
Secure Two-Party k-Means Clustering

Paul Bunn∗ Rafail Ostrovsky†

Abstract

The k-Means Clustering problem is one of the most-explored prob-
lems in data mining to date. With the advent of protocols that have
proven to be successful in performing single database clustering, the
focus has changed in recent years to the question of how to extend
the single database protocols to a multiple database setting. To date
there have been numerous attempts to create specific multiparty k-
means clustering protocols that protect the privacy of each database,
but according to the standard cryptographic definitions of “privacy-
protection,” so far all such attempts have fallen short of providing
adequate privacy.

In this paper we describe a Two-Party k-Means Clustering Protocol
that guarantees privacy, and is more efficient than utilizing a general
multiparty “compiler” to achieve the same task. In particular, a main
contribution of our result is a way to compute efficiently multiple iter-
ations of k-means clustering without revealing the intermediate values.
To achieve this, we use novel techniques to perform two-party division
and sample uniformly at random from an unknown domain size.

Our techniques are quite general and can be realized based on the
existence of any semantically secure homomorphic encryption scheme.
For concreteness, we describe our protocol based on Paillier Homomor-
phic Encryption scheme (see [23]). We will also demonstrate that our
protocol is efficient in terms of communication, remaining competitive
with existing protocols (such as [15]) that fail to protect privacy.

Keywords: Multiparty Computation, k-means clustering

∗Department of Mathematics, University of California, Los Angeles, CA 90095. Email:
paulbunn@math.ucla.edu. Research partially done while visiting IPAM, and supported
in part by NSF VIGRE grant DMS-0502315 and NSF Cybertrust grant no. 0430254

†Computer Science Department and Department of Mathematics, University of Cal-
ifornia, Los Angeles, CA 90095. Email: rafail@cs.ucla.edu. Research partially done
while visiting IPAM, and supported in part by IBM Faculty Award, Xerox Innovation
Group Award, NSF Cybertrust grant no. 0430254, and U.C. MICRO grant.

1

1 Introduction

1.1 Background on k-Means Clustering

The k-means clustering problem can be described as follows: A database
D holds information about n different objects, each object having d at-
tributes. The information regarding each object is viewed as a coordinate
in Rd, and hence the objects are interpreted as data points living in d-
dimensional Euclidean space. Very informally, k-means clustering algo-
rithms are comprised of two steps. First, k initial centers are chosen in
some manner, either at random or using some other “seeding” procedure.
The second step is iterative (known as the “Lloyd Step”), and is described
according to the following algorithm: Partition the n data points into k
clusters based on which current cluster center they are closest to. Then re-
set the new cluster centers to be the center of mass (in Euclidean space) of
each cluster. This process is either iterated a fixed number of times or until
the new cluster centers are sufficiently close to the previous ones (based on
a pre-determined measure of “sufficiently close”). The k-means clustering
method is enormously popular among practitioners as an effective way to
find a geometric partitioning of data points into k clusters, from which gen-
eral trends or tendencies can be observed. In particular, k-means clustering
is widely used in information retrieval, machine learning, and data mining
research (see e.g. [21] for further discussion about the enormous popularity
of k-means clustering).

The question of finding efficient algorithms for solving the k-means clus-
tering problem has been greatly explored and is not investigated in this
paper. Rather, we wish to extend an existing algorithm (which solves the
k-means problem for a single database) to an algorithm that works in the
two-database setting (in accordance with multiparty computation literature,
we refer to the databases as “parties”). In particular, if two parties each
hold partial data describing the d attributes of n objects, then we would like
to apply this k-means algorithm to the aggregate data (which lives in some
virtual database) in a way that protects the privacy of each party member’s
data. In this paper, we will work in the most general setting, where we
assume the data is arbitrarily partitioned between the two databases. This
means that there is no assumption on how the attributes of the data are
distributed among the parties (and in particular, this subsumes the case of
vertically and horizontally partitioned data).

1.2 Previous Work

The k-means clustering problem is one of the functions most studied in
the more general class of data-mining problems. Data-mining problems have
received much attention in recent years as advances in computer technology
have allowed vast amounts of information to be stored and examined. Due to

2

the sheer volume of inputs that are often involved in data-mining problems,
generic multiparty computation (MPC) protocols become infeasible in terms
of communication cost. This has led to constructions of function-specific
multiparty protocols that attempt to handle a specific functionality in an
efficient manner, while still providing privacy to the parties (see e.g. [18],
[1], [2]).

The problem of extending single database k-means clustering protocols
to the multiparty setting has been explored by numerous authors, whose
approaches have varied widely. The main challenge in designing such a
protocol is to prevent intermediate values from being leaked during the Lloyd
Step. In particular, each iteration of the Lloyd Step requires k new cluster
centers to be found, a process that requires division (the new cluster centers
are calculated using a weighted average, which in turn requires dividing
by the number of data points in a given cluster). However, the divisors
should remain unknown to the parties, as leaking intermediate cluster sizes
may reveal excessive information. Additionally, many current protocols for
solving the single database k-means clustering problem improve efficiency by
choosing data points according to a weighted distribution, which will then
serve as preliminary “guesses” to the cluster center (e.g. [21], [4]). Choosing
data points in this manner will also likely involve division.

A subtle issue that may not be obvious at first glance is how to perform
these divisions in light of current cryptographic tools. In particular, most
encryption schemes describe a message space that is a finite group (or field
or ring). This means that an algorithm that attempts to solve the mul-
tiparty k-means problem in the cryptographic setting (as opposed to the
information-theoretic setting) will view the data points not as elements of
Euclidean Space Rd, but rather as elements in Gd (for some ring G) in order
to share encryptions of these data points with the other party members.
But this then complicates the notion of “division,” which we wish to mean
“division in R” as opposed to “multiplication by the inverse.” (The latter
interpretation not only fails to perform the desired task of finding an aver-
age, but additionally may not even exist if not all elements in the ring G
have a multiplicative inverse).

Previous authors attempting to solve the multiparty k-means problem
have incorporated various ideas to combat this obstacle. The “data per-
turbation” technique (e.g. [1], [2], [19]) avoids the issue altogether by ad-
dressing the multiparty k-means problem from an information-theoretical
standpoint. These algorithms attempt to protect party members’ privacy
by having each member first “perturb” their data (in some regulated man-
ner), and then the perturbed data is made public to all members. Thus,
the division (and all other computations) can be performed locally by each
party member (on the perturbed data), and the division problem is com-
pletely avoided. Unfortunately, all current algorithms utilizing this method
do not protect the privacy of the party members in the cryptographic def-

3

inition of privacy protection. Indeed, these protocols provide some privacy
guarantee in terms of hiding the exact values of the database entries, but do
not make the more general guarantee that (with overwhelming probability)
no information can be obtained about any party’s inputs (other than what
follows from the output of the function, i.e. the final cluster centers).

Another solution to the division problem (see e.g. [24]) is to have each
party member perform the division locally on their own data. The problem
with this method is that it requires each party to know all intermediate
cluster assignments (in order to know what they should divide by), which
may leak additional information and thus not satisfy complete privacy pro-
tection. A similar problem is encountered in [14], where they describe a
way to privately perform division, but their protocol relies on the fact that
both parties will learn the output value of the division. This means that the
overall protocol is not secure, since the parties receive more information (the
values of the quotients corresponding to intermediate divisions) than just the
output of the function. One final approach, suggested by Jagannathan and
Wright [15] is to interpret division as multiplication by the inverse. However,
a simple example shows that this method does not satisfy correctness, i.e.
does not correctly implement a k-means algorithm. (Consider e.g. dividing
11 by 5 in Z21. One would expect to round this to 2, but 11*5−1 = 11*17
= 19).

One final approach encountered in the literature (see e.g. [7], [8], [9])
protects against leaking information about specific data in a different con-
text. In this setting, the data is not distributed among many parties, but
rather exists in a single database that is maintained by a trusted third party.
The goal now is to have clients send requests to this third party for k-means
clustering information on the data, and to ensure that the response from the
server does not reveal too much information about the data. In the model
we consider in this paper, these techniques cannot be applied since there is
no central database or trusted third party.

To summarize, none of the existing “privacy-preserving” k-means clus-
tering protocols provide cryptographically- acceptable security against an
“honest-but-curious” adversary. We will present a formal notion of security
in Section 2.3. Informally, the security of a multiparty protocol is defined by
comparing the real-life interaction between the parties to an “ideal” scenario
where a trusted third party exists. In this ideal setting, the trusted third
party receives the private inputs from each of the parties, runs a k-means
clustering algorithm on the aggregate data, and returns as output the final
cluster centers to each party. (Note: depending on a pre-determined ar-
rangement between the parties, the third party may also give each party the
additional information of which cluster each data point belongs to.) The
goal of multiparty computation is to achieve in the “real” world (where
no trusted third party is assumed to exist) the same level of data privacy
protection that can be obtained in the “ideal” model.

4

One final obstacle in designing a perfectly secure k-means clustering
protocol comes from the iterative nature of the Lloyd Step. In the ideal
model, the individual parties do not learn any information regarding the
number of iterations that were necessary to reach the stopping condition.
In the body of this paper, our main protocol will reveal this information to
the parties (it is our belief that in practice, this privacy breach is unlikely to
reveal meaningful information about the other party’s database). However,
we discuss more fully in Appendix A alternative methods of controlling the
number of iterations without revealing this extra information.

1.3 Our Results

We describe in Section 3 of this paper the first protocol for two-party
k-means clustering that is secure against an honest-but-curious adversary
(as mentioned above, general MPC protocols could in theory be applied to
k-means, but any such protocol is unfeasible to use in practice). Moreover,
we demonstrate that our protocol is competitive (in terms of communication
and computation costs) with other current protocols (which fail to protect
privacy against an honest-but-curious adversary). Exact efficiency bounds
that we achieve can be found in Section 4. We remark that our honest-
but-curious solution can be augmented using standard machinery (e.g., see
[11, 13] and references therein) to the malicious adversary model (with a
substantial increase in communication cost).

Our protocol takes as a template the single-database protocol of [21],
and extends it to the two-party setting. We chose the particular protocol
of [21] because it has two advantages over conventional single-database pro-
tocols: Firstly, it provides a provable guarantee as to the correctness of its
output (assuming moderate conditions on the data); and secondly because
their protocol reduces the number of iterations necessary in the Lloyd Step.
However, the techniques we use to extend the single-database protocol of
[21] can be readily applied to any single-database protocol.

In order to apply current cryptographic techniques to a single-database
protocol in an attempt to create a secure two-party (multi-party) protocol,
we are limited by the tools available today. In particular, all semantically
secure homomorphic encryption schemes have a finite message space (e.g.
ZN). This means that if we want to encrypt the data points (or attributes
of the data points), then we must restrict the possible data values to a
finite range. Therefore, instead of viewing the data points as living in Rd,
we “discretize” Euclidean space and approximate it via the lattice Zd

N , for
some large N . All of the results of this paper are consequently restricted to
the model where the data points live in Zd

N , (both in the “real” and “ideal”
setting) and any function performing k-means clustering in this model is
restricted to computations in ZN . Note that restricting to this “discretized”
model is completely natural; indeed due to memory constraints, calculations

5

performed on computers are handled in this manner. As a consequence of
working in the discretized space model, we also avoid privacy issues that
arise from possible rounding errors (i.e. restricting input to be in Zd

N avoids
the necessity of approximating inputs in R by rounding up or down).

In order to extend the single database protocol of [21] to a two-party
protocol, we follow the setup and some of the ideas discussed by Jagannathan
and Wright in [15]. In that paper, the authors attempt to perform secure
two-party k-means clustering, but (as they remark) fall short of perfect
privacy due to leakage of information (including the number of data points
in each cluster) that arises from an insecure division algorithm.

To solve the multiparty division problem, we define division in the ring
ZN in a natural way, namely as the quotient Q from the Division Algorithm
in the integers: P = QD+R. From this definition, we demonstrate how two
parties can perform multiparty division in a secure manner. Additionally,
we describe how two parties can select initial data points according to a
weighted distribution. To accomplish this, we introduce a new protocol, the
Random Value Protocol, which is described in Section 2.5. We note that the
Random Value Protocol may be of independent interest as a subprotocol for
other protocols that require random, oblivious sampling.

Our results utilize many existing tools and subprotocols developed in
the multiparty computation literature. As such, the security guarantee of
our result relies on cryptographic assumptions concerning the difficulty of
inverting certain functions. In particular, we will assume the existence of
a semantically secure homomorphic encryption scheme, and for ease of dis-
cussion, we use the homomorphic encryption scheme of Paillier [23].

1.4 Overview

In the next section, we briefly introduce the cryptographic tools and
methods of proving privacy that we will need to guarantee security in the
malicious adversary model. We also include in Section 2.2 a complete list
of the subprotocols that will be used in this paper. Because most of the
subprotocols that we use are general and have been described in previous
MPC papers, we provide in Section 2.2 only a list of these protocols (pos-
sible implementations are included in Appendix B for completeness). An
exception to this is our new Random Value Protocol, for which we provide a
full implementation and proof of security in Section 2.5, and a description
of a two-party Division Protocol in Section 2.4. Finally, in Section 3, we
introduce the single database k-means clustering protocol of [21] which we
then extend to a secure two-party protocol in Section 3.3.

6

2 Achieving Privacy

In multiparty computation (MPC) literature, devious behavior is mod-
eled by the existence of an adversary who can corrupt one or more of the
parties. In this paper, we will assume that the adversary is honest-but-
curious, which means the adversary only learns the inputs/outputs of all of
the corrupted parties, but the corrupted parties must engage in the protocol
appropriately. We include in section 2.3 a formal definition of what it means
for a protocol to “protect privacy” in the honest-but-curious adversary model
(see also e.g. [11] for definitions of security against an honest-but-curious
adversary).

In order to construct a private two-party k-means clustering protocol, we
will utilize numerous subprotocols which themselves preserve privacy against
an honest-but-curious adversary. We then use the fact that the composition
of secure protocols remains secure (as proven in [5]). The novel contribu-
tions of this paper are the Division Protocol and the Random Value Protocol
described in Sections 2.4 and 2.5, which are called as subprotocols in our
two-party k-means clustering protocol. All of the other subprotocols that
we will use perform standard functionalities, and possible implementations
of these that are secure against an honest-but-curious adversary have been
described by (multiple) other authors. For such functionalities, we will uti-
lize results of other authors (and their corresponding proofs of privacy and
efficiency), citing possible references. A brief description of the subprotocols
that we will use can be found below in Section 2.2. Proving privacy for our
two-party k-means clustering protocol will therefore be reduced to proving
privacy for our two protocols. In Section 2.3 below, we classify protocols
that have a specified generic form, and prove that such protocols will be
secure in the honest-but-curious adversary model. Privacy of our Division
Protocol and Random Value Protocol will then follow because they have this
generic form. In Section 2.1 below, we first introduce the cryptographic tools
we will need to guarantee privacy. The casual reader may wish to skip the
description of the cryptographic tools in Section 2.1 and read only the high-
level arguments of security in the first paragraph of Section 2.3, omitting
the formal definitions and proofs of privacy in the rest of that section.

2.1 Cryptographic Tools

We will utilize standard cryptographic tools to maintain privacy in our
two-party k-means clustering algorithm. It will be convenient to name our
two participating parties, and we adopt the standard names of “Alice” and
“Bob.” We will first utilize an additively homomorphic encryption scheme,
e.g. Paillier ([23]). Thus, for encryptions we assume a message space ZN ,
where N = pq is the product of two K-bit primes and K is the security
parameter. In the protocols that follow, one of the parties will be responsible

7

for choosing the modulus N (we use the convention that Alice plays this
role), and the opposite party (Bob) will be responsible for performing the
requisite computations on encrypted data. The encryption scheme is a map
E : ZN × H → G, where H represents some group from which we obtain
randomness, and G is some other group. For notational convenience, we will
write E(m) ∈ G rather than E(m, r). This encryption scheme is additively
homomorphic, so that: E(m1, r1)+E(m2, r2) = E(m1 +m2, r1 + r2), where
each addition refers to the appropriate group operation in G, ZN , or H.
(For Paillier, G = Z×

N2 and thus the group operation is multiplication).
Additionally, the encryption scheme allows a user to (efficiently) multiply by
a constant, i.e. for c ∈ ZN , anyone can compute: cE(m, r) = E(cm, r′). (For
Paillier, if (N, g) is the public key, then cE(m, r) := (gmrN)c = gmcrcN =
gmc(rc)N = E(cm, r′), where r′ = rc).

2.2 Privacy Protecting Protocols

We list here the generic sub-protocols that will be used by our two-
party k-means clustering protocol. All of the below protocols can be readily
implemented using only the Scalar Product Protocol, and we include possible
implementations in Appendix B. The Scalar Product Protocol is a standard
protocol that has been explored much by other authors; we will not include
an implementation of this protocol in this paper, but refer the reader to a
number of possible references.

- Scalar Product Protocol (SPP). This protocol takes in x ∈ Zt
N and

y ∈ Zt
N , and returns (shares of) some pre-determined degree two

function f(x,y) =
∑t

i=1
cixiyi, for public constants ci. (See e.g. [10],

where they describe such a protocol that achieves O(tK) communi-
cation complexity, K the security parameter. Other implementations
can be found in [22], [25] and [27].)

- Bigger Than N Protocol (BTNP). Alice and Bob each hold a value in
ZN . This protocol determines if the sum of their values (considered as
a sum in Z, not ZN) is bigger than N .

- To Binary Protocol (TBP). Alice and Bob have shares of some value
X ∈ ZN . If X = xK . . . x1 is the binary expansion of X, then this
protocol returns shares of xi for each 1 ≤ i ≤ K. In other words,
xi = xA

i + xB
i (Mod N).

- Find Minimum of 2 Numbers Protocol (FM2NP). Alice and Bob share
two numbers. This protocol returns shares of the location of the smaller
number (0 or 1).

- Find Minimum of k Numbers Protocol (FMkNP). An extension of the
above protocol, where this time as output they receive shares of the
vector (0, . . . , 1, . . . , 0), where the ‘1’ appears in the mth coordinate if
the mth number is smallest.

8

- Distance Protocol (DistP). Computes the distance between two (shared)
data points in Zd

N . An implementation of this protocol can be found
in [15], which involves running the SPP four times on vectors of length
d. Their protocol thus has communication complexity O(dK).

- Division Protocol (DivP). Computes the quotient (as defined below in
Section 2.4) of a shared dividend by a shared divisor.

- Computing δ∗Protocol and Choosing µ1 Protocol. These will be dis-
cussed when they arise in Sections 2.5 and 3.3.1.

2.3 Proof of Privacy

We present first the high-level argument for how our protocols will pro-
tect each party’s data. We have one of the parties (Alice) choose the en-
cryption key, and encrypt all of her data using this key before sending it to
the other party (Bob). Thus, Alice’s privacy will be guaranteed by the se-
mantic security assumption of the encryption scheme. Meanwhile, Bob will
also encrypt his data using Alice’s key, but he will blind all of the outputs
he sends to Alice with randomness of his choosing, ensuring that Alice can
learn nothing about his data.

We now make these notions precise by first providing a formal defini-
tion of privacy protection in the honest-but-curious adversary model, and
a formal proof of privacy for the class of protocols that attempt to protect
privacy in the above described manner.

Definition 1. Suppose that protocol X has Alice compute (and output)
the function fA(x,y), and has Bob compute (and output) fB(x,y), where
(x,y) denotes the inputs for Alice and Bob (respectively). Let VIEWA(x,y)
(resp. VIEWB(x,y)) represent Alice’s (resp. Bob’s) view of the transcript.
In other words, if (x, rA) (resp. (y, rB)) denotes Alice’s (resp. Bob’s) input
and randomness, then:

VIEWA(x,y) = (x, rA,m1, . . . ,mt), and

VIEWB(x,y) = (y, rB ,m1, . . . ,mt),

where the {mi} denote the messages passed between the parties. Also let
OA(x,y) and OB(x,y) denote Alice’s (resp. Bob’s) output. Then we say
that protocol X protects privacy (or is secure) against an honest-but-
curious adversary if there exist probabilistic polynomial time simulators S1

and S2 such that:
{(S1(x, fA(x,y)), fB(x,y))}

c
≡ {(VIEWA(x,y), OB(x,y))} (1)

{(fA(x,y), S2(y, fB(x,y)))}
c
≡ {(OA(x,y),VIEWB(x,y))}, (2)

where
c
≡ denotes computational indistinguishability.

With the above definition of privacy protection, we now prove the key
lemma that will allow us to argue that our two-party k-means clustering
protocol is secure against an honest-but-curious adversary.

9

Lemma 1. Suppose that Alice has run the key generation algorithm for
a semantically secure homomorphic public-key encryption scheme, and has
given her public-key to Bob. Further suppose that Alice and Bob run Protocol
X, for which all messages passed from Alice to Bob are encrypted using this
scheme, and all messages passed from Bob to Alice are uniformly distributed
(in the range of the ciphertext) and are independent of Bob’s inputs. Then
Protocol X is secure in the honest-but-curious adversary model.

Proof. We prove the privacy protecting nature of Protocol X in two sep-
arate cases, depending on which party the adversary corrupts. To prove
privacy, we show that for all PPT Adversaries, the view of the adversary
based on Alice and Bob’s interaction is indistinguishable to the adversary’s
view when the corrupted party interacts instead with a simulator. In other
words, we show that there exist simulators S1 and S2 that satisfy conditions
(1) and (2).

Case 1: Bob is Corrupted by Adversary. We simulate Alice’s messages
sent to Bob. For each encryption that Alice is supposed to send to Bob,
we let the simulator S2 pick a random element from ZN , and send an en-
cryption of this. Any adversary who can distinguish between interaction
with Alice verses interaction with S2 can be used to break the security
assumptions of E. Thus, no such PPT adversary exists, which means (2)
holds.

Case 2: Alice is Corrupted by Adversary. We simulate Bob’s messages
sent to Alice. To do this, every time Bob is to send an encryption to
Alice, the simulator picks a random element of ZN and returns an en-
cryption of this. Again, equation (1) holds due to the fact that Alice
cannot distinguish the simulator’s encryption of a random number from
Bob’s encryption of the correct computation that has been shifted by
randomness of Bob’s choice.

�

2.4 Two-Party Division

As mentioned in Section 1.2, performing two-party division has been an
obstacle to obtaining a secure two-party k-means clustering protocol. In this
section and the next, we discuss our methods for overcoming this obstacle.
In particular, we make precise what we mean by division in the ring ZN , and
show that this definition not only matches our intuition as to what division
should be, but also allows us to perform division in a secure way. Then in
the following section, we discuss how two parties can choose a value R ∈ ZQ

uniformly at random, where Q ∈ ZN is not known by either party, but is
shared between them.

Let P,D ∈ ZN . Then viewing P and D as integers, we may apply the
Division Algorithm to find unique integers Q < N and 0 ≤ R < D such that

10

P = QD + R. Viewing Q ∈ ZN , we then define division (of P by D) to be
the quotient Q. Note that this definition is the natural restriction of division
in R to the integers, in that Q represents the actual quotient in R that has
been rounded down to the nearest integer. Thus this definition coincides
much more closely to real division (e.g. for purposes of finding averages)
than other alternatives, such as defining division to be multiplication by the
inverse.

In defining what it means for a protocol to be secure (see Section 2.3), one
compares the information that could be obtained in an ideal model (where
a trusted third party exists) verses what could be obtained in the real world
(where no such third party exists, and the proposed protocol is employed).
In terms of defining the function that is to be evaluated (which performs the
k-means clustering), we force the definition of division to match the above
definition. In other words, when the functions fA(x,y) and fB(x,y) (see
notation of Section 2.3) call for division to be performed, these divisions are
defined to mean division in the ring ZN as defined above. This way, when
our protocol is run and division is performed in this way, it matches the
computations that the functions fA and fB are performing.

With these definitions in place, it remains to implement a secure division
subprotocol that computes Q and returns shares to Alice and Bob. We
describe below a possible implementation, which has been reduced to the
Scalar Product Protocol combined with the Find Minimum of 2 Numbers
Protocol, and consequently its security follows from the security of those
subprotocols.

2.4.1 Possible Implementation of the Division Protocol

Input. Alice and Bob share P = PA + PB and D = DA + DB and have
commitments to the other party’s shares.
Output. If P = QD+R for 0 ≤ R < D is the unique expression guaranteed
by the Division Algorithm, then this protocol outputs shares of Q, and
commitments to these shares.
Cost. This protocol adds O(Kξ)+O(K3), where O(ξ) is the communication
cost of a secure Find Minimum of K Numbers Protocol. Note that each time
the FMKNP is called below, the numbers are in decreasing order. As noted
in Appendix B, in this case we have O(ξ) ≤ O(K2 log K).

1. Define the vector D = DA+DB, where DA := {DA, 2DA, 22DA, . . . , 2KDA}
is computed by Alice and DB is analogously computed by Bob. Note
that each product involves only a single multiplication, namely by
doubling the previous product.

2. Alice sets PA
0 := PA and Bob sets PB

0 := PB . They then run the Find
Minimum of k Numbers Protocol (FMkNP) on the set (P0, P0−D,P0−
2D, . . . , P0−2KD). This returns shares of δ1= δA

1
+ δB

1
∈ ZK+1

2
, which

is the characteristic vector representing a1 ∈ [0..K], where a1 is the

11

largest value such that 2a1D ≤ P0. Define P1 = P0 − 2a1D, and notice
that Alice and Bob can share P1 = PA + PB , since P1 = P0− δ1 · D

(they run SPP to obtain shares of P1).

3. Alice and Bob repeat the above step for 2 ≤ i ≤ K. Namely, on the ith

iteration they run the FMkNP on (Pi−1, Pi−1−D,Pi−1−2D, . . . , Pi−1−
2KD). This outputs δi, representing the characteristic vector of ai,
where ai is the largest value in [0..K] such that 2aiD < Pi−1. They
then obtain shares of PA

i by running the SPP as in the above step.

4. Notice that Q = (δ1+δ2+ · · ·+δi) · (1, 2, . . . , 2K), so Alice and Bob
can run the SPP on the appropriate function, which will output shares
of Q.

2.5 The Random Value Protocol (RVP)

We describe here how two parties (Alice and Bob) can choose a value
R ∈ ZQ uniformly at random, where Q ∈ ZN is not known by either party,
but is shared between them. Before we describe the protocol, we provide
motivation for why the problem is interesting. After all, with a division
protocol in hand, one could simply have Alice and Bob choose an arbitrary
R′ ∈ ZN (which is trivial to accomplish), and then use the division protocol
to find its modulus in ZQ, and set this to be R. The problem with this
approach is that if the modulus of Q in ZN is Q̄ ∈ [0..N − 1], then R will
NOT be distributed uniformly in [0..Q− 1], as R will be slightly more likely
to lie in [0..Q̄] than in [Q̄ + 1..Q − 1]. Since the functions fA and fB will
be drawing R uniformly from ZQ, having our protocol draw R in the above
way (which as noted is not uniformly distributed if Q ∤ N) will make it
impossible to find simulators as in (1) and (2). We therefore need to find a
way to sample uniformly from ZQ without revealing any information about
Q to either party.

Recall that N is a K-bit integer, so let Q = qK . . . q1 denote the binary
expansion of Q. We would like for Alice and Bob to not have any knowledge
about the random value R they pick, a notion made more precise in the
following definition:

Definition 2. Let VIEWA (respectively VIEWB) denote Alice’s (resp. Bob’s)
view of an execution of the RVP. We say that Alice and Bob have chosen R
obliviously if:
∀Q ∈ ZN , ∀α ∈ ZQ,

Pr[R = α|VIEWA] = Pr[R = α|VIEWB] =
1

Q
. (3)

Additionally, we would like Q to remain unknown to both parties throughout
the execution of the protocol. That Q remains unknown to both parties will
follow from the fact that the below protocol is secure (as in definition 1),

12

and obliviousness of R will be proved in Theorem 1 below. The protocol
proceeds by first describing how Alice and Bob make S ∈ ZQ which is chosen
uniformly at random, but Alice may have partial knowledge of its value (Bob
however is oblivious to the value of S). This is followed by the two parties
forming T ∈ ZQ in an analogous manner but with their roles reversed, so
that it is Bob who may have partial knowledge about T , and Alice who is
oblivious. From these they will set R = S + T (Mod Q).

We present first a brief high-level description of how they make S ∈ ZQ.
We imagine the numbers 0 through Q−1 to be partitioned into groups that
each have size a power of 2, as determined by the binary expansion of Q. For
example, if Q = 37 = 100101, then we partition [0..36] into the sets of size 1,
4, and 32: {0}, [1..4], [5..36]. We then choose a value from each of these sets
uniformly at random, so that if there are m sets, then we choose m random
values {S1, . . . , Sm}. Finally, we set S to be one of these m values, according
to a probability that depends on the size of each set. More specifically, if
the ith set has size 2j , then we set S to be Si with probability 2j

Q
.

2.5.1 Description of the Protocol

Input. Alice has QA ∈ ZN and Bob has QB ∈ ZN , and they have commit-
ments to the other party’s share of Q.
Output. Alice and Bob share R ∈ ZQ, where R has been chosen obliviously
(as in Definition 2) and uniformly at random. More specifically, Alice has
RA ∈ ZN and Bob has RB such that:

R = RA + RB (Mod N) ∈ [0..Q − 1].
Cost. This protocol will add O(K2) to communication.
Note. This protocol first requires that Bob knows the decryption key for
some homomorphic encryption scheme with security parameter K, so that
Alice can perform computations on their joint inputs without being able to
decrypt. The protocol then flips the roles of Alice and Bob, so it is Alice
who will need to hold a decryption key, and Bob who is unable to decrypt.
This situation is trivial to produce, since Bob (resp. Alice) can choose their
own RSA modulus NB (resp. NA) of K-bits, which will be used during the
appropriate half of the protocol. Initially, Q is shared with respect to Alice’s
encryption scheme, i.e. Q = QA +QB (Mod NA). Therefore, before running
the first half of this protocol, Alice and Bob convert their shares of Q (with
respect to NA) to shares of Q (with respect to NB). Steps 1-6 describe the
first half of the protocol, where Bob’s encryption key (with respect to NB)
is used, and then Step 7 (which repeats Steps 1-6 with the roles reversed) is
done using Alice’s encryption key (w.r.t. NA). For ease of notation, we will
drop the superscripts on N , remembering which modulus we are working in
(which flips for Step 7).

1. Alice and Bob run the To Binary Protocol (TBP) on Q to get shares
of the bits of Q = qK . . . q1.

13

2. Alice and Bob can now obtain shares of Qi = Q (Mod 2i−1) for each
1 ≤ i ≤ K by performing the appropriate computation on their shares
of the bits of Q. For instance, Alice will set:

QA
i =

i−1∑

j=1

qA
j 2j−1,

where QA
1 is initialized to zero. Bob does similarly to compute QB

i .
Notice that Qi = QA

i + QB
i (Mod N).

3. Alice picks U ∈ [0..2K − 1] randomly and computes Ui for each 1 ≤
i ≤ K. Alice and Bob now share Si = Ui +Qi = (Ui +QA

i)+QB
i (Mod

N). It remains to explain how Alice will pick Si from {S1, . . . , SK}
with appropriate probability.

4. This step produces a reordering of [1..K] such that i appears before
j with probability 2i−j . Label this reordering {x1, . . . , xK}, where
each xi ∈ [1..K] appears exactly once. Initialize V = 2K − 2 and
define Vi := V + 1 (Mod 2i−1) for each 1 ≤ i ≤ K. Alice repeats the
following for each 1 ≤ l ≤ K:

(a) Alice chooses a random number Xl ∈ [0..V], and sets xl to be
m ∈ [1..K] if Xl ∈ [Vm..Vm+1 − 1].

(b) Alice updates V = V − 2xl−1 and re-calculates each Vi.

5. This step will choose (with correct probability) the S∗ (for some index
S∗ ∈ {S1, . . . , SK}), for which Alice will set S = S∗ = U∗ + Q∗.
Namely, it will produce shares of the characteristic vector δ∗ that has
a ‘1’ in the ∗th coordinate and zeroes elsewhere. Letting ei denote the
characteristic vector with a ‘1’ in the ith position, we use the following
equation to define δ∗ (we leave it to the reader to verify that δ∗ will
choose S∗ from {S1, . . . , SK} with correct probability):

δ∗ = (qx1
)ex1

+ (1 − qx1
)(qx2

)ex2
+ · · ·+

(1 − qx1
)(1 − qx2

) . . . (1 − qxK−1
)(qxK

)exK
.

For brevity, we have Alice compute δ∗ by running the sub-protocol
Compute δ∗ Protocol, which can be found in Appendix B with the
other sub-protocols.

6. Alice and Bob can now share S = S∗ by running the SPP on the
function:

f(x,y) = δ∗ · (S1, . . . , SK).

7. Alice and Bob repeat steps 1-6 with their roles reversed, so that Alice
and Bob share T . Now S and T are elements of ZQ, and we would
like to perform the sum S + T (Mod Q). However, Alice and Bob
cannot simply add their own shares of S and T because these shares
correspond to two different moduli NA and NB . (Recall that S was
created using Bob’s encryption key, and is therefore shared between

14

Alice and Bob modulo NB , while T is shared between them modulo
NA.) A little work must be done to convert the shares of S (which are
w.r.t. NB) to shares of T (now w.r.t NA), and then compute S + T
(Mod Q). We leave the details to the reader.

2.5.2 Proof of Obliviousness and Security

Notice that the only communication between Alice and Bob in the above
protocol takes place in the form of the sub-protocols TBP, Compute δ∗

Protocol, and SPP. The protocol is therefore secure if each of those sub-
protocols are secure, by the composition theorem of [5]. Since we are using
a secure Scalar Product Protocol (e.g. of [10] or [25]) and the TBP and
Compute δ∗ Protocol (see Appendix B) are both secure, it follows that our
Random Value Protocol is secure against an honest-but-curious adversary.
It remains to show that the output R ∈ ZQ is oblivious to both parties.

Theorem 1. The above described Random Value Protocol outputs shares of
R ∈ ZQ such that R has been chosen obliviously (as in definition 2).

Proof. The fact that R is chosen obliviously follows from three simple claims:

Claim 1. During Alice’s portion of the protocol (Steps 1-6), the distribution
of choices for S is uniform in ZQ. Conversely for T during Bob’s portion
of the protocol (Step 7).

Claim 2. If β is any fixed number in ZQ and X represents a random
variable uniformly distributed in ZQ, then the random variable Y := β + X
(Mod Q) is uniformly distributed in ZQ.

Claim 3. If a party’s view includes knowledge of β but no knowledge of X,
then Y is oblivious to that party.

We leave the proofs of these claims to the reader, but note that all three
claims result from straightforward combinatorial arguments. The fact that
R = S + T (Mod Q) is a random variable follows from the fact that both S
and T are chosen uniformly at random in ZQ, and then letting e.g. X = S
and β = T in Claim 2 above, we have by Claim 2 that R is uniformly
distributed in ZQ. The fact that R is oblivious follows from Claim 3. �

As an aside, we note that Claim 2 actually guarantees that this protocol
chooses R obliviously even if one of the parties is corrupted maliciously. The
Random Value Protocol can therefore be used as a sub-protocol in models al-
lowing a malicious adversary, provided that the TBP, Compute δ∗ Protocol,
and SPP utilized by the RVP are all secure against a malicious adversary.

15

3 Two-Party k-Means Clustering Protocol

3.1 Notation and Preliminaries

Following the setup of [15], we assume that two parties, “Alice” and
“Bob,” each hold (partial) data describing the d attributes of n objects (we
assume Alice and Bob both know d and n). Their aggregate data comprises
the (virtual) database D, holding the complete information of each of the n
objects. The goal is to design an efficient algorithm that allows Alice and
Bob to perform k-means clustering on their aggregate data in a manner that
protects their private data.

As mentioned in the Introduction, we are working in the model where
our data points are viewed as living in Zd

N for some large RSA modulus N
chosen by Alice. Note that if Alice and Bob desire a lattice width of W
and M denotes the maximum Euclidean distance between points, then Alice
will pick N sufficiently large to guarantee that N ≥ n2

M
2

W 2 (this inequality
guarantees that the sum of all data points does not exceed N).

We allow the data points to be arbitrarily partitioned between Alice and
Bob (see [15]). This means that there is no assumed pattern to how Alice
and Bob hold attributes of different data points (in particular, this subsumes
the cases of vertically and horizontally partitioned data). We only demand
that between them, each of the d attributes of all n data points is known
by either Alice or Bob, but not both. For a given data point Di ∈ D, we
denote Alice’s share of its attributes by DA

i , and Bob’s share by DB
i .

3.2 Single Database k-Means Algorithms

The single database k-means clustering algorithm that we extend to the
two-party setting was introduced by [21] and is summarized below. We chose
this algorithm because under appropriate conditions on the distribution of
the data, the algorithm is provably correct (as opposed to most other algo-
rithms that are used in practice which have no such provable guarantee of
correctness). Additionally, the Initialization Phase (or “seeding process”) is
done in an optimized manner, reducing the number of iterations required in
the Lloyd Step. The algorithm is as follows (see [21] for details):

Step I: Initialization. This procedure chooses the cluster centers µ1, . . . ,µk

according to (an equivalent version of) the protocol described in [21]:

A. Center of Gravity. Compute the center of gravity of the n data points
and denote this by C:

C =

∑n
i=1

Di

n
(4)

B. Distance to Center of Gravity. For each 1 ≤ i ≤ n, compute the
distance (squared) between C and Di. Denote this as C̃0

i = C̃0
i =

Dist2(C,Di).

16

C. Average Squared Distance. Compute the average squared distance

C̄ :=
∑n

i=1
C̃0

i

n
.

D. Pick First Cluster Center. Pick µ1 = Di with probability:

Pr[µ1 = Di] =
C̄ + C̃0

i

2nC̄
. (5)

E. Iterate to Pick the Remaining Cluster Centers. Pick µ2, . . . , µk as
follows: Suppose µ1, . . . , µj−1 have already been chosen (initially j=2),
then we pick µj by:

1. For each 1 ≤ i ≤ n, calculate C̃j−1

i , the distance (squared) be-
tween Di and µj−1.

2. For each 1 ≤ i ≤ n, let C̃i denote the minimum of {C̃ l
i}

j−1

l=0
.

3. Update C̄ to be the average of C̃i (over all 1 ≤ i ≤ n).

4. Set µj = Di with probability:

Pr[µj = Di] =
C̃i

nC̄
.

Step II: Lloyd Step. Repeat the following until ν1, . . . , νk is sufficiently
close to µ1, . . . , µk:

A. Finding the Closest Cluster Centers. For each data point Di ∈ D, find
the closest cluster center µj ∈ {µ1, . . . , µk}, and assign data point Di

to cluster j.

B. Calculating the New Cluster Centers. For each cluster j, calculate the
new cluster center νj by finding the average position of all data points
in cluster j. Share these new centers between Alice and Bob as νA

1 , . . . ,
νA

k and νB
1 , . . . , νB

k , respectively.

C. Checking the Stopping Criterion. Compare the old cluster centers to
the new ones. If they are “close enough,” then the algorithm returns
the final cluster centers to Alice and Bob. Otherwise, Step II is re-
peated after reassigning the cluster centers.

D. Reassigning New Cluster Centers. To reassign new cluster centers, set:

µA
1 , . . . ,µA

k = νA
1 , . . . ,νA

k , and

µB
1 , . . . ,µB

k = νB
1 , . . . ,νB

k .

3.3 Our Two-Party k-Means Clustering Protocol

We now extend the k-means algorithm of [21] to a two-party setting.
Section 3.3.1 below discusses how to implement Step I of the above algorithm
(the Initialization), and section 3.3.2 discusses how to implement Step II
of the algorithm (the Lloyd Step). We discuss in Appendix A alternative
approaches in the number of iterations allowed in the Lloyd Step, and why
this question is an issue in terms of protecting privacy.

17

3.3.1 Step I: Initialization

We now describe how to extend Step I of the above algorithm to the
two-party setting. In particular, we need to explain how to perform the
computations from Step I in a secure way. As output, Alice should have
shares of the cluster centers µA

1 , . . . , µA
k , and Bob should have µB

1 , . . . , µB
k ,

such that µA
i + µB

i = µi. Below we follow Step I of the algorithm from
Section 3.3.1 and describe how to privately implement each step.

A. Center of Gravity. To implement Step A of our algorithm, we need Alice
and Bob to compute and share:

C =
1

n

n∑

i=1

Di =
1

n

n∑

i=1

DA
i +

1

n

n∑

i=1

DB
i . (4)

Note that the division by n in (4) should be performed in R (as opposed to
ZN), which is handled by the Division Protocol (DivP).

1. For each 1 ≤ j ≤ d, Alice and Bob run the SPP on inputs x =
{DA

i,j}
n
i=1

and y = {DB
i,j}

n
i=1

, and the function f(x,y) =
∑n

i=1
DA

i,j +∑n
i=1

DB
i,j. As output to this call, Alice gets OA

j and Bob gets OB
j ,

where:

OA
j + OB

j = Oj :=

n∑

i=1

DA
i,j +

n∑

i=1

DB
i,j.

2. For each 1 ≤ j ≤ d, Alice and Bob run the DivP on inputs XA = OA
j ,

XB
j = OB

j , and D := n. Note that as output of the DivP, Alice and

Bob share Cj = 1

n

∑n
i=1

Di,j = (jth coordinate of C) as desired.

B. Distance to Center of Gravity.

1. For each 1 ≤ i ≤ n, Alice and Bob run the Distance Protocol (DistP)
on (DA

i ,CA) and (DB
i ,CB) to share C̃0

i = C̃A,0
i + C̃B,0

i .

C. Average Squared Distance. Define the following sums:

P :=
n∑

i=1

C̃A,0
i and P ′ :=

n∑

i=1

C̃B,0
i

1. Alice and Bob run the SPP on inputs x = {C̃A,0
i }n

i=1
, y = {C̃B,0

i }n
i=1

,

and function f(x,y) =
∑n

i=1
C̃A,0

i +
∑n

i=1
C̃B,0

i . As output to this
function, Alice and Bob share:

XA + XB = P + P ′ =

n∑

i=1

C̃A,0
i +

n∑

i=1

C̃B,0
i .

2. Alice and Bob next run the DivP on the inputs XA and XB , and
D := n. As output, Alice and Bob will be sharing C̄0 as desired.

D. Pick First Cluster Center. Notice that picking a data point Di with

probability
C̄+C̃0

i

2nC̄
is equivalent to picking a random number R ∈ [0..2nC̄−1]

18

and finding the first i such that R ≤
∑i

j=1
C̄ + C̃0

j . We use this observation
to pick data points according to weighted probabilities as follows:

1. Picking a Random R. In this step, Alice and Bob pick a random
number in [0..2nC̄ − 1], where 2nC̄ = 2nC̄A + 2nC̄B. Alice and Bob
run the Random Value Protocol (RVP) with Q := 2nC̄ = 2nC̄A+2nC̄B

to generate and share a random number R = RA + RB ∈ Z2nC̄ .

2. Alice and Bob will next compare their random number R with the
sum

∑i
j=1

C̄ + C̃0
j , and find the first i such that R ≤

∑i
j=1

C̄ + C̃0
j .

They will then set µ1 = Di. This essentially boils down to running
the FM2NP n times, and looking for the first place it returns a 1.
The actual implementation of this can be found in the Choosing µ1

Protocol in Appendix B.

E. Iterate to Pick the Remaining Cluster Centers.

1. This step is done analogously to Step I.B.

2. This step is supposed to calculate the minimum of {C̃ l
i}

j−1

l=0
. However,

they don’t have to take the minimum over all j numbers, since from
the previous iteration of this step, they already have C̃i = Min{C̃ l

i}
j−2

l=0
.

Thus, they really only need to take a minimum of two numbers, that
is reset C̃i to be:

C̃i = Min{C̃i, C̃
j−1

i }.

Therefore, Alice and Bob run the FM2NP on inputs (C̃A
i , C̃A,j−1

i) and

(C̃B
i , C̃B,j−1

i) so that they share the location of (the new) C̃i (let L =

LA + LB denote this location). They can then share the new C̃i =
Min{C̃i, C̃

j−1

i } by running the SPP on inputs x = (C̃A
i , C̃A,j−1

i , LA)

and y = (C̃B
i , C̃B,j−1

i , LB) and function f(x,y) = LC̃j−1

i + (1−L)C̃i.

3. This step is done analogously to Step I.C.

4. This step is done analogously to Step I.D.

3.3.2 Step II: Lloyd Step

In this section, we discuss how to implement the Lloyd Step while maintain-
ing privacy protection.

A. Finding the Closest Cluster Centers. We repeat the following procedure
for each Di ∈ D:

1. Find the Distance (squared) to Each Cluster Center. Note that be-
cause finding the minimum of all distances is equivalent to finding the

19

minimum of the distances squared, we will calculate the latter. Al-
ice and Bob run the Distance Protocol (DistP) k times (once for each
cluster j) to generate:

XA
i := (XA

i,1, . . . ,X
A
i,k) and XB

i := (XB
i,1, . . . ,X

B
i,k),

where
XA

i,j + XB
i,j = DistP(Di,µj).

2. Alice and Bob run the Find Minimum of k Numbers Protocol (FMkNP)
on XA

i and XB
i to obtain a share of (a vector representation of) the

location of the closest cluster center to Di:
Ci := (0, . . . , 0, 1, 0, . . . , 0), (6)

where the 1 appears in the jth coordinate if cluster center µj is closest
to Di. Note that in actuality, Ci is shared between Alice and Bob:

Ci = CA
i + CB

i .

B. Calculating the New Cluster Centers. The following will be done for each
cluster 1 ≤ j ≤ k. We break the calculation into three steps: In Step 1,
Alice and Bob will compute and share the sum of data points in cluster j,
in Step 2 they will compute and share the total number of points in cluster
j, and in Step 3 they will divide the result of Step 1 by the result of Step 2.
To simplify the notation, by E(Di) we will mean (E(Di,1), . . . , E(Di,d)).

1. Sum of Data Points in Cluster j. In this step, Alice and Bob compute
and share the sum of all data points in cluster j. We denote this sum
as:

Sj ∈ Zd
N =

n∑

i=1

{
Di, if Di ∈ cluster j

0, O.W.

At the end of this step, Alice and Bob will share Sj = SA
j + SB

j (here

the addition is in Zd
N). Recall from Step A above that for each data

point Di, Alice and Bob have CA
i and CB

i (respectively) such that:
CA

i + CB
i = Ci = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the mth cluster if Di is closest to cluster m.
Therefore, for cluster j we would like to sum:

Sj =
n∑

i=1

Ci,jDi.

(a) Alice and Bob will run the SPP n times, where on the ith time
they set x = (CA

i,j,D
A
i ,CA

i,jD
A
i) and y = (CB

i,j,D
B
i ,CB

i,jD
B
i) and

function f(x,y) = Ci,jDi = (CA
i,j + CB

i,j)(D
A
i + DB

i). (In order

to do this, they first pre-compute CB
i,jD

B
i and CB

i,jD
B
i).

(b) Notice that SA
j is the sum of all of Alice’s shares from each step

of the n calls to SPP above (and similarly for Bob and SB
j). They

can therefore add all of their individual shares of the above sums
to obtain shares of Sj .

20

2. Number of Data Points in Cluster j. Now Alice and Bob wish to
compute and share the total number of points in cluster j, denoted
by Tj . To do this, for each 1 ≤ i ≤ n, Alice views CA

i ∈ Zk
N , and

analogously for Bob. They then run the SPP on inputs x = {CA
i },y =

{CB
i } and function f(x,y) =

∑n
i=1

CA
i,j +

∑n
i=1

CB
i,j. (Note: since each

term in the sum is in Zk
N , they actually run the SPP k times, once for

each coordinate.)

3. Centroid of Data Points in Cluster j. In this step Alice and Bob would
like to divide SA

j +SB
j (from Step 1) by the total number of data points

Tj in cluster j to obtain the new cluster center νj :

νj =
SA

j + SB
j

TA
j + TB

j

(7)

Alice and Bob run the DivP k times (once for each cluster j) on inputs
P = SA

j + SB
j and divisor D = TA

j + TB
j , where they know D ∈ [0..n].

C. Checking the Stopping Criterion. Alice and Bob run the DistP k times,
on the ith time it outputs shares of ‖µi − νi‖

2. They can then run the SPP
to add their shares together and run the FM2NP to compare these sums
with ǫ, some agreed upon predetermined value. They can open then com-
pare their outputs from the FM2NP to determine if the stopping criterion
has been met.

D. Reassigning New Cluster Centers. The final step of our algorithm, re-
placing the old cluster centers with the new ones, is easily accomplished:

Alice sets: (µA
1 , . . . ,µA

k) = (νA
1 , . . . ,νA

k), and

Bob sets: (µB
1 , . . . ,µB

k) = (νB
1 , . . . ,νB

k).

4 Conclusion

As mentioned in Section 2.3, the proof of security of the two-party k-
means clustering protocol presented above follows from the fact that each
of the subprotocols are secure. The only exception to this is in step C of the
Lloyd Step, where Alice and Bob must decide if their protocol has reached
the termination condition. Although Alice and Bob remain oblivious to any
actual values at this stage, they will gain the information of exactly how
many iterations were required in the Lloyd Step. There are various ways
of defining the model to handle this potential information leak and thus
maintain perfect privacy protection (see Appendix A).

Analyzing the communication between Alice and Bob in the two-party
k-means clustering protocol presented in Section 3.3 demonstrates that our
protocol achieves communication complexity:

O(kK2) + O(mndkK) + O(mnkξ) + O((d + m)kζ).

21

Recall that k is the number of clusters, K is the security parameter, n is the
number of data points, d is the number of attributes of each data point, m is
the number of iterations in the Lloyd Step, O(ζ) is the communication cost of
performing two-party secure division (where division is defined as in Section
2.4), and O(ξ) is the communication cost of (securely) finding the minimum
of two numbers. In this paper, we showed that O(ζ) ≤ O(Kξ)+O(K3) and
that O(ξ) ≤ O(K2 log K), which means our protocol has communication
complexity bounded by O(mndkK) + O(mnkK2) + O((m + d)kK3 log K).
Notice that the cost of performing the single database k-means clustering
protocol of [21] is at least O(mndk) + O(mnkK) + O(mdkζ): The first
term is necessary e.g. to add together all the data points in each cluster
during each iteration of the Lloyd Step, the second term is necessary to
e.g. find the minimum of k numbers for each data point (when deciding
which cluster the data point belongs to), and the third term is necessary for
performing a division for each dimension of each cluster center. Therefore,
the difference in communication complexities between our secure two-party
protocol and a non-secure single database protocol is at most a factor of the
security parameter K. The communication cost of our protocol matches the
communication complexity of [15] while simultaneously enjoying the extra
guarantee of security against an honest-but-curious adversary.

The communication complexity of our k-means protocol is bounded by
the cost of performing secure division. In this paper, we defined a notion of
division in the ring ZN that matches the intuition of what division “should”
mean (e.g. when taking an average), and we included a possible implemen-
tation of a secure division. It is our belief that improvement of our result (in
terms of communication complexity) will likely be restricted to the possibil-
ity of implementing a more efficient division protocol, which is an interesting
open problem.

References

[1] D. Agrawal and C. Aggarwal. “On the Design and Quantification of
Privacy Preserving Data Mining Algorithms.” Proc. of the 20th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems,
pp. 247-255. 2001.

[2] R. Agrawal and R. Srikant. “Privacy-Preserving Data Mining.” Proc.
of the 2000 ACM SIGMOD Int. Conf. on Management of Data, pp.
439-450. 2000.

[3] D. Beaver. “Foundations of Secure Interactive Computing.” CRYPTO
’91, LNCS 576, pp. 377-391. 1992.

[4] P. Bradley and U. Fayyad. “Refining Initial Points for K-Means Cluster-
ing.” Proc. of the 15th International Conference on Machine Learning,
pp. 91-99. 1998.

22

[5] R. Canetti. “Security and Composition of Multiparty Cryptographic
Protocols.” Journal of Cryptology, vol. 13 no. 1 pp. 143-202. 2000.

[6] D. Chaum, C. Crépeau and I. Damgard. “Multiparty Unconditionally
Secure Protocols.” Proc. of the 20th Annual ACM Symp. on the Theory
of Computing, pp. 11-19. 1988.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. “Calibrating Noise
to Sensitivity Private Data Analysis.” Proc. of the 3rd Theory of Cryp-
tography Conference, pp. 265-284. 2006.

[8] I. Dinur and K. Nissim. “Revealing Information While Preserving Pri-
vacy.” Proc. of the 22nd ACM SIGMOD-SIGACT-SIGART Symp. on
Principles of Database Systems, pp. 202-210. 2003.

[9] C. Dwork and K. Nissim. “Privacy-Preserving Datamining on Verti-
cally Partitioned Data- bases.” CRYPTO ’04, LNCS 3152, pp. 528-544.
2004.

[10] B. Goethals, S. Laur, H. Lipmaa and T. Mielikäinen. “On Private Scalar
Product Computation for Privacy-Preserving Data Mining.” ICISC,
LNCS 3506, pp. 104-120. 2004.

[11] O. Goldreich. “The Foundations of Cryptography, Basic Applications.”
Cambridge University Press. 2004.

[12] O. Goldreich, S. Micali and A. Wigderson. “How to Play Any Mental
Game.” Proc. of the 19th STOC, ACM, pp. 218-229. 1987.

[13] Y. Isahi, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-Knowledge
from Secure Multiparty Computation.” ACM Symposium on Theory of
Computing. 2007

[14] S. Jha, L. Kruger and P. McDaniel. “Privacy Preserving Clustering.”
10th European Symp. on Research in Computer Security, pp. 397-417.
2005.

[15] G. Jagannathan and R. Wright. “Privacy-Preserving Distributed k-
Means Clustering over Arbitrarily Partitioned Data.” KDD ’05, pp.
593-599. 2005.

[16] J. Katz and R. Ostrovsky. “Round-Optimal Secure Two-Party Compu-
tation.” CRYPTO ’04, LNCS 3152, pp. 335-354. 2004.

[17] E. Kiltz, G. Leander and J. Malone-Lee. “Secure Computation of the
Mean and Related Statistics.” TCC ’05, LNCS 3378, pp. 283-302. 2005.

[18] Y. Lindell and B. Pinkas. “Privacy Preserving Data Mining.” CRYPTO
’00, LNCS 1880, pp. 36-54. 2000.

[19] S. Oliveira and O.R. Zäıane. “Privacy Preserving Clustering by Data
Transformation.” Proc. 18th Brazilian Symposium on Databases, pp.
304-318. 2003.

23

[20] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness The-
orems for Non-Crypto- graphic Fault-Tolerant Distributed Computa-
tion.” Proc. 20th Annual ACM Symp. on Theory of Computing, pp.
1-10. 1988.

[21] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy. “The Effective-
ness of Lloyd-Type Methods for the k-Means Problem.” FOCS. 2006.

[22] M. Naor and B. Pinkas. “Oblivious Polynomial Evaluation.” SIAM
Journal of Computing, Vol. 35, No. 5, pp. 1254-1281. 2006.

[23] P. Paillier. “Public Key Cryptosystems Based on Composite Degree
Residuosity Classes.” Advances in Cryptology, EUROCRYPT ’99 Pro-
ceedings, LNCS 1592, pp. 223-238. 1999.

[24] J. Vaidya and C. Clifton. “Privacy-Preserving k-Means Clustering over
Vertically Partitioned Data.” Proc. 9th ACM SIGDD Inter. Conf. on
Knowledge Discovery and Data Mining, 206-215. 2003.

[25] R. Wright and Z. Yang. “Privacy-Preserving Bayesian Network Struc-
ture Computation on Distributed Heterogeneous Data.” Proc. of the
10th ACM SIGKDD International Conf. on Knowledge Discovery and
Data Mining, pp. 713-718. 2004.

[26] A.C.C. Yao. “How to Generate and Exchange Secrets.” Proc. of the
27th IEEE Symp. on Foundations of Computer Science, pp. 162-167.
1986.

[27] H. Zhu and F. Bao. “Oblivious Scalar-Product Protocols.” 11th Aus-
tralasian Conference on Information Security and Privacy, LNCS 4058,
pp. 313-323. 2006.

A Alternative Computation of the k-Means Clus-

ter Centers

It is possible that the iterative nature of the Lloyd Step may reveal unde-
sirable information to the two parties, in particular the number of iterations
that are performed in the Lloyd Step. We suggest three different approaches
to handle this privacy concern:

• Approach 1: Reveal Number of Iterations. If Alice and Bob agree
beforehand that this minor leak of information will not compromise
the privacy of their data, they can choose to run our algorithm so that
this is the only privacy leak.

• Approach 2: Set the Number of Iterations to be Proportional to n. In
general, the more data points, the more iterations are necessary to

24

reach the stopping condition. Based on n, one could therefore approx-
imate the expected number of iterations that should be necessary, and
fix our algorithm to perform this many iterations.

• Approach 3: Fix the Number of Iterations to be Constant. In [21], it
is argued that if the data points enjoy certain “nice” properties, then
the number of iterations is extremely small (i.e. with high probability,
only 2 iterations are necessary). Thus, fixing the number of iterations
to be some (small) constant will (with high probability) not result in a
premature termination of the Lloyd Step (i.e. the stopping condition
will likely have been reached).

Each approach has its pros and cons. Approach 1 guarantees the accuracy
of the final output (as the stopping criterion has been met) in the mini-
mal number of steps, but leaks information about how many iterations were
performed. Approach 2 succeeds with high probability, but may unneces-
sarily affect communication complexity if the fixed number of iterations is
higher than necessary. Approach 3 keeps communication minimal, but runs
a higher risk of losing accuracy of the final output (i.e. if the stopping cri-
terion hasn’t been reached after the fixed number of iterations have been
completed). In the body of our paper, we assumed Approach 1, although it
is trivial to modify our algorithm to implement instead Approach 2 or 3.

B Implementations of Protocols from Section 2.2

We describe here possible implementations of each of the protocols listed
in Section 2.2. We provide these implementations solely for the purpose of
completion, and make no claim concerning their efficiency in relation to
other existing protocols that perform the same tasks. Since we need each
of these protocols to be secure against an honest-but-curious adversary, we
need the communication in each sub-protocol to be in the generic form of
Lemma 1 or to utilize other protocols that are already known to be secure;
and indeed this will be the case in each of the following.

B.1 Description of the Find Minimum of 2 Numbers Proto-
col

Input. As input to this protocol, Alice has (XA, Y A) ∈ Z2

N and Bob has (XB, Y B) ∈
Z2

N

Output. As output, Alice and Bob should share:

L = (loc. of min. of (X, Y)) :=

{
0, if X ≤ Y

1, if X ≥ Y

where if X = Y , then L should be 0 half of the time and 1 half of the time.
(Sometimes we would instead like this protocol to output 0 always if X = Y . This
modification is easily accounted for by setting r in (8) below to be 0).
Cost. Total cost of this protocol is O(K2).

25

Note. This protocol will be completed by performing a standard minimum compar-
ison on the binary representations of these numbers. Let X = c1c2 . . . cM and Y =
d1d2 . . . dM be the binary representations of X and Y (recall that M = ⌈log N⌉).
In general, note that the following formula will return the location of the minimum
of (X, Y), where the formula returns 0 if X < Y , a 1 if X > Y , and a random
r ∈ {0, 1} if X = Y :

L = (c1 ⊕ d1)c1 + (c1 ⊕ d1 ⊕ 1)(c2 ⊕ d2)c2+

(c1 ⊕ d1 ⊕ 1)(c2 ⊕ d2 ⊕ 1)(c3 ⊕ d3)c3 + · · ·+

(c1 ⊕ d1 ⊕ 1) . . . (cM−1 ⊕ dM−1 ⊕ 1)(cM ⊕ dM)cM+

(c1 ⊕ d1 ⊕ 1) . . . (cM ⊕ dM ⊕ 1)r (8)

where ⊕ signifies XOR, and the other operations are performed in ZN . Shares of
L can than be obtained by running the SPP many times, utilizing the general fact
that:

c ⊕ d = c + d − 2cd, (9)

where addition on the left hand side is in Z2 and on the right hand side is in ZN .

We omit the specific details due to space consideration.

B.2 Description of the Find Minimum of k Numbers Proto-
col

This subprotocol is a simple extension of the above. If the communication
cost of the FM2NP is O(ξ), then this protocol will have communication
complexity O(kξ). Furthermore, every time this protocol is called by our
k-means clustering protocol the numbers are essentially already in sorted
order. We can take advantage of this and reduce the cost of this subprotocol
to O(ξ log k).

B.3 Description of the To Binary Protocol

Input. As input to this protocol, Alice and Bob share X = XA + XB < N/2.
Output. If X = x1x2 . . . xM is the binary representation for X , then as output
Alice and Bob should share each bit xi = xA

i + xB
i (Mod N).

Cost. Total cost of this protocol is O(K2).
Note. This protocol is made slightly more difficult due to the two possibilities:

XA + XB =

{
XA + XB, if γ = 0

XA + XB − N, if γ = 1

where

γ =

{
0, if XA AND XB < N/2

1, if XA OR XB ≥ N/2

In particular, if XA := a1a2 . . . aM , XB := b1b2 . . . bM , 2M −N = d1d2 . . . dM , then:

a1a2 . . . aM

b1b2 . . . bM

+ γ ∗ (d1d2 . . . dM)

BIN(X) = x1x2 . . . xM , (10)

26

where addition above is standard addition in Z2M (performed base 2, with carry-

over). We perform addition (base 2) in the usual way: start on the right and add

the bits via XOR, keeping track of carry-over. Again we omit the details, but note

that addition modulo 2 can be handled by using the SPP together with (9).

B.4 Description of the Bigger Than N Protocol

Input. As input to this protocol, Alice and Bob share X = XA + XB, where
X < N/2.
Output. This protocol should output shares of 0 if XA + XB ≥ N (in Z), and
shares of 1 otherwise.
Cost. Total cost of this protocol is O(K) in communication.
Note. Define:

α :=

{
0, if XA < N/2

1, if XA ≥ N/2
β :=

{
0, if XB < N/2

1, if XB ≥ N/2
(11)

Then due to the hypothesis that X < N/2, it is immediate that if O = OA + OB

denotes the output of this protocol, then:

O :=

{
0, if XA + XB (Mod N) = XA + XB

1, if XA + XB (Mod N) = XA + XB − N

=

{
0, if α ⊕ β = 0

1, if α ⊕ β = 1
(12)

Thus, viewing the left and right hand sides of the below equation as arithmetic in
ZN , and the middle as arithmetic in Z2, we have that:

OA + OB = α ⊕ β = α + β − 2αβ. (13)

1. Alice set α and Bob sets β according to (11).

2. Alice and Bob run the SPP according to (13) to obtain shares of O.

B.5 Choosing µ1 Protocol

Input. Alice and Bob have run the RVP, which has returned to them shares of a
random R ∈ Z

2nC̄ . They also share C̄ and for each 1 ≤ i ≤ n, they share C̃0

i .
Output. Alice and Bob share µ1 = Di, where Di has been chosen with the correct
probability.
Cost. This protocol costs O(ndK) + O(nK2) in terms of communication.

1. For each 1 ≤ i ≤ n, Alice and Bob run the SPP on inputs x = (C̄A, C̃A,0
i)

and y = (C̄B , C̃B,0
i) and the function:

f(x,y) = C̄ + C̃0

i = C̄A + C̃A,0
i + C̄B + C̃B,0

i .

Let Oi = C̄A + C̃A,0
i + C̄B + C̃B,0

i = C̄ + C̃0

i denote the function output
value on the ith call, so that Alice and Bob share this as Oi = OA

i + OB
i .

Let zA = (OA
1

, . . . , OA
n), and zB = (OB

1
, . . . , OB

n) so that z = zA + zB =

(C̄ + C̃0

1
, . . . , C̄ + C̃0

n).

27

2. Alice and Bob next run the SPP n times to compute and share:

Z : = ZA + ZB = (z1, (z1 + z2), . . . , (z1 + · · · + zn))

= ((C̄ + C̃0

1
), . . . , (nC̄ + C̃0

1
+ · · · + C̃0

n)). (14)

Notice that on any call i to SPP, the function involves only 3 additions- the
sum of their shares from the i − 1 call plus the sum of their shares of zi.

3. Alice and Bob run the Find Minimum of 2 Numbers Protocol (FM2NP)
n different times. (Actually, they run the modified version so that in the
case of equality, the protocol always returns a 0). On the ith try they run
it on (ZA

i , RA) and (ZB
i , RB), i.e. they are comparing the ith coordinate

of Z with R (recall that R is an input value). This generates the vectors
LA := (LA

1
, . . . , LA

n) and LB := (LB
1

, . . . , LB
n), where LA

m +LB
m are the values

returned by the FM2NP on the mth call to it. Thus,

LA
m + LB

m =

{
0, if R ≤ Zm

1, if R ≥ Zm

Note that if L := LA + LB , then it has the form: L = (0, . . . , 0, 1, 1, . . . , 1),
where the first 1 appears in the mth coordinate if m is the first time R ≤ Zm.

4. Alice and Bob modify LA in the following way (LB is modified similarly):

L′A := (LA
1
, (LA

2
− LA

1
), (LA

3
− LA

2
), . . . , (LA

n − LA
n−1

))
so that L′ = L′A + L′B has the form:

L′ = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the mth coordinate if m is the first time that R ≤ Zm.

5. Now Alice and Bob simply need to take the scalar product of L′ with (D1, . . . ,Dn)
to correctly select µ1. More specifically, they do this for each dimension. De-
fine Dm = (D1,m, . . . ,Dn,m). Then Dm ∈ Zn

N represents the mth coordinates
of the n data points. Let D

A
m represent Alice’s share of Dm, and D

B
m denote

Bob’s share. Alice and Bob would like to take d scalar products (once for
each dimension), where on the mth time they set:

(µA
1,m, µB

1,m) = Scalar Product(LA + LB, DA
m + D

B
m).

To accomplish this, Alice first computes LA · D
A
m, and similarly Bob com-

putes LB · D
B
m.

6. Alice and Bob compute the desired scalar product by running SPP on inputs
x = (LA, DA

m,LA · D
A
m) and y = (LB , DB

m,LB · D
B
m) and function f(x,y) =

L · Dm. This yields as output shares of µ
1,m = µA

1,m + µB
1,m as desired.

7. Lastly, Alice and Bob set µA
1

= (µA
1,1, . . . , µ

A
1,d) and µB

1
= (µB

1,1, . . . , µ
B
1,d).

Notice that µ1 =µA
1
+µB

1
is exactly as it should be, that is, µ1 = Di with

the correct probability.

B.6 Compute δ∗ Protocol

Input. Alice and Bob share Q = QA + QB, and if Q = qK . . . q1, then for each
1 ≤ i ≤ K, they also share qi = qA

i + qB
i (Mod N). Alice also has a reordering of

the integers [1..M], which is denoted {x1, . . . , xM}.
Output. The vector δ∗ = (0, . . . , 1, . . . , 0), a unit vector with a ‘1’ in the appropri-
ate coordinate, has been chosen correctly (see RVP for precise definition of this),

28

and is shared between Alice and Bob.
Cost. This protocol costs O(K2) in terms of communication.
Note. In this protocol, the roles of Alice and Bob will be reversed, so that Ê
will represent a homomorphic encryption function that Bob can decrypt but Alice
cannot.

1. Bob sends Alice (Ê(qB
1

), . . . , Ê(qB
K)).

2. Alice picks K values at random {Z1, . . . , ZK} ∈ ZN and (utilizing the ho-
momorphic properties of Ê) returns to Bob (Ê(qB

x1
−Z1), . . . , Ê(qB

xK
−ZK)).

Notice that Alice has rearranged the order in which she returns things to Bob
(reflecting her choices of the xi from the above step), but Bob doesn’t know
the new order because Alice has blinded each term with randomness Zi.

3. Bob decrypts each term, and multiplies them in the following indicated man-
ner, returning to Alice:

(Ê(qB
x1

− Z1), Ê((qB
x1

− Z1)(q
B
x2

− Z2)), . . . ,

Ê((qB
x1

− Z1)(q
B
x2

− Z2) . . . (qB
xK

− ZK))).

4. Recall that δ∗ is defined by the equation:

δ∗ =(qx1
)ex1

+ (1 − qx1
)(qx2

)ex2
+ · · ·+

(1 − qx1
)(1 − qx2

) . . . (1 − qxK−1
)(qxK

)exK
. (15)

Alice now utilizes the homomorphic properties of Ê to calculate (an encryp-
tion of) δ∗.

5. Alice chooses new randomness and blinds δ∗ with this, returning the result
to Bob who can decrypt so that Alice and Bob now share δ∗.

29

