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Abstra
t

A publi
 random fun
tion is a random fun
tion that is a

essible by all parties, in-


luding the adversary. For example, a (publi
) random ora
le is a publi
 random fun
tion

f0; 1g

�

! f0; 1g

n

. The natural problem of 
onstru
ting a publi
 random ora
le from a pub-

li
 random fun
tion f0; 1g

m

! f0; 1g

n

(for some m > n) was �rst 
onsidered at Crypto 2005

by Coron et al. who proved the se
urity of variants of the Merkle-Damg�ard 
onstru
tion

against adversaries issuing up to O(2

n=2

) queries to the 
onstru
tion and to the underly-

ing 
ompression fun
tion. This bound is less than the square root of n2

m

, the number of

random bits 
ontained in the underlying random fun
tion.

In this paper, we investigate domain extenders for publi
 random fun
tions approa
hing

optimal se
urity. In parti
ular, for all � 2 (0; 1) and all fun
tions m and ` (polynomial in n),

we provide a 
onstru
tion C

�;m;`

(�) whi
h extends a publi
 random fun
tion R : f0; 1g

n

!

f0; 1g

n

to a fun
tion C

�;m;`

(R) : f0; 1g

m(n)

! f0; 1g

`(n)

with time-
omplexity polynomial

in n and 1=� and whi
h is se
ure against adversaries whi
h make up to �(2

n(1��)

) queries. A


entral tool for a
hieving high se
urity are spe
ial 
lasses of unbalan
ed bipartite expander

graphs with small degree. The a
hievability of pra
ti
al (as opposed to 
omplexity-theoreti
)

eÆ
ien
y is proved by a non-
onstru
tive existen
e proof.

Combined with the iterated 
onstru
tions of Coron et al., our result leads to the �rst iter-

ated 
onstru
tion of a hash fun
tion f0; 1g

�

! f0; 1g

n

from a 
omponent fun
tion f0; 1g

n

!

f0; 1g

n

that withstands all re
ently proposed generi
 atta
ks against iterated hash fun
tions,

like Joux's multi-
ollision atta
k, Kelsey and S
hneier's se
ond-preimage atta
k, and Kelsey

and Kohno's herding atta
ks.

1 Introdu
tion

1.1 Se
ret vs. Publi
 Random Fun
tions

Primitives that provide some form of randomness are of 
entral importan
e in 
ryptography,

both as a primitive assumed to be given (e.g. a se
ret key), and as a primitive 
onstru
ted

from a weaker one to \behave like" a 
ertain ideal random primitive (e.g. a random fun
tion),

a

ording to some se
urity notion.

�

An extended abstra
t of this paper appears in the pro
eedings of CRYPTO 2007. This is the full version.
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An adversary may have di�erent types of a

ess to a random primitive. The two extreme


ases are that the adversary has no a

ess and that he has 
omplete a

ess

1

to it. For example,

the adversary is assumed to have no a

ess to a se
ret key, and a pseudo-random fun
tion (PRF)

is a (
omputationally-se
ure) realization from su
h a se
ret key of a se
ret random fun
tion to

whi
h the adversary has no a

ess. In 
ontrast, a (publi
) random ora
le, as used in the so-
alled

random-ora
le model [7℄, is a fun
tion f0; 1g

�

! f0; 1g

n

to whi
h the adversary has 
omplete

a

ess, like the legitimate parties. Similarly, a publi
 parameter (e.g. the parameter sele
ting

a hash fun
tion from a 
lass) is a �nite random string to whi
h the adversary has 
omplete

a

ess. It is natural to also 
onsider �nite-domain publi
 random fun
tions.

In this paper we are interested in su
h publi
 random primitives and redu
tions among

them. The question whether (and how) a 
ertain primitive 
an be se
urely realized from another

primitive is substantially more 
omplex in the publi
 setting, 
ompared to the se
ret setting, and

even the se
urity notion is more involved. For example, while the CBC-
onstru
tion 
an be seen

as the se
ure realization of a se
ret random fun
tion f0; 1g

�

! f0; 1g

n

from a se
ret random

fun
tion f0; 1g

n

! f0; 1g

n

[5, 21℄, the same statement is false if publi
 fun
tions (a

essible

to the adversary) are 
onsidered. Another famous example of a redu
tion problem for publi


primitives is the realization of a (publi
) random ora
le from a publi
 parameter. This was

shown to be impossible [9, 23℄.

1.2 Domain Extension and the Birthday Barrier

A random primitive (both se
ret or publi
) 
an be 
hara
terized by the number of random bits

it 
ontains. An `-bit key is a string (or table) 
ontaining ` random bits, a random fun
tion

f0; 1g

m

! f0; 1g

n


orresponds to a table of n2

m

random bits whi
h 
an be a

essed eÆ
iently,

and a random ora
le f0; 1g

�

! f0; 1g

n


orresponds to a 
ountably in�nite table of random bits.

2

Of 
ourse, a random table of N bits 
an be interpreted as a random fun
tion f0; 1g

m

! f0; 1g

n

for any m and n with n2

m

� N . For example, n 
an be doubled at the apparently minor

expense of redu
ing m by 1.

An important topi
 in 
ryptography is the se
ure expansion of su
h a table, 
onsidered as

an ideal system. This is referred to as domain extension, say from f0; 1g

m

to f0; 1g

2m

(or to

f0; 1g

�

), whi
h 
orresponds to an exponential (or even in�nite) blow-up of the table size. (In


ontrast, in
reasing the range, say from f0; 1g

n

to f0; 1g

2n

, 
orresponds to merely a doubling

of the table size.)

In [23℄ a generalization of indistinguishability to systems with publi
 a

ess, 
alled indi�er-

entiability, was proposed. Like for indistinguishability, there is a 
omputational and a stronger,

information-theoreti
, version of indi�erentiability. This general notion allows to dis
uss the

se
ure realization of a publi
 random primitive from another publi
 random primitive. In [23℄

also a simple general framework was proposed, based on entropy arguments, for proving im-

possibility results like that of [9℄. One 
an easily show that not even a single-bit extension of

a publi
 parameter, from ` to `+1 bits, is possible, let alone to an exponentially large table

(
orresponding to a publi
 random fun
tion f0; 1g

m

! f0; 1g

n

) or even to an in�nite table

(
orresponding to the impossibility of realizing a random ora
le [9, 23℄).

1

Side-
hannel atta
k analyses, where part of the se
ret key is assumed to leak, are examples of intermediate

s
enarios.

2

Ea
h bit 
an be a

essed in time logarithmi
 in its position in the table, whi
h is optimal sin
e the spe
i�
ation

of the position requires logarithmi
ally many bits. In this paper we only 
onsider su
h random primitives where

the bits 
an be a

essed eÆ
iently, but there are also more 
ompli
ated primitives, like an ideal 
ipher, whi
h

on one hand has a spe
ial permutation stru
ture and also allows on the other hand a spe
ial additional type of

a

ess, namely inverse queries.

2



However, the situation is di�erent if one starts from a publi
 random fun
tion (as opposed to

just a publi
 random string). Coron et al. [13℄ 
onsidered the problem of 
onstru
ting a random

ora
le f0; 1g

�

! f0; 1g

n

from a publi
 random fun
tion f0; 1g

m

! f0; 1g

n

(where m > n) and

showed that a modi�ed Merkle-Damg�ard 
onstru
tion [25, 14℄ works, with information-theoreti


se
urity (i.e., indi�erentiability) up to about O(2

n=2

) queries. This bound, only the square root

of O(2

n

), is usually 
alled the \birthday barrier". The term \birthday" is used be
ause the

birthday paradox applies (as soon as two di�erent inputs to the fun
tion o

ur whi
h produ
e

the same output, se
urity is lost) and the term \barrier" is used be
ause breaking it is non-trivial

if at all possible.

For se
ret random fun
tions, many 
onstru
tions in the literature, also those based on

universal hashing [11, 30℄ and the CBC-
onstru
tion [5, 21℄, su�er from the birthday problem,

and hen
e several resear
hers [1, 4, 21℄ 
onsidered the problem of a
hieving se
urity beyond the

birthday barrier. The goal of this paper is to solve the 
orresponding problem for publi
 random

fun
tions. Namely, we want to a
hieve essentially maximal se
urity, i.e., up to �(2

n(1��)

) queries

for any � > 0 (where the 
onstru
tion may depend on �). Like for other problems (see e.g. [15℄),

going from the \se
ret 
ase" to the \publi
 
ase" appears to involve substantial new 
onstru
tion

elements and analysis te
hniques.

1.3 Signi�
an
e of Domain Extension for Publi
 Random Fun
tions

The domain extension problem for publi
 random fun
tions has important impli
ations for the

design of 
ryptographi
 fun
tions, in addition to being of general theoreti
al interest. We also

refer to [13℄ for a dis
ussion of the signi�
an
e of this problem.

Cryptographi
 fun
tions with arbitrary input-length are of 
ru
ial importan
e in 
ryptog-

raphy. Desirable properties for su
h fun
tions are 
ollision-resistan
e, se
ond-preimage resis-

tan
e, multi-
ollision resistan
e, being pseudo-random, or being a se
ure MAC, et
. A general

paradigm for 
onstru
ting a 
ryptographi
 fun
tion f0; 1g

�

! f0; 1g

n

, both in the se
ret and the

publi
 
ase, is to make use of a 
omponent fun
tion F : f0; 1g

m

! f0; 1g

n

and to embed it into

an iterated 
onstru
tion C(�) (e.g. the CBC or the Merkle-Damg�ard 
onstru
tion), resulting in

the overall fun
tion C(F) : f0; 1g

�

! f0; 1g

n

.

It is important to be able to separate the reasoning about the 
omponent fun
tion F and

about the 
onstru
tion C(�). Typi
ally, F is simply assumed to have some property, like being


ollision-resistant, se
ond-preimage resistant, a se
ure MAC, et
. In 
ontrast, the 
onstru
tion

C(�) is (or should be!) designed in a way that one 
an prove 
ertain properties.

There are two types of su
h proofs forC(�). The �rst type is a 
omplexity-theoreti
 redu
tion

proof showing that if there exists an adversary breaking a 
ertain property of C(F), then there

exists a 
omparably eÆ
ient adversary breaking a property (the same or a di�erent one) of

F. For example, using su
h an argument one 
an prove that the Merkle-Damg�ard [25, 14℄


onstru
tion is 
ollision-resistant if the 
omponent fun
tion is. Similarly, one 
an prove that the

CBC 
onstru
tion is a PRF if the 
omponent fun
tion is [5℄, or that 
ertain 
onstru
tions [2, 24℄

are se
ure MACs if the 
omponent fun
tion is.

A se
ond type of proof, whi
h is the subje
t of [13℄ and of this paper, is the proof that if F

is a publi
 random fun
tion, then so is C(F), up to a 
ertain number B of queries. Su
h a proof

implies the absen
e of a generi
 (bla
k-box) atta
k against C(F), i.e., an atta
k whi
h does

not exploit spe
i�
 properties of F, but uses it merely as a bla
k-box.

3

Su
h a generi
 proof is

not an ultimate se
urity proof for C(F), but it proves that the 
onstru
tion C(�) itself has no

3

This is analogous to se
urity proofs in the generi
 group model [31, 22℄ whi
h show that no atta
k exists

that does not exploit the parti
ular representation of group elements.

3



weakness. A main advantage of su
h a proof is that it applies to every 
ryptographi
 property

of interest (whi
h a random fun
tion has), not just to spe
i�
 properties like 
ollision-resistan
e.

The number B of queries up to whi
h se
urity is guaranteed is a 
ru
ial parameter of su
h a

proof, espe
ially in view of several surprises of the past years regarding weaknesses of iterated


onstru
tions. Joux [17℄ showed that the se
urity of the Merkle-Damg�ard 
onstru
tion (with


ompression fun
tion with n-bit output) against �nding multi-
ollisions is not mu
h higher

than the se
urity against normal 
ollision atta
ks, namely the birthday barrierO(2

n=2

), whi
h is

surprising be
ause for a random fun
tion, �nding an r-multi-
ollision requires �(2

r�1

r

n

) queries.

Joux's atta
k has been generalized to a wider 
lass of 
onstru
tions [16℄. Other atta
ks in

a similar spirit against iterated 
onstru
tions are the se
ond-preimage atta
k by Kelsey and

S
hneier [19℄, and herding atta
ks [18℄. One possibility to over
ome these issues is to rely

on a 
ompression fun
tion with input domain mu
h larger than the size of the output of the


onstru
tion (
f. for example the 
onstru
tions in [20℄ and the double blo
k-length 
onstru
tion

of [12℄), but this does not seem to be the best possible approa
h, both from a theoreti
al and

from a pra
ti
al viewpoint, as explained below.

A proof, like that of [13℄, for a 
onstru
tion C(�) of a publi
 random fun
tion, implies that

C(�) is se
ure against all possible atta
ks, up to the bound B on the number of queries stated

in the proof. Sin
e the bound in [13℄ is the birthday barrier, this implies nothing (beyond the

birthday barrier) for atta
ks that require more queries, like the atta
ks of [17, 19, 12℄ mentioned

above, and indeed the 
onstru
tions of [13℄ also su�er from the same atta
ks.

The bound B is also of importan
e sin
e it determines the input and output sizes of F. For

example, be
ause 
ollision-resistan
e is a property that 
an hold only up to 2

n=2

queries (due

to the birthday paradox), n must be 
hosen twi
e as large as one might expe
t to be feasible

in a na��ve se
urity analysis. Moreover, sin
e the fun
tion must be 
ompressing to be useful

in a 
onstru
tion C(�), the input size m must be larger than the output size n. However, if


ollision-resistan
e is not required, but instead for example se
ond-preimage resistan
e, then

the input size m of F 
an potentially be smaller or, turning the argument around, se
urity for

a given m 
an be mu
h higher.

The input size m of F is relevant for two more reasons. First, if one 
onsiders the (perhaps

not very realisti
) possibility of �nding a random fun
tion in Nature (say, by s
anning the

surfa
e of the moon or by appropriately a

essing the WWW), then m is a 
ru
ial parameter

sin
e the table size n2

m

is exponential in m. Se
ond, for a given maximal 
omputing time for

F, the diÆ
ulty of designing a 
on
rete 
ryptographi
 fun
tion F : f0; 1g

m

! f0; 1g

n

that is

supposed to \look random" in
reases signi�
antly if m is large. This 
an be seen as follows.

Su
h a fun
tion F for large m 
ould be modi�ed in many di�erent ways to redu
e m to m

0

< m

(e.g. set m�m

0

input bits to 0 or to any �xed value, or repeat an input of size m

0

until a blo
k

of length m is �lled, et
.), and for ea
h of these modi�
ations it would still have to be se
ure.

4

Hen
e simply designing a new fun
tion with doubled m is not a very reasonable solution for the

birthday barrier problem. Rather, one should �nd a 
onstru
tion that doubles (or multiplies)

the input size but at the same time preserves the se
urity almost optimally.

1.4 Contributions and Outline of This Paper

The main 
ontribution of this paper is a 
onstru
tion paradigm for breaking the birthday barrier

for domain extension of publi
 random fun
tions. More pre
isely, in Se
tion 3 we prove that for

every � 2 (0; 1), m and `, there exists an eÆ
ient 
onstru
tion C

�;m;`

(�) whi
h extends a publi


4

This argument applies even though we know that a publi
 random fun
tion is not se
urely realizable from a

publi
 random parameter.

4



random fun
tion f0; 1g

n

! f0; 1g

n

to a publi
 random fun
tion f0; 1g

m

! f0; 1g

`

, and whi
h

guarantees se
urity for up to �(2

n(1��)

) queries.

A 
entral tool in our approa
h is a new 
ombinatorial obje
t, whi
h we 
all an input-

restri
ting fun
tion family. Se
tion 4 dis
usses 
onstru
tions of su
h families from highly-

unbalan
ed bipartite expander graphs. While 
urrent expander 
onstru
tions only allow our

paradigm to be eÆ
ient in a 
omplexity-theoreti
 sense (i.e. polynomial-time), an existen
e

proof shows that very eÆ
ient 
onstru
tions exist whi
h would be of real pra
ti
al interest. We

hope this to provide additional motivation to investigate expli
it 
onstru
tions of unbalan
ed

bipartite expanders for a range of parameters whi
h have not re
eived mu
h attention so far.

Finally, our te
hniques allow to use a publi
 random fun
tion f0; 1g

n

! f0; 1g

n

to 
onstru
t

a 
ompression fun
tion with suÆ
iently large domain and range and to plug it into the 
onstru
-

tion of [13℄ to a
hieve the �rst iterated 
onstru
tion of a publi
 random ora
le f0; 1g

�

! f0; 1g

n

from a publi
 random fun
tion f0; 1g

n

! f0; 1g

n

with se
urity above the birthday barrier. We

dis
uss this in Se
tion 5.

2 Preliminaries

2.1 Notation and Probabilities

Throughout this paper, 
alligraphi
 letters (e.g. U) denote sets. Furthermore, the set U

k


on-

tains all k-tuples of elements from U , and a k-tuple is denoted as u

k

= [u

1

; : : : ; u

k

℄. We use


apital letters (e.g. U) to name random variables, whereas their 
on
rete values are denoted by

the 
orresponding lower-
ase letters (e.g. u). Also, we write P

U

for the probability distribution

of U , and we use the shorthand P

U

(u) for P(U = u) and for some event A we write P

AU

(u)

instead of P(A ^ U = u). Given events A and B and random variables U and V , then P

AU jBV

denotes the 
orresponding 
onditional probability distribution, whi
h is interpreted as a fun
-

tion U � V ! R

�0

, where the value P

AU jBV

(u; v) is well-de�ned for all u 2 U and v 2 V su
h

that P

BV

(v) > 0 (and unde�ned otherwise). Two probability distributions P

U

and P

U

0

on the

same set U are equal, denoted P

U

= P

U

0

, if P

U

(u) = P

U

0

(u) for all u 2 U . Also, for 
onditional

probability distributions, equality holds if it holds for all inputs for whi
h both are de�ned. We

often need to deal with distin
t random experiments where equally-named random variables

and/or events appear. To avoid 
onfusion, we add supers
ripts to probability distributions (e.g.

P

E

AU jBV

(u; v)) to make the random experiment expli
it. Also, note that sometimes we simply

write P

E

AU jBV

whenever the arguments u; v are 
lear from the 
ontext (or when the statement

holds for any argument).

For binary strings s; s

0

2 f0; 1g

�

, we denote by sks

0

their 
on
atenation. Furthermore, we

often use strings s 2 f0; 1g

tn

whose length jsj is a multiple of n. In this 
ase, the string s

(i)

the i'th n-bit blo
k of the string s. Also, for a binary string s 2 f0; 1g

m

and n � m, the

string sj

n


onsists of the �rst n bits of s.

2.2 Indistinguishability of Random Systems

In this se
tion, we review basi
 de�nitions and fa
ts from the framework of random systems

of [21℄. A random system is the abstra
tion of the input-output behavior of a dis
rete system.

De�nition 1. An (X ;Y)-random system F is a (generally in�nite) sequen
e of 
onditional

probability distributions p

F

Y

i

jX

i

Y

i�1

for all i � 1. Two random systems F and G are equivalent,

denoted F � G, if p

F

Y

i

jX

i

Y

i�1

= p

G

Y

i

jX

i

Y

i�1

for all i � 1.

5



That is, the system is des
ribed by the 
onditional probabilities p

F

Y

i

jX

i

Y

i�1

(y

i

; x

i

; y

i�1

)

(for i � 1) of obtaining the output y

i

2 Y on query x

i

2 X given the previous i�1 queries x

i�1

=

[x

1

; : : : ; x

i�1

℄ 2 X

i�1

and their 
orresponding outputs y

i�1

= [y

1

; : : : ; y

i�1

℄ 2 Y

i�1

. We use a

lower-
ase p to stress the fa
t that these 
onditional distributions by themselves do not de�ne

a random experiment. Equivalently, one 
an des
ribe the system by the 
onditional distribu-

tions p

F

Y

i

jX

i

(for all i � 1) of the �rst i outputs, given the �rst i inputs. Both views are related

by the equality p

F

Y

i

jX

i

=

Q

i

j=1

p

F

Y

j

jX

j

Y

j�1

, and it is easy to see that F and G are equivalent if

and only if p

F

Y

i

jX

i

= p

G

Y

i

jX

i

for all i � 1. An example of a random system that we 
onsider in

the following is a random fun
tion R : f0; 1g

m

! f0; 1g

n

, whi
h returns for every distin
t input

value x 2 f0; 1g

m

an independent and uniformly-distributed n-bit value. Moreover, a random

ora
le O : f0; 1g

�

! f0; 1g

n

is a random fun
tion taking inputs of arbitrary length.

A distinguisher D for an (X ;Y)-random system is a (Y;X )-random system whi
h is one

query ahead, i.e. it is de�ned by the 
onditional probability distributions p

D

X

i

jX

i�1

Y

i�1

for

all i � 1. In parti
ular, p

D

X

1

is the probability distribution of the �rst value queried by D.

Finally, the distinguisher outputs a bit after a 
ertain number (say k) of queries depending on

the trans
ript (X

k

; Y

k

). For an (X ;Y)-random system F and a distinguisher D, we denote

by D Æ F the random experiment

5

where D intera
ts with F. Furthermore, given an addi-

tional (X ;Y)-random system G, the distinguishing advantage of D in distinguishing systems F

andG is de�ned as �

D

(F;G) :=

�

�

P

DÆF

(1)� P

DÆG

(1)

�

�

, where P

DÆF

(1) and P

DÆG

(1) denote the

probabilities that D outputs 1 after its k queries when intera
ting with F and G, respe
tively.

We are interested in 
onsidering an internal monotone 
ondition de�ned on a random sys-

tem F. Su
h a 
ondition is initially true, and on
e it fails, it 
annot be
ome true any more. In

parti
ular, a system F

A

with a monotone 
ondition A is an (X ;Y�f0; 1g)-random system, where

the additional output bit indi
ates whether the 
ondition A holds after the i'th query has been

answered. In general, we 
hara
terize su
h a 
ondition by a sequen
e of events A = A

0

; A

1

; : : :,

where A

0

always holds, and A

i

holds if the 
ondition holds after query i. The 
ondition fails

at query i if A

i�1

^ A

i

o

urs. For a system with a monotone 
ondition F

A

, we write F for

the system where the additional output bit is ignored. Generally, we are interested in 
on-

sidering the behavior of systems only as long as a 
ertain monotone 
ondition holds: Given

two systems F

A

and G

B

with monotone 
onditions A and B, respe
tively, they are equivalent,

denoted F

A

� G

B

, if p

F

A

i

Y

i

jX

i

Y

i�1

A

i�1

= p

G

B

i

Y

i

jX

i

Y

i�1

B

i�1

holds for all i � 1, or equivalently,

if p

F

Y

i

A

i

jX

i

= p

G

Y

i

A

i

jX

i

holds for all i � 1.

The probability that a distinguisher D issuing k queries makes a monotone 
ondition A fail

in the random experiment D ÆF is de�ned as �

D

(F

A

) := P

DÆF

A

k

. The following lemma from [21℄

relates this probability with the distinguishing advantage.

Lemma 1. If F

A

� G

B

holds, then �

D

(F;G) � �

D

(F

A

) = �

D

(G

B

) for all distinguishers D.

One 
an use a random system F as a 
omponent of a larger system: In parti
ular, we are

interested in 
onstru
tions C(�) su
h that the resulting random system C(F) invokes F as a

subsystem. (Note that C(�) itself is not a random system, while C(F) is a random system.)

Finally, we remark that in general when we mention that a 
onstru
tion (or a distinguisher)

is eÆ
ient we mean that there exists a probabilisti
 intera
tive Turing ma
hine implementing

the same input-output behavior and with polynomial running time (in the understood se
urity

parameter).

5

In parti
ular, in this random experiment, the joint distribution P

DÆF

X

k

Y

k

is well-de�ned as

Q

k

i=1

p

D

X

i

jX

i�1

Y

i�1

�

p

F

Y

i

jX

i

Y

i�1

.

6



2.3 Indi�erentiability, Redu
tions, and Publi
 Random Primitives

The notion of indi�erentiability [23℄ naturally extends the 
on
ept of indistinguishability to

systems with a publi
 and a private interfa
e

6

adopting a simulation-based approa
h, in the

same spirit as the se
urity frameworks of [8, 29℄. The publi
 interfa
e 
an be used by all

parties, in
luding the adversary, whereas the legitimate parties have ex
lusive a

ess to the

private interfa
e. Generally, we denote su
h a system as an ordered pair F = [F

pub

;F

priv

℄.

Furthermore, given 
onstru
tions S(�) and C(�) leaving, respe
tively, private and publi
 queries

unmodi�ed, we simply write S(F) = [S(F

pub

);F

priv

℄ and C(F) = [F

pub

;C(F

priv

)℄.

Publi
 random primitives are a spe
ial 
ase of su
h systems. A publi
 random fun
tion

(puRF) R : f0; 1g

m

! f0; 1g

n

is a system with a publi
 and a private interfa
e whi
h behaves as

the same random fun
tion at both interfa
es.

7

In parti
ular, both interfa
es answer 
onsistently.

Furthermore, a publi
 random ora
le (puRO) O : f0; 1g

�

! f0; 1g

n

is a publi
 random fun
tion

whi
h takes inputs of arbitrary bit-length.

In the following de�nition, we re�ne the notion of (information-theoreti
) indi�erentiability

from [23℄ to deal with 
on
rete parameters.

De�nition 2. Let � : N ! R

�0

and � : N ! N be fun
tions. We say that a system F

is (�; �)-indi�erentiable from G, denoted F

�;�

� G, if there exists a simulator S su
h that

�

D

([F

pub

;F

priv

℄; [S(G

pub

);G

priv

℄) � �(k) for all distinguishers D making at most k queries,

and S makes at most �(k) queries to G

pub

when intera
ting with D,.

The purpose of the simulator is to mimi
 F

pub

by querying G

pub

, but without seeing the

queries made to G

priv

. Indi�erentiability dire
tly implies a notion of redu
ibility.

De�nition 3. A systemG is (�; �)-redu
ible to a system F if there exists an eÆ
ient, determin-

isti
, and stateless 
onstru
tion C(�) su
h that [F

pub

;C(F

priv

)℄

�;�

� G. The 
onstru
tion C(�) is


alled an (�; �)-redu
tion.

In Appendix A, we shortly dis
uss the a
hievable parameters for redu
ibility of publi


random primitives. The following lemma states that redu
ibility is transitive. We omit its

simple proof.

Lemma 2. Let E;F; and G be systems. If C(�) is a (�; �)-redu
tion of F to E, and C

0

(�) is

an (�

0

; �

0

) redu
tion of G to F that makes at most k

C

0

(k) queries to F

priv

when queried k times,

then C

0

(C(�)) is an (�; �)-redu
tion of G to E, where �(k) = �(k+ k

C

0

(k)) +�

0

(k+ �(k)) and

�(k) = �

0

(�(k)).

The 
omputational variant of indi�erentiability is obtained by requiring S to be eÆ
ient

and the advantage �

D

([F

pub

;F

priv

℄; [S(G

pub

);G

priv

℄) to be negligible for all eÆ
ient D. Com-

putational redu
ibility is de�ned a

ordingly. In the information theoreti
 
ase, it is sometimes

desirable to prove that the simulator is eÆ
ient when queried by an eÆ
ient distinguisher,

as this then implies the 
orresponding 
omplexity-theoreti
 statement. We refer the reader

to [23, 13℄ for the impli
ations of 
omputational indi�erentiability.

In 
ontrast, as long as we are only interested in ex
luding generi
 atta
ks against se
urity

properties of a random fun
tion, the running time of the simulator is irrelevant. If C(�) is

an (�; �)-redu
tion of a puRO O : f0; 1g

�

! f0; 1g

n

(or of a puRF R

0

: f0; 1g

m

! f0; 1g

`

) to a

puRF R : f0; 1g

n

! f0; 1g

n

, then C(R) inherits all the se
urity properties of the truly-random

6

Formally, this 
an be seen as a random system with a single interfa
e and two types of queries.

7

For this reason, we generally write both R

pub

and R

priv

as R.

7
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Figure 1: Main 
onstru
tion, where F

1

; : : : ;F

r

and G

1

; : : : ;G

t

are independent puRF's and

E

1

; : : : ; E

r

: f0; 1g

m

! f0; 1g

n

are eÆ
iently-
omputable fun
tions.

ora
leO (or ofR

0

), as long as the number of queries keeps �(k) small: Any adversary Amaking k

queries (to both R and C(R)) and breaking some property of C(R) with probability �(k) 
an

be transformed (
ombining it with the simulator) into an adversary A

0

making at most k+�(k)

queries to O and breaking the same property for O with probability at least �(k)� �(k), and

if no su
h A

0


an exist, then also no adversary A exists. The a
tual running time of A

0

is

irrelevant, as the se
urity of a random fun
tion (or ora
le) with respe
t to a 
ertain property

is determined by the number of queries of the adversary, and not by its running time.

For example, if �(k) = �(k), then, given a random element s 2 f0; 1g

m

, no adversary 
an

�nd a se
ond preimage s

0

2 f0; 1g

m

with s

0

6= s and C(R)(s) = C(R)(s

0

) with probability

higher than �(k � 2

�n

) + �(k).

3 Beyond-Birthday Domain Extension for Publi
 Random Fun
-

tions

3.1 The Constru
tion

We �rst dis
uss at an abstra
t level the main 
onstru
tion of this paper (represented in Fig-

ure 1), whi
h implements a fun
tion mappingm-bit strings to `-bit strings from r+t independent

puRF's F

1

; : : : ;F

r

: f0; 1g

n

! f0; 1g

t�n

and G

1

; : : : ;G

t

: f0; 1g

n

! f0; 1g

`

(for given parame-

ters r; t, and �). Let E

1

; : : : ; E

r

: f0; 1g

m

! f0; 1g

n

be eÆ
iently-
omputable fun
tions (to be

instantiated below). On input s 2 f0; 1g

m

, the 
onstru
tion operates in three stages:

1. The values F

p

(E

p

(s)) = F

(1)

p

(E

p

(s))k � � � kF

(t)

p

(E

p

(s)) 2 f0; 1g

t�n

are 
omputed for all p =

1; : : : ; r, where F

(q)

p

(E

p

(s)) 2 f0; 1g

�n

for all q = 1; : : : ; t;

2. The value w(s) = w

(1)

(s)k � � � kw

(t)

(s) is 
omputed, where w

(q)

(s) equals (for all q =

1; : : : ; t) the �rst n bits of the produ
t

J

r

p=1

F

(q)

p

(E

p

(s)), and � denotes multipli
ation

in GF (2

�n

) with �n-bit strings interpreted as elements of the �nite �eld GF (2

�n

);

3. Finally, the value

L

t

q=1

G

q

(w

(q)

(s)) is output.

8



Our approa
h relies on the observation that if for ea
h new query to the 
onstru
tion with

input s 2 f0; 1g

m

there exists an index q 2 f1; : : : ; tg for whi
h G

q

has not been queried

yet at the value w

(q)

(s), either dire
tly at its publi
 interfa
e or by the 
onstru
tion at the

private interfa
e, the resulting output value is uniformly distributed and independent from all

previously-returned values. This resembles the approa
h taken to extend the domain of (se
ret)

random fun
tions [1, 4, 21℄. However, we stress that the role of the �rst two stages (in
luding

the fun
tions E

1

; : : : ; E

r

) is 
ru
ial here: Not only they have to guarantee that su
h an index q

always exists, but they must also permit simulation of the puRF's F

1

; : : : ;F

r

and G

1

; : : : ;G

t

given only a

ess to the publi
 interfa
e of an (ideal) puRF R : f0; 1g

m

! f0; 1g

`

, without

seeing the queries made to the private interfa
e of R. Also, the probability that the simulation

fails must be small enough to allow se
urity beyond the birthday barrier.

3.2 Input-Restri
ting Fun
tions

For every s 2 f0; 1g

m

one 
an always learn the value w(s) by querying the publi
 inter-

fa
es of F

1

; : : : ;F

r

with appropriate inputs E

1

(s); : : : ; E

p

(s), respe
tively. For every su
h s,

the sum

L

t

q=1

G

q

(w

(q)

(s)) equals the output of the 
onstru
tion on input s. The simulator

must ensure that its answers for queries to the fun
tions G

1

; : : : ;G

t

are 
onsistent with these


onstraints. However, if E

1

; : : : ; E

r

allow a relatively small number of queries to the fun
-

tions F

1

; : : : ;F

t

to reveal a too large number of values w(s), then the simulator possibly fails

to satisfy all 
onstraints. For example, the Benes 
onstru
tion [1℄ adopts an approa
h similar

to the one of our 
onstru
tion, but su�ers from this problem and its se
urity in the setting of

puRF's is inherently bounded by the birthday barrier (
f. Appendix B for further details).

To over
ome this problem, we introdu
e the following 
ombinatorial notion.

De�nition 4. Let � 2 (0; 1) , and let m > n. A family E of fun
tions E

1

; : : : ; E

r

: f0; 1g

m

!

f0; 1g

n

is 
alled (m; Æ; �)-input restri
ting if it satis�es the following two properties:

Inje
tive. For all s 6= s

0

2 f0; 1g

m

, there exists p 2 f1; : : : ; rg su
h that E

p

(s) 6= E

p

(s

0

).

Input-Restri
ting. For all subsets U

1

; : : : ;U

r

� f0; 1g

n

su
h that jU

1

j + � � � + jU

r

j � 2

n(1��)

,

we have

�

�

�

fs 2 f0; 1g

m

jE

p

(s) 2 U

p

for all p = 1; : : : ; rg

�

�

�

� Æ � (jU

1

j+ � � � + jU

r

j) :

It is easy to see that Æ � 1=r must hold. Furthermore, we need r � n � m for the family to

be inje
tive. When talking about eÆ
ien
y, we 
an naturally extend the notion to asymptoti


families E = fE

n

g

n2N

of fun
tion families by letting m, Æ, �, and r be fun
tions of n, and E

n

=

fE

n

1

; : : : ; E

n

r(n)

g, with E

n

p

: f0; 1g

m(n)

! f0; 1g

n

. In parti
ular, note that we allow the size of

the family to grow with the se
urity parameter. The family E

n

is 
alled expli
it if r = r(n)

is polynomial in n and if there exists a (uniform) polynomial-time (in n) algorithm E that

outputs E

n

p

(s) 2 f0; 1g

n

on input n 2 N, s 2 f0; 1g

m(n)

, and p 2 f1; : : : ; r(n)g. The family is

additionally 
alled invertible if there exists an algorithm whi
h on input the sets U

1

; : : : ;U

r

�

f0; 1g

n

and n returns the set of all s 2 f0; 1g

m

for whi
h E

p

(s) 2 U

p

for all p = 1; : : : ; r in time

polynomial in jU

1

j + � � � + jU

r

j and in n. We will not, however, stress the asymptoti
 point of

view in the following, as long as it is 
lear from the 
ontext that the statements 
an be also

formalized in this sense.

We postpone the dis
ussion of the existen
e of expli
it fun
tion families to Se
tion 4,

where we 
onstru
t (for all 
onstants �) expli
it families of (m; Æ; �)-input-restri
ting fun
tions

9



for all polynomials m and suÆ
iently-small Æ using highly unbalan
ed expander graphs with

polynomial-degree.

3.3 Main Result

Let � 2 (0; 1). The 
on
rete 
onstru
tionC

E

�;m;`

(�) is obtained from the des
ription in Se
tion 3.1

by instantiating the fun
tions E

1

; : : : ; E

r

with an expli
it family E = fE

1

; : : : ; E

r

g of (m; Æ; �)-

input restri
ting fun
tions with n-bit output. Also, we let � :=

�

m

n

+ 2� �

�

and t := d2=�� 1e.

Note that underlying r + t puRF's 
an be seen as a single puRF R

0

: f0; 1g

n+�(n)

! f0; 1g

n

,

where �(n) = dlog(r �t�+t`=n)e. If m, `, and 1=� are polynomial in n, then in parti
ular �(n) =

O(log n). Also, it is easy to see that C

E

�;m;`

(�) is eÆ
ient, as long as the fun
tion family E is

expli
it. The following is the main theorem of this paper and it is proved in the next se
tion.

Theorem 3. The 
onstru
tion C

E

�;m;`

(�) is an (�; �)-redu
tion of the puRF R : f0; 1g

m

!

f0; 1g

`

to the puRF's F

1

; : : : ;F

r

: f0; 1g

n

! f0; 1g

t��n

and G

1

; : : : ;G

t

: f0; 1g

n

! f0; 1g

`

,

where for all k � 2

n(1��)

� r,

�(k) � 2r

t

(Æ + 1)

t+1

� k

t+2

� 2

�nt

+

1

2

t(Æ + 1) � k � (k + 2r + 1) � 2

m��n

and �(k) � Æ(n) � k. If the family E is invertible, the simulator runs in time polynomial in k

and n, and in parti
ular C

E

�;m;`

(�) is also a 
omputational redu
tion.

We remark the following two important 
onsequen
es of Theorem 3.

� First, if � is 
onstant and r; Æ polynomial in n, the above advantage �(k) is negligible for

all parameters k up to k = 2

n(1��)

� r. In parti
ular, 
hoosing � <

1

2

leads to se
urity

beyond the birthday barrier,

8

and we are going to provide input-restri
ting families of

fun
tions with appropriate parameters in Se
tion 4.

� Se
ond, the result 
an be used to extend the domain of a puRF R

0

: f0; 1g

n

! f0; 1g

n

with se
urity up to 2

n(1��)

queries: One 
hooses any � < � and n

0

maximal su
h that n

0

+

�(n

0

) � n, and interprets the fun
tion R

0

as a puRF f0; 1g

n

0

+�(n

0

)

! f0; 1g

n

0

by dropping

approximately �(n

0

) bits of the output. The above advantage is still negligible for all k �

2

n

0

(1��)

� r, and hen
e for all k � 2

n(1��)

for n large enough, sin
e n� n

0

= o(n).

3.4 Proof of Theorem 3

We prove that there exists a simulator S su
h that �

D

(H

1

;H

2

) is bounded by the above

expression for all distinguishers D making at most k � 2

n(1��)

� r queries, where for notational


onvenien
e H

1

and H

2

are de�ned as

H

1

:= [F

1

; : : : ;F

r

;G

1

; : : : ;G

t

;C

E

�;m;`

(F

1

; : : : ;F

r

;G

1

; : : : ;G

t

)℄

H

2

:= [S(R);R℄:

There are three types of queries to the systems H

1

and H

2

: The �rst two types are F-queries,

denoted (F; p; u) for p 2 f1; : : : ; rg and u 2 f0; 1g

n

, and G-queries, denoted (G; q; v), for v 2

f0; 1g

n

and q 2 f1; : : : ; tg. In H

1

, a query (F; p; u) returns the value F

p

(u) and a query (G; q; v)

returns the value G

q

(v), while in H

2

both query-types are answered by the simulator S. The

8

Note that � 
ould even be some fun
tion going (slowly) towards zero, even though this may require setting t

di�erently.
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upon re
eiving an F-query x

i

= (F; p; u) for the �rst time:

if F

p

(u) is unde�ned then

set F

p

(u) to a uniform random value


ompute �S

i

:= fs

1

; : : : ; s

j�S

i

j

g

for j := 1 to j�S

i

j do

let q

j

2 f1; : : : ; tg be su
h that w(s

j

)

(q

j

)

=2 w

(q

j

)

(S

i�1

[ fs

1

; : : : ; s

j�1

g) [ G

q

j

;i�1

if no su
h q

j

exists then abort

for all q 6= q

j

do

if G

q

(w

(q)

(s

j

)) is unde�ned then set G

q

(w

(q)

(s

j

)) to a uniform random value

G

q

j

(w

(q

j

)

(s

j

)) := R(s

j

)�

L

q 6=q

j

G

q

(w

(q)

(s

j

))

return F

p

(y)

upon re
eiving a G-query x

i

= (G; q; v) for the �rst time:

if G

q

(v) is unde�ned then

set G

q

(v) to a uniform random value

return G

q

(v)

Figure 2: Simulator S in the proof of Theorem 3. The simulator also 
onstantly keeps tra
k of

the sets F

p;i

and G

q;i

for all p = 1; : : : ; r, q = 1; : : : ; t, and i = 1; 2; : : :.

third type of queries, 
alled R-queries, are denoted (R; s) for s 2 f0; 1g

m

and are answered

by the 
onstru
tion C

E

�;m;`

(�) in H

1

, and by the private interfa
e of the random fun
tion R

in H

2

. Given the �rst i queries x

i

= [x

1

; : : : ; x

i

℄, where x

j

2 f(F; p; u); (G; q; v); (R; s)g for

all j = 1; : : : ; i, we de�ne for all indi
es p and q the sets F

p;i

and G

q;i

that 
ontain, respe
tively,

all values u 2 f0; 1g

n

for whi
h a query (F; p; u) and all v 2 f0; 1g

n

for whi
h a query (G; q; v)

appears in x

i

. Also, we let R

i

be the set of values s 2 f0; 1g

m

for whi
h a query (R; s)

appears in x

i

, and we let S

i


onsist of all the values s 2 f0; 1g

m

su
h that E

p

(s) 2 F

p;i

for

all p = 1; : : : ; r. Furthermore, let �S

i

:= S

i

n S

i�1

. Noti
e that the set S

i


ontains all inputs

for whi
h the values returned by the �rst i queries allow to 
ompute the value w(s). Clearly,

jS

i

j =

P

i

j=1

j�S

j

j � Æ � i for all i � 2

n(1��)

, sin
e the family E is input-restri
ting. For s 2 S

i

,

we de�ne w(s) = w

(1)

(s)k � � � kw

(t)

(s) as in the des
ription of C

E

�;m;`

(�) a

ording to the answers

of the �rst queries, and for a set S � S

i

we use the shorthand w

(q)

(S) := fw

(q)

(s) j s 2 Sg.

The simulator S de�nes the fun
tion tables of F

1

; : : : ;F

r

and of G

1

; : : : ;G

t

dynami
ally.

That is, all values F

p

(u) and G

q

(v) are initially unde�ned for all u; v 2 f0; 1g

n

and indi
es p

and q. Upon pro
essing a new F-query x

i

= (F; p; u), the simulator sets the value F

p

(u) to

a fresh random value and 
omputes the set �S

i

: The simulator knows this set, as it pro-


esses all F-queries. For ea
h s 2 �S

i

, the equality

L

t

q=1

G

q

(w

(q)

(s)) = R(s) must be satis-

�ed, and hen
e S tries to satisfy these 
onstraints by appropriately setting the values of the

fun
tions G

1

; : : : ;G

t

. More pre
isely, it looks for an ordering of �S

i

= fs

1

; : : : ; s

j�S

i

j

g with

the property that for all j = 1; : : : ; j�S

i

j there exists q

j

2 f1; : : : ; tg su
h that w

(q

j

)

(s

j

) =2

fw

(q

j

)

(s

1

); : : : ; w

(q

j

)

(s

j�1

)g [ G

q;i�1

, and sets G

q

j

(w

(q

j

)

(s

j

)) := R(s

j

) �

L

q 6=q

j

G

q

(w

(q)

(s

j

))

for j = 1; : : : ; j�S

i

j, where ea
h unde�ned value in the sums is set to an independent ran-

dom value. A query to the publi
 interfa
e of R is issued in order to learn R(s

j

). If no

su
h ordering exists, then the simulator aborts.

9

Finally, the value F

p

(u) is returned. For a

9

Note that there is no need to formalize the exa
t meaning of abortion, sin
e whenever the simulator fails to

�nd su
h an ordering, then the distinguisher is assumed to win.

11



query x

i

= (G; q; v), the simulator returns G

q

(v), de�ning it to a random value if unde�ned. In

Figure 2, we provide a detailed pseudo-
ode des
ription of the simulator S. The number of R-

queries made by the simulator after i � 2

n(1��)

queries is jS

i

j � Æ �i. Also, as long as the family E

is invertible and an appropriate ordering 
an be eÆ
iently found, its running time is eÆ
ient

in k and n. In fa
t, we show that with very high probability any ordering 
an be used. Without

loss of generality, it is 
onvenient to advan
e the generation of the random fun
tions F

1

; : : : ;F

r

to the initialization phase, that is, their entire fun
tion tables are generated on
e uniformly at

random in both H

1

and H

2

. Subsequently, all queries (F; p; u) are answered a

ording to the

initial 
hoi
e. In parti
ular, this means that in H

2

the simulator S uses the value F

p

(u) already

de�ned instead of generating a new fresh random value. It is 
lear that the behavior of both

systems is un
hanged. This also allows us to de�ne the value w(s) = w

(1)

(s)k � � � kw

(t)

(s) for

all s 2 f0; 1g

m

and ea
h su
h value indu
es a 
onstraint, namely the answer of anR-query (R; s)

must equal

L

t

q=1

G

q

(w

(q)

(s)). Su
h a 
onstraint remains hidden until s 2 �S

i

from some i,

and in this 
ase the simulator attempts to �ll the fun
tion tables of G

1

; : : : ;G

t


onsistently.

To avoid possible problems, we have to a

ount for two things 
aptured by the two following

monotone 
onditions whi
h we de�ne on both H

1

and H

2

:

(a) The monotone 
ondition A = A

0

; A

1

; : : : fails at query i if there exists an s 2 �S

i

su
h

that w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

for all q = 1; : : : ; t.

(b) The monotone 
ondition B = B

0

; B

1

; : : : fails at query i if there exists s 2 R

i

n S

i

su
h

that w

(q)

(s) 2 w

(q)

(S

i

[R

i

n fsg) [ G

q;i

for all q = 1; : : : ; t.

As long as A does not fail, the simulator never aborts. This in parti
ular implies that R-

queries (R; s) for s 2 S

i

in H

2

are 
onsistent with G-queries answered by the simulator. How-

ever, allR-queries (R; s) for s =2 S

i

are answered independently and uniformly at random inH

2

,

and B ensures that this happens in H

1

as well. In Se
tion 3.5, we prove the following lemma,

whi
h formalizes this argument and states that as long as neither A nor B fail, then H

1

and H

2

behave identi
ally.

Lemma 4. H

A^B

1

� H

A^B

2

.

To provide some intuition as to why the probability that a distinguisher D makes A ^ B

fail is small, let us assume �rst that for any two distin
t s; s

0

2 f0; 1g

m

(su
h that at least one

of them is not in S

i

) and for all q = 1; : : : ; t, the probability (
onditioned on the answers to

the previous queries) that w

(q)

(s) = w

(q)

(s

0

) is bounded by some small value ' (say ' � 2

�n

).

In order to upper bound the probability of A failing after query i, 
ombining the union bound

with the above assumption we see that P(w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

) � jw

(q)

(S

i

n fsg) [

G

q;i�1

j � ' � (Æ + 1) � i � ' for all s 2 �S

i

, sin
e E is input-restri
ting. Furthermore, for all

distin
t q; q

0

2 f1; : : : ; tg and s; s

0

2 f0; 1g

n

(possibly s = s

0

), the stru
ture of the �rst two

stages of C

E

�;m;`

(�) ensures that the values w

(q)

(s) and w

(q

0

)

(s

0

) are statisti
ally independent,

and hen
e

P(8q : w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

) � (Æ + 1)

t

� i

t

� '

t

:

Therefore, the probability p

H

1

A

i

jX

i

Y

i�1

A

i�1

(x

i

; y

i�1

) = p

H

2

A

i

jX

i

Y

i�1

A

i�1

(x

i

; y

i�1

) that there exists

an s 2 �S

i

making A fail after query i is bounded by j�S

i

j � (Æ + 1)

t

� i

t

� '

t

, where j�S

i

j is

small for all i � 2

n(1��)

.

Nevertheless, turning this intuition into a formal proof (and extending it to the monotone


ondition B) requires additional 
are. The probability that w

(q)

(s) equals w

(q)

(s

0

) happens to

be small only with overwhelming probability (taken over the answers to the previous queries):

12



This fa
t follows from the use of multipli
ation in GF (2

�n

) and the 
hoi
e of a suÆ
iently large

parameter �.

In parti
ular, Se
tion 3.6 provides a 
omplete proof of the following lemma.

Lemma 5. For all distinguishers D making at most k � 2

n(1��)

� r queries we have

�

D

(H

A^B

1

) = �

D

(H

A^B

2

) � 2r

t

(Æ + 1)

t+1

� k

t+2

� 2

�nt

+

1

2

t(Æ + 1) � k � (k + 2r + 1) � 2

m��n

:

By 
ombining Lemmas 4 and 5, Theorem 3 follows making use of Lemma 1.

3.5 Proof of Lemma 4

We want to prove that p

H

1

Y

i

A

i

B

i

jX

i

= p

H

2

Y

i

A

i

B

i

jX

i

for all i � 1. We �x the �rst i queries x

i

=

[x

1

; : : : ; x

i

℄, and assume without loss of generality that w

(q)

(S

i

) � G

q;i

for all q = 1; : : : ; t. If this

does not hold, we 
an extend x

i

to a j-tuple x

j

= [x

1

; : : : ; x

i

; x

i+1

; : : : ; x

j

℄, where the last j � i

queries are all G-queries (G; q; v) for all q = 1; : : : ; t and v 2 w

(q)

(S

i

) n G

q;i

(in any order). It is

easy to verify that if A

i

and B

i

hold, then also A

j

and B

j

hold, and hen
e

p

H

b

Y

i

A

i

B

i

jX

i

(y

i

; x

i

) =

X

y

i+1

;:::;y

j

p

H

b

Y

j

A

j

B

j

jX

j

([y

1

; : : : ; y

i

; y

i+1

; : : : ; y

j

℄; x

j

); (1)

and hen
e it is suÆ
ient to prove equality for input sequen
es with w

(q)

(S

i

) � G

q;i

for all q =

1; : : : ; t, as the general 
ase follows by (1).

We denote by F the random variable representing the 
on
atenation of the random tables

of the puRF's F

1

; : : : ;F

r

. For b 2 f1; 2g, summing over all possible values of F yields

p

H

b

A

i

B

i

Y

i

jX

i

=

X

F

p

H

b

F jX

i

� p

H

b

A

i

B

i

jX

i

F

� p

H

b

Y

i

jX

i

FA

i

B

i

:

Clearly, we have p

H

1

F jX

i

= p

H

2

F jX

i

, sin
e the fun
tion tables are 
hosen uniformly in both H

1

and H

2

. Also, we have p

H

1

A

i

B

i

jX

i

F

= p

H

2

A

i

B

i

jX

i

F

2 f0; 1g, as A

i

and B

i

depend deterministi
ally

on X

i

and F . Finally, we show that p

H

1

Y

i

jX

i

FA

i

B

i

= p

H

2

Y

i

jX

i

FA

i

B

i

. Note that sin
e F is �xed, in

both systems F-queries are obviously answered in the same way.

In system H

1

, if we restri
t ourselves to the outputs of the G-queries, then the values

returned are uniform and independent. Furthermore for every R-query (R; s) su
h that s 2 S

i

the value returned is uniquely determined by the answers to theG-queries as

L

t

q=1

G

q

(w

(q)

(s)),

and all these G-queries are asked, sin
e w

(q)

(S

i

) � G

q;i

for all q = 1; : : : ; t by assumption.

Finally, for all s 2 R

i

n S

i

, sin
e B

i

holds, there exists a q su
h that w

(q)

(s) =2 w

(q)

(S

i

[ R

i

n

fsg) [ G

q;i

: the value G

q

(w

(q)

(s)) is random and independent of all other returned values, and

every su
h R-query returns a random value whi
h is independent of all other values.

For system H

2

, sin
e A

i

holds, it also easy to see (by the 
onstru
tion of the simulator)

that the joint probability distribution of the outputs of all G-queries is uniform. Furthermore,

an R-query (R; s) with s 2 S

i

n R

i

is always answered by an independent and uniform random

value, sin
e these queries are answered by a random fun
tion. However, if s 2 S

i

, then the

answer is determined uniquely by the answers to G-queries, again by the 
onstru
tion of the

simulator.
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3.6 Proof of Lemma 5

We �rst re
all the following well-known result, of whi
h we omit the proof.

Theorem 6 (S
hwartz-Zippel). Let F be a �nite �eld, and let P 2 F[X

1

; : : : ;X

n

℄ be an n-

variate polynomial over F with degree d. Then, the number of tuples (x

1

; : : : ; x

n

) 2 F

n

that

satisfy P (x

1

; : : : ; x

n

) = 0 is at most d � jFj

n�1

.

For our setting F = GF (2

�n

), and we work with some representation of the elements as

�n-bit strings. We need the following simple 
orollary of Theorem 6.

Corollary 7. Let a; b 2 GF (2

�n

), not both equal to 0, let X

1

; : : : ;X

N

2 GF (2

�n

) be independent

and uniformly-distributed random variables, and let J ;J

0

� f1; : : : ; Ng. Then:

(i) If J 6= J

0

, then P((a �

J

j2J

X

j

)j

n

= (b �

J

j2J

0

X

j

)j

n

) � maxfjJ j; jJ

0

jg � 2

�n

.

(ii) If J = J

0

and a 6= b, then P(a �

J

j2J

X

j

j

n

= b �

J

j2J

0

X

j

j

n

) � jJ j � 2

�n

.

Throughout the proof of Lemma 5, we work with system H

2

, as this makes some arguments

easier. Noti
e that Lemmas 1 and 4 allow this, sin
e �

D

(H

A^B

1

) = �

D

(H

A^B

2

) for all distin-

guishers D. First, we introdu
e some additional notation. For i � 1, let x

i

= [x

1

; : : : ; x

i

℄ be the

�rst i queries, where x

j

2 f(F; p; u); (G; q; v); (R; s)g for all j = 1; : : : ; i. For any s 2 f0; 1g

m

,

de�ne the set P

i

(s) as the set of indi
es p 2 f1; : : : ; rg su
h that x

j

= (F; p; E

p

(s)) appears

among the �rst i queries. Furthermore, we let w

i

(s) = w

(1)

i

(s)k � � � kw

(t)

i

(s) be the 
omponent-

wise produ
t of the values F

p

(E

p

(s)) for all p 2 P

i

(s), that is w

(q)

i

(s) :=

J

p2P

i

(s)

F

(q)

p

(E

p

(s))

for all q = 1; : : : ; t.

We also need to introdu
e two additional monotone 
onditions for the remainder of the

proof. The 
ondition C = C

0

; C

1

; : : : fails after i queries if there exists distin
t s; s

0

2 f0; 1g

m

su
h that P

i

(s) = P

i

(s

0

), E

�p

(s) = E

�p

(s

0

) for all �p =2 P

i

(s), and w

(q)

i

(s) = w

(q)

i

(s

0

) for some q 2

f1; : : : ; tg. Note that the fa
t that C

0

holds follows from the fa
t that the family E is inje
tive.

Also, a further monotone 
onditionD = D

0

;D

1

; : : : fails after i queries if there exists s 2 f0; 1g

m

su
h that w

(q)

i

(s) = 0 for some q 2 f1; : : : ; tg. Clearly, P

DÆH

2

(A

k

_ B

k

) � P

DÆH

2

(A

k

_ B

k

_

C

k

_D

k

).

We also de�ne a (non-monotone!) sequen
e of events U

0

; U

1

; U

2

; : : : su
h that U

i

is false if

there exists s 2 �S

i

su
h that w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i

for all q = 1; : : : ; t. A further

(non-monotone) sequen
e of events V

0

; V

1

; : : : is su
h that V

i

is false if there exists s 2 R

i

n S

i

su
h that w

(q)

(s) 2 w

(q)

(S

i

[ R

i

n fsg) [ G

q;i

. If A

k

_ B

k

_ C

k

_ D

k

holds, there must exist

an i 2 f1; : : : ; kg su
h that (at least) one of the following events o

urs: (i) D

i

^ D

i�1

, (ii)

C

i

^ C

i�1

^D

i�1

, (iii) U

i

^ C

i�1

^D

i�1

, or (iv) V

i

^ C

i

^D

i

. Using the union bound and the

fa
t that P(E ^ E

0

) � P(E

0

jE) for any two events E and E

0

su
h that P(E) � 0, we obtain

P

DÆH

2

(A

k

_B

k

) �

k

X

i=1

P

DÆH

2

(D

i

jD

i�1

) +

k

X

i=1

P

DÆH

2

(C

i

jC

i�1

D

i�1

)

+

k

X

i=1

P

DÆH

2

(U

i

jC

i�1

D

i�1

) +

k

X

i=1

P

DÆH

2

(V

i

jC

i

D

i

) (2)

The following lemma is the 
entral step in the proof of Lemma 5.

Lemma 8. For all i � 2

n(1��)

� r, all x

i

, y

i�1

, and y

i

, we have
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(i) p

H

2

D

i

jX

i

Y

i�1

D

i�1

(x

i

; y

i�1

) � t � 2

m��n

;

(ii) p

H

2

C

i

jX

i

Y

i�1

C

i�1

D

i�1

(x

i

; y

i�1

) � t � Æ � (i+ r) � 2

m��n

;

(iii) p

H

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

(x

i

; y

i�1

) � j�S

i

j � (Æ + 1)

t

� i

t

� 2

�nt

;

(iv) p

H

2

V

i

jX

i

Y

i

C

i

D

i

(x

i

; y

i

) � r

t

� (Æ + 1)

t

� i

t+1

� 2

�nt

.

Before we turn to the proof of Lemma 8, we brie
y show that it implies the upper bound

in the proof of Lemma 5. Sin
e the bounds hold for all x

i

, y

i�1

, and y

i

that 
an appear, they

also 
learly hold without being 
onditioned on these values by a simple averaging argument.

Therefore, we obtain for all k � 2

n(1��)

� r,

k

X

i=1

P

DÆH

2

(D

i

jD

i�1

) � k � t � 2

m��n

; (3)

k

X

i=1

P

DÆH

2

(C

i

jC

i�1

D

i�1

) � t � Æ � 2

m��n

�

k

X

i=1

(i+ r) = t � Æ �

k(k + 2r + 1)

2

� 2

m��n

: (4)

Also, generously bounding j�S

i

j � Æ � i, we have

k

X

i=1

P

DÆH

2

(U

i

jC

i�1

D

i�1

) +

k

X

i=1

P

DÆH

2

(V

i

jC

i

D

i

) � 2 � r

t

� (Æ + 1)

t+1

� 2

�nt

�

k

X

i=1

i

t+1

� 2 � r

t

� (Æ + 1)

t+1

� k

t+2

� 2

�nt

:

(5)

Plugging (3), (4) and (5) into (2) yields the desired upper bound. We �nally turn ba
k to the

proof of Lemma 8

Proof of Lemma 8. For (i), (ii), and (iii), assume that the i'th query is a new F-query x

i

=

(F; p; u), all other types of queries 
annot provoke the failure of the 
onditions. In parti
ular,

let U = [U

(1)

; : : : U

(t)

℄ 2 f0; 1g

t��n

be the random value returned by the query, whi
h is inde-

pendent from all other previously-returned values. In fa
t, this is the only randomness involved

in 
omputing the �rst three probabilities (and we use the notation P

U

to stress this fa
t).

For (i), sin
e D

i�1

holds, we have w

(q)

i�1

(s) 6= 0 for all s 2 f0; 1g

m

and all q = 1; : : : ; t. Hen
e,

the union bound and Theorem 6 imply

p

DÆH

2

D

i

jX

i

Y

i�1

D

i�1

�

X

s:E

p

(s)=u

P

U

(9q 2 f1; : : : ; tg : w

(q)

i�1

(s)� U

(q)

= 0) � t � 2

m

� 2

��n

:

To prove (ii) 
hoose any s 2 f0; 1g

m

with the property that E

p

(s) = u, and de�ne the set S

0

of those s

0

2 f0; 1g

m

su
h that P

i�1

(s) = P

i�1

(s

0

) and E

�p

(s) = E

�p

(s

0

) for all �p =2 P

i�1

(s).

(In parti
ular, E

p

(s

0

) = u for all s

0

2 S

0

.) Also, let S

00

be the set of those s

00

2 f0; 1g

m

with P

i�1

(s

00

) = P

i�1

(s) [ fpg, and E

�p

(s) = E

�p

(s

00

) for all �p =2 P

i�1

(s

00

). Let C

i;s

denote the

event that there exists �s 2 S

0

[S

00

n fsg su
h that w

(q)

i

(s) = w

(q)

i

(�s) for some q 2 f1; : : : ; tg. By

repeatedly applying the union bound, we derive

p

DÆH

2

C

i;s

jX

i

Y

i�1

C

i�1

D

i�1

�

t

X

q=1

P

U

(9s

0

2 S

0

: w

(q)

i�1

(s)� U

(q)

= w

(q)

i�1

(s

0

)� U

(q)

)

+ P

U

(9s

00

2 S

00

: w

(q)

i�1

(s)� U

(q)

= w

(q)

i

(s

00

)) � t � (jS

0

j+ jS

00

j) � 2

��n

;
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sin
e w

(q)

i�1

(s) 6= w

(q)

i�1

(s

0

) for all s

0

2 S

0

by C

i�1

, and sin
e w

(q)

i�1

(s) 6= 0 by D

i�1

, and hen
e we


an use Theorem 6. Furthermore, jS

0

j+ jS

00

j � Æ � (i+ r), as E is input-restri
ting and at most

additional r � jP

i�1

(s)j � 1 � r queries reveal the values w(s) for the inputs in S

0

[ S

00

. Using

on
e again the union bound, we 
on
lude

p

DÆH

2

C

i

jX

i

Y

i�1

C

i�1

D

i�1

�

X

s:E

p

(s)=u

p

DÆH

2

C

i;s

jX

i

Y

i�1

C

i�1

D

i�1

� t � Æ � (i+ r) � 2

m��n

:

To prove (iii), note that s 2 �S

i

implies that P

i�1

(s) = f1; : : : ; rg�fpg. Also note that w

(q)

(s) =

w

(q)

i�1

� U

(q)

j

n

for all s 2 �S

i

. Sin
e the randomness of ea
h �n-bit blo
k is independent, we

upper bound

p

DÆH

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

= P

U

�

_

s2�S

i

^

1�q�t

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

�

X

s2�S

i

t

Y

q=1

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

: (6)

We �x some s 2 �S

i

and some q 2 f1; : : : ; tg and see that

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

n fsg) [ G

q;i�1

�

� P

U

�

w

(q)

(s) 2 w

(q)

(�S

i

n fsg)

�

+ P

U

�

w

(q)

(s) 2 w

(q)

(S

i�1

)

�

+ P

U

(w

(q)

(s) 2 G

q;i�1

)

First, sin
e D

i�1

holds, w

(q)

i�1

(s) 6= 0 for all s 2 �S

i

, and hen
e P

U

(w

(q)

i�1

(s)�U

(q)

j

n

2 G

q;i�1

) �

jG

q;i�1

j � 2

�n

� i � 2

�n

by Corollary 7. For the same reason,

P

U

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

�

X

s

0

2S

i�1

P

U

�

w

(q)

i�1

(s)� U

(q)

j

n

= w

(q)

(s

0

)

�

� jS

i�1

j � 2

�n

:

Also, sin
e C

i�1

holds, we have w

(q)

i�1

(s) 6= w

(q)

i�1

(s

0

) for all s

0

2 �S

i

n fsg and all q = 1; : : : ; t,

and we obtain

P

�

w

(q)

(s) 2 w

(q)

(�S

i

n fsg)

�

�

X

s

0

2�S

i

nfsg

P

U

�

w

(q)

i�1

(s)� U

(q)

j

n

= w

(q)

i�1

(s

0

)� U

(q)

j

n

�

;

whi
h is bounded by j�S

i

j � 2

�n

, on
e again as a 
onsequen
e of Corollary 7. Plugging these

bounds into (6) leads to

p

DÆH

2

U

i

jX

i

Y

i�1

C

i�1

D

i�1

� j�S

i

j �

t

Y

q=1

�

j�S

i

j+ jS

i�1

j+ jG

q;i�1

j

�

| {z }

�(Æ+1)�i

�2

�n

� j�S

i

j � (Æ + 1)

t

� i

t

� 2

�nt

:

To prove (iv), note that the values w

(q)

(s) for all s 2 R

i

n S

i

have all the form w

(q)

i

(s) �

J

p=2P

i

(s)

F

(q)

p

(E

p

(s)) for all q = 1; : : : ; t. Moreover, 
onditioned on the out
omes of X

i

and Y

i

as well as the events C

i

and D

i

, the values F

p

(E

p

(s)) for all s 2 R

i

n S

i

and p =2 P

i

(s) are

independent and uniformly distributed, and the probability for 
omputing the upper bound
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of (iv) is taken over these values. (We use the notation P

F

to stress this.) As we did in (iii),

we 
an upper bound

p

DÆH

2

V

i

jX

i

Y

i

C

i

D

i

�

X

s2R

i

nS

i

t

Y

q=1

h

P

F

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

+ P

F

�

w

(q)

(s) 2 w

(q)

(R

i

n (S

i

[ fsg)

�

+ P

F

�

w

(q)

(s) 2 G

q;i

�i

Sin
e D

i

holds, we have P

F

�

w

(q)

(s) 2 G

q;i

�

� r � jG

q;i

j � 2

�n

by Corollary 7, and for the same

reason P

F

�

w

(q)

(s) 2 w

(q)

(S

i

)

�

� r � Æ � i � 2

�n

. Furthermore, we note that again by applying

Corollary 7,

P

F

�

w

(q)

(s) 2 w

(q)

(R

i

n (S

i

[ fsg))

�

� r � jR

i

n S

i

j � 2

�n

sin
e for any s

0

2 R

i

n S

i

su
h that s

0

6= s we have

� either there exists p su
h that E

p

(s) 6= E

p

(s

0

) and p =2 P

i

(s)\P

i

(s

0

) holds, and Corollary 7

(i) applies;

� or P

i

(s) = P

i

(s

0

) 6= ; and E

p

(s) = E

p

(s

0

) for all p =2 P

i

(s), in whi
h 
ase w

(q)

i

(s) 6= w

(q)

i

(s

0

)

by C

i

, and thus Corollary 7 (ii) applies.

Therefore, 
ombining the di�erent bounds we get p

DÆH

2

V

i

jX

i

Y

i

C

i

D

i

� r

t

� (Æ + 1)

t

� i

t+1

� 2

�nt

.

4 Existen
e of Input-Restri
ting Fun
tion Families

In this following, we prove the existen
e of input-restri
ting fun
tion families as in De�nition 4,

and we study their relationship to highly unbalan
ed bipartite expander graphs. First, we re
all

the following de�nition.

De�nition 5. A bipartite graph G = (V

1

; V

2

; E) is (K; 
)-expanding if j�(X)j � 
 � jXj for all

subsets X � V

1

su
h that jXj � K, where �(X) � V

2

is the set of neighbors of X. Furthermore,

su
h a graph has left-degree D if the degree of all v 2 V

1

is bounded by D.

In the asymptoti
 
ase, a family of graphs G = (V

1

; V

2

; E) with V

1

:= f0; 1g

m(n)

, V

2

:=

f0; 1g

n

(parameterized by the se
urity parameter n) with left-degree D = D(n) is 
alled expli
it

if there exists a (uniform) algorithm whi
h, on input 1

n

, v 2 f0; 1g

m(n)

and i 2 f1; : : : ;D(n)g

outputs the i'th neighbor of v in time polynomial in n. (The ordering of the neighbors is

arbitrary.) It turns out that expli
it families with appropriate parameters imply the existen
e

of input-restri
ting families of fun
tions.

Lemma 9. Let m be su
h that m � n. Assume that there exists an expli
it family of bipartite

(K; 
)-expander graphs G = (V

1

; V

2

; E) with polynomially-bounded left-degree D where V

1

=

f0; 1g

m

and V

2

= f0; 1g

n

. Then, for all � > 0 su
h that � > 1�

log(K
)

n

for n large enough, there

exists an expli
it (m; Æ; �)-input-restri
ting family of fun
tions with Æ = 


�1

and 
ardinality r :=

D + dm=ne. Furthermore, if dm=ne is 
onstant, then the family is invertible.
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Proof. First, we de�ne E

1

; : : : ; E

D

: f0; 1g

m

! f0; 1g

n

su
h that E

p

(s) is the p'th neighbor of s

for all p = 1; : : : ;D. Furthermore, the fun
tions E

D+1

; : : : ; E

D+dm=ne

are de�ned as E

D+p

(s) =

s

(p)

for p = 1; : : : ; dm=ne, where extra zeros are appended to s to make its length a multiple of n.

Let E = fE

1

; : : : ; E

r

g, where r := D + dm=ne. Clearly, the family is inje
tive. Furthermore,

expli
itness of the family is due to the the expli
itness of G and the fa
t that r is polynomial.

To prove the input-restri
ting property, assume towards a 
ontradi
tion that there exist

r sets U

1

; : : : ;U

r

� f0; 1g

n

with 
ardinality jU

1

j + � � � + jU

r

j � 2

n(1��)

su
h that jSj > Æ �

(jU

1

j+ � � � + jU

r

j), where S := fs 2 f0; 1g

m

jE

p

(s) 2 U

p

for all p = 1; : : : ; rg. Also, de�ne U :=

S

r

p=1

U

p

. Clearly, in G we have �(S) � U by the de�nition of E , and in parti
ular j�(S)j � jUj.

If jSj � K, then jUj � j�(S)j � Æ

�1

� jSj > Æ

�1

� Æ � (jU

1

j + � � � + jU

r

j) � jUj, whi
h leads to a


ontradi
tion. If jSj > K, take S

0

� S su
h that jS

0

j = K. Clearly, �(S

0

) � �(S). Additionally,

jUj � j�(S)j � j�(S

0

)j � 
 � jS

0

j = 
 �K > 2

n(1��)

, for n large enough by the 
hoi
e of �, whi
h

is a 
ontradi
tion.

Finally, the family is invertible if dm=ne is 
onstant: Given the sets U

1

; : : : ;U

D+dm=ne

, the

algorithm simply enumerates all s 2 f0; 1g

m

su
h that E

p

(s) 2 U

p

for all p = D + 1; : : : ;D +

dm=ne, and keeps only those satisfying E

p

(s) 2 U

p

for all p = 1; : : : ;D. This inversion algorithm

runs in time poly(n) � jU

D+1

j � � � jU

D+dm=ne

j.

For example, if a family exists with K = 2

n(1��)

and 
onstant expansion fa
tor 
 > 1,

then 1 �

logK


n

= � � o(1), and hen
e the family is (m; 


�1

; �)-input restri
ting. It remains

to show that an expli
it family of unbalan
ed expander graphs with suÆ
iently small (i.e.

polynomially-bounded) left-degree exists. Mu
h work in this area has been devoted to lossless

unbalan
ed expanders, i.e. with 
 � D, but the best known 
onstru
tions [32, 26℄ for this


ase for our 
hoi
e of parameters lead to either super-polynomial degree or a mu
h too small

bound K. However, we are satis�ed even if the expansion fa
tor is mu
h smaller than the left-

degree, as long as the latter stays small, and it is possible to obtain su
h graphs by appropriately


omposing known 
onstru
tions. In Appendix C.1 we prove the following theorem.

Theorem 10. For all polynomials 
 and 
onstants � 2 (0; 1), and all fun
tionsm (polynomially-

bounded in n), there exists an expli
it family of expander graphs G = (V

1

; V

2

; E) with V

1

=

f0; 1g

m

, V

2

= f0; 1g

n

whi
h is (2

n(1��)

; 
)-expanding and has left-degree polynomially-bounded

in n.

Note the te
hniques we dis
uss in Appendix C.1 even allow to obtain slightly stronger results,

for instan
e allowing � to be a moderately vanishing fun
tion (
f. the dis
ussion at the end

of Appendix C.1). Combining this with Lemma 9 we see that for all 
onstants � 2 (0; 1) there

exist expli
it (m; Æ; �)-input-restri
ting families with Æ

�1

polynomial in n. We note, however,

that by dropping the expli
itness requirement, families with mu
h better parameters exist. In

parti
ular, the following result is proved in Appendix C.2.

Lemma 11. Let K and 
 be arbitrary su
h that K �
 � 2

n

, and let m be su
h that m � n. There

exists a graph G = (V

1

; V

2

; E) where V

1

= f0; 1g

m

and V

2

= f0; 1g

n

whi
h is (K; 
)-expanding

and with left-degree D =

l

1+
 log e+m

n�log(K
)

+ 


m

.

For example, setting m = ` = 2n , 
 = 1 and K = 2

n(1��)

, we obtain left-degree D =

1+

2

�

+ (log e+1)=(� � n). For � =

1

4

and n = 128, this leads to a family of size 12 by Lemma 9.

Furthermore in this 
ase t = 7 and � = 4, and all these values do not grow with n. (And a similar

reasoning applies to all 
onstants � > 0.) With these parameters, the 
onstru
tion is of pra
ti
al

interest, as it only relies on the design of a se
ure 
omponent fun
tion f0; 1g

n

! f0; 1g

n

whi
h
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may be very eÆ
ient. We hope this to motivate further resear
h in de-randomizing families of

unbalan
ed expander graphs for a wider range of parameters.

5 Constru
ting Publi
 Random Ora
les

In this se
tion, we �rst review (a slightly generalized version of) the pre�x-free Merkle-Damg�ard


onstru
tion [13℄. Let n be the given output size, and let ` � n. We are given both a 
ompression

fun
tion f : f0; 1g

b+`

! f0; 1g

`

and a pre�x-free padding s
heme, that is, a mapping pad :

f0; 1g

�

!

�

f0; 1g

b

�

+

su
h that pad(s) is not a pre�x of pad(s

0

) for all distin
t s; s

0

2 f0; 1g

�

.

The pre�x-free Merkle-Damg�ard 
onstru
tion pfMD

b;`;n

(f) pro
eeds as follows. On input s 2

f0; 1g

�

, it 
omputes s

1

k � � � ks

l

= pad(s) (with s

i

2 f0; 1g

b

) and the 
haining values v

i

:=

f(s

i

; v

i�1

) for all 1 � i � l, where v

0

is set to some initialization ve
tor IV 2 f0; 1g

`

. Finally,

the 
onstru
tion outputs the �rst n bits of v

l

. The following theorem easily

10

follows from

Theorem 2 in [13℄.

Theorem 12. Let F : f0; 1g

`+b

! f0; 1g

`

be a puRF and let O : f0; 1g

�

! f0; 1g

n

be a

puRO. Then pfMD

b;`;n

(�) is an (�

0

; �

0

)-redu
tion of O to F with �

0

(k) = O((l

max

� k)

2

� 2

�`

)

and �

0

(k) = k, where l

max

is the maximal length (of the padding) of a message input to the


onstru
tion.

We note that there exists a trade-o� between the number of queries and the length of the

queries to the 
onstru
tion.

11

This issue is inevitable in all iterated 
onstru
tions. We take

now `, b > 0 as in the above explanation, and some � > 0. We set m := ` + b, and we

let E be an expli
it (m; Æ; �)-input restri
ting family of fun
tions. If given only a 
ompression

fun
tion R

0

: f0; 1g

n+�(n)

! f0; 1g

n

(for �(n) de�ned as in Se
tion 3.3), we obtain a 
on-

stru
tion pfMD

b;`;n

(C

E

�;m;`

(�)) whi
h repla
es 
alls to the 
ompression fun
tions by 
alls to the


onstru
tion C

E

�;m;`

(�). We obtain the following theorem using Lemma 2.

Theorem 13. The 
onstru
tion pfMD

b;`;n

(C

E

�;m;`

(�)) is an (�; �)-redu
tion of a puRO O :

f0; 1g

�

! f0; 1g

n

to R

0

, where �(k) = �((l

max

+ 1)k) + �

0

((Æ + 1)k) and �(k) = Æ � k, with �

and �

0

as in Theorems 3 and 12, respe
tively.

Setting ` > 2n(1� �) leads to se
urity for all distinguishers su
h that l

max

� k � �(2

n(1��)

).

We �nally note that our approa
h also works with all other known 
onstru
tions of a publi


random ora
le from a publi
 
ompression fun
tion, as for example the 
onstru
tions of [6, 12℄,

or other 
onstru
tions dis
ussed in [13℄.

Setting � small enough provides high levels of se
urity for properties like preimage resistan
e,

se
ond preimage resistan
e, multi
ollision resistan
e, or CTFP preimage resistan
e [18℄, and also

ex
ludes the existen
e of atta
ks for these properties (up to the obtained bound), that is, even

with respe
t to adversaries whi
h perform enough queries to �nd 
ollisions for the 
omponent

fun
tion f : f0; 1g

n

! f0; 1g

n

.

10

The only di�eren
e with respe
t to the original result is that we allow the 
haining value to be larger than

the output value, i.e. ` > n. The validity of our theorem follows from the simple observation (whi
h we do not

formalize) that dropping some bits of the output is a perfe
t redu
tion of publi
 random fun
tion to a perfe
t

random fun
tion with longer output size.

11

A possible distinguishing strategy would 
onsist of doing few very long queries, instead of many queries, and

se
urity is guaranteed only as long as l

max

� k < 2

`=2

.
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A Impossibility of Extending Random Primitives

We prove that if a publi
 random primitive R with N -bit table is extended to a publi
 random

primitives R

0

with N

0

-bit table, where N

0

> N , then we 
annot guarantee se
urity against

distinguishers retrieving at least 2N + 1 bits. The result is an appli
ation of the te
hniques

from [23℄ to publi
 random primitives, and for 
ompleteness we provide a self-
ontained proof

here. (Note that the results from [23℄ apply to a wider range of systems.)

Lemma 14. Let R and R

0

be publi
 random primitives with N and N

0

-bit fun
tion tables,

respe
tively, where N

0

> N . Furthermore, let C(�) be a deterministi
 and stateless 
onstru
tion.

Then, for all t > 0 (with N+t � N

0

) and all (not ne
essarily eÆ
ient) simulators S, there exists

a distinguisher D whi
h retrieves 2N+t bits, and su
h that �

D

([R;C(R)℄; [S(R

0

);R℄) � 1�2

�t

.

Proof. De�ne H

1

:= [R;C(R)℄ and H

2

:= [S(R

0

);R

0

℄. Without loss of generality assume that

the publi
 and the private interfa
es are a

essed bit-wise as N - and N

0

-bit tables. We 
onsider

the following distinguisher D whi
h, given the system H

b

= [H

pub

;H

priv

℄ (for b 2 f1; 2g), �rst

retrieves all N bits from H

pub

. Denote the resulting string as R 2 f0; 1g

N

. Note that the


onstru
tion C(�) 
an be seen as a mapping f0; 1g

N

! f0; 1g

N

0

, and the distinguisher (lo
ally)


omputes the �rst N + t bits R

0

2 f0; 1g

N+t

of C(R). Finally, it retrieves the �rst N + t

bits

e

R

0

2 f0; 1g

N+t

of H

priv

. If R

0

=

e

R

0

, it outputs 1, and 0 otherwise. Clearly P

DÆH

1

(R

0

=

e

R

0

) = 1. Note that, independently of the simulator S, there are at most 2

N

values the random

variable R

0


an take on, and let R

0

be the set of these values. Therefore, we have P

DÆH

2

(R

0

=

e

R

0

) � P

DÆH

2

(

e

R

0

2 R

0

) � 2

N

� 2

�(N+t)

= 2

�t

, whi
h implies the statement of the lemma.
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This result has two main interpretations:

(i) If N is small (say polynomial in some understood se
urity parameter), then there exists

no eÆ
ient 
onstru
tion whi
h extends R, not even by a single bit, and not even with


omputational se
urity. (This is due to the fa
t that in this 
ase the distinguisher in the

proof of the lemma is eÆ
ient.)

(ii) If we want to extend the domain of a publi
 random fun
tionR : f0; 1g

n

! f0; 1g

n

to m >

n bits, then we 
annot hope to get se
urity for adversaries making more than 2

n+1

+ 1

queries.

12

(And this paper addresses the question of how 
lose to this bound we 
an get.)

B Inse
urity of the Benes-Constru
tion

Aiello and Venketasan [1℄ proposed a 
onstru
tion named Benes (or Double Butter
y) for ex-

tending the domain of a (private) random fun
tion with se
urity beyond the birthday barrier.

13

The 
onstru
tion is an instantiation of our general paradigm of Se
tion 3.1. In this se
tion,

we show that its se
urity in the 
ase of publi
 random fun
tions is inherently bounded by the

birthday bound. This should help 
larify the 
ru
ial role of the fun
tions E

1

; : : : ; E

r

in our

approa
h. We also stress that this atta
k 
an be adapted to hold even with respe
t to the

honest-but-
urious variant of indi�erentiability introdu
ed by Dodis and Puniya [15℄.

Formally, we look at the following variant of the original 
onstru
tion: We are given four

random fun
tions F

1

;F

2

: f0; 1g

2n

! f0; 1g

2n

and G

1

;G

2

: f0; 1g

2n

! f0; 1g

n

. The 
on-

stru
tion BE : f0; 1g

2n

! f0; 1g

n

takes an input s = s

(1)

ks

(2)

, and 
omputes �rst w(s) =

w

(1)

(s)kw

(2)

(s) = F

1

(s

(1)

) � F

2

(s

(2)

) and outputs G

1

(w

(1)

(s)) �G

2

(w

(2)

(s)). (We note that

the original 
onstru
tion has 2n-bit output, our atta
k however works even for the 
ase of n-bit

output.) Furthermore, let R : f0; 1g

2n

! f0; 1g

n

be a publi
 random fun
tion. For notational


onsisten
y with the proof of Theorem 3, we de�ne

H

1

:= [F

1

;F

2

;G

1

;G

2

;BE(F

1

;F

2

;G

1

;G

2

)℄

H

2

:= [S(R);R℄;

for an arbitrary simulator S. We 
onsider three types of queries: The �rst two types are F-

queries, with form (F; p; u), for p = 1; 2 and u 2 f0; 1g

n

, and G-queries with form (G; q; v)

for q = 1; 2 and v 2 f0; 1g

n

, whi
h are both answered by the 
orresponding puRF's in H

1

and

by the simulator in H

2

, as well as R-queries of form (R; s), for s 2 f0; 1g

2n

, whi
h are answered

by the 
onstru
tion BE in H

1

and by R in H

2

.

We 
onstru
t a distinguisher D whi
h | regardless of the simulator S | distinguishes H

1

and H

2

whi
h 
onstant probability when making approximately 2

n=2

queries. Let s

1

; : : : ; s

k

2

f0; 1g

n

be �xed values for some even integer

�

k. The distinguisherD pro
eeds as follows. It �rst

makes F-queries (F; 1; s

i

) for all i = 1; : : : ; k, obtaining values U

1

; : : : ; U

k

2 f0; 1g

2n

, and F-

queries (F; 2; s

j

) for j = 1; : : : ; k; let V

1

; : : : ; V

k

2 f0; 1g

2n

denote the resulting values. We

de�ne for all i; j 2 f1; : : : ; kg the random variable W

ij

:= U

i

� V

j

. The distinguisher D looks

12

A
tually, for the information-theoreti
 setting, one 
an even prove the stronger statement that there exists

a distinguisher retrieving N + t bits from the private interfa
e only and distinguishing with advantage 1� 2

�t

.

This is due to the fa
t that the statisti
al distan
e of the �rst N + t bits of C(R) from the uniform distribution is

at least 1�2

�t

. However, in this 
ase, if N is polynomially-bounded, the distinguisher is not ne
essarily eÆ
ient.

13

In [1℄ optimal se
urity is 
laimed, but the result turns out to be partially in
orre
t. However, the 
onstru
tion

a
hieves se
urity beyond the birthday barrier. This 
an be seen using the te
hniques from [21℄. Also, in [28℄

dire
t proofs of improved bounds are given.
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for i 6= i

0

and j 6= j

0

su
h that W

ij

= U

i

� V

j

= U

i

0

� V

j

0

= W

i

0

j

0

. Note that this also

implies that W

ij

0

= U

i

� V

j

0

= U

i

0

� V

j

= W

i

0

j

by rearranging terms. Finally, D performs four

R-queries (R; s

i

ks

j

), (R; s

i

0

ks

j

0

), (R; s

i

ks

j

0

), and (R; s

i

0

ks

j

). Denote by Y

1

; Y

2

; Y

3

, and Y

4

the

respe
tive answers. If Y

1

= Y

2

and Y

3

= Y

4

,the distinguisher outputs 1. In any other 
ase (in

parti
ular also if su
h i; j and i

0

; j

0

do not exist), it outputs 0.

Let E be the event that W

ij

= W

i

0

j

0

holds for some i 6= i

0

and j 6= j

0

. Furthermore,

let K := f1; : : : ; k=2g, and K := fk=2 + 1; : : : ; kg. We have

P

DÆH

1

(E) � P

DÆH

1

�

_

i;j2K;i

0

;j

0

2K

W

ij

=W

i

0

j

0

�

�

X

i;j2K;i

0

;j

0

2K

P

DÆH

1

(W

ij

=W

i

0

j

0

)

�

X

i;j;

�

i;

�

j2K;i

0

;j

0

;

�

i

0

;

�

j

0

2K

f(i;j);(i

0

;j

0

)g6=f(

�

i;

�

j);(

�

i

0

;

�

j

0

)g

P

DÆH

1

(W

ij

=W

i

0

j

0

^W

�

i

�

j

=W

�

i

0

�

j

0

)

where the last inequality follows from the fa
t that P(

W

r

i=1

A

i

) �

P

r

i=1

P(A

i

)�

P

1�i<i

0

�r

P(A

i

^

A

i

0

) for all events A

1

; : : : ;A

r

. It is easy to see that W

ij

and W

i

0

j

0

are independent if i 6=

i

0

and j 6= j

0

, and thus

P

i;j2K;i

0

;j

0

2K

P(W

ij

= W

i

0

j

0

) =

k

4

16

2

�2n

. For the se
ond sum, we


onsider two 
ases. First, assume that (i; j) 6= (

�

i;

�

j), and (i

0

; j

0

) 6= (

�

i

0

;

�

j

0

). Then, the random

variablesW

ij

;W

i

0

j

0

;W

�

i

�

j

; andW

�

i

0

�

j

0

are independent. Note that there are

1

2

�

k

2

4

�

k

2

4

� 1

��

2

�

k

8

512

possibilities to 
hoose four su
h random variables, and in this 
ase P(W

ij

= W

i

0

j

0

^ W

�

i

�

j

=

W

�

i

0

�

j

0

) = 2

�4n

. The se
ond 
ase takes pla
e whenever either (i; j) = (

�

i;

�

j) or (i

0

; j

0

) = (

�

i

0

;

�

j

0

)

holds. We have

k

2

4

k

2

4

�

k

2

4

� 1

�

�

k

6

64

ways of 
hoosing the indi
es, and in this 
ase P(W

ij

=

W

i

0

j

0

^W

�

i

�

j

=W

�

i

0

�

j

0

) = 2

�4n

. Therefore,

P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

) � P

DÆH

1

(E) �

k

4

16

2

�2n

�

k

8

512

2

�4n

�

k

6

64

2

�4n

:

To bound P

DÆH

2

(Y

1

= Y

2

^ Y

3

= Y

4

), note that given any simulator S making �(k) queries

when queried k times and whi
h ensures that Y

1

= Y

2

^ Y

3

= Y

4

holds with probability �,

then we 
an 
ombine S and D into an adversary A that makes at most 4 + �(2k) queries

to R and �nds x 6= x

0

and y 6= y

0

su
h that R(xky) = R(x

0

ky

0

) and R(xky

0

) = R(x

0

ky) with

probability �. However, it is not hard to see that the probability that some adversary �nds su
h

values within k queries is at most k

2

� 2

�2n

. Therefore,

�

D

(H

1

;H

2

) �

�

�

P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

)� P

DÆH

1

(Y

1

= Y

2

^ Y

3

= Y

4

)

�

�

�

k

4

16

2

�2n

�

k

8

256

2

�4n

�

k

6

64

2

�4n

� (4 + �(2k))

2

� 2

�2n

:

Setting �(k) = k � poly(n), and

�

k = 2

n=2

leads to 
onstant distinguishing advantage.

C Proofs for Se
tion 4

C.1 Proof of Theorem 10

In this se
tion, we provide a 
onstru
tion

14

of highly-unbalan
ed expander graphs with polyno-

mial left-degree. We �rst review some basi
 notation needed throughout this se
tion. Re
all that

14

To our knowledge, a very similar 
onstru
tion appears in an unpublished manus
ript [3℄, hen
e the results

of this se
tion should not be 
onsidered an original 
ontribution of this paper.
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the statisti
al distan
e of two random variables X and Y with the same range X is d(X;Y ) =

1

2

P

x2X

jP

X

(x)�P

Y

(x)j and furthermore this quantity equals max

A�X

jP(X 2 A)� P(Y 2 A)j.

The min-entropy of a random variable X is de�ned as H

1

(X) = � logmax

x2X

P

X

(x) and X is


alled a k-sour
e if H

1

(X) � k. Furthermore, it is a (k; �)-sour
e if there exists a k-sour
e Y

su
h that d(X;Y ) � �. Of 
ourse, the same notions are de�ned for probability distributions

instead of random variables. In the following, U

d

will denote a uniformly-distributed d-bit ran-

dom string whi
h is independent from any other value. Also, the notation P

X

� P

Y

denotes the

joint distribution of X and Y when they are 
hosen independently a

ording to P

X

and P

Y

,

respe
tively.

We make use of the notion of (simple) randomness 
ondu
tors [10℄, whi
h naturally general-

izes randomness extra
tors. In parti
ular, we also 
onsider a slight modi�
ation of the original

notion whi
h generalizes strong extra
tors.

De�nition 6. A fun
tion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

n

is a (k

max

; a; �)-
ondu
tor if for

any 0 � k � k

max

and any k-sour
e X over f0; 1g

m

the output C(X;U

d

) is a (k + a; �)-sour
e.

The fun
tion C is a strong (k

max

; a; �)-
ondu
tor if [C(X;U

d

); U

d

℄ is a (k + a + d; �)-sour
e for

all k-sour
es X with 0 � k � k

max

. Finally, a 
ondu
tor is extra
ting if k

max

= n� a.

One is generally interested in 
onstru
ting expli
it families of 
ondu
tors, that is, (asymp-

toti
) families of 
ondu
tors whi
h are 
omputable in polynomial-time. To our knowledge,

the best 
onstru
tion of an expli
it strong 
ondu
tor has the following parameters (
f. the full

version of [26℄ for a proof.

15

)

Theorem 15. For every m � n and every 
onstant � > 0, there exists an expli
it strong

(k

max

;��; �)-
ondu
tor C : f0; 1g

m

� f0; 1g

d

! f0; 1g

n

, where � = �(�) = O(1) and d =

d(m;n; k

max

; �) = O(logm+ log

3

(k

max

)), for all k

max

� n+�.

It is not diÆ
ult to see that a 
ondu
tor 
an be interpreted as an unbalan
ed bipartite

expander graph (this is indeed the starting point of [10℄). However, we 
annot use the result

Theorem 15 dire
tly, as we need k

max

= �(n), and this leads to super-polynomial degree. In

order to over
ome this problem, we introdu
e the following natural weakening of 
ondu
tors.

De�nition 7. A fun
tion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

nt

is a (k

max

; a; �; �)-somewhere


ondu
tor if for all 0 � k � k

max

and all k-sour
es X over f0; 1g

m

there exists a fun
-

tion I : f0; 1g

m

! f1; : : : ; tg[ f?g su
h that P

I(X)

(?) � � and P

C

(i)

(X;U

d

)jI(X)=i

is a (k+ a; �)-

sour
e for all i = 1; : : : ; t with P

I(X)

(i) > 0, where C(X;U

d

) = C

(1)

(X;U

d

)k � � � kC

(t)

(X;U

d

),

and C

(i)

(X;U

d

) 2 f0; 1g

n

for all i = 1; : : : ; t.

Given a fun
tion C : f0; 1g

m

� f0; 1g

d

! f0; 1g

nt

, we 
onstru
t a graph G

C

= (V

1

; V

2

; E)

where V

1

:= f0; 1g

m

, V

2

:= f0; 1g

n

, and (x; z) 2 E if and only if there exists i 2 f1; : : : ; tg

and y 2 f0; 1g

d

su
h that C

(i)

(x; y) = z. The following lemma generalizes a result from [32℄.

Lemma 16. If C : f0; 1g

m

�f0; 1g

d

! f0; 1g

nt

is a (k

max

; �; �; a)-somewhere 
ondu
tor with � <

1, then G

C

as above is a (2

k

max

; 2

a

(1� �))-expander graph with left degree 2

d

.

Proof. Let X � f0; 1g

m

with jX j � 2

k

max

. Consider the sour
e X whi
h is uniformly distributed

over X , and let k := H

1

(X) = log jX j � k

max

. Let I : f0; 1g

m

! f1; : : : ; tg[f?g be the fun
tion

whi
h is guaranteed to exist (for the sour
e X), and �x an arbitrary i su
h that P

I(X)

(i) > 0.

15

A
tually, the proof in [26℄ 
onsiders a variant of strong extra
tors, 
alled strong universal extra
tors, whi
h

give the additional guarantee that there exists a subset of the output bits whi
h is almost uniformly-distributed.
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Let Z be the support of P

C

(i)

(X;U

d

)jI(X)=i

. Clearly, Z � �(X ). Moreover, there exists a (k+a)-

sour
e Z whi
h satis�es d(P

C

(i)

(X;U

d

)jI(X)=i

; Z) � �, that is � �

P

z2Z

P

C

(i)

(X;U

d

)jI(X)=i

(z) �

P

Z

(z) = 1 �

P

z2Z

P

Z

(z) � 1 � jZj � 2

�k�a

by the de�nition of the statisti
al distan
e. By

rearranging terms, we obtain j�(X )j � (1� �) � 2

k+a

= (1� �) � 2

a

� jX j.

Let C

1

: f0; 1g

m

� f0; 1g

d

1

! f0; 1g

d

2

and C

2

: f0; 1g

m

� f0; 1g

d

2

! f0; 1g

n

be fun
-

tions. Also, for a string x 2 f0; 1g

m

, denote as x

(a;b)

the string 
onsisting of the bits x

a

; x

a+1

;

: : : ; x

b�1

; x

b

, with extra 0's to make its length equal to m. (If b < a, the string is the

string 0

m

.) We let C : f0; 1g

m

� f0; 1g

d

2

! f0; 1g

(m+1)(d

1

+d

2

+n)

be su
h that C(x; y) =

C

(1)

(x; y)k � � � kC

(m+1)

(x; y), where for all 1 � i � m+ 1 we de�ne

z

(i)

1

:= y z

(i)

2

:= C

1

(x

(i;m)

; y) and z

(i)

3

:= C

2

(x

(1;i�1)

; z

(i)

2

)

and we set C

(i)

(x; y) := z

(i)

1

kz

(i)

2

kz

(i)

3

2 f0; 1g

d

1

+d

2

+n

. The following lemma extends Theorem 3

from [27℄ to our setting. As the proof is very similar, we only provide a brief proof sket
h.

Lemma 17. Let s > 0 be given, and C be 
onstru
ted as above. If C

1

is a strong (a

1

; �

1

)-

extra
ting 
ondu
tor, and C

2

is a strong (k

2

; a

2

; �

2

)-
ondu
tor, then C is a (d

2

� a

1

+ k

2

+

s;minfa

1

; a

1

+ a

2

g+ d

1

� s; �

1

+ �

2

; 8m � 2

�s=3

)-somewhere 
ondu
tor.

Proof sket
h. In the following, let k

1

:= d

2

� a

1

. Let X be a k-sour
e with k � k

1

+ k

2

+ s.

On the one hand, if X is su
h that H

1

(X) = k = k

0

+ s with k

0

� k

1

, then [Z

(1)

1

; Z

(1)

2

℄ =

[U

d

1

; C

(1)

(X;U

d

1

)℄, whi
h is a (k + a

1

+ d

1

� s; �

1

)-sour
e, and thus this also holds for the

variable [Z

(1)

1

; Z

(1)

2

; Z

(1)

3

℄. On the other hand, if X is su
h that H

1

(X) = k = s + k

1

+ k

0

,

where k

0

� k

2

, then as in [27℄ there exists a sele
tor fun
tion I : f0; 1g

m

! f1; : : : ;m+1g[f?g

su
h that

1. P

I(X)

(?) � 8m � 2

�s=3

,

2. If P

I(X)jX

(1;i�1)

(i; x

(1;i�1)

) > 0, then H

1

(X

(i;m)

jI = i ^X

(1;i�1)

= x

(1;i�1)

) � k

1

, and

3. H

1

(X

(1;i�1)

jI = i) � k

0

.

In parti
ular, this means that the distribution P

Z

(i)

1

Z

(i)

2

jI(X)=iX

(1;i�1)

=x

(1;i�1)

is �

1

-
lose to the

distribution P

U

d

1

U

d

2

jI(X)=i;X

(1;i�1)

=x

(1;i�1)

= P

U

d

1

� P

U

d

2

for all x

(1;i�1)

with the property that

P

I(X)jX

(1;i�1)

(i; x

(1;i�1)

) > 0. This implies in parti
ular that P

Z

(i)

1

Z

(i)

2

X

(1;i�1)

jI(X)=i

is �

1

-
lose

to P

U

d

1

� P

U

d

2

� P

X

(1;i�1)

jI(X)=i

. Furthermore, the distribution P

U

d

1

� P

U

d

2

C(X

(1;i�1)

;U

d

2

)jI=i

is

a (k

0

+a

2

+d

1

+d

2

; �

2

)-sour
e. Also, by the triangle inequality, the distribution P

Z

(i)

1

Z

(i)

2

Z

(i)

3

jI(X)=i

is a (k + a

1

+ a

2

+ d

1

� s; �

1

+ �

2

)-sour
e, and this 
on
ludes the proof.

In the following, we instantiate both fun
tions C

1

and C

2

using Theorem 15. First, set s =

3 � log(9m) = 3 logm+O(1) (note that with this 8m � 2

�s=3

< 1). Also, �x some 
onstant � > 0.

Given k

max

= (1� �)n, we 
hoose �n := k

max

, and

d

2

= d(m; �n; k

max

; �) = O(log

3

(n))

d

1

= maxfd(m; d

2

; d

2

+�; �); 2� + s+ log 
 � log(1� 2�)g = O(log n);

and then take C

1

: f0; 1g

m

�f0; 1g

d

1

! f0; 1g

d

2

and C

2

: f0; 1g

m

�f0; 1g

d

2

! f0; 1g

�n

a

ording

to the theorem. (For C

1

, we potentially need a longer seed, and the 
onstru
tion simply ignores

the extra bits.) Then, C as above leads to a (k

max

; d

1

� 2� � s; 2�; �)-somewhere 
ondu
tor
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with � < 1. Note that (1�2�)2

d

1

�2��s

� 
. Furthermore, for n suÆ
iently large, �n+d

1

+d

2

� n,

hen
e Lemma 16 gives the desired expander.

The proof works even if one takes any � = !

�

log

3

(n)

n

�

, sin
e �n+d

1

+d

2

� n still holds for n

large enough. Also note that we have made use of Lemma 17 in a very simple way, and (with

some additional work in 
hoosing parameters 
arefully) it allows to 
onstru
t expanders for the


ase where � is even smaller. The results of [3℄ dis
uss this 
ase.

C.2 Proof of Lemma 11

Let V

1

:= f0; 1g

m

and V

2

:= f0; 1g

n

, where m > n, and let D be the left-degree of the graph

(to be �xed later) and 
 the desired expansion fa
tor (whi
h in parti
ular satis�es K � 
 � 2

n

and 
 � D). Also, for notational 
onvenien
e let M := 2

m

and N := 2

n

. The proof is an

appli
ation of the probabilisti
 method. We sample a graph as follows: For every vertex v 2 V

1

,

we pi
k D (not ne
essarily distin
t) neighbors uniformly at random from V

2

. Let S be some

subset of V

1

, with i := jSj � K. Note that whenever j�(S)j < 
 � jSj holds, there exists

a set T of size 
 � jSj (without loss of generality assume this value to be an integer) su
h

that �(S) � T . When sampling a graph as explained, the probability that all neighbors of S

are in T is (
 � i=N)

D�i

. Therefore, by the union bound, the probability that there exists a set S

with jSj � K and j�(S)j < 
 � jSj is at most

K

X

i=1

�

M

i

�

�

�

N


 � i

�

�

�


 � i

N

�

D�i

�

K

X

i=1

"

e




�M �

�


 � i

N

�

D�


#

i

;

where we have bounded

�

M

i

�

� M

i

and

�

N


i

�

�

�

eN


i

�


i

. We now set D :=

1+
�log e+m

n�log(K
)

+ 
, and

it is easy to verify that

e




�M �

�


 � i

N

�

D�


� e




�M �

�


 �K

N

�

D�


=

1

2

:

With this value of D, the above sum is upper bounded by

P

K

i=1

1

2

i

<

P

1

i=1

1

2

i

= 1, and hen
e

a good graph exists with positive probability.
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