specifications

In general, the model of computation we consider in this paper is the one ini-
tially presented in [8] with the specializations introduced in [14]. In this section,
we first describe our target block cipher implementation. Then, we specify the
leakage function, adversarial context and decision strategy that we consider in
this work. Finally, we provide the definitions of our security and information
theoretic metrics for the evaluation of the attacks in the next sections. For a
more complete description of the model, we refer to the original paper [14].

2.1 Target implementation

Our target block cipher implementation is represented in Figure 2. For conve-
nience, we only represent the combination of a bitwise key addition and a layer
of substitution boxes. We make a distinction between a single block and a mul-

tiple block implementation. This difference refers to the way the key guess is
performed by the adversary. In a single block implementation (e.g. typically, an
8-bit processor), the adversary is able to guess (and therefore exploit) all the
bits in the implementation. In a multiple block implementation (e.g. typically, a
hardware implementation with data processed in parallel), the adversary is only
able to guess the bits at the output of one block of the target design. That is, the
other blocks are producing what is frequently referred to as algorithmic noise.

S

s

pi
xi

yi

2-input function

s

pi
xi

yi

2-input function

S

S

S

S

Fig. 2: Single block and multiple block cipher implementation.

2.2 Leakage function

Our results consider the example of a Hamming weight leakage function. Specif-
ically, we assume a side-channel adversary that is provided with the (possi-
bly noisy) Hamming weight leakages of the S-boxes outputs in Figure 2, i.e.
WH(yi) + n, where n is a random noise value. As a matter of fact, it involves
that our following analysis is theoretical in the sense that we consider simulated
leakages. However, since the Hamming weight model as been effectively exploited
in a number of works, e.g. [2], the obtained conclusions are expected to hold in
practice for devices following this type of leakage behavior. Let us finally men-
tion that we only consider univariate leakages with a single leaking point per
side-channel query, namely the S-boxes outputs.



2.3 Black box adversarial context and decision strategy

We consider a non-adaptive known plaintext adversary that can perform an
arbitrary number of side-channel queries to the target implementation of Figure
2 but cannot choose its queries in function of the previously observed leakages.
In addition, we consider a side-channel key recovery adversary with the following
(hard) strategy: “given some physical observations and a resulting classification

of key candidates, select the best classified key only”.

2.4 Security metric: success rate of the key recovery adversary

The success rate of a side-channel key recovery attack can be written as follows.
Let S be a discrete variable denoting the target key class in a side-channel
attack and s be a realization of this variable. Typically, s corresponds to one
or two bytes of the master key. Let Lq be a random vector denoting the side-
channel observations generated with q queries to the target implementation and
lq = [l1, l2, . . . , lq] be a realization of this random vector, i.e. one actual output of
the leakage function L, as defined by Micali and Reyzin in [8]. Following [14], we
finally consider a side-channel adversary of which the aim is to guess a key class s
with non negligible probability. For this purpose and for each key candidate s∗, it
compares the actual observation of a leaking device lq with some key dependent
model for these leakages M(s∗, .). Let T(lq, M(s∗, .)) be the statistical test used
in the comparison. We assume that the highest value of the statistic corresponds
to the most likely key candidate. For each observation lq, we first define the set
of keys selected by the adversary with a vector:

dq = {ŝ | T(lq, M(ŝ, .)) = max
s∗

T(lq, M(s∗, .))}.

dq generally has only one element but several key candidates may have the same
test score. Then, we define the result of the attack with the index matrix:

I
q
s,s∗ = 1

|dq| if s∗ ∈ dq, else 0.

Thirdly, we define the success rate of the adversary after q queries:

SR = E
s

E
lq|s

Iq
s,s (1)

In the following, we will only consider a Bayesian classifier, i.e. an adversary that
selects the keys such that Pr[S = s∗|Lq = lq] is maximum, since it corresponds
to the most efficient way to perform a side-channel key recovery.

It is also interesting to remark that one can use the complete index matrix to
build a confusion matrix C

q
s,s∗ = Elq|s I

q
s,s∗ . The previously defined success rate

simply corresponds to the averaged diagonal of this matrix. Note finally that the
previous definition of success rate corresponds to the success rate against a key
class variable (i.e. averaged over all possible s) defined in [14], Section 5.1.



2.5 Information theoretic metric: conditional entropy

In addition to the success rate, [14] suggests the use of an information theoretic
metric to evaluate the information contained in side-channel observations. Let
Pr[s|lq] be the probability of a key candidate s given an observation lq with q
queries to the target device. We first define an entropy matrix:

H
q
s,s∗ = −

∑

lq

Pr[lq|s] · log2 Pr[s∗|lq],

from which we derive Shannon’s conditional entropy2:

H[S|Lq] = −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq] = E
s

Hq
s,s (2)

We note that this definition is equivalent to the classical one since:

H[S|Lq] = −
∑

lq

Pr[lq]
∑

s

Pr[s|lq] · log2 Pr[s|lq]

= −
∑

s

Pr[s]
∑

lq

Pr[lq|s] · log2 Pr[s|lq]

Then, we define an entropy reduction matrix: H̃
q

s,s∗ = H[S]−H
q
s,s∗ , where H[S]

is the entropy of the key class variable S before any side-channel attack has been
performed: H[S] = Es − log2 Pr[s]. It directly yields the mutual information:

I(S;Lq) = H[S] − H[S|Lq] = E
s

H̃
q

s,s∗ (3)

Let us finally mention that in the context of simulated attacks where an analyt-
ical model for the leakage probability distribution is known, the previous sums
can be turned into integrals, e.g. we have for the conditional entropy:

H[S|Lq] = −
∑

s

Pr[s]

∫ +∞

−∞
Pr[lq|s] · log2 Pr[s|lq] dlq

It is important to observe that the success rate measures the effectiveness of
an adversary. In general, it has to be computed for different number of queries
in order to evaluate how much observations are required to perform a successful
attack. By contrast, the information theoretic metric says nothing about the ac-
tual strength of an adversary but characterizes an implementation. It is generally
computed once, for an arbitrarily chosen number of queries (typically, q = 1).

3 Investigation of single leakages

In this section, we analyze a situation where an adversary is provided with the
observation of one single Hamming weight leakage. First, we evaluate single
block implementations. Then, we discuss multiple block implementations and
key guesses. Finally, we evaluate the effect of noise addition in this context.

2 With Pr[s|lq] =
Pr[lq|s]·Pr[s]∑

s∗ Pr[lq|s∗]·Pr[s∗]
.



3.1 Single block implementations

Let us assume the following situation: we have an n-bit secret key s and an
adversary is provided with the leakage corresponding to a computation Y1 =
f(s, P1) = S(P1 ⊕ s). As previously, capital letters represent variables while
small letters represent particular values of the variables. That is, the adversary
obtains observations of the form l1 = WH(y1) and we assume a single block
implementation as the one in the left part of Figure 2. Therefore, the adversary
can potentially observe the n+1 Hamming weights of the variable Y1. Since the
Hamming weights of a random value are distributed as binomials, one can easily
evaluate the success rate of the adversary as:

SR = E
s

E
l1

I1
s,s =

n∑

h=0

(
n

h

)

2n
·

1(
n

h

) =
n + 1

2n
(4)

This equation means that on average, obtaining the Hamming weight of a secret
n-bit value increases the success rate of a key-recovery adversary from 1

2n to n+1
2n .

Similar evaluations will be performed for the conditional entropy in Section 3.3.

3.2 Multiple blocks and key guesses

Let us now assume a situation similar to the previous one, but the adversary
tries to target a multiple block implementation. Therefore, it is provided with
the Hamming weight of an n-bit secret value of which it can only guess b bits,
typically corresponding to one block of the implementation. Such a key guess
situation can be analyzed by considering the un-exploited bits as a source of
algorithmic noise approximated with a Gaussian distribution. This will be done
in the next section. The quality of this estimation will then be demonstrated in
Section 5, by relaxing the Gaussian estimation.

3.3 Noise addition

Noise is a central issue in side-channel attacks and more generally in any signal
processing application. In our specific context, various types of noise are usually
considered, including physical noise (i.e. produced by the environment), mea-
surement noise (i.e. caused by the sampling process and tools), model matching
noise (i.e. meaning that the leakage model used to attack does possibly not
perfectly fit to real observations) or algorithmic noise (i.e. produced by the un-
targeted values in an implementation). All these disturbances similarly affect the
efficiency of a side-channel attack and their consequence is that the information
delivered by a single leakage point is reduced. For this reason, a usually accepted
method to evaluate the effect of noise is to assume that there is an additive ef-

fect between all the noise sources and their overall effect can be quantified by a

Gaussian distribution. We note that this assumption may not be perfectly veri-
fied in practice and that better noise models may allow to improve the efficiency
of side-channel attacks. However, this assumption is reasonable in a number of
contexts and particularly convenient for a first investigation.



In our experiments, we will consequently assume that the adversary is pro-
vided with observations: l1sg

= WH(y1)+n, where n is a realization of a Gaussian

distributed random noise variable N with mean 0 and variance σ2. Then, we
evaluate the success rate of the adversary and the conditional entropy as:

SR = E
s

E
l1

I1
s,s =

n∑

h=0

(
n

h

)

2n
·

∫ +∞

−∞
Pr[l1|h] · I1

s,s dl, (5)

H[S|L1] = E
s

H1
s,s =

n∑

h=0

(
n

h

)

2n
·

∫ +∞

−∞
Pr[l1|h] · − log2(Pr[s|l1]) dl, (6)

where Pr[L1 = l1|WH(Y1) = h] = 1
σ
√

2π
exp

−(l1−h)2

2σ2 and the a posteriori proba-

bility Pr[s|l1] can be computed thanks to Bayes’s formula: Pr[s|l1] = Pr[l1|s]·Pr[s]
Pr[l1]

,

with Pr[l1] =
∑

s∗ Pr[l1|s
∗] · Pr[s∗]. As an illustration, the success rate and the

mutual information are represented in Figure 3 for an 8-bit value, in function

of the observation signal-to-noise ratio (SNR=10 · log10(
ε2

σ2 ), where ε =
√

n/4
denotes the standard deviation of the Hamming weight signal and σ is the pre-
viously introduced Gaussian noise standard deviation).
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Fig. 3: Success rate and mutual information in function of the SNR.

Note that the success rate starts at 9/256, i.e. the noise-free value computed
with Equation (4) and tends to 1/256 which basically means that very little
information can be retrieved from the leakage. Also, since for each key class s,
the same 9 Hamming weights can be observed with the same frequency, we are
typically in the context of a weak template attack as described in [14]. That is,
each line of the entropy matrix is identical up to a permutation of its elements.

4 Investigation of multiple leakages

In the previous section, we analyzed a single-query adversary. However, looking
at Figure 3, it is clear that such a context involves limited success rates, even in
case of high SNRs. As a matter of fact, actual adversaries would not only perform
one single query to the target device but multiple ones, in order to increase their
success rates. Therefore, this section considers the problem of multiple leakages.



For this purpose, let us consider the following situation: we have an n-bit
secret key class s and an adversary is provided with the leakages corresponding
to two computations Y1 = f(s, P1) and Y2 = f(s, P2). That is, it obtains WH(Y1)
and WH(Y2) and we would like to evaluate the average predictability of s. The

y sg

y1

y2

f   (p1,y1)
-1

f   (p2,y2)
-1

Fig. 4: Multiple point leakages.

consequence of such an experiment (illustrated in Figure 4) is that the key will
be contained in the intersection of two sets of candidates obtained by inverting
the 2-input functions y1 = f(s, p1) and y2 = f(s, p2). The aim of our analysis
is therefore to determine how the keys within this intersection are distributed.
Importantly, and contrary to the single query context, this analysis requires to
characterize the cryptographic functions used in the target implementation, since
they will determine how the intersection between the sets of candidates behaves.
Therefore, we will consider two possible models for these functions.

4.1 Assuming random S-boxes

A first (approximated) solution is to consider the functions f−1(Pi, Yi) to be-
have randomly. As a consequence, each observed Hamming weight leakage hi =
WH(yi) will give rise to a uniform list of candidates for the key s of size ni =

(
n

hi

)
,

without any particular dependencies between these sets but the key. Let us de-
note the size of the set containing s after the observation of q leakages respec-
tively giving rise to these uniform lists of ni candidates by a random variable
Tq(n1, n2, . . . , nq). From the probability density function of Tq (given in appendix
A), it is straightforward to extend the single leakage analysis of Section 3.1 to
multiple leakages. The success rate can be expressed as:

SR =

n∑

h1=0

n∑

h2=0

. . .

n∑

hq=0

(
n

h1

)

2n
·

(
n

h2

)

2n
. . .

(
n

hq

)

2n
·
∑

i

Pr[Tq = i] ·
1

i
(7)

4.2 Using real block cipher components

In order to validate the previous theoretical predictions of the success rate, we
performed the experiments illustrated in Figure 5. In the first (upper) experi-
ment, we generated a number of plaintexts, observed the outputs of the function
f = S(Pi ⊕ s) through its Hamming weights WH(Yi), derived lists of ni can-
didates for Yi corresponding to these Hamming weights and went through the



inverted function f−1(Pi, Yi) to obtain lists of key candidates. In the second
(lower) experiment, a similar procedure is applied but the ni key candidates
were selected from random lists (including the correct key). As a matter of fact,
the first experiment corresponds to a side-channel attack against a real block
cipher (we used the AES Rijndael S-box) while the second experiment emulates
the previous random S-box estimation.

f

sg

p y WH (y ) [yi  ,yi  ,…,yi   ] [si  ,si  ,…,si  ] f
-1

p

R y ni

[sg | sr1,sr2,sr3,…,srn]

[sg | si     ,si     , … si       ]

WH (y )

i

ii

i i

i

1 2 ni 1 2 ni

r1 r2 rni-1

Fig. 5: Multiple leakages experiments: real S-boxes and random S-boxes simulation.

We generated a large number (namely 100 000) of observations and, for these
generated observations, derived the experimental success rate in the two previous
contexts. Additionally, we compared these experiments with the theoretical pre-
dictions of the previous section. The results of our analysis are pictured in Figure
6, where we can observe that the real S-box gives rise to lower success rates (i.e.
to less information) than a random function. The reason of this phenomenon is
that actual S-boxes give rise to (slightly) correlated lists of key candidates and
therefore to less independence between consecutive observations, as already sug-
gested in [2, 11]. These experiments suggest that even if not perfectly correct, the
assumption that block cipher components are reasonably approximated by ran-
dom functions with respect to side-channel attacks is acceptable. We note that
this assumption is better verified for large bit sizes since large S-boxes better
approximate the behavior of a random function than small ones.
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5 Investigation of masked implementations

The previous sections illustrated the evaluation of simple side-channel attacks
based on a Hamming weight leakage function thanks to the success rate and
mutual information. However, due to the simplicity of the investigated contexts,
these notions appeared to be closely correlated. Therefore it was not clear how
one could need both criteria for our evaluation purposes. In this section, we
consequently study a more complex case, namely masked implementations and
higher-order side-channel attacks. This example is of particular interest since it
allows us to emphasize the importance of a combination of security and infor-
mation theoretic metrics for the physical security evaluation process of an im-
plementation. As a result of our analysis, we provide (non-trivial) observations
about the respective effectiveness of masking and algorithmic noise addition that
can be easily turned into design criteria for actual countermeasures.

S

S’

s

p

r
q

y = S(p      s)      qi

i

i i i

i

Fig. 7: 1st order boolean masking.

The masking technique (e.g. [4]) is one of the most popular ways to prevent
block cipher implementations from Differential Power Analysis. However, recent
results suggested that it is not as secure as initially thought. Originally pro-
posed by Messerges [7], second and higher-order power analysis attacks can be
successfully implemented against various kinds of designs and may not require
more hypotheses than a standard DPA [9]. In [12], an analysis of higher-order
masking schemes is performed with respect to the correlation coefficient. In the
following, we intend to extend this analysis to the (more powerful but less flexi-
ble) case of a Bayesian adversary, as introduced in [10].

For the purposes of our analysis, we will use the masked implementation il-
lustrated in Figure 7 in which the plaintext pi is initially XORed with a random
mask ri. We use two S-boxes S and S’ such that: S(pi ⊕ ri ⊕ s)=S(pi ⊕ s) ⊕ qi,
with qi = S′(pi ⊕ ri ⊕ s, ri). According to the notations introduced in [10], it
is particularly convenient to introduce the secret state of the implementation
as Σi = S(pi ⊕ s) and assume an adversary that obtains (possibly noisy) ob-
servations: lq = WH [Σi ⊕ qi] + WH [qi] + n, with the same noise as in Section
3.3. Similarly to a first-order side-channel attack, the objective of an adversary
is then to determine the secret state Σi (it directly yields the secret key class
s). Because of the masking, Σi is not directly observable through side-channel
measurements but its associated PDFs do, since these PDFs only depend on



the Hamming weight of the secret state WH(Σi). As an illustration, we provide
the different discrete PDFs (computed over the random mask values) for a 4-bit
masked design in Figure 8, in function of the secret state Σi. We also depict the
shapes of the discrete PDFs corresponding to an unmasked secret state affected
by four bits of algorithmic noise (i.e. we add 4 random bits to the 4-bit target
and the PDF is computed over these random bits). Similar distributions can be
obtained for any bit size. In general, knowing the probability distributions of the
secret state, the success rate and conditional entropy can be straightforwardly
derived. For example, after one query it yields:
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Fig. 8: Exemplary discrete leakage PDFs.

SR = E
Σ1

E
l1

I1
Σ1,Σ1

=

n∑

h=0

(
n

h

)

2n
·

∫ +∞

−∞
Pr[l1|h] · I1

Σ1,Σ1
dl, (8)

H[S|L1] = E
Σ1

H1
Σ1,Σ1

=

n∑

h=0

(
n

h

)

2n
·

∫ +∞

−∞
Pr[l1|h] · − log2(P[Σ1|l1]) dl, (9)

where Pr[L1 = l1|WH(Σ1) = h] can be computed as in Section 3.3, assuming that
the l1’s are distributed as a mixture of Gaussians. In the following, we illustrate
these metrics in different contexts. First, we consider 1st and 2nd order masking
schemes for 8-bit S-boxes. Then, we consider unmasked implementations where
8 (resp. 16) random bits of algorithmic noise are added to the secret signal S,
corresponding to the 1st (resp. 2nd) order mask bits.

The first (and somewhat surprising) conclusion of our experiments appears
in Figure 9. Namely, looking at the mutual information for high SNRs, the use
of a n-bit mask is less resistant (i.e. leads to lower leakages) than the addition of
n random bits to the implementation. Fortunately, beyond a certain amount of
Gaussian noise the masking appears to be a more efficient protection. The rea-
son of this behavior appears clearly when observing the evolution of the PDFs
associated to each secret state in function of the SNR, pictured in Appendix B,
Figures 13 and 14. Clearly, the PDFs of the masked implementation are very
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Fig. 9: Mutual information of 1st, 2nd order masking and equivalent algorithmic noise.

different with small noise values (e.g. in Figure 13.a, the probability that an ob-
servation belong to both PDFs is very small) but becomes almost identical when
the noise increases, since they are all identically centered (e.g. in Figure 13.b).
Conversely, the means of each PDF in the unmasked implementations stay dif-
ferent whatever the noise level (e.g. in Figure 14.b). Therefore the Bayesian
classification is easier than in the masked case when noise increases. These ob-
servations confirm the usually accepted fact that efficient protections against
side-channel attacks require to combine different countermeasures. A practically
important consequence of our results is the possibility to derive the exact design
criteria (e.g. the required amount of noise) to obtain an efficient masking.

It is also interesting to observe that Figure 9 confirms that algorithmic noise
is nicely modeled by Gaussians. Indeed, e.g. for the 1st order case, the mutual
information of an 8-bit value with 8 noisy bits for high SNRs exactly corresponds
to the one of an unprotected 8-bit value with SRN=0.
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Fig. 10: Success rate of 1st, 2nd order masking and equivalent algorithmic noise.

The second interesting conclusion is that the success rate after one query
(pictured in Figure 10) does not follow an identical trend. Namely, the masked
implementations and their equivalent noisy counterparts do not cross over at
the same SRN. This situation typically corresponds to the intuitive category



of limited adversary against a weak implementation in Figure 1. That is, some
information is available but the number of queries is too low to turn it into a
successful attack. If our information theoretic measurement is meaningful, higher
number of queries should therefore confirm the intuition of Figure 9.

Success rates with higher number of queries for a 2nd order masking scheme
(and noisy equivalent) were simulated in Figures 11, 12. In Figure 11, a very
high SNR=20 is considered. As a consequence, we observe that the masks bring
much less protection than their equivalent in random bits, although the initial
value (for one single query) suggests the opposite. Figure 12 performs similar ex-
periments for two SNRs that are just next to the crossing point. It illustrates the
same intuition that the efficiency of the key recovery when increasing the number
of queries is actually dependent on the information content in the observations.

Importantly, these experiments illustrate a typical context where the com-
bination of security and information theoretic metrics is meaningful. While the
success rate is the only possible metric for the comparison of different side-
channel attacks (since it could be evaluated for different statistical tools), the
information theoretic metric allows to infer the behavior of an attack when in-
creasing the number of queries. As an illustration, the correlation-based analysis
performed in [12] only relates to one particular (sub-optimal) statistical tool and
was not able to lead to the observations illustrated in Figure 9.
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Fig. 11: Success rate of an 8-bit 2nd order masking scheme with noisy counterpart.

6 Concluding remarks

This paper discusses the relevance of a recently introduced theoretical framework
for the analysis of cryptographic implementations against side-channel attacks.
By the investigation of a number of implementation contexts, we illustrate the
interest of a combination of security and information theoretic metrics in the
evaluation, comparison and understanding of side-channel attacks. Specifically,
our results show a practically meaningful example in which computing the mu-
tual information of the leakages provides theoretical insights about the asymp-
totic security of an implementation that can possibly be turned into practical
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Fig. 12: Success rate of an 8-bit 2nd order masking scheme with noisy counterpart.

design criteria. As a scope for further research, we suggest the analysis of more
complex (statistically sampled, multivariate, . . . ) leakage functions possibly giv-
ing rise to strong template attacks (as defined in [14]), i.e. attacks in which each
key class gives rise to a different security level.
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A Probability density function of the variable Tq

We take an iterative approach and first consider the intersection after two leak-
ages. Assuming that the leakages respectively give rise to uniform lists of n1

and n2 candidates and the the key space has size N = 2n, it yields Pr[T2 =

i|n1, n2] =

(
n1 − 1
i − 1

)
·
(

N − n1
n2 − i

)

(
N − 1
n2 − 1

) , where the binomials are taken among sets of N − 1

possible elements since there is one fixed key that is not chosen uniformly. Then,
assuming the knowledge of the distribution of Tq(n1, n2, ..., nq) and an additional
leakage that gives rise to a uniform list of nnew candidates, we can derive the
distribution of Tq+1 as follows: Pr[Tq+1 = j|Tq, nnew] =

∑
i Pr[Tq+1 = j|Tq =

i, nnew] · Pr[Tq = i], with: Pr[Tq+1 = j|Tq = i, nnew] =

(
i − 1
j − 1

)
·
(

N − i

nnew − j

)

(
N − 1

nnew − 1

) .

B Additional figures
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Fig. 13: Leakages PDFs in function of the noise: masked implementation.
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Fig. 14: Leakages PDFs in function of the noise: unmasked implementation.


