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Abstract

Ristenpart and Rogaway defined “mix” functions, which are used to mix inputs from two sets
of equal size, and produce outputs from the same two sets, in an optimal way. These functions
have a cryptographic application in the context of extending the domain of a block cipher. It
was observed that mix functions could be constructed from orthogonal latin squares.

In this paper, we give a simple, scalable construction for mix functions. We also consider a
generalization of mix functions, in which the two sets need not be of equal size. These generalized
mix functions turn out to be equivalent to an interesting type of combinatorial design which has
not previously been studied. We term these “orthogonal equitable rectangles” and we construct
them for all possible parameter situations, with a small number of exceptions and possible
exceptions.

1 Mix Functions

Mix functions were defined by Ristenpart and Rogaway [4] as follows. Let |X| = r. Suppose
f: X xX — X x X, and denote f(A, B) = (fL(A, B), fr(A, B)) for all A,B € X. Suppose that
the following properties are satisfied:

1. f(-,-) is a permutation of X x X
2. if A € X is fixed, then f1(4,") is a permutation of X
3. if A € X is fixed, then fr(A,-) is a permutation of X
4. if B € X is fixed, then f1 (-, B) is a permutation of X
5. if B € X is fixed, then fg(-, B) is a permutation of X.

Then we say that f is a mix(r) function.
Roughly speaking, a mix function takes two inputs A and B from a set X of cardinality r and
produces two outputs from the same set, in such a way that the entire output is “balanced”, and
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either of the two outputs is balanced when one input is fixed. These are useful properties to ensure
that the function “mixes” the two inputs in an optimal way when it creates the two outputs. For
more details on a specific application to encryption schemes, see [4].

Suppose r is a positive integer. A latin square of order r is an r X r array, say L, where every
entry is chosen from an r-set X, such that the following two properties are satisfied:

1. every symbol = € X occurs exactly once in each row of L
2. every symbol x € X occurs exactly once in each column of L.

Suppose that L and R are latin squares of order r on symbol sets X and X', respectively. L
and R are orthogonal provided that, for every ordered pair (z,z') € X x X', there is a unique cell
C such that L(C) = z and R(C) = 2. (Equivalently, the superposition of L and R yields every
ordered pair of symbols in X x X'.)

It was observed in [4] that mix(r) functions can be constructed from a pair of orthogonal latin
squares of order r. In fact, the converse is also true; we have the following result.

Theorem 1.1. Suppose that | X| =71 and f : XxX — X xX. Denote f(A,B) = (fL(A, B), fr(4, B))
for all A,B € X. Define two r xr arrays L = (Aa ) and R = (pa,B) by the rules Ay p = fr.(A, B)
and pa,p = fr(A, B) for all A,B. Then f is a mix(r) function if and only if L and R are orthogonal
latin squares of order r.

Proof. 1t is clear that properties 2 and 4 of a mix function correspond to L being a latin square;
properties 3 and 5 of a mix function correspond to R being a latin square; and property 1 corre-
sponds to L and R being orthogonal. O

Corollary 1.2. [4] Let r be a positive integer. Then there exists a mix(r) function if and only if
r # 2,6.

Proof. Bose, Shrikhande and Parker [1, 2] showed that orthogonal latin squares of order r > 1 exist
if and only if r # 2,6 (for a short proof, see [5, Section 6.8]). Apply Theorem 1.1. O

Example 1.1. A mix(4) function, which we present as orthogonal latin squares of order 4:
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2 A Simple General Construction

The case of greatest cryptographic interest is when r is a power of 2, say r = 2¥. Here we have the
following special case of Corollary 1.2.

Corollary 2.1. [{] Let k be a positive integer. Then there exists a mix(2%) function if and only if
k#1.



A mix(2%) function defined on the set X = {0,1}* can be viewed as an optimal method of
mixing two bitstrings of length k. For the purposes of the applications described in [4], it would be
useful to have an efficient construction for mix(2¥) functions for all k& > 2. It was observed in [4]
that the usual finite field construction for orthogonal latin squares of order 2 is not suitable, due
to the need to store irreducible polynomials to generate finite fields Fyx for various values of k.

We will give a completely general construction for mix(2*) functions based on mix(4) and mix(8)
functions. We use the following simple recursive construction for mix functions.

Construction 2.1. For i = 1,2, suppose that | X;| = r;, and suppose that f*: X; x X; — X; x X;
is a mix(r;) function, where fi(A;, B;) = (fi(4i, Bi), f5(Ai, Bi)), i = 1,2. Let X = X1 x X3 and
define a function f = f1 ® fo, where f : X x X = X x X, by the following rule:

f((A1, A2), (B1,B2)) = (fr((41, A2), (B1, B2)), fr((A1, A2), (B1, B2)))
fL((A1, A2), (B1, B2)) (fL(A1,B1), 7 (A2, Ba))
fr((A1,As), (B1,B2)) = (fR(A1,By), fi(As, By)).

Then f is a mix(rir2) function.

Remark. Construction 2.1 is basically the classical direct (i.e., Kronecker) product construction
for orthogonal latin squares (see, for example, [5, Theorem 6.27]), translated into the language of
mix functions.

Now, we need to start with “nice” mix(4) and mix(8) functions. As observed in [4], it is easy
to construct a mix(2*) function defined on the finite field For. Let p(z) € Z2[z] be an irreducible
polynomial of degree k. Then For = Zo[z]/(p(2)). Let o € For be aroot of p(z). Then the following
formulas provide one way to obtain a mix function (where z,y € Fox):

fr(zy) = z+y (1)

fr(@y) = z+ay. (2)
Note that all arithmetic is done in the field For. Now, if we represent field elements with respect
to the polynomial basis {a*~!,... a! 1}, then we can define these mix functions on bitstrings of
length k.

In order to apply the formulas (1) and (2), it is necessary only to store the mapping y — ay as
a mapping (actually a permutation) of the bitstrings of length k. The operation “4” in the field
is the same as an exclusive-or operation performed on two bitstrings; we denote this operation by
u@n .

We are building all possible mix functions from mix(4) and mix(8) functions, so we only need to
work out the relevant formulas in F; and Fg. We can generate 4 using the polynomial 22 4 z 4+ 1,
and Fg can be generated from the polynomial 23 + z 4+ 1. The permutations y — ay are recorded
as the following permutations 7 and 73 of {0,1}? and {0, 1}3, respectively:

z JJoojo1|10]11
ma(x) [| 00|10 | 11 ] 01

z || 000 | 001|010 011|100 |101]110]111
m3(x) || 000 [ 010 | 100 [ 110 | 011 | 001 | 111 | 101 °



Now we can describe the resulting mix functions. Given A = (Aj,...,4;) € {0,1}* and
B = (By,...,B) € {0,1}*, we show how to compute (C, D) = (f.(A, B), fr(A, B)), where C =
(Cy,...,Cx) €{0,1}* and D = (Dy,..., D) € {0,1}*.

First we consider the case where k is even, say k = 2¢. Basically we “process” A and B two
bits at a time using the mix(4) function based on 3. For 1 < i </, we define

Coi1C; = Az 1A; ® Boi1B;
Dy 1D; = Ay 1A; ®ma(B2i1Bi).

When k is odd, say k = 2¢ 4+ 1, we proceed in much the same way, except that the last three
bits are handled slightly differently, using the mix(8) function based on 73. For 1 <i < /¢ —1, we
define

C2i—1C; = Azi1A; ® Boi—1B;
Dyi_1D; = Agi_1A; ® ma(B2i—1B).

Then, define

Co-1C2Copp1 = Agp 1A A911 @ By 1BoyBoyq
Doy-1DoyDopr1 = Az 1A20Az 11 @ m3(Bar—1B2¢Basy1)-

The complexity of evaluating a mix(2¥) function using our approach is O(k), and we require
only O(1) memory to do so. This is clearly optimal.

3 Generalized Mix Functions

In this section, we introduce a generalized type of mix function, where we mix inputs from two sets
of (possibly) different sizes. Let |X| = r and |X'| = 7'. Suppose f : X x X’ - X x X', and denote
f(A,B) = (fL(A,B), fr(A,B)) for all A€ X, B € X'. Suppose that the following properties are
satisfied:

1. f(-,-) is a permutation of X x X'

2. if A,C € X are fixed, then fr(A, B) = C has either [%'] or |_T7’J solutions for B € X'
3. if A € X is fixed, then fr(4,-) is a permutation of X'

4. if B € X' is fixed, then f1(-, B) is a permutation of X

5. if B,D € X' are fixed, fr(A, B) = D has either [ 7] or | 7| solutions for A € X.

Then we say that f is a gmix(r, r’) function.

Suppose r, ¢ and v are positive integers. We define an equitable (7, c;v)-rectangle to be an r X ¢
array, say L, where every entry is chosen from a v-set X, such that the following two properties
are satisfied:

1. every symbol z € X occurs either [Z] or | £] times in each row of L

2. every symbol € X occurs either [7] or | 7] times in each column of L.
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An equitable (r, ¢; v)-rectangle is row-regular if v|c, and it is column-regular if v|r. It is reqular if
it is both row- and column-regular. In a row-regular (7, ¢; v)-rectangle, every symbol occurs exactly
¢/v times in each row; in a column-regular (r, ¢; v)-rectangle, every symbol occurs exactly /v times
in each column.

An equitable (r,¢;c)-rectangle with » < ¢ is known as a latin rectangle. A latin rectangle is
row-regular. A latin rectangle with » = ¢ is the same thing as a latin square of order r. A latin
square is regular.

Suppose that L is an equitable (r, ¢; v)-rectangle on symbol set X and R is an equitable (r, ¢; v')-
rectangle on symbol set X', where rc = vv’. We say that L and R are orthogonal provided that,
for every ordered pair (z,z') € X x X', there is a unique cell C such that L(C) = z and R(C) = 2'.
(Equivalently, the superposition of L and R yields every ordered pair of symbols in X x X'.) It is
easy to see that orthogonal equitable (r,r;r)-rectangles are identical to orthogonal latin squares of
order r.

The next theorem is a straightforward generalization of Theorem 1.1.

Theorem 3.1. Let | X| =r and |X'| =1/, wherer <r'. Suppose f : X x X' = X x X', and denote
f(A,B) = (fL(A, B), fr(A, B)) for all A€ X, B € X'. Define two r x v’ arrays L = (Aa,B) and
R = (pa,B) by the rules \a g = fL(A,B) and pa,p = fr(A, B) for all A,B. Then f is a gmix(r,")
function if and only if L is an equitable (r,r';r)-rectangle, R is an equitable (r,r';r')-rectangle, and
L and R are orthogonal.

A gmix(r,7’) function with » < 7/ is said to be row-regular if the associated equitable (r,r';r)-
rectangle is row-regular (this is equivalent to the condition that r|r').

Example 3.1. A (row-regular) gmix(2,4) function, which we present as an equitable (2,4;2)-
rectangle and an equitable (2,4;4)-rectangle, such that the two rectangles are orthogonal:

01|01 0({1]2
L=rorir0] B=r23(o(1|
Example 3.2. A gmix(2,5) function:
0j{1(0(1/0 0(1(2]34
L= 110(1]0 |1 R= 213(4|1]|0](

The following simple lemma shows that it is sufficient to consider only gmix(r,r’) functions with
r<r,

Lemma 3.2. There exists a gmix(r,r’) function if and only if there exists a gmix(r',r) function.

It is easy to see that a gmix(r,r) function is the same thing as a mix(r) function. Therefore we
have the following consequence of Corollary 1.2.

Lemma 3.3. Suppose r is a positive integer. Then there exists a gmix(r,r) function if and only if
r # 2,6.



3.1 Some Constructions

In this section, we present some recursive constructions for gmix(r,r’) functions with » < r’. In
most of these constructions, it will be fairly obvious that the required properties are satisfied. The
only property that sometimes causes difficulty is the requirement that every symbol occurs either
[’"7’] or |_T7’J times in each row of L (L is the equitable (r,7’;r)-rectangle that is being constructed).
In order to ensure that this property is satisfied, we sometimes need to ensure that one or both of
the hypothesized gmix functions used for a given construction are row-regular.

Construction 3.1 (Sum Construction). Let r,ri,r9 be positive integers. Suppose there ezists
a gmix(r,r1) function and a row-regular gmix(r,r2) function. Then there exists a gmix(r,r1 + r2)
function.

Proof. Let L; and R; be the rectangles associated with a gmix(r,r;) function, for i = 1,2. We will
stipulate that L, and L9 are constructed on symbol set X of size r, R; is constructed on symbol
set X, of size r1, and Ry is constructed on symbol set Xo of size ro, where X1 N X9 = &. Then

define X' = X1 UXy, L=| L1 | Ly Jand R=| R, | Ry | O

Suppose L is an equitable (r, ¢; v)-rectangle with r < c and r < v. A transversal of L is a set T
of r cells of L such that the following properties are satisfied:

1. each row of L contains one cell in 7',
2. the cells in T occur in r distinct columns of L (this requires r < ¢), and
3. the cells in T" contain r distinct symbols (this requires r < v).

Two transversals of L, say T and T", are said to be disjoint if T and T" contain no cells in
common.

Suppose L is an equitable (r,c;v)-rectangle and R is an equitable (r,c;v’)-rectangle, where
r<c r<wvandr <uv. A common transversal of L and R is a set T of r cells such that T is a
transversal of both L and R.

Construction 3.2 (Projection Construction). Suppose there are orthogonal latin squares of
order r containing d disjoint common transversals. Then there exists a gmix(r,r + d) function.

Proof. Let L and R be the hypothesized orthogonal latin squares of order r, and let 71, 75,...,Ty
be the hypothesized common transversals. For 1 < j < d, project each cell of T; in L onto a new
column and project each cell of T in R onto a new column. Then replace the contents of every cell
of Tj in R by a new symbol oo;. O

Example 3.3. We begin with the mix(4) function presented in Example 1.1:

= Ol W N
Ol N W
=[Ol W N
Ol N W

N W O

WIN =IO

NfW O

WIN =IO




These are orthogonal latin squares of order 4 that have four disjoint common transversals, which
are indicated in the following array T':

11234

314|112
T_4321'

2111413

For 1 < j <4, T} consists of all the cells in T containing the symbol j. Suppose we take d = 2,
and project the transversals T1 and T>. Then we obtain a gmix(4,6) function:

0(112({3]0|1 o001 | 002 | 3 1 1012
110131232 1 3 |oo1|o02|2]|0
2113|0110 2 0 |ocog|oor |3]1]
3121|0123 o0og |oo1 | O 2 1113

The following result is well-known (see, for example, [3]).

Theorem 3.4. There exist two orthogonal latin squares of order r containing r disjoint common
transversals if and only if there exist three mutually orthogonal latin squares of order r.

It is known that there exist three orthogonal latin squares of order r if r ¢ {2,3,6,10} (see [6]).
Thus we have the following corollary of Theorem 3.2.

Corollary 3.5. Suppose that r > 4 is a positive integer, v # 6,10. Then there exists a gmix(r,r+d)
function for 0 < d <r.

Construction 3.2 can be generalized by starting with a row-regular generalized mix function, pro-
vided that the set of disjoint common transversals satisfies a suitable property. Suppose T1,...,Ty
are disjoint transversals in an equitable (r,7’;r)-rectangle L with r < r’. These d transversals are
compatible if, within any row of L, the cells in 77 U- - -UTy together contain every symbol either [%1
or LgJ times. A set of d compatible disjoint common transversals for a gmix(r,r’) function is said
to be compatible if the d transversals are compatible in the associated equitable (r,r’; r)-rectangle.

Construction 3.3 (Generalized Projection Construction). Let r, 7’ be positive integers. Sup-
pose there is a row-regular gmix(r,r") function having d compatible disjoint common transversals.
Then there exists a gmix(r,r’ + d) function.

It is easy to verify that the standard direct (Kronecker) product of row-regular generalized mix
functions will yield a (row-regular) generalized mix funciton.

Construction 3.4 (Direct Product Construction). Suppose r1,7],72 and rfy are positive in-
tegers. Suppose there is a row-regular gmix(r;,r}) function, ¢ = 1,2. Then there is a row-regular
gmix(rira, riry) function.
Proof. For i = 1,2, suppose that |X;| = r;, |X!| =7} and f*: X; x X! = X; x X/ is a gmix(r, 7})
function, where f'(4;, B;) = (fi(4i, B:), fi(4i, By)), i = 1,2. Let X = X; x Xo, X' = X| x X},
and define a function f = f; ® fo, where f : X x X’ — X x X', by the following rule:
f((A1, A2),(B1,B2)) = (fr((A1, A2), (B1, B2)), fr((A1, A2), (B, B2)))
fL((A1, A2), (B1, B2)) = (fL(A1, Bu), f7(Az2, B2))
fr((A1, A2), (B1,B2)) = (fr(A1,B1), fR(As, B2)).

Then f is a gmix(r172, 7 7%) function. O



4 Existence Results

In this section, we use the constructions from the previous section to construct all possible gener-
alized mix functions, with a few exceptions and a few possible exceptions.

Theorem 4.1. There exists a gmix(1,7") function for all r' > 1.

Proof. Define L and R as follows:

L=[ofo]---Jo] R=[0]L]--[r"—1}

O

Theorem 4.2. Suppose r' > 2. Then there exists a gmix(2,r") function if and only if r' # 2, 3.

Proof. First, a gmix(2,2) function does not exist by Lemma 3.3. Also, it is easy to verify that a

gmix(2, 3) function does not exist.
Suppose r' > 4 is an even integer. Define L and R as follows:

L_OlOl--- 01|01 R_0123--- r—4 =3 |r-2|r-1
Sl1f{o|1{0]---[1|0[1]0 1203145 r=2]r=1| 0 1

It is easy to verify that this is a gmix(2, ') function.
Finally, suppose 7’ > 5 is an odd integer. Define L and R as follows:

o[ o -1 10] ,_[O]L1[2]3 - [« —4[r—3[r—2[r -1
S |1j0(1]{0|---|0|1|0]1 1213145 |r=2]7 -1 1 0 |
This is a gmix(2, ') function, which completes the proof. O

Theorem 4.3. Suppose r' > 3. Then there exists a gmix(3,7') function if and only if r' # 4.

Proof. First, a gmix(3,3) function is equivalent to orthogonal latin squares of order 3, and the
nonexistence of a gmix(3,4) function can be verified by exhaustive search.
Next, we present a gmix(3,5) function:

0O|1|1]2 0[114]2
L=1 1| R=|3 01
11210 2101113
and a gmix(3,7) function:
Oj1(2]1|2 0/1|2/4]|5|6/|3
L=|1]1 0 1| R=12|0|6|3[4]|1]5|
1121|100 4(2|11{0(3|5]|6

Now, suppose r' > 6, r' # 7. Write r' = 3¢ + s, where ¢ > 1 and s € {3,5,7}. Then apply
the Sum Construction (Construction 3.1), using g copies of a gmix(3,3) function and one copy of a
gmix(3, s) function. O



Theorem 4.4. There does not exist a gmix(6,6) function. Further, there exists a gmix(6,7) func-
tion for all ' > 12.

Proof. The nonexistence of a gmix(6,6) function was already noted in Lemma 3.3.
Next, we construct a row-regular gmix(6, 12) function using Construction 3.4. The direct prod-
uct gmix(3, 3) ® gmix(2,4) yields a row-regular gmix(6,12) function:

0(1/12(3[|4|5]0|1(2[|3|4|5
210115342 |0(1]|5|3|4
I_ 112|014 |5(3|1(2(0]4]5]3
314/5(0(1(2|3|4|5|0|1|2
51314(12(0(1]5(3|4|2|0]|1
415131120453 |1]2]0
and
0129 |10|11|6|7|8| 3|45
1{2|0|10({11]9 |7|8|6|4 |5 | 3
R 2(0(1|1119]10/8|6|7| 5| 3|4
678! 3|4 |5 (0|1(2]9 10|11
78164 |5 |3(1]2|0]|10|11] 9
816|753 |4 |2|0/1|11]| 9 |10

This gmix(6, 12) function contains 12 disjoint common transversals:

11 2] 3| 4| 5| 6|7(8]9|10]11]12

9 71111211023 |1| 5| 6| 4

T 1011112 1| 2 4516 7| 8] 9
|11 f12]|10] 2| 3| 1|5|6|4| 8| 9| 7T

7| 8] 91011 (12|1|2|3| 4| 5| 6

21 3| 1] 5] 6| 489|711 |12)10

For 1 < 5 <12, Tj consists of all the cells in T' containing the symbol j. It is straightforward to
verify that the d transversals 11, ...,T, are compatible, for any d such that 1 < d < 12.

Now, for 12 < ' < 24, we will apply the Generalized Projection Construction (Construction
3.3), starting with the gmix(6,12) function constructed above.

Finally, for ' > 25, write ' = 12¢ + s, where ¢ > 1 and 12 < s < 23. Then apply the
Sum Construction (Construction 3.1), using ¢ copies of a gmix(6,12) function and one copy of a
gmix(6, s) function. O

Theorem 4.5. Suppose r' > 10. Ifr’ & {15,16,17,18,19}, then there is a gmix(10,7") function.

Proof. First, we note that there exist orthogonal latin squares of order 10 containing four disjoint
common transversals (see [3, p. 530]). Applying the Projection Construction (Construction 3.2),
we obtain a gmix(10,7") function for 10 < ' < 14.



Next, the direct product gmix(5,5) ® gmix(2,4) yields a row-regular gmix(10, 20) function:
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For 1 < j < 20, T} consists of all the cells in T' containing the symbol j. It is straightforward to
verify that the d transversals 17, ..
Now, for 20 < 7/ < 40, apply the Generalized Projection Construction (Construction 3.3),

., T4 are compatible, for any d such that 1 < d < 20.

starting with the gmix(10,20) function constructed above.

For v’ > 41, write ' = 20q + s with ¢ > 1 and 20 < s < 39. Then apply the Sum Construction
(Construction 3.1), using g copies of a gmix(10, 20) function and one copy of a gmix(10, s) function.
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Theorem 4.6. Suppose r' >r >4, r # 6,10. Then there exists a gmix(r,r’") function.

Proof. For r < 7' < 2r, apply Corollary 3.5. For v’ > 2r + 1, write ' = qr + s with ¢ > 1 and
r < s < 2r—1. Then apply the Sum Construction (Construction 3.1), using ¢ copies of a gmix(r, )
function and one copy of a gmix(r, s) function. O

Gathering together all our results (Theorems 4.1 — 4.6), we have our Main Theorem. In this
theorem, E denotes the set of (definite) exceptions and P denotes the set of possible exceptions.

Theorem 4.7 (Main Theorem). Define

E = {(27 2)7 (2a 3)7 (374)7 (6a 6)}

and
P={(6,j):7<j<11}U{(10,5):15 <j < 19}.

Let 1 < r <r'. Then there exists a gmix(r,r') function if (r,r') ¢ E U P, and there does not exist
a gmix(r,r’) function if (r,7') € E.

4.1 Parameters of Cryptographic Interest

The gmix(r,r’) functions of potential cryptographic interest are those where r and r' are both
powers of two. As a corollary of our existence results, we have the following theorem.

Corollary 4.8. Let k,? be positive integers. Then there exists a gmix(Zk, 25) function if and only
if (k,0) # (1,1).

Even though the general existence results require several constructions, Corollary 4.8 can be
proven using Corollary 2.1 and the Sum Construction (Construction 3.1) for the cases k > 2, and
the direct construction given in proof of Theorem 4.2 for the case kK = 1. It is easily seen that this
leads to an efficient, scalable construction for these generalized mix functions.

5 Conclusion

The study of mix functions is motivated by a cryptographic application from [4]. We have defined
generalized mix functions in this paper. These functions may have potential cryptographic appli-
cations, and they are of independent interest as a combinatorial problem. We have given an almost
complete solution to the existence question for generalized mix functions (modulo a small number
of possible exceptions).

An interesting open problem is to find necessary and sufficient conditions for there to exist an
equitable (r,c;v)-rectangle and an equitable (7, c;v')-rectangle, such that the two rectangles are
orthogonal.
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