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Abstrat

A publi random funtion is a random funtion that is aessible by all parties, in-

luding the adversary. For example, a (publi) random orale is a publi random funtion

f0; 1g

�

! f0; 1g

n

. The natural problem of onstruting a publi random orale from a pub-

li random funtion f0; 1g

m

! f0; 1g

n

(for some m > n) was �rst onsidered at Crypto 2005

by Coron et al. who proved the seurity of variants of the Merkle-Damg�ard onstrution

against adversaries issuing up to O(2

n=2

) queries to the onstrution and to the underly-

ing ompression funtion. This bound is less than the square root of n2

m

, the number of

random bits ontained in the underlying random funtion.

In this paper, we investigate domain extenders for publi random funtions approahing

optimal seurity. In partiular, for all � 2 (0; 1) and all funtions m and ` (polynomial in n),

we provide a onstrution C

�;m;`

(�) whih extends a publi random funtion R : f0; 1g

n

!

f0; 1g

n

to a funtion C

�;m;`

(R) : f0; 1g

m(n)

! f0; 1g

`(n)

with time-omplexity polynomial

in n and 1=� and whih is seure against adversaries whih make up to �(2

n(1��)

) queries. A

entral tool for ahieving high seurity are speial lasses of unbalaned bipartite expander

graphs with small degree. The ahievability of pratial (as opposed to omplexity-theoreti)

eÆieny is proved by a non-onstrutive existene proof.

Combined with the iterated onstrutions of Coron et al., our result leads to the �rst iter-

ated onstrution of a hash funtion f0; 1g

�

! f0; 1g

n

from a omponent funtion f0; 1g

n

!

f0; 1g

n

that withstands all reently proposed generi attaks against iterated hash funtions,

like Joux's multi-ollision attak, Kelsey and Shneier's seond-preimage attak, and Kelsey

and Kohno's herding attaks.

1 Introdution

1.1 Seret vs. Publi Random Funtions

Primitives that provide some form of randomness are of entral importane in ryptography,

both as a primitive assumed to be given (e.g. a seret key), and as a primitive onstruted

from a weaker one to \behave like" a ertain ideal random primitive (e.g. a random funtion),

aording to some seurity notion.

�

An extended abstrat of this paper appears in the proeedings of CRYPTO 2007. This is the full version.
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An adversary may have di�erent types of aess to a random primitive. The two extreme

ases are that the adversary has no aess and that he has omplete aess

1

to it. For example,

the adversary is assumed to have no aess to a seret key, and a pseudo-random funtion (PRF)

is a (omputationally-seure) realization from suh a seret key of a seret random funtion to

whih the adversary has no aess. In ontrast, a (publi) random orale, as used in the so-alled

random-orale model [7℄, is a funtion f0; 1g

�

! f0; 1g

n

to whih the adversary has omplete

aess, like the legitimate parties. Similarly, a publi parameter (e.g. the parameter seleting

a hash funtion from a lass) is a �nite random string to whih the adversary has omplete

aess. It is natural to also onsider �nite-domain publi random funtions.

In this paper we are interested in suh publi random primitives and redutions among

them. The question whether (and how) a ertain primitive an be seurely realized from another

primitive is substantially more omplex in the publi setting, ompared to the seret setting, and

even the seurity notion is more involved. For example, while the CBC-onstrution an be seen

as the seure realization of a seret random funtion f0; 1g

�

! f0; 1g

n

from a seret random

funtion f0; 1g

n

! f0; 1g

n

[5, 21℄, the same statement is false if publi funtions (aessible

to the adversary) are onsidered. Another famous example of a redution problem for publi

primitives is the realization of a (publi) random orale from a publi parameter. This was

shown to be impossible [9, 23℄.

1.2 Domain Extension and the Birthday Barrier

A random primitive (both seret or publi) an be haraterized by the number of random bits

it ontains. An `-bit key is a string (or table) ontaining ` random bits, a random funtion

f0; 1g

m

! f0; 1g

n

orresponds to a table of n2

m

random bits whih an be aessed eÆiently,

and a random orale f0; 1g

�

! f0; 1g

n

orresponds to a ountably in�nite table of random bits.

2

Of ourse, a random table of N bits an be interpreted as a random funtion f0; 1g

m

! f0; 1g

n

for any m and n with n2

m

� N . For example, n an be doubled at the apparently minor

expense of reduing m by 1.

An important topi in ryptography is the seure expansion of suh a table, onsidered as

an ideal system. This is referred to as domain extension, say from f0; 1g

m

to f0; 1g

2m

(or to

f0; 1g

�

), whih orresponds to an exponential (or even in�nite) blow-up of the table size. (In

ontrast, inreasing the range, say from f0; 1g

n

to f0; 1g

2n

, orresponds to merely a doubling

of the table size.)

In [23℄ a generalization of indistinguishability to systems with publi aess, alled indi�er-

entiability, was proposed. Like for indistinguishability, there is a omputational and a stronger,

information-theoreti, version of indi�erentiability. This general notion allows to disuss the

seure realization of a publi random primitive from another publi random primitive. In [23℄

also a simple general framework was proposed, based on entropy arguments, for proving im-

possibility results like that of [9℄. One an easily show that not even a single-bit extension of

a publi parameter, from ` to `+1 bits, is possible, let alone to an exponentially large table

(orresponding to a publi random funtion f0; 1g

m

! f0; 1g

n

) or even to an in�nite table

(orresponding to the impossibility of realizing a random orale [9, 23℄).

1

Side-hannel attak analyses, where part of the seret key is assumed to leak, are examples of intermediate

senarios.

2

Eah bit an be aessed in time logarithmi in its position in the table, whih is optimal sine the spei�ation

of the position requires logarithmially many bits. In this paper we only onsider suh random primitives where

the bits an be aessed eÆiently, but there are also more ompliated primitives, like an ideal ipher, whih

on one hand has a speial permutation struture and also allows on the other hand a speial additional type of

aess, namely inverse queries.
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However, the situation is di�erent if one starts from a publi random funtion (as opposed to

just a publi random string). Coron et al. [13℄ onsidered the problem of onstruting a random

orale f0; 1g

�

! f0; 1g

n

from a publi random funtion f0; 1g

m

! f0; 1g

n

(where m > n) and

showed that a modi�ed Merkle-Damg�ard onstrution [25, 14℄ works, with information-theoreti

seurity (i.e., indi�erentiability) up to about O(2

n=2

) queries. This bound, only the square root

of O(2

n

), is usually alled the \birthday barrier". The term \birthday" is used beause the

birthday paradox applies (as soon as two di�erent inputs to the funtion our whih produe

the same output, seurity is lost) and the term \barrier" is used beause breaking it is non-trivial

if at all possible.

For seret random funtions, many onstrutions in the literature, also those based on

universal hashing [11, 30℄ and the CBC-onstrution [5, 21℄, su�er from the birthday problem,

and hene several researhers [1, 4, 21℄ onsidered the problem of ahieving seurity beyond the

birthday barrier. The goal of this paper is to solve the orresponding problem for publi random

funtions. Namely, we want to ahieve essentially maximal seurity, i.e., up to �(2

n(1��)

) queries

for any � > 0 (where the onstrution may depend on �). Like for other problems (see e.g. [15℄),

going from the \seret ase" to the \publi ase" appears to involve substantial new onstrution

elements and analysis tehniques.

1.3 Signi�ane of Domain Extension for Publi Random Funtions

The domain extension problem for publi random funtions has important impliations for the

design of ryptographi funtions, in addition to being of general theoretial interest. We also

refer to [13℄ for a disussion of the signi�ane of this problem.

Cryptographi funtions with arbitrary input-length are of ruial importane in ryptog-

raphy. Desirable properties for suh funtions are ollision-resistane, seond-preimage resis-

tane, multi-ollision resistane, being pseudo-random, or being a seure MAC, et. A general

paradigm for onstruting a ryptographi funtion f0; 1g

�

! f0; 1g

n

, both in the seret and the

publi ase, is to make use of a omponent funtion F : f0; 1g

m

! f0; 1g

n

and to embed it into

an iterated onstrution C(�) (e.g. the CBC or the Merkle-Damg�ard onstrution), resulting in

the overall funtion C(F) : f0; 1g

�

! f0; 1g

n

.

It is important to be able to separate the reasoning about the omponent funtion F and

about the onstrution C(�). Typially, F is simply assumed to have some property, like being

ollision-resistant, seond-preimage resistant, a seure MAC, et. In ontrast, the onstrution

C(�) is (or should be!) designed in a way that one an prove ertain properties.

There are two types of suh proofs forC(�). The �rst type is a omplexity-theoreti redution

proof showing that if there exists an adversary breaking a ertain property of C(F), then there

exists a omparably eÆient adversary breaking a property (the same or a di�erent one) of

F. For example, using suh an argument one an prove that the Merkle-Damg�ard [25, 14℄

onstrution is ollision-resistant if the omponent funtion is. Similarly, one an prove that the

CBC onstrution is a PRF if the omponent funtion is [5℄, or that ertain onstrutions [2, 24℄

are seure MACs if the omponent funtion is.

A seond type of proof, whih is the subjet of [13℄ and of this paper, is the proof that if F

is a publi random funtion, then so is C(F), up to a ertain number B of queries. Suh a proof

implies the absene of a generi (blak-box) attak against C(F), i.e., an attak whih does

not exploit spei� properties of F, but uses it merely as a blak-box.

3

Suh a generi proof is

not an ultimate seurity proof for C(F), but it proves that the onstrution C(�) itself has no

3

This is analogous to seurity proofs in the generi group model [31, 22℄ whih show that no attak exists

that does not exploit the partiular representation of group elements.
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weakness. A main advantage of suh a proof is that it applies to every ryptographi property

of interest (whih a random funtion has), not just to spei� properties like ollision-resistane.

The number B of queries up to whih seurity is guaranteed is a ruial parameter of suh a

proof, espeially in view of several surprises of the past years regarding weaknesses of iterated

onstrutions. Joux [17℄ showed that the seurity of the Merkle-Damg�ard onstrution (with

ompression funtion with n-bit output) against �nding multi-ollisions is not muh higher

than the seurity against normal ollision attaks, namely the birthday barrierO(2

n=2

), whih is

surprising beause for a random funtion, �nding an r-multi-ollision requires �(2

r�1

r

n

) queries.

Joux's attak has been generalized to a wider lass of onstrutions [16℄. Other attaks in

a similar spirit against iterated onstrutions are the seond-preimage attak by Kelsey and

Shneier [19℄, and herding attaks [18℄. One possibility to overome these issues is to rely

on a ompression funtion with input domain muh larger than the size of the output of the

onstrution (f. for example the onstrutions in [20℄ and the double blok-length onstrution

of [12℄), but this does not seem to be the best possible approah, both from a theoretial and

from a pratial viewpoint, as explained below.

A proof, like that of [13℄, for a onstrution C(�) of a publi random funtion, implies that

C(�) is seure against all possible attaks, up to the bound B on the number of queries stated

in the proof. Sine the bound in [13℄ is the birthday barrier, this implies nothing (beyond the

birthday barrier) for attaks that require more queries, like the attaks of [17, 19, 12℄ mentioned

above, and indeed the onstrutions of [13℄ also su�er from the same attaks.

The bound B is also of importane sine it determines the input and output sizes of F. For

example, beause ollision-resistane is a property that an hold only up to 2

n=2

queries (due

to the birthday paradox), n must be hosen twie as large as one might expet to be feasible

in a na��ve seurity analysis. Moreover, sine the funtion must be ompressing to be useful

in a onstrution C(�), the input size m must be larger than the output size n. However, if

ollision-resistane is not required, but instead for example seond-preimage resistane, then

the input size m of F an potentially be smaller or, turning the argument around, seurity for

a given m an be muh higher.

The input size m of F is relevant for two more reasons. First, if one onsiders the (perhaps

not very realisti) possibility of �nding a random funtion in Nature (say, by sanning the

surfae of the moon or by appropriately aessing the WWW), then m is a ruial parameter

sine the table size n2

m

is exponential in m. Seond, for a given maximal omputing time for

F, the diÆulty of designing a onrete ryptographi funtion F : f0; 1g

m

! f0; 1g

n

that is

supposed to \look random" inreases signi�antly if m is large. This an be seen as follows.

Suh a funtion F for large m ould be modi�ed in many di�erent ways to redue m to m

0

< m

(e.g. set m�m

0

input bits to 0 or to any �xed value, or repeat an input of size m

0

until a blok

of length m is �lled, et.), and for eah of these modi�ations it would still have to be seure.

4

Hene simply designing a new funtion with doubled m is not a very reasonable solution for the

birthday barrier problem. Rather, one should �nd a onstrution that doubles (or multiplies)

the input size but at the same time preserves the seurity almost optimally.

1.4 Contributions and Outline of This Paper

The main ontribution of this paper is a onstrution paradigm for breaking the birthday barrier

for domain extension of publi random funtions. More preisely, in Setion 3 we prove that for

every � 2 (0; 1), m and `, there exists an eÆient onstrution C

�;m;`

(�) whih extends a publi

4

This argument applies even though we know that a publi random funtion is not seurely realizable from a

publi random parameter.
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random funtion f0; 1g

n

! f0; 1g

n

to a publi random funtion f0; 1g

m

! f0; 1g

`

, and whih

guarantees seurity for up to �(2

n(1��)

) queries.

A entral tool in our approah is a new ombinatorial objet, whih we all an input-

restriting funtion family. Setion 4 disusses onstrutions of suh families from highly-

unbalaned bipartite expander graphs. While urrent expander onstrutions only allow our

paradigm to be eÆient in a omplexity-theoreti sense (i.e. polynomial-time), an existene

proof shows that very eÆient onstrutions exist whih would be of real pratial interest. We

hope this to provide additional motivation to investigate expliit onstrutions of unbalaned

bipartite expanders for a range of parameters whih have not reeived muh attention so far.

Finally, our tehniques allow to use a publi random funtion f0; 1g

n

! f0; 1g

n

to onstrut

a ompression funtion with suÆiently large domain and range and to plug it into the onstru-

tion of [13℄ to ahieve the �rst iterated onstrution of a publi random orale f0; 1g

�

! f0; 1g

n

from a publi random funtion f0; 1g

n

! f0; 1g

n

with seurity above the birthday barrier. We

disuss this in Setion 5.

2 Preliminaries

2.1 Notation and Probabilities

Throughout this paper, alligraphi letters (e.g. U) denote sets. Furthermore, the set U

k

on-

tains all k-tuples of elements from U , and a k-tuple is denoted as u

k

= [u

1

; : : : ; u

k

℄. We use

apital letters (e.g. U) to name random variables, whereas their onrete values are denoted by

the orresponding lower-ase letters (e.g. u). Also, we write P

U

for the probability distribution

of U , and we use the shorthand P

U

(u) for P(U = u) and for some event A we write P

AU

(u)

instead of P(A ^ U = u). Given events A and B and random variables U and V , then P

AU jBV

denotes the orresponding onditional probability distribution, whih is interpreted as a fun-

tion U � V ! R

�0

, where the value P

AU jBV

(u; v) is well-de�ned for all u 2 U and v 2 V suh

that P

BV

(v) > 0 (and unde�ned otherwise). Two probability distributions P

U

and P

U

0

on the

same set U are equal, denoted P

U

= P

U

0

, if P

U

(u) = P

U

0

(u) for all u 2 U . Also, for onditional

probability distributions, equality holds if it holds for all inputs for whih both are de�ned. We

often need to deal with distint random experiments where equally-named random variables

and/or events appear. To avoid onfusion, we add supersripts to probability distributions (e.g.

P

E

AU jBV

(u; v)) to make the random experiment expliit. Also, note that sometimes we simply

write P

E

AU jBV

whenever the arguments u; v are lear from the ontext (or when the statement

holds for any argument).

For binary strings s; s

0

2 f0; 1g

�

, we denote by sks

0

their onatenation. Furthermore, we

often use strings s 2 f0; 1g

tn

whose length jsj is a multiple of n. In this ase, the string s

(i)

the i'th n-bit blok of the string s. Also, for a binary string s 2 f0; 1g

m

and n � m, the

string sj

n

onsists of the �rst n bits of s.

2.2 Indistinguishability of Random Systems

In this setion, we review basi de�nitions and fats from the framework of random systems

of [21℄. A random system is the abstration of the input-output behavior of a disrete system.

De�nition 1. An (X ;Y)-random system F is a (generally in�nite) sequene of onditional

probability distributions p

F

Y

i

jX

i

Y

i�1

for all i � 1. Two random systems F and G are equivalent,

denoted F � G, if p

F

Y

i

jX

i

Y

i�1

= p

G

Y

i

jX

i

Y

i�1

for all i � 1.
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That is, the system is desribed by the onditional probabilities p

F

Y

i

jX

i

Y

i�1

(y

i

; x

i

; y

i�1

)

(for i � 1) of obtaining the output y

i

2 Y on query x

i

2 X given the previous i�1 queries x

i�1

=

[x

1

; : : : ; x

i�1

℄ 2 X

i�1

and their orresponding outputs y

i�1

= [y

1

; : : : ; y

i�1

℄ 2 Y

i�1

. We use a

lower-ase p to stress the fat that these onditional distributions by themselves do not de�ne

a random experiment. Equivalently, one an desribe the system by the onditional distribu-

tions p

F

Y

i

jX

i

(for all i � 1) of the �rst i outputs, given the �rst i inputs. Both views are related

by the equality p

F

Y

i

jX

i

=

Q

i

j=1

p

F

Y

j

jX

j

Y

j�1

, and it is easy to see that F and G are equivalent if

and only if p

F

Y

i

jX

i

= p

G

Y

i

jX

i

for all i � 1. An example of a random system that we onsider in

the following is a random funtion R : f0; 1g

m

! f0; 1g

n

, whih returns for every distint input

value x 2 f0; 1g

m

an independent and uniformly-distributed n-bit value. Moreover, a random

orale O : f0; 1g

�

! f0; 1g

n

is a random funtion taking inputs of arbitrary length.

A distinguisher D for an (X ;Y)-random system is a (Y;X )-random system whih is one

query ahead, i.e. it is de�ned by the onditional probability distributions p

D

X

i

jX

i�1

Y

i�1

for

all i � 1. In partiular, p

D

X

1

is the probability distribution of the �rst value queried by D.

Finally, the distinguisher outputs a bit after a ertain number (say k) of queries depending on

the transript (X

k

; Y

k

). For an (X ;Y)-random system F and a distinguisher D, we denote

by D Æ F the random experiment

5

where D interats with F. Furthermore, given an addi-

tional (X ;Y)-random system G, the distinguishing advantage of D in distinguishing systems F

andG is de�ned as �

D

(F;G) :=

�

�

P

DÆF

(1)� P

DÆG

(1)

�

�

, where P

DÆF

(1) and P

DÆG

(1) denote the

probabilities that D outputs 1 after its k queries when interating with F and G, respetively.

We are interested in onsidering an internal monotone ondition de�ned on a random sys-

tem F. Suh a ondition is initially true, and one it fails, it annot beome true any more. In

partiular, a system F

A

with a monotone ondition A is an (X ;Y�f0; 1g)-random system, where

the additional output bit indiates whether the ondition A holds after the i'th query has been

answered. In general, we haraterize suh a ondition by a sequene of events A = A

0

; A

1

; : : :,

where A

0

always holds, and A

i

holds if the ondition holds after query i. The ondition fails

at query i if A

i�1

^ A

i

ours. For a system with a monotone ondition F

A

, we write F for

the system where the additional output bit is ignored. Generally, we are interested in on-

sidering the behavior of systems only as long as a ertain monotone ondition holds: Given

two systems F

A

and G

B

with monotone onditions A and B, respetively, they are equivalent,

denoted F

A

� G

B

, if p

F

A

i

Y

i

jX

i

Y

i�1

A

i�1

= p

G

B

i

Y

i

jX

i

Y

i�1

B

i�1

holds for all i � 1, or equivalently,

if p

F

Y

i

A

i

jX

i

= p

G

Y

i

A

i

jX

i

holds for all i � 1.

The probability that a distinguisher D issuing k queries makes a monotone ondition A fail

in the random experiment D ÆF is de�ned as �

D

(F

A

) := P

DÆF

A

k

. The following lemma from [21℄

relates this probability with the distinguishing advantage.

Lemma 1. If F

A

� G

B

holds, then �

D

(F;G) � �

D

(F

A

) = �

D

(G

B

) for all distinguishers D.

One an use a random system F as a omponent of a larger system: In partiular, we are

interested in onstrutions C(�) suh that the resulting random system C(F) invokes F as a

subsystem. (Note that C(�) itself is not a random system, while C(F) is a random system.)

Finally, we remark that in general when we mention that a onstrution (or a distinguisher)

is eÆient we mean that there exists a probabilisti interative Turing mahine implementing

the same input-output behavior and with polynomial running time (in the understood seurity

parameter).

5

In partiular, in this random experiment, the joint distribution P

DÆF

X

k

Y

k

is well-de�ned as

Q

k

i=1

p

D

X

i

jX

i�1

Y

i�1

�

p

F

Y

i

jX

i

Y

i�1

.
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2.3 Indi�erentiability, Redutions, and Publi Random Primitives

The notion of indi�erentiability [23℄ naturally extends the onept of indistinguishability to

systems with a publi and a private interfae

6

adopting a simulation-based approah, in the

same spirit as the seurity frameworks of [8, 29℄. The publi interfae an be used by all

parties, inluding the adversary, whereas the legitimate parties have exlusive aess to the

private interfae. Generally, we denote suh a system as an ordered pair F = [F

pub

;F

priv

℄.

Furthermore, given onstrutions S(�) and C(�) leaving, respetively, private and publi queries

unmodi�ed, we simply write S(F) = [S(F

pub

);F

priv

℄ and C(F) = [F

pub

;C(F

priv

)℄.

Publi random primitives are a speial ase of suh systems. A publi random funtion

(puRF) R : f0; 1g

m

! f0; 1g

n

is a system with a publi and a private interfae whih behaves as

the same random funtion at both interfaes.

7

In partiular, both interfaes answer onsistently.

Furthermore, a publi random orale (puRO) O : f0; 1g

�

! f0; 1g

n

is a publi random funtion

whih takes inputs of arbitrary bit-length.

In the following de�nition, we re�ne the notion of (information-theoreti) indi�erentiability

from [23℄ to deal with onrete parameters.

De�nition 2. Let � : N ! R

�0

and � : N ! N be funtions. We say that a system F

is (�; �)-indi�erentiable from G, denoted F

�;�

� G, if there exists a simulator S suh that

�

D

([F

pub

;F

priv

℄; [S(G

pub

);G

priv

℄) � �(k) for all distinguishers D making at most k queries,

and S makes at most �(k) queries to G

pub

when interating with D,.

The purpose of the simulator is to mimi F

pub

by querying G

pub

, but without seeing the

queries made to G

priv

. Indi�erentiability diretly implies a notion of reduibility.

De�nition 3. A systemG is (�; �)-reduible to a system F if there exists an eÆient, determin-

isti, and stateless onstrution C(�) suh that [F

pub

;C(F

priv

)℄

�;�

� G. The onstrution C(�) is

alled an (�; �)-redution.

In Appendix A, we shortly disuss the ahievable parameters for reduibility of publi

random primitives. The following lemma states that reduibility is transitive. We omit its

simple proof.

Lemma 2. Let E;F; and G be systems. If C(�) is a (�; �)-redution of F to E, and C

0

(�) is

an (�

0

; �

0

) redution of G to F that makes at most k

C

0

(k) queries to F

priv

when queried k times,

then C

0

(C(�)) is an (�; �)-redution of G to E, where �(k) = �(k+ k

C

0

(k)) +�

0

(k+ �(k)) and

�(k) = �

0

(�(k)).

The omputational variant of indi�erentiability is obtained by requiring S to be eÆient

and the advantage �

D

([F

pub

;F

priv

℄; [S(G

pub

);G

priv

℄) to be negligible for all eÆient D. Com-

putational reduibility is de�ned aordingly. In the information theoreti ase, it is sometimes

desirable to prove that the simulator is eÆient when queried by an eÆient distinguisher,

as this then implies the orresponding omplexity-theoreti statement. We refer the reader

to [23, 13℄ for the impliations of omputational indi�erentiability.

In ontrast, as long as we are only interested in exluding generi attaks against seurity

properties of a random funtion, the running time of the simulator is irrelevant. If C(�) is

an (�; �)-redution of a puRO O : f0; 1g

�

! f0; 1g

n

(or of a puRF R

0

: f0; 1g

m

! f0; 1g

`

) to a

puRF R : f0; 1g

n

! f0; 1g

n

, then C(R) inherits all the seurity properties of the truly-random

6

Formally, this an be seen as a random system with a single interfae and two types of queries.

7

For this reason, we generally write both R

pub

and R

priv

as R.

7
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Figure 1: Main onstrution, where F

1

; : : : ;F

r

and G

1

; : : : ;G

t

are independent puRF's and

E

1

; : : : ; E

r

: f0; 1g

m

! f0; 1g

n

are eÆiently-omputable funtions.

oraleO (or ofR

0

), as long as the number of queries keeps �(k) small: Any adversary Amaking k

queries (to both R and C(R)) and breaking some property of C(R) with probability �(k) an

be transformed (ombining it with the simulator) into an adversary A

0

making at most k+�(k)

queries to O and breaking the same property for O with probability at least �(k)� �(k), and

if no suh A

0

an exist, then also no adversary A exists. The atual running time of A

0

is

irrelevant, as the seurity of a random funtion (or orale) with respet to a ertain property

is determined by the number of queries of the adversary, and not by its running time.

For example, if �(k) = �(k), then, given a random element s 2 f0; 1g

m

, no adversary an

�nd a seond preimage s

0

2 f0; 1g

m

with s

0

6= s and C(R)(s) = C(R)(s

0

) with probability

higher than �(k � 2

�n

) + �(k).

3 Beyond-Birthday Domain Extension for Publi Random Fun-

tions

3.1 The Constrution

We �rst disuss at an abstrat level the main onstrution of this paper (represented in Fig-

ure 1), whih implements a funtion mappingm-bit strings to `-bit strings from r+t independent

puRF's F

1

; : : : ;F

r

: f0; 1g

n

! f0; 1g

t�n

and G

1

; : : : ;G

t

: f0; 1g

n

! f0; 1g

`

(for given parame-

ters r; t, and �). Let E

1

; : : : ; E

r

: f0; 1g

m

! f0; 1g

n

be eÆiently-omputable funtions (to be

instantiated below). On input s 2 f0; 1g

m

, the onstrution operates in three stages:

1. The values F

p

(E

p

(s)) = F

(1)

p

(E

p

(s))k � � � kF

(t)

p

(E

p

(s)) 2 f0; 1g

t�n

are omputed for all p =

1; : : : ; r, where F

(q)

p

(E

p

(s)) 2 f0; 1g

�n

for all q = 1; : : : ; t;

2. The value w(s) = w

(1)

(s)k � � � kw

(t)

(s) is omputed, where w

(q)

(s) equals (for all q =

1; : : : ; t) the �rst n bits of the produt

J

r

p=1

F

(q)

p

(E

p

(s)), and � denotes multipliation

in GF (2

�n

) with �n-bit strings interpreted as elements of the �nite �eld GF (2

�n

);

3. Finally, the value

L

t

q=1

G

q

(w

(q)

(s)) is output.

8



Our approah relies on the observation that if for eah new query to the onstrution with

input s 2 f0; 1g

m

there exists an index q 2 f1; : : : ; tg for whih G

q

has not been queried

yet at the value w

(q)

(s), either diretly at its publi interfae or by the onstrution at the

private interfae, the resulting output value is uniformly distributed and independent from all

previously-returned values. This resembles the approah taken to extend the domain of (seret)

random funtions [1, 4, 21℄. However, we stress that the role of the �rst two stages (inluding

the funtions E

1

; : : : ; E

r

) is ruial here: Not only they have to guarantee that suh an index q

always exists, but they must also permit simulation of the puRF's F

1

; : : : ;F

r

and G

1

; : : : ;G

t

given only aess to the publi interfae of an (ideal) puRF R : f0; 1g

m

! f0; 1g

`

, without

seeing the queries made to the private interfae of R. Also, the probability that the simulation

fails must be small enough to allow seurity beyond the birthday barrier.

3.2 Input-Restriting Funtions

For every s 2 f0; 1g

m

one an always learn the value w(s) by querying the publi inter-

faes of F

1

; : : : ;F

r

with appropriate inputs E

1

(s); : : : ; E

p

(s), respetively. For every suh s,

the sum

L

t

q=1

G

q

(w

(q)

(s)) equals the output of the onstrution on input s. The simulator

must ensure that its answers for queries to the funtions G

1

; : : : ;G

t

are onsistent with these

onstraints. However, if E

1

; : : : ; E

r

allow a relatively small number of queries to the fun-

tions F

1

; : : : ;F

t

to reveal a too large number of values w(s), then the simulator possibly fails

to satisfy all onstraints. For example, the Benes onstrution [1℄ adopts an approah similar

to the one of our onstrution, but su�ers from this problem and its seurity in the setting of

puRF's is inherently bounded by the birthday barrier (f. Appendix B for further details).

To overome this problem, we introdue the following ombinatorial notion.

De�nition 4. Let � 2 (0; 1) , and let m > n. A family E of funtions E

1

; : : : ; E

r

: f0; 1g

m

!

f0; 1g

n

is alled (m; Æ; �)-input restriting if it satis�es the following two properties:

Injetive. For all s 6= s

0

2 f0; 1g

m

, there exists p 2 f1; : : : ; rg suh that E

p

(s) 6= E

p

(s

0

).

Input-Restriting. For all subsets U

1

; : : : ;U

r

� f0; 1g

n

suh that jU

1

j + � � � + jU

r

j � 2

n(1��)

,

we have

�

�

�

fs 2 f0; 1g

m

jE

p

(s) 2 U

p

for all p = 1; : : : ; rg

�

�

�

� Æ � (jU

1

j+ � � � + jU

r

j) :

It is easy to see that Æ � 1=r must hold. Furthermore, we need r � n � m for the family to

be injetive. When talking about eÆieny, we an naturally extend the notion to asymptoti

families E = fE

n

g

n2N

of funtion families by letting m, Æ, �, and r be funtions of n, and E

n

=

fE

n

1

; : : : ; E

n

r(n)

g, with E

n

p

: f0; 1g

m(n)

! f0; 1g

n

. In partiular, note that we allow the size of

the family to grow with the seurity parameter. The family E

n

is alled expliit if r = r(n)

is polynomial in n and if there exists a (uniform) polynomial-time (in n) algorithm E that

outputs E

n

p

(s) 2 f0; 1g

n

on input n 2 N, s 2 f0; 1g

m(n)

, and p 2 f1; : : : ; r(n)g. The family is

additionally alled invertible if there exists an algorithm whih on input the sets U

1

; : : : ;U

r

�

f0; 1g

n

and n returns the set of all s 2 f0; 1g

m

for whih E

p

(s) 2 U

p

for all p = 1; : : : ; r in time

polynomial in jU

1

j + � � � + jU

r

j and in n. We will not, however, stress the asymptoti point of

view in the following, as long as it is lear from the ontext that the statements an be also

formalized in this sense.

We postpone the disussion of the existene of expliit funtion families to Setion 4,

where we onstrut (for all onstants �) expliit families of (m; Æ; �)-input-restriting funtions

9



for all polynomials m and suÆiently-small Æ using highly unbalaned expander graphs with

polynomial-degree.

3.3 Main Result

Let � 2 (0; 1). The onrete onstrutionC

E

�;m;`

(�) is obtained from the desription in Setion 3.1

by instantiating the funtions E

1

; : : : ; E

r

with an expliit family E = fE

1

; : : : ; E

r

g of (m; Æ; �)-

input restriting funtions with n-bit output. Also, we let � :=

�

m

n

+ 2� �

�

and t := d2=�� 1e.

Note that underlying r + t puRF's an be seen as a single puRF R

0

: f0; 1g

n+�(n)

! f0; 1g

n

,

where �(n) = dlog(r �t�+t`=n)e. If m, `, and 1=� are polynomial in n, then in partiular �(n) =

O(log n). Also, it is easy to see that C

E

�;m;`

(�) is eÆient, as long as the funtion family E is

expliit. The following is the main theorem of this paper and it is proved in the next setion.

Theorem 3. The onstrution C

E

�;m;`

(�) is an (�; �)-redution of the puRF R : f0; 1g

m

!

f0; 1g

`

to the puRF's F

1

; : : : ;F

r

: f0; 1g

n

! f0; 1g

t��n

and G

1

; : : : ;G

t

: f0; 1g

n

! f0; 1g

`

,

where for all k � 2

n(1��)

� r,

�(k) � 2r

t

(Æ + 1)

t+1

� k

t+2

� 2

�nt

+

1

2

t(Æ + 1) � k � (k + 2r + 1) � 2

m��n

and �(k) � Æ(n) � k. If the family E is invertible, the simulator runs in time polynomial in k

and n, and in partiular C

E

�;m;`

(�) is also a omputational redution.

We remark the following two important onsequenes of Theorem 3.

� First, if � is onstant and r; Æ polynomial in n, the above advantage �(k) is negligible for

all parameters k up to k = 2

n(1��)

� r. In partiular, hoosing � <

1

2

leads to seurity

beyond the birthday barrier,

8

and we are going to provide input-restriting families of

funtions with appropriate parameters in Setion 4.

� Seond, the result an be used to extend the domain of a puRF R

0

: f0; 1g

n

! f0; 1g

n

with seurity up to 2

n(1��)

queries: One hooses any � < � and n

0

maximal suh that n

0

+

�(n

0

) � n, and interprets the funtion R

0

as a puRF f0; 1g

n

0

+�(n

0

)

! f0; 1g

n

0

by dropping

approximately �(n

0

) bits of the output. The above advantage is still negligible for all k �

2

n

0

(1��)

� r, and hene for all k � 2

n(1��)

for n large enough, sine n� n

0

= o(n).

3.4 Proof of Theorem 3

We prove that there exists a simulator S suh that �

D

(H

1

;H

2

) is bounded by the above

expression for all distinguishers D making at most k � 2

n(1��)

� r queries, where for notational

onveniene H

1

and H

2

are de�ned as

H

1

:= [F

1

; : : : ;F

r

;G

1

; : : : ;G

t

;C

E

�;m;`

(F

1

; : : : ;F

r

;G

1

; : : : ;G

t

)℄

H

2

:= [S(R);R℄:

There are three types of queries to the systems H

1

and H

2

: The �rst two types are F-queries,

denoted (F; p; u) for p 2 f1; : : : ; rg and u 2 f0; 1g

n

, and G-queries, denoted (G; q; v), for v 2

f0; 1g

n

and q 2 f1; : : : ; tg. In H

1

, a query (F; p; u) returns the value F

p

(u) and a query (G; q; v)

returns the value G

q

(v), while in H

2

both query-types are answered by the simulator S. The

8

Note that � ould even be some funtion going (slowly) towards zero, even though this may require setting t

di�erently.
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upon reeiving an F-query x

i

= (F; p; u) for the �rst time:

if F

p

(u) is unde�ned then

set F

p

(u) to a uniform random value

ompute �S

i

:= fs

1

; : : : ; s

j�S

i

j

g

for j := 1 to j�S

i

j do

let q

j

2 f1; : : : ; tg be suh that w(s

j

)

(q

j

)

=2 w

(q

j

)

(S

i�1

[ fs

1

; : : : ; s

j�1

g) [ G

q

j

;i�1

if no suh q

j

exists then abort

for all q 6= q

j

do

if G

q

(w

(q)

(s

j

)) is unde�ned then set G

q

(w

(q)

(s

j

)) to a uniform random value

G

q

j

(w

(q

j

)

(s

j

)) := R(s

j

)�

L

q 6=q

j

G

q

(w

(q)

(s

j

))

return F

p

(y)

upon reeiving a G-query x

i

= (G; q; v) for the �rst time:

if G

q

(v) is unde�ned then

set G

q

(v) to a uniform random value

return G

q

(v)

Figure 2: Simulator S in the proof of Theorem 3. The simulator also onstantly keeps trak of

the sets F

p;i

and G

q;i

for all p = 1; : : : ; r, q = 1; : : : ; t, and i = 1; 2; : : :.

third type of queries, alled R-queries, are denoted (R; s) for s 2 f0; 1g

m

and are answered

by the onstrution C

E

�;m;`

(�) in H

1

, and by the private interfae of the random funtion R

in H

2

. Given the �rst i queries x

i

= [x

1

; : : : ; x

i

℄, where x

j

2 f(F; p; u); (G; q; v); (R; s)g for

all j = 1; : : : ; i, we de�ne for all indies p and q the sets F

p;i

and G

q;i

that ontain, respetively,

all values u 2 f0; 1g

n

for whih a query (F; p; u) and all v 2 f0; 1g

n

for whih a query (G; q; v)

appears in x

i

. Also, we let R

i

be the set of values s 2 f0; 1g

m

for whih a query (R; s)

appears in x

i

, and we let S

i

onsist of all the values s 2 f0; 1g

m

suh that E

p

(s) 2 F

p;i

for

all p = 1; : : : ; r. Furthermore, let �S

i

:= S

i

n S

i�1

. Notie that the set S

i

ontains all inputs

for whih the values returned by the �rst i queries allow to ompute the value w(s). Clearly,

jS

i

j =

P

i

j=1

j�S

j

j � Æ � i for all i � 2

n(1��)

, sine the family E is input-restriting. For s 2 S

i

,

we de�ne w(s) = w

(1)

(s)k � � � kw

(t)

(s) as in the desription of C

E

�;m;`

(�) aording to the answers

of the �rst queries, and for a set S � S

i

we use the shorthand w

(q)

(S) := fw

(q)

(s) j s 2 Sg.

The simulator S de�nes the funtion tables of F

1

; : : : ;F

r

and of G

1

; : : : ;G

t

dynamially.

That is, all values F

p

(u) and G

q

(v) are initially unde�ned for all u; v 2 f0; 1g

n

and indies p

and q. Upon proessing a new F-query x

i

= (F; p; u), the simulator sets the value F

p

(u) to

a fresh random value and omputes the set �S

i

: The simulator knows this set, as it pro-

esses all F-queries. For eah s 2 �S

i

, the equality

L

t

q=1

G

q

(w

(q)

(s)) = R(s) must be satis-

�ed, and hene S tries to satisfy these onstraints by appropriately setting the values of the

funtions G

1

; : : : ;G

t

. More preisely, it looks for an ordering of �S

i

= fs

1

; : : : ; s

j�S

i

j

g with

the property that for all j = 1; : : : ; j�S

i

j there exists q

j

2 f1; : : : ; tg suh that w

(q

j

)

(s

j

) =2

fw

(q

j

)

(s

1

); : : : ; w

(q

j

)

(s

j�1

)g [ G

q;i�1

, and sets G

q

j

(w

(q

j

)

(s

j

)) := R(s

j

) �

L

q 6=q

j

G

q

(w

(q)

(s

j

))

for j = 1; : : : ; j�S

i

j, where eah unde�ned value in the sums is set to an independent ran-

dom value. A query to the publi interfae of R is issued in order to learn R(s

j

). If no

suh ordering exists, then the simulator aborts.

9

Finally, the value F

p

(u) is returned. For a

9

Note that there is no need to formalize the exat meaning of abortion, sine whenever the simulator fails to

�nd suh an ordering, then the distinguisher is assumed to win.
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query x

i

= (G; q; v), the simulator returns G

q

(v), de�ning it to a random value if unde�ned. In

Figure 2, we provide a detailed pseudo-ode desription of the simulator S. The number of R-

queries made by the simulator after i � 2

n(1��)

queries is jS

i

j � Æ �i. Also, as long as the family E

is invertible and an appropriate ordering an be eÆiently found, its running time is eÆient

in k and n. In fat, we show that with very high probability any ordering an be used. Without

loss of generality, it is onvenient to advane the generation of the random funtions F

1

; : : : ;F

r

to the initialization phase, that is, their entire funtion tables are generated one uniformly at

random in both H

1

and H

2

. Subsequently, all queries (F; p; u) are answered aording to the

initial hoie. In partiular, this means that in H

2

the simulator S uses the value F

p

(u) already

de�ned instead of generating a new fresh random value. It is lear that the behavior of both

systems is unhanged. This also allows us to de�ne the value w(s) = w

(1)

(s)k � � � kw

(t)

(s) for

all s 2 f0; 1g

m

and eah suh value indues a onstraint, namely the answer of anR-query (R; s)

must equal

L

t

q=1

G

q

(w

(q)

(s)). Suh a onstraint remains hidden until s 2 �S

i

from some i,

and in this ase the simulator attempts to �ll the funtion tables of G

1

; : : : ;G

t

onsistently.

To avoid possible problems, we have to aount for two things aptured by the two following

monotone onditions whih we de�ne on both H

1

and H

2

:

(a) The monotone ondition A = A

0

; A

1

; : : : fails at query i if there exists an s 2 �S

i

suh

that w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

for all q = 1; : : : ; t.

(b) The monotone ondition B = B

0

; B

1

; : : : fails at query i if there exists s 2 R

i

n S

i

suh

that w

(q)

(s) 2 w

(q)

(S

i

[R

i

n fsg) [ G

q;i

for all q = 1; : : : ; t.

As long as A does not fail, the simulator never aborts. This in partiular implies that R-

queries (R; s) for s 2 S

i

in H

2

are onsistent with G-queries answered by the simulator. How-

ever, allR-queries (R; s) for s =2 S

i

are answered independently and uniformly at random inH

2

,

and B ensures that this happens in H

1

as well. In Setion 3.5, we prove the following lemma,

whih formalizes this argument and states that as long as neither A nor B fail, then H

1

and H

2

behave identially.

Lemma 4. H

A^B

1

� H

A^B

2

.

To provide some intuition as to why the probability that a distinguisher D makes A ^ B

fail is small, let us assume �rst that for any two distint s; s

0

2 f0; 1g

m

(suh that at least one

of them is not in S

i

) and for all q = 1; : : : ; t, the probability (onditioned on the answers to

the previous queries) that w

(q)

(s) = w

(q)

(s

0

) is bounded by some small value ' (say ' � 2

�n

).

In order to upper bound the probability of A failing after query i, ombining the union bound

with the above assumption we see that P(w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

) � jw

(q)

(S

i

n fsg) [

G

q;i�1

j � ' � (Æ + 1) � i � ' for all s 2 �S

i

, sine E is input-restriting. Furthermore, for all

distint q; q

0

2 f1; : : : ; tg and s; s

0

2 f0; 1g

n

(possibly s = s

0

), the struture of the �rst two

stages of C

E

�;m;`

(�) ensures that the values w

(q)

(s) and w

(q

0

)

(s

0

) are statistially independent,

and hene

P(8q : w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

) � (Æ + 1)

t

� i

t

� '

t

:

Therefore, the probability p

H

1

A

i

jX

i

Y

i�1

A

i�1

(x

i

; y

i�1

) = p

H

2

A

i

jX

i

Y

i�1

A

i�1

(x

i

; y

i�1

) that there exists

an s 2 �S

i

making A fail after query i is bounded by j�S

i

j � (Æ + 1)

t

� i

t

� '

t

, where j�S

i

j is

small for all i � 2

n(1��)

.

Nevertheless, turning this intuition into a formal proof (and extending it to the monotone

ondition B) requires additional are. The probability that w

(q)

(s) equals w

(q)

(s

0

) happens to

be small only with overwhelming probability (taken over the answers to the previous queries):
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This fat follows from the use of multipliation in GF (2

�n

) and the hoie of a suÆiently large

parameter �.

In partiular, Setion 3.6 provides a omplete proof of the following lemma.

Lemma 5. For all distinguishers D making at most k � 2

n(1��)

� r queries we have

�

D

(H

A^B

1

) = �

D

(H

A^B

2

) � 2r

t

(Æ + 1)

t+1

� k

t+2

� 2

�nt

+

1

2

t(Æ + 1) � k � (k + 2r + 1) � 2

m��n

:

By ombining Lemmas 4 and 5, Theorem 3 follows making use of Lemma 1.

3.5 Proof of Lemma 4

We want to prove that p

H

1

Y

i

A

i

B

i

jX

i

= p

H

2

Y

i

A

i

B

i

jX

i

for all i � 1. We �x the �rst i queries x

i

=

[x

1

; : : : ; x

i

℄, and assume without loss of generality that w

(q)

(S

i

) � G

q;i

for all q = 1; : : : ; t. If this

does not hold, we an extend x

i

to a j-tuple x

j

= [x

1

; : : : ; x

i

; x

i+1

; : : : ; x

j

℄, where the last j � i

queries are all G-queries (G; q; v) for all q = 1; : : : ; t and v 2 w

(q)

(S

i

) n G

q;i

(in any order). It is

easy to verify that if A

i

and B

i

hold, then also A

j

and B

j

hold, and hene

p

H

b

Y

i

A

i

B

i

jX

i

(y

i

; x

i

) =

X

y

i+1

;:::;y

j

p

H

b

Y

j

A

j

B

j

jX

j

([y

1

; : : : ; y

i

; y

i+1

; : : : ; y

j

℄; x

j

); (1)

and hene it is suÆient to prove equality for input sequenes with w

(q)

(S

i

) � G

q;i

for all q =

1; : : : ; t, as the general ase follows by (1).

We denote by F the random variable representing the onatenation of the random tables

of the puRF's F

1

; : : : ;F

r

. For b 2 f1; 2g, summing over all possible values of F yields

p

H

b

A

i

B

i

Y

i

jX

i

=

X

F

p

H

b

F jX

i

� p

H

b

A

i

B

i

jX

i

F

� p

H

b

Y

i

jX

i

FA

i

B

i

:

Clearly, we have p

H

1

F jX

i

= p

H

2

F jX

i

, sine the funtion tables are hosen uniformly in both H

1

and H

2

. Also, we have p

H

1

A

i

B

i

jX

i

F

= p

H

2

A

i

B

i

jX

i

F

2 f0; 1g, as A

i

and B

i

depend deterministially

on X

i

and F . Finally, we show that p

H

1

Y

i

jX

i

FA

i

B

i

= p

H

2

Y

i

jX

i

FA

i

B

i

. Note that sine F is �xed, in

both systems F-queries are obviously answered in the same way.

In system H

1

, if we restrit ourselves to the outputs of the G-queries, then the values

returned are uniform and independent. Furthermore for every R-query (R; s) suh that s 2 S

i

the value returned is uniquely determined by the answers to theG-queries as

L

t

q=1

G

q

(w

(q)

(s)),

and all these G-queries are asked, sine w

(q)

(S

i

) � G

q;i

for all q = 1; : : : ; t by assumption.

Finally, for all s 2 R

i

n S

i

, sine B

i

holds, there exists a q suh that w

(q)

(s) =2 w

(q)

(S

i

[ R

i

n

fsg) [ G

q;i

: the value G

q

(w

(q)

(s)) is random and independent of all other returned values, and

every suh R-query returns a random value whih is independent of all other values.

For system H

2

, sine A

i

holds, it also easy to see (by the onstrution of the simulator)

that the joint probability distribution of the outputs of all G-queries is uniform. Furthermore,

an R-query (R; s) with s 2 S

i

n R

i

is always answered by an independent and uniform random

value, sine these queries are answered by a random funtion. However, if s 2 S

i

, then the

answer is determined uniquely by the answers to G-queries, again by the onstrution of the

simulator.
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3.6 Proof of Lemma 5

We �rst reall the following well-known result, of whih we omit the proof.

Theorem 6 (Shwartz-Zippel). Let F be a �nite �eld, and let P 2 F[X

1

; : : : ;X

n

℄ be an n-

variate polynomial over F with degree d. Then, the number of tuples (x

1

; : : : ; x

n

) 2 F

n

that

satisfy P (x

1

; : : : ; x

n

) = 0 is at most d � jFj

n�1

.

For our setting F = GF (2

�n

), and we work with some representation of the elements as

�n-bit strings. We need the following simple orollary of Theorem 6.

Corollary 7. Let a; b 2 GF (2

�n

), not both equal to 0, let X

1

; : : : ;X

N

2 GF (2

�n

) be independent

and uniformly-distributed random variables, and let J ;J

0

� f1; : : : ; Ng. Then:

(i) If J 6= J

0

, then P((a �

J

j2J

X

j

)j

n

= (b �

J

j2J

0

X

j

)j

n

) � maxfjJ j; jJ

0

jg � 2

�n

.

(ii) If J = J

0

and a 6= b, then P(a �

J

j2J

X

j

j

n

= b �

J

j2J

0

X

j

j

n

) � jJ j � 2

�n

.

Throughout the proof of Lemma 5, we work with system H

2

, as this makes some arguments

easier. Notie that Lemmas 1 and 4 allow this, sine �

D

(H

A^B

1

) = �

D

(H

A^B

2

) for all distin-

guishers D. First, we introdue some additional notation. For i � 1, let x

i

= [x

1

; : : : ; x

i

℄ be the

�rst i queries, where x

j

2 f(F; p; u); (G; q; v); (R; s)g for all j = 1; : : : ; i. For any s 2 f0; 1g

m

,

de�ne the set P

i

(s) as the set of indies p 2 f1; : : : ; rg suh that x

j

= (F; p; E

p

(s)) appears

among the �rst i queries. Furthermore, we let w

i

(s) = w

(1)

i

(s)k � � � kw

(t)

i

(s) be the omponent-

wise produt of the values F

p

(E

p

(s)) for all p 2 P

i

(s), that is w

(q)

i

(s) :=

J

p2P

i

(s)

F

(q)

p

(E

p

(s))

for all q = 1; : : : ; t.

We also need to introdue two additional monotone onditions for the remainder of the

proof. The ondition C = C

0

; C

1

; : : : fails after i queries if there exists distint s; s

0

2 f0; 1g

m

suh that P

i

(s) = P

i

(s

0

), E

�p

(s) = E

�p

(s

0

) for all �p =2 P

i

(s), and w

(q)

i

(s) = w

(q)

i

(s

0

) for some q 2

f1; : : : ; tg. Note that the fat that C

0

holds follows from the fat that the family E is injetive.

Also, a further monotone onditionD = D

0

;D

1

; : : : fails after i queries if there exists s 2 f0; 1g

m

suh that w

(q)

i

(s) = 0 for some q 2 f1; : : : ; tg. Clearly, P

DÆH

2

(A

k

_ B

k

) � P

DÆH

2

(A

k

_ B

k

_

C

k

_D

k

).

We also de�ne a (non-monotone!) sequene of events U

0

; U

1

; U

2

; : : : suh that U

i

is false if

there exists s 2 �S

i

suh that w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i

for all q = 1; : : : ; t. A further

(non-monotone) sequene of events V

0

; V

1

; : : : is suh that V

i

is false if there exists s 2 R

i

n S

i

suh that w

(q)

(s) 2 w

(q)

(S

i

[ R

i

n fsg) [ G

q;i

. If A

k

_ B

k

_ C

k

_ D

k

holds, there must exist

an i 2 f1; : : : ; kg suh that (at least) one of the following events ours: (i) D

i

^ D

i�1

, (ii)

C

i

^ C

i�1

^D

i�1

, (iii) U

i

^ C

i�1

^D

i�1

, or (iv) V

i

^ C

i

^D

i

. Using the union bound and the

fat that P(E ^ E

0

) � P(E

0

jE) for any two events E and E

0

suh that P(E) � 0, we obtain

P

DÆH

2

(A

k

_B

k

) �

k

X

i=1

P

DÆH

2

(D

i

jD

i�1

) +

k

X

i=1

P

DÆH

2

(C

i

jC

i�1

D

i�1

)

+

k

X

i=1

P

DÆH

2

(U

i

jC

i�1

D

i�1

) +

k

X

i=1

P

DÆH

2

(V

i

jC

i

D

i

) (2)

The following lemma is the entral step in the proof of Lemma 5.

Lemma 8. For all i � 2

n(1��)

� r, all x

i

, y

i�1

, and y

i

, we have

14



(i) p

H

2

D

i

jX

i

Y

i�1

D

i�1

(x

i

; y

i�1

) � t � 2

m��n

;

(ii) p

H

2

C

i

jX

i

Y

i�1

C

i�1

D

i�1

(x

i

; y

i�1

) � t � Æ � (i+ r) � 2

m��n

;

(iii) p

H

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

(x

i

; y

i�1

) � j�S

i

j � (Æ + 1)

t

� i

t

� 2

�nt

;

(iv) p

H

2

V

i

jX

i

Y

i

C

i

D

i

(x

i

; y

i

) � r

t

� (Æ + 1)

t

� i

t+1

� 2

�nt

.

Before we turn to the proof of Lemma 8, we briey show that it implies the upper bound

in the proof of Lemma 5. Sine the bounds hold for all x

i

, y

i�1

, and y

i

that an appear, they

also learly hold without being onditioned on these values by a simple averaging argument.

Therefore, we obtain for all k � 2

n(1��)

� r,

k

X

i=1

P

DÆH

2

(D

i

jD

i�1

) � k � t � 2

m��n

; (3)

k

X

i=1

P

DÆH

2

(C

i

jC

i�1

D

i�1

) � t � Æ � 2

m��n

�

k

X

i=1

(i+ r) = t � Æ �

k(k + 2r + 1)

2

� 2

m��n

: (4)

Also, generously bounding j�S

i

j � Æ � i, we have

k

X

i=1

P

DÆH

2

(U

i

jC

i�1

D

i�1

) +

k

X

i=1

P

DÆH

2

(V

i

jC

i

D

i

) � 2 � r

t

� (Æ + 1)

t+1

� 2

�nt

�

k

X

i=1

i

t+1

� 2 � r

t

� (Æ + 1)

t+1

� k

t+2

� 2

�nt

:

(5)

Plugging (3), (4) and (5) into (2) yields the desired upper bound. We �nally turn bak to the

proof of Lemma 8

Proof of Lemma 8. For (i), (ii), and (iii), assume that the i'th query is a new F-query x

i

=

(F; p; u), all other types of queries annot provoke the failure of the onditions. In partiular,

let U = [U

(1)

; : : : U

(t)

℄ 2 f0; 1g

t��n

be the random value returned by the query, whih is inde-

pendent from all other previously-returned values. In fat, this is the only randomness involved

in omputing the �rst three probabilities (and we use the notation P

U

to stress this fat).

For (i), sine D

i�1

holds, we have w

(q)

i�1

(s) 6= 0 for all s 2 f0; 1g

m

and all q = 1; : : : ; t. Hene,

the union bound and Theorem 6 imply

p

DÆH

2

D

i

jX

i

Y

i�1

D

i�1

�

X

s:E

p

(s)=u

P

U

(9q 2 f1; : : : ; tg : w

(q)

i�1

(s)� U

(q)

= 0) � t � 2

m

� 2

��n

:

To prove (ii) hoose any s 2 f0; 1g

m

with the property that E

p

(s) = u, and de�ne the set S

0

of those s

0

2 f0; 1g

m

suh that P

i�1

(s) = P

i�1

(s

0

) and E

�p

(s) = E

�p

(s

0

) for all �p =2 P

i�1

(s).

(In partiular, E

p

(s

0

) = u for all s

0

2 S

0

.) Also, let S

00

be the set of those s

00

2 f0; 1g

m

with P

i�1

(s

00

) = P

i�1

(s) [ fpg, and E

�p

(s) = E

�p

(s

00

) for all �p =2 P

i�1

(s

00

). Let C

i;s

denote the

event that there exists �s 2 S

0

[S

00

n fsg suh that w

(q)

i

(s) = w

(q)

i

(�s) for some q 2 f1; : : : ; tg. By

repeatedly applying the union bound, we derive

p

DÆH

2

C

i;s

jX

i

Y

i�1

C

i�1

D

i�1

�

t

X

q=1

P

U

(9s

0

2 S

0

: w

(q)

i�1

(s)� U

(q)

= w

(q)

i�1

(s

0

)� U

(q)

)

+ P

U

(9s

00

2 S

00

: w

(q)

i�1

(s)� U

(q)

= w

(q)

i

(s

00

)) � t � (jS

0

j+ jS

00

j) � 2

��n

;
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sine w

(q)

i�1

(s) 6= w

(q)

i�1

(s

0

) for all s

0

2 S

0

by C

i�1

, and sine w

(q)

i�1

(s) 6= 0 by D

i�1

, and hene we

an use Theorem 6. Furthermore, jS

0

j+ jS

00

j � Æ � (i+ r), as E is input-restriting and at most

additional r � jP

i�1

(s)j � 1 � r queries reveal the values w(s) for the inputs in S

0

[ S

00

. Using

one again the union bound, we onlude

p

DÆH

2

C

i

jX

i

Y

i�1

C

i�1

D

i�1

�

X

s:E

p

(s)=u

p

DÆH

2

C

i;s

jX

i

Y

i�1

C

i�1

D

i�1

� t � Æ � (i+ r) � 2

m��n

:

To prove (iii), note that s 2 �S

i

implies that P

i�1

(s) = f1; : : : ; rg�fpg. Also note that w

(q)

(s) =

w

(q)

i�1

� U

(q)

j

n

for all s 2 �S

i

. Sine the randomness of eah �n-bit blok is independent, we

upper bound

p

DÆH

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

= P

U

�

_

s2�S

i

^

1�q�t

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

�

X

s2�S

i

t

Y

q=1

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

: (6)

We �x some s 2 �S

i

and some q 2 f1; : : : ; tg and see that

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

� P

U

�

w

(q)

(s) 2 w

(q)

(�S

i

n fsg)

�

+ P

U

�

w

(q)

(s) 2 w

(q)

(S

i�1

)

�

+ P

U

(w

(q)

(s) 2 G

q;i�1

)

First, sine D

i�1

holds, w

(q)

i�1

(s) 6= 0 for all s 2 �S

i

, and hene P

U

(w

(q)

i�1

(s)�U

(q)

j

n

2 G

q;i�1

) �

jG

q;i�1

j � 2

�n

� i � 2

�n

by Corollary 7. For the same reason,

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

�

X

s

0

2S

i�1

P

U

�

w

(q)

i�1

(s)� U

(q)

j

n

= w

(q)

(s

0

)

�

� jS

i�1

j � 2

�n

:

Also, sine C

i�1

holds, we have w

(q)

i�1

(s) 6= w

(q)

i�1

(s

0

) for all s

0

2 �S

i

n fsg and all q = 1; : : : ; t,

and we obtain

P

�

w

(q)

(s) 2 w

(q)

(�S

i

n fsg)

�

�

X

s

0

2�S

i

nfsg

P

U

�

w

(q)

i�1

(s)� U

(q)

j

n

= w

(q)

i�1

(s

0

)� U

(q)

j

n

�

;

whih is bounded by j�S

i

j � 2

�n

, one again as a onsequene of Corollary 7. Plugging these

bounds into (6) leads to

p

DÆH

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

� j�S

i

j �

t

Y

q=1

�

j�S

i

j+ jS

i�1

j+ jG

q;i�1

j

�

| {z }

�(Æ+1)�i

�2

�n

� j�S

i

j � (Æ + 1)

t

� i

t

� 2

�nt

:

To prove (iv), note that the values w

(q)

(s) for all s 2 R

i

n S

i

have all the form w

(q)

i

(s) �

J

p=2P

i

(s)

F

(q)

p

(E

p

(s)) for all q = 1; : : : ; t. Moreover, onditioned on the outomes of X

i

and Y

i

as well as the events C

i

and D

i

, the values F

p

(E

p

(s)) for all s 2 R

i

n S

i

and p =2 P

i

(s) are

independent and uniformly distributed, and the probability for omputing the upper bound
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of (iv) is taken over these values. (We use the notation P

F

to stress this.) As we did in (iii),

we an upper bound

p

DÆH

2

V

i

jX

i

Y

i

C

i

D

i

�

X

s2R

i

nS

i

t

Y

q=1

h

P

F

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

+ P

F

�

w

(q)

(s) 2 w

(q)

(R

i

n (S

i

[ fsg)

�

+ P

F

�

w

(q)

(s) 2 G

q;i

�i

Sine D

i

holds, we have P

F

�

w

(q)

(s) 2 G

q;i

�

� r � jG

q;i

j � 2

�n

by Corollary 7, and for the same

reason P

F

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

� r � Æ � i � 2

�n

. Furthermore, we note that again by applying

Corollary 7,

P

F

�

w

(q)

(s) 2 w

(q)

(R

i

n (S

i

[ fsg))

�

� r � jR

i

n S

i

j � 2

�n

sine for any s

0

2 R

i

n S

i

suh that s

0

6= s we have

� either there exists p suh that E

p

(s) 6= E

p

(s

0

) and p =2 P

i

(s)\P

i

(s

0

) holds, and Corollary 7

(i) applies;

� or P

i

(s) = P

i

(s

0

) 6= ; and E

p

(s) = E

p

(s

0

) for all p =2 P

i

(s), in whih ase w

(q)

i

(s) 6= w

(q)

i

(s

0

)

by C

i

, and thus Corollary 7 (ii) applies.

Therefore, ombining the di�erent bounds we get p

DÆH

2

V

i

jX

i

Y

i

C

i

D

i

� r

t

� (Æ + 1)

t

� i

t+1

� 2

�nt

.

4 Existene of Input-Restriting Funtion Families

In this following, we prove the existene of input-restriting funtion families as in De�nition 4,

and we study their relationship to highly unbalaned bipartite expander graphs. First, we reall

the following de�nition.

De�nition 5. A bipartite graph G = (V

1

; V

2

; E) is (K; )-expanding if j�(X)j �  � jXj for all

subsets X � V

1

suh that jXj � K, where �(X) � V

2

is the set of neighbors of X. Furthermore,

suh a graph has left-degree D if the degree of all v 2 V

1

is bounded by D.

In the asymptoti ase, a family of graphs G = (V

1

; V

2

; E) with V

1

:= f0; 1g

m(n)

, V

2

:=

f0; 1g

n

(parameterized by the seurity parameter n) with left-degree D = D(n) is alled expliit

if there exists a (uniform) algorithm whih, on input 1

n

, v 2 f0; 1g

m(n)

and i 2 f1; : : : ;D(n)g

outputs the i'th neighbor of v in time polynomial in n. (The ordering of the neighbors is

arbitrary.) It turns out that expliit families with appropriate parameters imply the existene

of input-restriting families of funtions.

Lemma 9. Let m be suh that m � n. Assume that there exists an expliit family of bipartite

(K; )-expander graphs G = (V

1

; V

2

; E) with polynomially-bounded left-degree D where V

1

=

f0; 1g

m

and V

2

= f0; 1g

n

. Then, for all � > 0 suh that � > 1�

log(K)

n

for n large enough, there

exists an expliit (m; Æ; �)-input-restriting family of funtions with Æ = 

�1

and ardinality r :=

D + dm=ne. Furthermore, if dm=ne is onstant, then the family is invertible.
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Proof. First, we de�ne E

1

; : : : ; E

D

: f0; 1g

m

! f0; 1g

n

suh that E

p

(s) is the p'th neighbor of s

for all p = 1; : : : ;D. Furthermore, the funtions E

D+1

; : : : ; E

D+dm=ne

are de�ned as E

D+p

(s) =

s

(p)

for p = 1; : : : ; dm=ne, where extra zeros are appended to s to make its length a multiple of n.

Let E = fE

1

; : : : ; E

r

g, where r := D + dm=ne. Clearly, the family is injetive. Furthermore,

expliitness of the family is due to the the expliitness of G and the fat that r is polynomial.

To prove the input-restriting property, assume towards a ontradition that there exist

r sets U

1

; : : : ;U

r

� f0; 1g

n

with ardinality jU

1

j + � � � + jU

r

j � 2

n(1��)

suh that jSj > Æ �

(jU

1

j+ � � � + jU

r

j), where S := fs 2 f0; 1g

m

jE

p

(s) 2 U

p

for all p = 1; : : : ; rg. Also, de�ne U :=

S

r

p=1

U

p

. Clearly, in G we have �(S) � U by the de�nition of E , and in partiular j�(S)j � jUj.

If jSj � K, then jUj � j�(S)j � Æ

�1

� jSj > Æ

�1

� Æ � (jU

1

j + � � � + jU

r

j) � jUj, whih leads to a

ontradition. If jSj > K, take S

0

� S suh that jS

0

j = K. Clearly, �(S

0

) � �(S). Additionally,

jUj � j�(S)j � j�(S

0

)j �  � jS

0

j =  �K > 2

n(1��)

, for n large enough by the hoie of �, whih

is a ontradition.

Finally, the family is invertible if dm=ne is onstant: Given the sets U

1

; : : : ;U

D+dm=ne

, the

algorithm simply enumerates all s 2 f0; 1g

m

suh that E

p

(s) 2 U

p

for all p = D + 1; : : : ;D +

dm=ne, and keeps only those satisfying E

p

(s) 2 U

p

for all p = 1; : : : ;D. This inversion algorithm

runs in time poly(n) � jU

D+1

j � � � jU

D+dm=ne

j.

For example, if a family exists with K = 2

n(1��)

and onstant expansion fator  > 1,

then 1 �

logK

n

= � � o(1), and hene the family is (m; 

�1

; �)-input restriting. It remains

to show that an expliit family of unbalaned expander graphs with suÆiently small (i.e.

polynomially-bounded) left-degree exists. Muh work in this area has been devoted to lossless

unbalaned expanders, i.e. with  � D, but the best known onstrutions [32, 26℄ for this

ase for our hoie of parameters lead to either super-polynomial degree or a muh too small

bound K. However, we are satis�ed even if the expansion fator is muh smaller than the left-

degree, as long as the latter stays small, and it is possible to obtain suh graphs by appropriately

omposing known onstrutions. In Appendix C.1 we prove the following theorem.

Theorem 10. For all polynomials  and onstants � 2 (0; 1), and all funtionsm (polynomially-

bounded in n), there exists an expliit family of expander graphs G = (V

1

; V

2

; E) with V

1

=

f0; 1g

m

, V

2

= f0; 1g

n

whih is (2

n(1��)

; )-expanding and has left-degree polynomially-bounded

in n.

Note the tehniques we disuss in Appendix C.1 even allow to obtain slightly stronger results,

for instane allowing � to be a moderately vanishing funtion (f. the disussion at the end

of Appendix C.1). Combining this with Lemma 9 we see that for all onstants � 2 (0; 1) there

exist expliit (m; Æ; �)-input-restriting families with Æ

�1

polynomial in n. We note, however,

that by dropping the expliitness requirement, families with muh better parameters exist. In

partiular, the following result is proved in Appendix C.2.

Lemma 11. Let K and  be arbitrary suh that K � � 2

n

, and let m be suh that m � n. There

exists a graph G = (V

1

; V

2

; E) where V

1

= f0; 1g

m

and V

2

= f0; 1g

n

whih is (K; )-expanding

and with left-degree D =

l

1+ log e+m

n�log(K)

+ 

m

.

For example, setting m = ` = 2n ,  = 1 and K = 2

n(1��)

, we obtain left-degree D =

1+

2

�

+ (log e+1)=(� � n). For � =

1

4

and n = 128, this leads to a family of size 12 by Lemma 9.

Furthermore in this ase t = 7 and � = 4, and all these values do not grow with n. (And a similar

reasoning applies to all onstants � > 0.) With these parameters, the onstrution is of pratial

interest, as it only relies on the design of a seure omponent funtion f0; 1g

n

! f0; 1g

n

whih
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may be very eÆient. We hope this to motivate further researh in de-randomizing families of

unbalaned expander graphs for a wider range of parameters.

5 Construting Publi Random Orales

In this setion, we �rst review (a slightly generalized version of) the pre�x-free Merkle-Damg�ard

onstrution [13℄. Let n be the given output size, and let ` � n. We are given both a ompression

funtion f : f0; 1g

b+`

! f0; 1g

`

and a pre�x-free padding sheme, that is, a mapping pad :

f0; 1g

�

!

�

f0; 1g

b

�

+

suh that pad(s) is not a pre�x of pad(s

0

) for all distint s; s

0

2 f0; 1g

�

.

The pre�x-free Merkle-Damg�ard onstrution pfMD

b;`;n

(f) proeeds as follows. On input s 2

f0; 1g

�

, it omputes s

1

k � � � ks

l

= pad(s) (with s

i

2 f0; 1g

b

) and the haining values v

i

:=

f(s

i

; v

i�1

) for all 1 � i � l, where v

0

is set to some initialization vetor IV 2 f0; 1g

`

. Finally,

the onstrution outputs the �rst n bits of v

l

. The following theorem easily

10

follows from

Theorem 2 in [13℄.

Theorem 12. Let F : f0; 1g

`+b

! f0; 1g

`

be a puRF and let O : f0; 1g

�

! f0; 1g

n

be a

puRO. Then pfMD

b;`;n

(�) is an (�

0

; �

0

)-redution of O to F with �

0

(k) = O((l

max

� k)

2

� 2

�`

)

and �

0

(k) = k, where l

max

is the maximal length (of the padding) of a message input to the

onstrution.

We note that there exists a trade-o� between the number of queries and the length of the

queries to the onstrution.

11

This issue is inevitable in all iterated onstrutions. We take

now `, b > 0 as in the above explanation, and some � > 0. We set m := ` + b, and we

let E be an expliit (m; Æ; �)-input restriting family of funtions. If given only a ompression

funtion R

0

: f0; 1g

n+�(n)

! f0; 1g

n

(for �(n) de�ned as in Setion 3.3), we obtain a on-

strution pfMD

b;`;n

(C

E

�;m;`

(�)) whih replaes alls to the ompression funtions by alls to the

onstrution C

E

�;m;`

(�). We obtain the following theorem using Lemma 2.

Theorem 13. The onstrution pfMD

b;`;n

(C

E

�;m;`

(�)) is an (�; �)-redution of a puRO O :

f0; 1g

�

! f0; 1g

n

to R

0

, where �(k) = �((l

max

+ 1)k) + �

0

((Æ + 1)k) and �(k) = Æ � k, with �

and �

0

as in Theorems 3 and 12, respetively.

Setting ` > 2n(1� �) leads to seurity for all distinguishers suh that l

max

� k � �(2

n(1��)

).

We �nally note that our approah also works with all other known onstrutions of a publi

random orale from a publi ompression funtion, as for example the onstrutions of [6, 12℄,

or other onstrutions disussed in [13℄.

Setting � small enough provides high levels of seurity for properties like preimage resistane,

seond preimage resistane, multiollision resistane, or CTFP preimage resistane [18℄, and also

exludes the existene of attaks for these properties (up to the obtained bound), that is, even

with respet to adversaries whih perform enough queries to �nd ollisions for the omponent

funtion f : f0; 1g

n

! f0; 1g

n

.

10

The only di�erene with respet to the original result is that we allow the haining value to be larger than

the output value, i.e. ` > n. The validity of our theorem follows from the simple observation (whih we do not

formalize) that dropping some bits of the output is a perfet redution of publi random funtion to a perfet

random funtion with longer output size.

11

A possible distinguishing strategy would onsist of doing few very long queries, instead of many queries, and

seurity is guaranteed only as long as l

max

� k < 2

`=2

.
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A Impossibility of Extending Random Primitives

We prove that if a publi random primitive R with N -bit table is extended to a publi random

primitives R

0

with N

0

-bit table, where N

0

> N , then we annot guarantee seurity against

distinguishers retrieving at least 2N + 1 bits. The result is an appliation of the tehniques

from [23℄ to publi random primitives, and for ompleteness we provide a self-ontained proof

here. (Note that the results from [23℄ apply to a wider range of systems.)

Lemma 14. Let R and R

0

be publi random primitives with N and N

0

-bit funtion tables,

respetively, where N

0

> N . Furthermore, let C(�) be a deterministi and stateless onstrution.

Then, for all t > 0 (with N+t � N

0

) and all (not neessarily eÆient) simulators S, there exists

a distinguisher D whih retrieves 2N+t bits, and suh that �

D

([R;C(R)℄; [S(R

0

);R℄) � 1�2

�t

.

Proof. De�ne H

1

:= [R;C(R)℄ and H

2

:= [S(R

0

);R

0

℄. Without loss of generality assume that

the publi and the private interfaes are aessed bit-wise as N - and N

0

-bit tables. We onsider

the following distinguisher D whih, given the system H

b

= [H

pub

;H

priv

℄ (for b 2 f1; 2g), �rst

retrieves all N bits from H

pub

. Denote the resulting string as R 2 f0; 1g

N

. Note that the

onstrution C(�) an be seen as a mapping f0; 1g

N

! f0; 1g

N

0

, and the distinguisher (loally)

omputes the �rst N + t bits R

0

2 f0; 1g

N+t

of C(R). Finally, it retrieves the �rst N + t

bits

e

R

0

2 f0; 1g

N+t

of H

priv

. If R

0

=

e

R

0

, it outputs 1, and 0 otherwise. Clearly P

DÆH

1

(R

0

=

e

R

0

) = 1. Note that, independently of the simulator S, there are at most 2

N

values the random

variable R

0

an take on, and let R

0

be the set of these values. Therefore, we have P

DÆH

2

(R

0

=

e

R

0

) � P

DÆH

2

(

e

R

0

2 R

0

) � 2

N

� 2

�(N+t)

= 2

�t

, whih implies the statement of the lemma.
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This result has two main interpretations:

(i) If N is small (say polynomial in some understood seurity parameter), then there exists

no eÆient onstrution whih extends R, not even by a single bit, and not even with

omputational seurity. (This is due to the fat that in this ase the distinguisher in the

proof of the lemma is eÆient.)

(ii) If we want to extend the domain of a publi random funtionR : f0; 1g

n

! f0; 1g

n

to m >

n bits, then we annot hope to get seurity for adversaries making more than 2

n+1

+ 1

queries.

12

(And this paper addresses the question of how lose to this bound we an get.)

B Inseurity of the Benes-Constrution

Aiello and Venketasan [1℄ proposed a onstrution named Benes (or Double Buttery) for ex-

tending the domain of a (private) random funtion with seurity beyond the birthday barrier.

13

The onstrution is an instantiation of our general paradigm of Setion 3.1. In this setion,

we show that its seurity in the ase of publi random funtions is inherently bounded by the

birthday bound. This should help larify the ruial role of the funtions E

1

; : : : ; E

r

in our

approah. We also stress that this attak an be adapted to hold even with respet to the

honest-but-urious variant of indi�erentiability introdued by Dodis and Puniya [15℄.

Formally, we look at the following variant of the original onstrution: We are given four

random funtions F

1

;F

2

: f0; 1g

2n

! f0; 1g

2n

and G

1

;G

2

: f0; 1g

2n

! f0; 1g

n

. The on-

strution BE : f0; 1g

2n

! f0; 1g

n

takes an input s = s

(1)

ks

(2)

, and omputes �rst w(s) =

w

(1)

(s)kw

(2)

(s) = F

1

(s

(1)

) � F

2

(s

(2)

) and outputs G

1

(w

(1)

(s)) �G

2

(w

(2)

(s)). (We note that

the original onstrution has 2n-bit output, our attak however works even for the ase of n-bit

output.) Furthermore, let R : f0; 1g

2n

! f0; 1g

n

be a publi random funtion. For notational

onsisteny with the proof of Theorem 3, we de�ne

H

1

:= [F

1

;F

2

;G

1

;G

2

;BE(F

1

;F

2

;G

1

;G

2

)℄

H

2

:= [S(R);R℄;

for an arbitrary simulator S. We onsider three types of queries: The �rst two types are F-

queries, with form (F; p; u), for p = 1; 2 and u 2 f0; 1g

n

, and G-queries with form (G; q; v)

for q = 1; 2 and v 2 f0; 1g

n

, whih are both answered by the orresponding puRF's in H

1

and

by the simulator in H

2

, as well as R-queries of form (R; s), for s 2 f0; 1g

2n

, whih are answered

by the onstrution BE in H

1

and by R in H

2

.

We onstrut a distinguisher D whih | regardless of the simulator S | distinguishes H

1

and H

2

whih onstant probability when making approximately 2

n=2

queries. Let s

1

; : : : ; s

k

2

f0; 1g

n

be �xed values for some even integer

�

k. The distinguisherD proeeds as follows. It �rst

makes F-queries (F; 1; s

i

) for all i = 1; : : : ; k, obtaining values U

1

; : : : ; U

k

2 f0; 1g

2n

, and F-

queries (F; 2; s

j

) for j = 1; : : : ; k; let V

1

; : : : ; V

k

2 f0; 1g

2n

denote the resulting values. We

de�ne for all i; j 2 f1; : : : ; kg the random variable W

ij

:= U

i

� V

j

. The distinguisher D looks

12

Atually, for the information-theoreti setting, one an even prove the stronger statement that there exists

a distinguisher retrieving N + t bits from the private interfae only and distinguishing with advantage 1� 2

�t

.

This is due to the fat that the statistial distane of the �rst N + t bits of C(R) from the uniform distribution is

at least 1�2

�t

. However, in this ase, if N is polynomially-bounded, the distinguisher is not neessarily eÆient.

13

In [1℄ optimal seurity is laimed, but the result turns out to be partially inorret. However, the onstrution

ahieves seurity beyond the birthday barrier. This an be seen using the tehniques from [21℄. Also, in [28℄

diret proofs of improved bounds are given.
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for i 6= i

0

and j 6= j

0

suh that W

ij

= U

i

� V

j

= U

i

0

� V

j

0

= W

i

0

j

0

. Note that this also

implies that W

ij

0

= U

i

� V

j

0

= U

i

0

� V

j

= W

i

0

j

by rearranging terms. Finally, D performs four

R-queries (R; s

i

ks

j

), (R; s

i

0

ks

j

0

), (R; s

i

ks

j

0

), and (R; s

i

0

ks

j

). Denote by Y

1

; Y

2

; Y

3

, and Y

4

the

respetive answers. If Y

1

= Y

2

and Y

3

= Y

4

,the distinguisher outputs 1. In any other ase (in

partiular also if suh i; j and i

0

; j

0

do not exist), it outputs 0.

Let E be the event that W

ij

= W

i

0

j

0

holds for some i 6= i

0

and j 6= j

0

. Furthermore,

let K := f1; : : : ; k=2g, and K := fk=2 + 1; : : : ; kg. We have

P

DÆH

1

(E) � P

DÆH

1

�

_

i;j2K;i

0

;j

0

2K

W

ij

=W

i

0

j

0

�

�

X

i;j2K;i

0

;j

0

2K

P

DÆH

1

(W

ij

=W

i

0

j

0

)

�

X

i;j;

�

i;

�

j2K;i

0

;j

0

;

�

i

0

;

�

j

0

2K

f(i;j);(i

0

;j

0

)g6=f(

�

i;

�

j);(

�

i

0

;

�

j

0

)g

P

DÆH

1

(W

ij

=W

i

0

j

0

^W

�

i

�

j

=W

�

i

0

�

j

0

)

where the last inequality follows from the fat that P(

W

r

i=1

A

i

) �

P

r

i=1

P(A

i

)�

P

1�i<i

0

�r

P(A

i

^

A

i

0

) for all events A

1

; : : : ;A

r

. It is easy to see that W

ij

and W

i

0

j

0

are independent if i 6=

i

0

and j 6= j

0

, and thus

P

i;j2K;i

0

;j

0

2K

P(W

ij

= W

i

0

j

0

) =

k

4

16

2

�2n

. For the seond sum, we

onsider two ases. First, assume that (i; j) 6= (

�

i;

�

j), and (i

0

; j

0

) 6= (

�

i

0

;

�

j

0

). Then, the random

variablesW

ij

;W

i

0

j

0

;W

�

i

�

j

; andW

�

i

0

�

j

0

are independent. Note that there are

1

2

�

k

2

4

�

k

2

4

� 1

��

2

�

k

8

512

possibilities to hoose four suh random variables, and in this ase P(W

ij

= W

i

0

j

0

^ W

�

i

�

j

=

W

�

i

0

�

j

0

) = 2

�4n

. The seond ase takes plae whenever either (i; j) = (

�

i;

�

j) or (i

0

; j

0

) = (

�

i

0

;

�

j

0

)

holds. We have

k

2

4

k

2

4

�

k

2

4

� 1

�

�

k

6

64

ways of hoosing the indies, and in this ase P(W

ij

=

W

i

0

j

0

^W

�

i

�

j

=W

�

i

0

�

j

0

) = 2

�4n

. Therefore,

P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

) � P

DÆH

1

(E) �

k

4

16

2

�2n

�

k

8

512

2

�4n

�

k

6

64

2

�4n

:

To bound P

DÆH

2

(Y

1

= Y

2

^ Y

3

= Y

4

), note that given any simulator S making �(k) queries

when queried k times and whih ensures that Y

1

= Y

2

^ Y

3

= Y

4

holds with probability �,

then we an ombine S and D into an adversary A that makes at most 4 + �(2k) queries

to R and �nds x 6= x

0

and y 6= y

0

suh that R(xky) = R(x

0

ky

0

) and R(xky

0

) = R(x

0

ky) with

probability �. However, it is not hard to see that the probability that some adversary �nds suh

values within k queries is at most k

2

� 2

�2n

. Therefore,

�

D

(H

1

;H

2

) �

�

�

P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

)� P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

)

�

�

�

k

4

16

2

�2n

�

k

8

256

2

�4n

�

k

6

64

2

�4n

� (4 + �(2k))

2

� 2

�2n

:

Setting �(k) = k � poly(n), and

�

k = 2

n=2

leads to onstant distinguishing advantage.

C Proofs for Setion 4

C.1 Proof of Theorem 10

In this setion, we provide a onstrution

14

of highly-unbalaned expander graphs with polyno-

mial left-degree. We �rst review some basi notation needed throughout this setion. Reall that

14

To our knowledge, a very similar onstrution appears in an unpublished manusript [3℄, hene the results

of this setion should not be onsidered an original ontribution of this paper.
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the statistial distane of two random variables X and Y with the same range X is d(X;Y ) =

1

2

P

x2X

jP

X

(x)�P

Y

(x)j and furthermore this quantity equals max

A�X

jP(X 2 A)� P(Y 2 A)j.

The min-entropy of a random variable X is de�ned as H

1

(X) = � logmax

x2X

P

X

(x) and X is

alled a k-soure if H

1

(X) � k. Furthermore, it is a (k; �)-soure if there exists a k-soure Y

suh that d(X;Y ) � �. Of ourse, the same notions are de�ned for probability distributions

instead of random variables. In the following, U

d

will denote a uniformly-distributed d-bit ran-

dom string whih is independent from any other value. Also, the notation P

X

� P

Y

denotes the

joint distribution of X and Y when they are hosen independently aording to P

X

and P

Y

,

respetively.

We make use of the notion of (simple) randomness ondutors [10℄, whih naturally general-

izes randomness extrators. In partiular, we also onsider a slight modi�ation of the original

notion whih generalizes strong extrators.

De�nition 6. A funtion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

n

is a (k

max

; a; �)-ondutor if for

any 0 � k � k

max

and any k-soure X over f0; 1g

m

the output C(X;U

d

) is a (k + a; �)-soure.

The funtion C is a strong (k

max

; a; �)-ondutor if [C(X;U

d

); U

d

℄ is a (k + a + d; �)-soure for

all k-soures X with 0 � k � k

max

. Finally, a ondutor is extrating if k

max

= n� a.

One is generally interested in onstruting expliit families of ondutors, that is, (asymp-

toti) families of ondutors whih are omputable in polynomial-time. To our knowledge,

the best onstrution of an expliit strong ondutor has the following parameters (f. the full

version of [26℄ for a proof.

15

)

Theorem 15. For every m � n and every onstant � > 0, there exists an expliit strong

(k

max

;��; �)-ondutor C : f0; 1g

m

� f0; 1g

d

! f0; 1g

n

, where � = �(�) = O(1) and d =

d(m;n; k

max

; �) = O(logm+ log

3

(k

max

)), for all k

max

� n+�.

It is not diÆult to see that a ondutor an be interpreted as an unbalaned bipartite

expander graph (this is indeed the starting point of [10℄). However, we annot use the result

Theorem 15 diretly, as we need k

max

= �(n), and this leads to super-polynomial degree. In

order to overome this problem, we introdue the following natural weakening of ondutors.

De�nition 7. A funtion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

nt

is a (k

max

; a; �; �)-somewhere

ondutor if for all 0 � k � k

max

and all k-soures X over f0; 1g

m

there exists a fun-

tion I : f0; 1g

m

! f1; : : : ; tg[ f?g suh that P

I(X)

(?) � � and P

C

(i)

(X;U

d

)jI(X)=i

is a (k+ a; �)-

soure for all i = 1; : : : ; t with P

I(X)

(i) > 0, where C(X;U

d

) = C

(1)

(X;U

d

)k � � � kC

(t)

(X;U

d

),

and C

(i)

(X;U

d

) 2 f0; 1g

n

for all i = 1; : : : ; t.

Given a funtion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

nt

, we onstrut a graph G

C

= (V

1

; V

2

; E)

where V

1

:= f0; 1g

m

, V

2

:= f0; 1g

n

, and (x; z) 2 E if and only if there exists i 2 f1; : : : ; tg

and y 2 f0; 1g

d

suh that C

(i)

(x; y) = z. The following lemma generalizes a result from [32℄.

Lemma 16. If C : f0; 1g

m

�f0; 1g

d

! f0; 1g

nt

is a (k

max

; �; �; a)-somewhere ondutor with � <

1, then G

C

as above is a (2

k

max

; 2

a

(1� �))-expander graph with left degree 2

d

.

Proof. Let X � f0; 1g

m

with jX j � 2

k

max

. Consider the soure X whih is uniformly distributed

over X , and let k := H

1

(X) = log jX j � k

max

. Let I : f0; 1g

m

! f1; : : : ; tg[f?g be the funtion

whih is guaranteed to exist (for the soure X), and �x an arbitrary i suh that P

I(X)

(i) > 0.

15

Atually, the proof in [26℄ onsiders a variant of strong extrators, alled strong universal extrators, whih

give the additional guarantee that there exists a subset of the output bits whih is almost uniformly-distributed.
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Let Z be the support of P

C

(i)

(X;U

d

)jI(X)=i

. Clearly, Z � �(X ). Moreover, there exists a (k+a)-

soure Z whih satis�es d(P

C

(i)

(X;U

d

)jI(X)=i

; Z) � �, that is � �

P

z2Z

P

C

(i)

(X;U

d

)jI(X)=i

(z) �

P

Z

(z) = 1 �

P

z2Z

P

Z

(z) � 1 � jZj � 2

�k�a

by the de�nition of the statistial distane. By

rearranging terms, we obtain j�(X )j � (1� �) � 2

k+a

= (1� �) � 2

a

� jX j.

Let C

1

: f0; 1g

m

� f0; 1g

d

1

! f0; 1g

d

2

and C

2

: f0; 1g

m

� f0; 1g

d

2

! f0; 1g

n

be fun-

tions. Also, for a string x 2 f0; 1g

m

, denote as x

(a;b)

the string onsisting of the bits x

a

; x

a+1

;

: : : ; x

b�1

; x

b

, with extra 0's to make its length equal to m. (If b < a, the string is the

string 0

m

.) We let C : f0; 1g

m

� f0; 1g

d

2

! f0; 1g

(m+1)(d

1

+d

2

+n)

be suh that C(x; y) =

C

(1)

(x; y)k � � � kC

(m+1)

(x; y), where for all 1 � i � m+ 1 we de�ne

z

(i)

1

:= y z

(i)

2

:= C

1

(x

(i;m)

; y) and z

(i)

3

:= C

2

(x

(1;i�1)

; z

(i)

2

)

and we set C

(i)

(x; y) := z

(i)

1

kz

(i)

2

kz

(i)

3

2 f0; 1g

d

1

+d

2

+n

. The following lemma extends Theorem 3

from [27℄ to our setting. As the proof is very similar, we only provide a brief proof sketh.

Lemma 17. Let s > 0 be given, and C be onstruted as above. If C

1

is a strong (a

1

; �

1

)-

extrating ondutor, and C

2

is a strong (k

2

; a

2

; �

2

)-ondutor, then C is a (d

2

� a

1

+ k

2

+

s;minfa

1

; a

1

+ a

2

g+ d

1

� s; �

1

+ �

2

; 8m � 2

�s=3

)-somewhere ondutor.

Proof sketh. In the following, let k

1

:= d

2

� a

1

. Let X be a k-soure with k � k

1

+ k

2

+ s.

On the one hand, if X is suh that H

1

(X) = k = k

0

+ s with k

0

� k

1

, then [Z

(1)

1

; Z

(1)

2

℄ =

[U

d

1

; C

(1)

(X;U

d

1

)℄, whih is a (k + a

1

+ d

1

� s; �

1

)-soure, and thus this also holds for the

variable [Z

(1)

1

; Z

(1)

2

; Z

(1)

3

℄. On the other hand, if X is suh that H

1

(X) = k = s + k

1

+ k

0

,

where k

0

� k

2

, then as in [27℄ there exists a seletor funtion I : f0; 1g

m

! f1; : : : ;m+1g[f?g

suh that

1. P

I(X)

(?) � 8m � 2

�s=3

,

2. If P

I(X)jX

(1;i�1)

(i; x

(1;i�1)

) > 0, then H

1

(X

(i;m)

jI = i ^X

(1;i�1)

= x

(1;i�1)

) � k

1

, and

3. H

1

(X

(1;i�1)

jI = i) � k

0

.

In partiular, this means that the distribution P

Z

(i)

1

Z

(i)

2

jI(X)=iX

(1;i�1)

=x

(1;i�1)

is �

1

-lose to the

distribution P

U

d

1

U

d

2

jI(X)=i;X

(1;i�1)

=x

(1;i�1)

= P

U

d

1

� P

U

d

2

for all x

(1;i�1)

with the property that

P

I(X)jX

(1;i�1)

(i; x

(1;i�1)

) > 0. This implies in partiular that P

Z

(i)

1

Z

(i)

2

X

(1;i�1)

jI(X)=i

is �

1

-lose

to P

U

d

1

� P

U

d

2

� P

X

(1;i�1)

jI(X)=i

. Furthermore, the distribution P

U

d

1

� P

U

d

2

C(X

(1;i�1)

;U

d

2

)jI=i

is

a (k

0

+a

2

+d

1

+d

2

; �

2

)-soure. Also, by the triangle inequality, the distribution P

Z

(i)

1

Z

(i)

2

Z

(i)

3

jI(X)=i

is a (k + a

1

+ a

2

+ d

1

� s; �

1

+ �

2

)-soure, and this onludes the proof.

In the following, we instantiate both funtions C

1

and C

2

using Theorem 15. First, set s =

3 � log(9m) = 3 logm+O(1) (note that with this 8m � 2

�s=3

< 1). Also, �x some onstant � > 0.

Given k

max

= (1� �)n, we hoose �n := k

max

, and

d

2

= d(m; �n; k

max

; �) = O(log

3

(n))

d

1

= maxfd(m; d

2

; d

2

+�; �); 2� + s+ log  � log(1� 2�)g = O(log n);

and then take C

1

: f0; 1g

m

�f0; 1g

d

1

! f0; 1g

d

2

and C

2

: f0; 1g

m

�f0; 1g

d

2

! f0; 1g

�n

aording

to the theorem. (For C

1

, we potentially need a longer seed, and the onstrution simply ignores

the extra bits.) Then, C as above leads to a (k

max

; d

1

� 2� � s; 2�; �)-somewhere ondutor
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with � < 1. Note that (1�2�)2

d

1

�2��s

� . Furthermore, for n suÆiently large, �n+d

1

+d

2

� n,

hene Lemma 16 gives the desired expander.

The proof works even if one takes any � = !

�

log

3

(n)

n

�

, sine �n+d

1

+d

2

� n still holds for n

large enough. Also note that we have made use of Lemma 17 in a very simple way, and (with

some additional work in hoosing parameters arefully) it allows to onstrut expanders for the

ase where � is even smaller. The results of [3℄ disuss this ase.

C.2 Proof of Lemma 11

Let V

1

:= f0; 1g

m

and V

2

:= f0; 1g

n

, where m > n, and let D be the left-degree of the graph

(to be �xed later) and  the desired expansion fator (whih in partiular satis�es K �  � 2

n

and  � D). Also, for notational onveniene let M := 2

m

and N := 2

n

. The proof is an

appliation of the probabilisti method. We sample a graph as follows: For every vertex v 2 V

1

,

we pik D (not neessarily distint) neighbors uniformly at random from V

2

. Let S be some

subset of V

1

, with i := jSj � K. Note that whenever j�(S)j <  � jSj holds, there exists

a set T of size  � jSj (without loss of generality assume this value to be an integer) suh

that �(S) � T . When sampling a graph as explained, the probability that all neighbors of S

are in T is ( � i=N)

D�i

. Therefore, by the union bound, the probability that there exists a set S

with jSj � K and j�(S)j <  � jSj is at most

K

X

i=1

�

M

i

�

�

�

N

 � i

�

�

�

 � i

N

�

D�i

�

K

X

i=1

"

e



�M �

�

 � i

N

�

D�

#

i

;

where we have bounded

�

M

i

�

� M

i

and

�

N

i

�

�

�

eN

i

�

i

. We now set D :=

1+�log e+m

n�log(K)

+ , and

it is easy to verify that

e



�M �

�

 � i

N

�

D�

� e



�M �

�

 �K

N

�

D�

=

1

2

:

With this value of D, the above sum is upper bounded by

P

K

i=1

1

2

i

<

P

1

i=1

1

2

i

= 1, and hene

a good graph exists with positive probability.
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