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Abstract

Kerberos is a widely deployed network authentication protocol currently being considered for
standardization. Many works have analyzed its security, identifying flaws and often suggesting
fixes, thus promoting the protocol’s evolution. Several recent results present successful, formal
methods-based verifications of a significant portion of the current version, v.5, and some even
imply security in the computational setting. For these results to hold, encryption in Kerberos
should satisfy strong cryptographic security notions. However, prior to our work, none of the
encryption schemes currently deployed as part of Kerberos, nor their proposed revisions, were
known to provably satisfy such notions. We take a close look at Kerberos’ encryption, and we
confirm that most of the options in the current version provably provide privacy and authenticity,
though some require slight modifications which we suggest. Our results complement the formal
methods-based analysis of Kerberos that justifies its current design.

Keywords: Kerberos, authenticated encryption, provable security.

1 Introduction

1.1 Motivation

Kerberos is a trusted third party network authentication protocol. It allows a client to authenticate
herself to multiple services, e.g. file servers and printers, with a single login. Kerberos has become
widely deployed since its origination as MIT’s project Athena in 1988. It has been adopted by
many large universities and corporations, is part of all major computing platforms, e.g. Windows
(starting from Windows 2000), Linux, UNIX, and Mac OS X, and is a draft standard at IETF [30].

Security of Kerberos has been analyzed in many works, e.g. [16, 29, 6, 5, 27, 20, 31]. Most
commonly, analyses identify certain limitations or flaws in the deployed versions of Kerberos and
sometimes propose fixes. This leads to the evolution of the protocol, when a new version patches
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the known vulnerabilities of the previous versions. The current version, Kerberos v.5, is already
being revised and extended [24, 26, 25].

What is certainly desirable for the upcoming standard is to provide some guarantees that the
protocol not only resists some specific known attacks, but that it withstands a very large class
of possible attacks, under some well-studied assumptions. Modern techniques in cryptography
(computational approach), and formal methods (symbolic approach) make it possible; however,
formally analyzing such a complex protocol is not an easy task.

Several recent works contributed in this direction. Butler et al. [17, 18] have analyzed significant
portions of the current version of Kerberos and its extensions in the symbolic approach (i.e. Dolev-
Yao model [19]), and have formally verified that the design of Kerberos’ current version meets the
desired goals for the most part. However, a known limitation of such analyses is a high level of
abstraction. A significant advance has been made by a recent work by Backes et al. [1] in that it is
the only work providing symbolic analysis that also guarantees security in the computational setting,
the well-accepted strongest model of security. Their results use the computational soundness model
due to Backes et al. [4, 3, 2]. However, for their results to hold, cryptographic primitives used in
the protocol need to satisfy strong notions of security (in the computational setting). Namely, as
the result of [23] implies, the encryption scheme utilized by the protocol needs to provide privacy
against chosen-ciphertext attacks (be IND-CCA secure), as well as authenticity and integrity of
ciphertexts (be INT-CTXT secure).

However, it is not known whether authenticated encryption1 in Kerberos is IND-CCA and
INT-CTXT secure. Certain known vulnerabilities indicate that encryption in version 4 did not
satisfy these notions [31]. While encryption in the current version, v.5, is designed to resist known
attacks, it is not clear whether it provably resists all attacks of the class, and if it does, under what
assumptions. Provable security has become a de facto standard approach in modern cryptography
research. Cryptographers design plenty of cryptographic schemes for a vast range of possible
applications, and they usually provide rigorous proofs of security for their constructions. It is
somewhat surprising then that the schemes that are actually used in deployed protocols remain
unanalyzed from the provable security perspective. Our work aims to close this gap.

1.2 Contributions

We take a close look at the encryption schemes used in Kerberos v.5 (according to its specifications
[26, 25]), in order to prove them secure, in the IND-CCA and INT-CTXT sense, assuming the
underlying building blocks (e.g. a blockcipher) are secure. Our results complement the formal
methods-based analysis of Kerberos as a key establishment and authentication protocol [17, 18].

General Profile. We first look at the encryption scheme description in the current version,
v.5, specification (cf. [26], Section 6). We will refer to it as “General Profile”. Fix a blockcipher
with input-output length n, and a key for it; a checksum, i.e. a hash function with arbitrary input
length, and output length l. A message M is first padded to make the length of the message plus
l a multiple of n. Next, a random n-bit string conf is chosen. Then the checksum is applied to
the string conf ∥ 0l ∥M . Let us call the checksum’s output σ. Finally, the blockcipher in the CBC
mode with fixed initial vector IV = 0n is applied to the string conf ∥ σ ∥M . Decryption is defined
accordingly. Security of the scheme depends on how the checksum function is instantiated. The

1We will often refer to encryption schemes whose goal is to provide both privacy and authenticity as authenticated
encryption.
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suggested instantiation is a hash function. We observe that the General Profile scheme conforms to a
general Encode-then-Checksum-then-Encrypt construction, and the latter has a weakness. Namely,
we show that even if one assumes the “more secure” component options, e.g. a secure blockcipher
in a secure encryption mode and a secure hash function, the Encode-then-Checksum-then-Encrypt
construction is not secure in general. That is, there exist attacks on the scheme composed of certain
secure components, which shows that it does not provide integrity of ciphertexts. We note that
these attacks do not apply to the General Profile itself, as it uses a particular encryption scheme
recommended in [26]. Nevertheless, the attacks show a weakness in the overall design.

Modified General Profile. We propose simple, easy to implement modifications that are
sufficient for provable security of the design of General Profile. Namely, we show that if the scheme
uses a secure blockcipher (a pseudorandom function, or ”PRF”) in the CBC mode, as specified by
General Profile, and if a message authentication code (MAC) that is a PRF is used as a checksum
in place of the hash function, then Modified General Profile yields an encryption scheme that is
IND-CCA and INT-CTXT secure. In particular, AES that is assumed to be a PRF and HMAC [8]
that is proven to be a PRF [7], assuming the underlying compression hash function is a PRF, are
good candidates for a blockcipher and MAC, respectively.

Simplified Profile. Next, we look at the recently proposed revisions to the encryption design
in Kerberos, known as Simplified Profile (cf. Section 5 in [26] and [25]). This encryption scheme,
for which implementations have not caught up yet, recommends to use AES or Triple-DES as a
blockcipher, and HMAC [8] as a MAC, in the following manner. The message is first encoded
such that the necessary padding is appended, and a random confounder (the name was suggested
in most Kerberos specifications) is prepended. The blockcipher in CBC mode or a variant of
CBC mode with ciphertext-stealing2, both with fixed all-zero-bit IV, and HMAC are applied to the
encoded message independently to yield two parts of the resulting ciphertext. Decryption is defined
accordingly. We prove that this method yields an encryption scheme that is IND-CCA and INT-
CTXT secure, under the assumption that the blockcipher and the MAC are PRF. This confirms
soundness of the design of the Simplified Profile. AES is conjectured to be a PRF, Triple DES was
shown to be a PRF in the ideal cipher model [15], and as mentioned before, HMAC was proven to
be a PRF [7], assuming the underlying compression hash function is a PRF. Therefore, they are
the right choices of instantiations for the Simplified Profile. We comment that even though the
Simplified Profile uses the CBC scheme with a fixed IV, this does not compromise security because
pre-pending a random confounder to the message before encrypting makes the scheme equivalent
to the CBC with random IV.

While our results are not as unexpected or “catchy” as some results discovering a flaw or imple-
menting an attack on a practical protocol, they are far from being less important. Having provable
security guarantees is an invaluable benefit for any cryptographic design, especially a widely de-
ployed protocol. Our results together with the formal methods-based results in the symbolic setting
constitute strong provable security support for the design of Kerberos.

1.3 Related work

Bellare and Namprempre [12] study various ways to securely compose secure (IND-CPA) encryption
and secure (unforgeable against chosen-message attacks, or ”UF-CMA”) message authentication

2Even though we analyze Simplified Profile only with “plain” CBC mode of encryption, we note that our analysis
can easily be extended to CBC mode with ciphertext-stealing, and the results remain unaltered.
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code schemes. They show that only one out of the three most straightforward composition methods,
Encrypt-then-MAC, is secure in general (i.e. always yields an IND-CCA and INT-CTXT encryption
scheme). At the same time, certain secure components can yield a scheme, constructed via Encrypt-
and-MAC or MAC-then-Encrypt paradigms, that is not IND-CCA or not INT-CTXT. If Kerberos’
design had utilized the Encrypt-then-MAC composition method with secure encryption and MAC
schemes, we would have nothing to prove here. However, Kerberos uses some variations of Encrypt-
and-MAC and MAC-then-Encrypt methods that rely on the properties of the encodings of the
message, i.e. of preprocessing of the message before encryption and MAC are applied.

Bellare et al. [11] analyze security of encryption in another widely deployed protocol, Secure
Shell, also known as SSH. They suggest several modifications to the SSH encryption to fix certain
flaws, and they prove that the resulting scheme provably provides privacy against chosen-ciphertext
attacks, and integrity of ciphertexts. They also provide general results about security of stateful en-
cryption schemes composed according to the Encode-then-Encrypt-and-MAC paradigm, assuming
certain security properties of the base encoding, encryption, and MAC schemes. The encryption
scheme proposed for the revision of Kerberos v.5 (cf. Simplified Profile in [26]) conforms to the
Encode-then-Encrypt-and-MAC method. However, the security results from [11] do not directly
imply strong security notions of the Simplified Profile in Kerberos. First, the general results from
[11] do not guarantee a strong notion of integrity of ciphertexts; they only consider a weaker notion
of integrity of plaintexts. Second, the result of [11] require an IND-CPA secure base encryption
scheme, but as we mentioned above, the base encryption in Kerberos is CBC with fixed IV, which
is not IND-CPA secure.

Krawczyk [22] shows that the MAC-then-Encrypt composition method yields a secure authen-
ticated encryption scheme, if the underlying MAC is UF-CMA, and if the encryption scheme uses
a PRF blockcipher in CBC with random IV mode. We cannot use this result to prove security of
the Modified General Profile, because the latter uses the CBC mode with zero IV, and moreover, it
uses a particular encoding scheme so that the confounder (that basically plays the role of random
IV for CBC) is also being MACed and encrypted. Proving this scheme requires special care.

Accordingly, we need to analyze the authenticated encryption schemes in Kerberos from scratch.

1.4 Outline

After defining some notation, we recall the relevant cryptographic primitives and their security defi-
nitions. Next, we outline the designs of schemes in the General and Simplified Profile authenticated
encryption schemes of Kerberos’ specification, as well as the modification to the General Profile
that we propose. We follow with a detailed security analysis of the schemes, and we conclude with
the summary.

2 Preliminaries

2.1 Notation

We denote by {0, 1}∗ the set of all binary strings of finite length. If X is a string, then |X| denotes
its length in bits. If X,Y are strings, then X ∥ Y denotes the concatenation of X and Y . For an
integer k and a bit b, bk denotes the string consisting of k consecutive “b” bits. For a string X,
whose length is a multiple of integer n bits, X[i] denotes the ith block, meaning X = X[1]|| . . . ||X[l],
where l = |X|/n, and |X[i]| = n, for all i = 1, . . . , l. For any integers 0 ≤ i < j ≤ |M |, M[i] denotes
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the ith bit of M , and M[i...j] denotes M[i] ∥ . . . ∥M[j]. If S is a set, then |S| denotes the size of S;

X
$← S denotes that X is selected uniformly at random from S. If A is a randomized algorithm,

then the notation X
$← A denotes that X is assigned the outcome of the experiment of running A.

If A is deterministic, we drop the dollar sign above the arrow.

2.2 Cryptographic Primitives and their Security

Symmetric Encryption.

Definition 2.1. [Symmetric encryption scheme] A symmetric encryption scheme SE = (K, E ,
D), with associated message space MsgSp, is defined by three algorithms:

• The randomized key generation algorithm K returns a secret key K.

• The (possibly) randomized or stateful encryption algorithm E takes as input the secret key K
and a plaintext M ∈ MsgSp, and returns a ciphertext.

• The deterministic decryption algorithm D takes the secret key K and a ciphertext C to return
the corresponding plaintext, or the special symbol ⊥ indicating that the ciphertext was invalid.

The consistency condition requires that DK(EK(M)) = M , for all K that can be output by K, and
all M ∈ MsgSp.

We now recall cryptographic security notions for encryption. The following definition [9] is for
data privacy (confidentiality). It formalizes the requirement that even though an adversary may
know some partial information about the data, no additional information is leaked.

Definition 2.2. [IND-CPA, IND-CCA] Let SE = (K, E ,D) be an encryption scheme. For
atk ∈ {cpa, cca}, adversary A, and a bit b, define the experiments Expind-atk-b

SE (A) as follows. In
all the experiments, first the key K is generated by K. Let LR (left-or-right) be the “selector”
that on input M0,M1, b returns Mb. The adversary A is given access to the left-right encryption
oracle EK(LR(·, ·, b)) that it can query on any pair of messages of equal length in MsgSp. In
Expind-cca-b

SE (A), the adversary is also given the decryption oracle DK(·) that it can query on any
ciphertext that was not returned by the other oracle. The adversary’s goal is to output a bit d
as its guess of the challenge bit b; the experiment returns d as well. The ind-atk-advantage of an
adversary A is defined as:

Advind-atk
SE (A) = Pr

[
Expind-atk-1

SE (A) = 1
]
− Pr

[
Expind-atk-0

SE (A) = 1
]
.

The scheme SE is said to be indistinguishable against chosen-plaintext attack or IND-CPA (resp.,
chosen-ciphertext attack or IND-CCA), if for every adversary A with reasonable resources, its
ind-cpa (resp., ind-cca) advantage is small3.

3The resources of an adversary we care about are its running time, the number of oracle queries it makes, and
the total length of the queries. We use the standard convention that running time of an adversary is measured with
respect to the entire experiment in which it runs. Here, and further in the paper, we call the resources of an algorithm
(or adversary) “reasonable” if it runs for some reasonable amount of time (e.g. up to 10 years, or does 260 basic
operations in some fixed model of computation) and does a reasonable number of oracle queries of reasonable length.
We call the value of an advantage “small” if it is very close to 0 (e.g. 2−20.) In general, “reasonable” parameters
depend on a particular application. In computing the total length of queries made to the LR encryption oracle, we
only count the length of one of the messages, instead of the total length of the message pair (M0,M1).
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It is easy to see that IND-CCA security is a stronger notion that implies IND-CPA security.
The following definition [12, 13] is for authenticity and integrity of encryption. It formalizes the

requirement that no adversary should be able to compute a new ciphertext which the receiver will
deem valid.

Definition 2.3. [INT-CTXT] Let SE = (K, E , D) be an encryption scheme. The encryption
scheme is said to provide authenticity, or ciphertext integrity (be INT-CTXT secure), if any ad-
versary A with reasonable resources can be successful in the following experiment only with small
probability, called the int-ctxt-advantage of A, Advint-ctxt

SE (A). In the experiment, first the key K
is generated by K. The adversary has access to two oracles: encryption oracle EK(·) and verifica-
tion oracle VK(·). On input, a ciphertext C, VK(·) returns 1 if C was not returned by EK(·) and
DK(C) ̸= ⊥. The adversary is successful in the experiment if VK(·) ever returns 1.

It has been shown [12] that if an encryption scheme is IND-CPA and INT-CTXT, then it is
also IND-CCA.

Theorem 2.4. [[12], Theorem 3.2] Let SE = (K, E ,D) be an encryption scheme. If it is IND-
CPA and INT-CTXT secure, then it is also IND-CCA secure. Concretely, for any adversary A
attacking the IND-CCA security of SE , that runs in time t, and makes qe queries to the left-right
encryption oracle, and qd queries to the decryption oracle, totaling µe and µd bits, respectively, there
exist adversaries B and C attacking the scheme’s IND-CPA and INT-CTXT security, respectively,
such that

Advind-cca
SE (A) ≤ Advind-cpa

SE (B) + 2 ·Advint-ctxt
SE (C) .

Furthermore, B runs in time4 t, and makes qe queries to the left-right encryption oracle, totaling
µe bits, while C runs in time t, and makes qe queries to the encryption oracle, and qd queries to
the verification oracle, totaling µe and µd bits, respectively.

Pseudorandom Function Families. A family of functions is a map E : Keys × Dom → Ran,
where we regard Keys as the keyspace for the function family in that a key K ∈ Keys induces a
particular function from this family, which we denote by EK(·).

Definition 2.5. [PRF] Let E : Keys × Dom→ Ran be a function family. Let R be the set of all
functions from Dom to Ran. E is called pseudorandom, or PRF secure, if any adversary A, with
reasonable resources and access to an oracle that it can query on messages in MsgSp, has small
prf-advantage defined as

Advprf
E (A) = Pr

[
K

$← Keys : AEK(·) = 1
]
− Pr

[
g

$← R : Ag(·) = 1
]
.

Message Authentication Codes (MACs).

Definition 2.6. [MAC] A message authentication code MAC = (K, T ) with associated message
space MsgSp is defined by two algorithms:

• The randomized key generation algorithm K returns a secret key K .

4The time complexity given in [12] is slightly different due to the difference in convention.
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• The deterministic5 tagging algorithm T takes as input the secret key K , and a plaintext M ∈
MsgSp to return a tag for M .

For a message-tag pair (M,σ), we say σ is a valid tag for M , if σ = σ′, where σ′ ← TK(M).

The following security definition [10] requires that any adversary with reasonable resources can
forge a valid tag for a new message only with small probability.

Definition 2.7. [UF-CMA] LetMAC = (K, T ) be a MAC scheme. It is called unforgeable against
chosen-message attacks, or UF-CMA secure, if any adversary A with reasonable resources can be
successful in the following experiment, only with small probability, called the uf-cma-advantage of
A, Advuf-cma

MAC (A). In the experiment, first the random key K is generated by K. The adversary has
access to two oracles: tagging oracle TK(·) and verification oracle6 VK(·, ·). On input, a message-tag
pair (m,σ), VK(·, ·) returns 1 if m was not queried to TK(·) and TK(m) = σ, otherwise it returns
0. The adversary is successful in the experiment if VK(·, ·) ever returns 1.

Another (stronger) security definition requires that the output of the MAC is indistinguishable
from a random string. The definition below is very similar to the PRF definition for the function
family. The only difference is that now the key generation algorithm is used to generate a key.

Definition 2.8. [PRF for MACs] LetMAC = (K, T ) be a MAC scheme. Let R be the set of all
functions with the same domain and range as T . MAC is called pseudorandom, or PRF secure, if
any adversary A with reasonable resources and access to an oracle that it can query on messages
in MsgSp, has a small prf-advantage defined as

Advprf
MAC(A) = Pr

[
K

$← K : ATK(·) = 1
]
− Pr

[
g

$← R : Ag(·) = 1
]
.

We recall the fact that any MAC that is PRF is also UF-CMA.

Theorem 2.9. [[14], Proposition 6.3] Let MAC = (K, T ) be a MAC scheme. Then, for any
adversary F attacking UF-CMA security ofMAC, that runs in time t, and makes qt queries to the
tagging oracle, and qv queries to the verification oracle, totaling µt and µv bits, respectively, there
exists an adversary G attacking the PRF security ofMAC, such that

Advuf-cma
MAC (F ) ≤ Advprf

MAC(G) +
qv

|RanT |
,

where RanT denotes the range of T . Furthermore, G runs in time t, and makes (qt + qv) oracle
queries, totaling (µt + µv) bits.

Hash Functions.

Definition 2.10. [Hash function] A hash function HF = (K,H) consists of two algorithms. The
key generation algorithm K outputs a key K. The deterministic hash algorithm H on inputs K,
and M ∈ {0, 1}∗, outputs the hash value H.

5A MAC does not have to be deterministic, but most practical schemes are, and in this paper we consider only
deterministic MACs.

6Since we only consider deterministic MACs, the verification oracle is not necessary. However, we keep it for
generality. In computing the total length of the queries made to the verification oracle, we only count the length of
message m, and not the message-tag pair (m,σ).
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Definition 2.11. [Collision-resistance] A hash functionHF = (K,H) is called collision-resistant
if any adversary with reasonable resources that is given a random K output by K can output two
messages M1,M2 ∈ {0, 1}∗, such that HK(M1) = HK(M2), and M1 ̸= M2, only with a small
probability.

Encoding Scheme. An encoding scheme is an unkeyed invertible transformation that is used to
extend the message with some associated data, such as padding, a counter, random nonce, etc.

Definition 2.12. [Encoding scheme] An encoding scheme EC = (Encode,Decode) with asso-
ciated message space MsgSp is defined by two algorithms. The (possibly) randomized or stateful
encoding algorithm Encode takes a message M ∈ MsgSp, and outputs a pair of messages (Me,Mt).
The deterministic decoding algorithm takes Me and returns a pair (M,Mt), or (⊥,⊥) on error.

For any message M ∈ MsgSp, let (Me,Mt)
$← Encode(M), and (M ′,M ′

t)← Decode(Me). Then
the consistency condition requires that M = M ′ and Mt = M ′

t . We note that in the constructions
we will consider, Me is going to be used as input to the encryption algorithm, and Mt is going to
be used as input to the MAC algorithm.

The following is from [13, 11].

Definition 2.13. [Coll-CPA] Let EC = (Encode,Decode) be an encoding scheme. It is called
collision-resistant against chosen-plaintext attacks, or Coll-CPA, if any adversary A with reasonable
resources has only small success probability, called the coll-cpa-advantage of A, or Advcoll-cpa

EC (A),
in the following experiment. The adversary has access to the encoding oracle Encode(·), and it is
considered successful if it ever gets two replies (Me,Mt), (M

′
e,M

′
t), such that Mt = M ′

t .

3 Analysis of Encryption in Kerberos v.5

3.1 General Profile and the Underlying Composition Method

We first look at the encryption scheme specified in [26]. This document describes several options,
but we note that all the choices conform to a general composition method that we outline below
(the design is further generalized in [21]).

Construction 3.1. [Encode-then-Checksum-then-Encrypt] Let SE = (Ke, E ,D), EC = (Encode,
Decode), and CS = (Kt, T ) be an encryption scheme, an encoding scheme, and a checksum (i.e. hash
function or MAC). The message space of the corresponding Encode-then-Checksum-then-Encrypt
scheme SE ′ = (K′, E ′,D′) is that of EC, and the rest of the algorithms are defined as follows:

• K′ runs Ke,Kt, and returns their outputs Ke ∥Kt.

• E ′ on inputs Ke ∥ Kt and M , first gets the encodings via (Me,Mt)
$← Encode(M). It then

computes σ ← TKt(Mt), parses Me as Mel∥Mer, and returns C
$← EKe(Mel ∥ σ ∥Mer).

• D′ on inputs Ke ∥Kt and C, computes Me ← Mel ∥Mer, σ from (Mel ∥ σ ∥Mer) ← DKe(C),
decodes (M,Mt) ← Decode(Me), computes σ′ ← TKt(Mt), and returns M , if σ = σ′, and ⊥
otherwise.

Above, we assume that the outputs of the encoding scheme are compatible with the inputs to
E , T . Figure 1 illustrates the design.
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Figure 1: Encode-then-Checksum-then-Encrypt paradigm used in General Profile of Kerberos v.5.

The next construction specifies in more detail how Kerberos’ encryption operates, i.e. what
specific algorithms instantiate the generic composition method of Construction 3.1.

Construction 3.2. [Authenticated encryption in Kerberos: General Profile] Let E :
{0, 1}k ×{0, 1}n → {0, 1}n be a blockcipher. Let SE = (Ke, E ,D) be the associated CBC encryption
mode (cf. [9] for the formal description), with IV = 0n 7. Let HF = (Kh,H) be a hash function
(to be used as checksum CS) with output of length l, which is keyless or whose key is public.
Let EC = (Encode,Decode) be an encoding scheme, such that Encode with MsgSp = {0, 1}∗,
on input M , pads it to make the length of (l + |M |) a multiple of n bits (so that decoding is

unambiguous), picks a random confounder of n bits conf
$← {0, 1}n, computes Me ← conf ∥M ,

and Mt ← conf ∥ 0l ∥M , and returns (Me,Mt). Mel is defined to be conf , and Mer is the rest of
Me. Decode on input Me parses it as conf ∥M , computes Mt ← conf ∥0l∥M , and returns (M,Mt).
Then Construction 3.1 describes the authenticated encryption called General Profile8.

Security Analysis of General Profile. Some supported instantiations include DES as the
blockcipher, and MD4 and MD5 as the hash function. These are not good choices for known
reasons. DES is an outdated standard, since its key and block sizes are too small considering
modern computing power, and collisions have been found in MD4 and MD5 [28]. However, what
our results show is that using the “more secure” building blocks, such as AES and a collision-
resistant hash function, will not necessarily solve the problem. More precisely, we can neither
prove, nor disprove the security of the General profile in this case. What we can show is that the
Encode-then-Checksum-then-Encrypt composition method does not provide integrity in general

7The Kerberos specification also allows stateful update of the IV , i.e. the IV is assigned to be the last block of
the previous ciphertext. Our analyses apply to this case as well. But, since this option is not commonly used, we do
not consider it in detail. We note however, that [26] does not specify how the state and IV are updated when the
receiver gets an invalid ciphertext. The only reasonable resolution preventing malicious attacks disrupting the future
communication may be to issue an error message and reset the IV to 0n.

8Our analysis does not take into account stateful approaches for key derivation used in few options of General
profile.
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when it uses a hash function as a checksum, even if it uses a secure encryption option for the
underlying encryption scheme. We note that the theorem below does not imply that the General
Profile (Construction 3.2) is insecure, but it shows the limitation of its underlying general design
(Construction 3.1), when used with the given encoding scheme.

Theorem 3.3. Let EC = (Encode,Decode) be the encoding scheme, defined in Construction 3.2.
There exists an IND-CPA secure encryption scheme, and a collision-resistant hash function, so that
the authenticated encryption obtained via Encode-then-Checksum-then-Encrypt (Construction 3.1),
does not provide integrity (is not INT-CTXT secure). Concretely, there exists an adversary I with
reasonable resources, such that Advint-ctxt

SE ′ (I) = 1.

The proof is in Section 4.1. In fact, the proof also shows that the general construction is
insecure, even when a secure MAC is used as checksum (with the corresponding secret key being
secret, of course), but in this case, the attack makes use of a rather artificial IND-CPA scheme. The
attacks we provide are similar to those in [12, 22] that show insecurity of several general composition
methods. We repeat that the attacks that we provide in the proof do not translate into an attack
on any of the recommended options, they just show limitations in the general composition method.

Modified General Profile. We now suggest simple and easy-to-implement modifications to the
General profile construction, and show that they are sufficient to prove the security of the scheme.
Namely, we suggest to use a secure MAC in place of the hash function, and show that the resulting
authenticated encryption scheme is secure. Note that this does not contradict Theorem 3.3, because
now we look at the particular encryption scheme that the General Profile uses (Construction 3.2),
i.e. CBC with zero IV. We now define the construction, and state its security.

Construction 3.4. [Modified General profile] The construction is like Construction 3.2, except
that a message authentication codeMAC = (Kt, T ) is used as checksum CS.
Theorem 3.5. The authenticated encryption scheme described by the Modified General Profile
(Construction 3.4) is INT-CTXT and IND-CCA secure, if the underlying blockcipher is a PRF,
and the underlying checksum (MAC) is a PRF.
Concretely, let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and SE = (Ke, E ,D) be the CBC
encryption mode with IV = 0n, that uses E. Let MAC = (Kt, T ) be a message authentication
code with output of length l. Let EC = (Encode,Decode) be an encoding scheme, and SE ′ =
(K′, E ′,D′) be the authenticated encryption scheme associated to them by Modified General Profile
(Construction 3.4). Then, for any adversary I attacking the INT-CTXT security of SE ′, that runs
in time t, and makes q′e queries to the encryption oracle, and qv queries to the verification oracle,
totaling µ′

e and µv bits, respectively, there exists an adversary F attacking the UF-CMA security
ofMAC, such that

Advint-ctxt
SE ′ (I) ≤ Advuf-cma

MAC (F ) . (1)

Furthermore, F runs in time t, and makes q′e queries to the tagging oracle,and qv queries to the
verification oracle, totaling at most µ′

e + q′e · (2n+ l− 1) and µv + qv · (2n+ l− 1) bits, respectively.
And for any adversary A attacking the IND-CCA security of SE ′, that runs in time t, and makes
qe queries to the left-right encryption oracle and qd queries to the decryption oracle, totaling µe

and µd bits, respectively, there exist adversaries B and G attacking PRF security of E andMAC,
respectively, such that

Advind-cca
SE ′ (A) ≤ Advprf

E (B) + 4 ·Advprf
MAC(G) +

µ2
e

n2 · 2n
+

2 · qd
2l

. (2)

10



Furthermore, B runs in time t, and makes at most ⌊(µe + qe · (2n+ l − 1)/n)⌋ oracle queries, to-
taling at most µe+ qe · (2n+ l− 1) bits; G runs in time t, and makes qe+ qd oracle queries, totaling
at most µe + µd + (qe + qd)(2n+ l − 1) bits.

The proof is in Section 4.2. Note that the INT-CTXT security of the scheme requires only UF-
CMA security of the checksum (MAC), while IND-CCA security relies on it being a PRF. As we
mentioned before, any PRF MAC is also UF-CMA (Theorem 2.9), so PRF security is a sufficient
assumption.

AES is believed to be a PRF, and HMAC was shown to be a PRF [7], assuming the underlying
compression function is a PRF (cf. [7] for the definition of the latter). Therefore, these schemes
constitute good instantiations for the above design.

3.2 Simplified Profile and the Underlying Composition Method

Kerberos designers proposed a new construction that they call “Simplified profile” (cf. Section 5 in
[26], and [25]). Again, we start with a more general composition method that outlines the design.

Construction 3.6. [Encode-then-Encrypt&MAC] Let SE = (Ke, E ,D),MAC = (Kt, T ), and
EC = (Encode,Decode) be an encryption scheme, a MAC scheme, and an encoding scheme. The
message space of corresponding Encode-then-Encrypt&MAC scheme SE ′ = (K′, E ′,D′), is that of
EC, and the algorithms are defined as follows:

• K′ runs Ke,Kt, and returns their outputs Ke ∥Kt.

• E ′ on inputs Ke ∥ Kt and M , first gets the encodings via (Me,Mt)
$← Encode(M). It then

computes C ← EKe(Me), σ ← TKt(Mt), and returns C ∥ σ.
• D′ on inputs Ke ∥Kt and C ∥ σ, computes Me ← DKe(C), decodes (M,Mt) ← Decode(Me),

computes σ′ ← TKt(Mt), and returns M , if σ = σ′, and ⊥ otherwise.

Above we assume that the outputs of the encoding scheme are compatible with the inputs to E , T .

The next construction defines the Simplified profile, and Figure 2 depicts the design.

ciphertext

tagintermediate ciphertext

plaintext

plaintext

padconfounder

ENCRYPT MAC

ENCODE

Figure 2: Encode-then-Encrypt&MAC paradigm used in Simplified profile of Kerberos v.5.
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Construction 3.7. [Authenticated encryption in Kerberos: Simplified profile] Let E :
{0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. Let SE = (Ke, E ,D) be the associated CBC encryption
mode with IV = 0n. Let MAC = (Kt, T ) be a MAC scheme. Let EC = (Encode,Decode) be an
encoding scheme, such that Encode with MsgSp = {0, 1}∗ on input M pads M to make its length
a multiple of n bits (while permitting unambiguous decoding), picks a random confounder of n bits

conf
$← {0, 1}n, computes Me ← conf ∥M , and Mt ← conf ∥M , and returns (Me,Mt). Decode on

input Me, parses it as conf ∥M , computes Mt ←Me, and returns (M,Mt). Then Construction 3.6
describes the Simplified Profile of authenticated encryption in Kerberos.

The following theorem states that the Simplified Profile provides strong security guarantees.

Theorem 3.8. The authenticated encryption scheme SE ′, described by the Simplified Profile (Con-
struction 3.7), is INT-CTXT and IND-CCA secure if the underlying blockcipher E is a PRF and
the underlying MAC is a PRF.
Concretely, let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and SE = (Ke, E ,D) be the CBC
encryption mode with IV = 0n that uses E. Let MAC = (Km, T ) be a MAC scheme and
EC = (Encode,Decode) be an encoding scheme. Let SE ′ be the authenticated encryption scheme
associated to them by Simplified Profile (Construction 3.7). Then, for any adversary I attacking
INT-CTXT security of SE ′, that runs in time t, and makes q′e queries to the encryption oracle, and
qv queries to the verification oracle, totaling µ′

e and µv bits, respectively, there exists an adversary
F attacking UF-CMA security ofMAC, such that

Advint-ctxt
SE ′ (I) ≤ Advuf-cma

MAC (F ) . (3)

Furthermore, F runs in time t and makes q′e queries to the tagging oracle and qv queries to the
verification oracle, totaling at most µ′

e + q′e · (2n− 1) and µv + qv · (2n− 1) bits, respectively.
And for any adversary A attacking IND-CCA security of SE ′, that runs in time t and makes qe
queries to the left-right encryption oracle, and qd queries to the decryption oracle, totaling µe and
µd bits, respectively, there exist adversaries B and G attacking PRF security of E and MAC,
respectively, such that

Advind-cca
SE ′ (A) ≤ Advprf

E (B) + 4 ·Advprf
MAC(G) +

qe(qe − 1)

2n+1
+

µ2
e

n2 · 2n
+

2 · qd
|RanT |

, (4)

where RanT denotes the set of outputs of T . Furthermore, B runs in time t and makes at most
⌊(µe + qe · (2n− 1)/n)⌋ oracle queries, totaling at most µe + qe · (2n− 1) bits; G runs in time t and
makes qe + qd oracle queries, totaling at most µe + µd + (qe + qd) · (2n− 1) bits.

The proof is in Section 4.3. Note that INT-CTXT security of the scheme requires only UF-
CMA security of the MAC, while IND-CCA security relies on the MAC being a PRF. As we
mentioned before, any PRF MAC is also UF-CMA (Theorem 2.9), so PRF security is a sufficient
assumption. Also, AES is believed to be a PRF, and HMAC was shown to be a PRF [7], assuming
the underlying compression function is a PRF (cf. [7] for the definition of the latter notion).
Therefore, these schemes constitute good instantiations for the above design.
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4 Proofs

4.1 Proof of Theorem 3.3

We present two alternative proofs of insecurity of the Encode-then-Checksum-then-Encrypt paradigm
used in General Profile authenticated encryption. The first proof uses a natural encryption scheme
and a not-so-natural hash function as a checksum. The second proof uses a special encryption
scheme, but the checksum can be instantiated with arbitrary secure MAC.

Proof 1. Before presenting the proof, we give a high level idea. We show that the general authen-
ticated encryption paradigm underlying General Profile does not preserve integrity of ciphertexts
when instantiated with stateful counter (CTR) mode of the encryption scheme and a collision-
resistant hash function that happens to leak the first bit of its input. The CTR mode of encryption
is somewhat similar to the one-time pad, where the underlying blockcipher is applied to a counter
to generate a pseudorandom pad which is then XORed with the message. Now, the ingenuity of
our attack lies in showing that given any ciphertext that was output by the above scheme, one can
produce another valid ciphertext by simply flipping the bits at two different positions, namely the
first bit of the first and second blocks of the ciphertext. We repeat that the attack does not apply
to the General Profile scheme itself.

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let SE = (Ke, E ,D) be the associated
stateful counter encryption scheme, known as CTR or XOR encryption mode (cf. [9]). Its key
generation algorithm Ke simply returns a random k-bit string Ke. The encryption algorithm
E is stateful and maintains a counter ctr that is initially 0. E takes the key Ke, the current
counter ctr, and a message M (padded if necessary to a length multiple of n-bits), and outputs
ctr ∥ C[1] ∥ C[2] ∥ ... ∥ C[m], where m is the total number of blocks, and for 1 ≤ i ≤ m, C[i] ←
Mi ⊕ EKe(⟨ctr+ i⟩). Here ⟨i⟩ denotes the n-bit representation of an integer i. Next, E updates the
counter to ctr+m+1. The decryption algorithm D takes Ke and a ciphertext ctr ∥C[1]∥ ... ∥C[m]
and outputs M [1] ∥ ... ∥M [m], where for 1 ≤ i ≤ m, M [i] ← C[i]⊕ EKe(⟨ctr + i⟩). The CTR
encryption mode is proven to be IND-CPA secure if E is a PRF [9].

Let HF = (Kh,H) be a collision-resistant hash function whose hash algorithm outputs strings
of length l. Consider a modified hash function HF ′ = (Kh,H′) whose hash algorithm H′ on an
input key Kh and a message M , outputs M[0] ∥ HKh

(
M[1...|M |−1]

)
. We show that HF ′ is also

collision-resistant.
For any adversary A that can find collisions in HF ′, we construct an adversary B that can

find collisions in HF . B gives its own challenge key Kh to A and gets back two messages M ′, N ′.
B computes M ← M ′

[1...|M ′|−1], N ← N ′
[1...|N ′|−1], and outputs M,N . Note that H′

Kh
(M ′) =

M ′
[0]∥HKh

(
M ′

[1...|M ′|−1]

)
= M ′

[0]∥HKh
(M), andH′

Kh
(N ′) = N ′

[0]∥HKh

(
N ′

[1...|N ′|−1]

)
= N ′

[0]∥HKh
(N).

If H′
Kh

(M ′) = H′
Kh

(N ′), and M ′ ̸= N ′, then it is easy to see that HKh
(M) = HKh

(N), and M ̸= N .
B is almost as efficient as A. Therefore, if HF is collision resistant, then so is HF ′.

We now present an adversary I that breaks the INT-CTXT security of the scheme described
by Construction 3.1 when it uses CTR encryption mode and modified hash function HF ′ as SE
and CS, respectively. I selects an arbitrary n-bit-long message M and queries it to the encryption
oracle. Let ctr∥C be the oracle’s reply. I then queries the ciphertext ctr∥C ′ to the verification
oracle, where C ′ is computed from C by flipping the first bit of the first and second blocks.

We claim that the int-ctxt advantage of I is 1. This is justified as follows. Consider conf ∥σ∥M =
DKe(ctr∥C). Here, σ = H′

Kh
(Mt), and Mt = conf ∥0l+1∥M . So σ = conf [0]∥HKh

(
Mt[1...|Mt|−1]

)
.
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ctr∥C can be parsed as ctr∥C[1]∥C[2]∥D, where C[1] and C[2] are the first and second blocks
of C, and D is the remaining part of C. From the description of CTR encryption mode it is clear
that

C[1] = conf ⊕ EKe(⟨ctr + 1⟩), and
C[2] =

(
σ∥M[0...n−l−2]

)
⊕EKe(⟨ctr+2⟩), where σ = conf [0]∥HKh

(
Mt[1...|Mt|−1]

)
, and M[0...n−l−2]

is the first n− (l + 1) bits of M .
So C[2] =

(
conf [0]∥HKh

(
Mt[1...|Mt|−1]

)
∥M[0...n−l−2]

)
⊕EKe(⟨ctr + 2⟩).

Let us denote the ciphertext blocks produced by flipping the first bit of C[1] and C[2] by C ′[1]
and C ′[2], respectively. So we have
C ′[1] =

(
conf [0]∥conf [1...n−1]

)
⊕ EKe(⟨ctr + 1⟩) and

C ′[2] =
(
conf [0]∥HKh

(
Mt[1...|Mt|−1]

)
∥M[0...n−l−2]

)
⊕ EKe(⟨ctr + 2⟩).

Let us denote the decryption of ctr∥C ′ by (M ′
el∥σ′∥M ′

er). So we haveM
′
el = (conf [0]∥conf [1...n−1]),

σ′ = (conf [0]∥HKh
(Mt[1...|Mt|−1])), and M ′

er = M .
Now notice that

M ′
e = (M ′

el∥M ′
er) = (conf [0]∥conf [1...n−1])∥M , and

M ′
t = (M ′

el∥0l+1∥M ′
er) = (conf [0]∥conf [1...n−1])∥0l+1∥M .

It is clear Mt[1...|Mt|−1] = M ′
t[1...|M ′

t|−1] because Mt and M ′
t differ only in first bit. So from above,

we have
σ′ = conf [0]∥HKh

(Mt[1...|Mt|−1]) = conf [0]∥HKh
(M ′

t[1...|M ′
t|−1]) = H

′
Kh

(M ′
t).

Thus, (M ′
t , σ

′) is a valid message-tag pair. Hence ctr∥C ′ is a valid ciphertext that was never
returned by the encryption oracle, and therefore, the int-ctxt advantage of I is 1.

I makes one oracle query of length n bits, and performs two operations of bit-complementation.

Proof 2. Our second proof is relatively simpler than the first one. We show that the general
authenticated encryption paradigm underlying General Profile does not preserve integrity of ci-
phertexts when instantiated with any arbitrary encoding scheme, an unforgeable MAC, and a
special type of IND-CPA secure encryption scheme whose encryption algorithm prepends zero to
the ciphertext and the decryption algorithm simply ignores the first bit of the ciphertext. In the
Encode-then-Checksum-then-Encrypt paradigm encryption is the last step. So, with the above
mentioned special type of encryption, one can easily produce a new valid ciphertext C ′, given any
ciphertext C output by the above scheme by flipping the first bit of C. We repeat that the attack
does not apply to the General Profile scheme itself.

Let SE = (Ke, E ,D) be any IND-CPA secure encryption scheme. Consider a modified encryption
scheme SE ′′ = (Ke, E ′′,D′′), where E ′′ on input key Ke and a message M outputs 0∥EKe(M), and
D′′ on input key Ke and a ciphertext C outputs DKe

(
C[1...|C|−1]

)
. It is easy to see that if SE is

IND-CPA secure, then so is SE ′′ (cf. [12], Proof of IND-CPA security of SE2, at the end of Section
3). LetMAC = (Kt, T ) be any UF-CMA secure MAC.

We present an adversary I attacking INT-CTXT security of the scheme described by Construction 3.1
when it uses SE ′′ and MAC as the encryption and checksum component schemes. Note that we
did not make any assumption about the encoding scheme, so this attack works for any arbitrary
encoding scheme. I selects an arbitrary short message M in the message space of the scheme. It
queries this message to the encryption oracle and gets back ciphertext C. I then flips the first bit
of C and queries the resulting ciphertext C ′ = 1∥C[1...|C|−1] to the verification oracle.
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It is clear that C ′ ̸= C, and C ′ is a valid ciphertext, because D′′ ignores the first bit of ciphertext;
therefore, D′′

Ke
(C ′) = D′′

Ke
(C) = M . Thus, the int-ctxt advantage of I is 1. I makes only one oracle

query of length |M |, and performs one bit-complementation.

4.2 Proof of Theorem 3.5

INT-CTXT security. We will reduce the integrity of ciphertexts of the Modified General Profile
to the unforgeability of the underlying MAC scheme. The attack in Proof 1 of Section 4.1 shows that
a collision-resistant hash function is not sufficient for integrity of ciphertexts. Moreover, from the
attack in Proof 2 of Section 4.1, we know that even an unforgeable MAC cannot provide integrity
of ciphertexts if used with any general IND-CPA secure encryption scheme. At a high level, we
need an unforgeable MAC and the encryption scheme is required to have the following property for
integrity of ciphertexts: for any pair of ciphertexts c, c′, if c ̸= c′ then m ̸= m′, where m,m′ are the
corresponding plaintexts. It is easy to see that while CBC with zero IV mode of encryption (or,
any other standard deterministic encryption mode) satisfies this property, it may not necessarily
hold for any general IND-CPA secure encryption scheme.

We now justify Equation 1. Let I be an adversary attacking the INT-CTXT security of SE ′.
We construct a forger F breaking the UF-CMA security ofMAC. F first runs Ke to obtain a key
Ke for E . It runs I and replies to its queries as follows.

For every encryption oracle queryM that I makes, F does the following: It computes (Me,Mt)
$←

Encode(M), and then it queries Mt to its own tagging oracle. Let us call the oracle’s reply σ. Next,
F parses Me as Mel∥Mer, and forms Mel∥σ∥Mer. Then, it computes C ← EKe(Mel∥σ∥Mer) and
returns C to I.

For every verification oracle query C that I makes, F does the following: It computesMel∥σ∥Mer

← DKe(C) and Mt ← Decode(Me), where Me = Mel∥Mer. Next, F queries (Mt, σ) to its own
verification oracle, then returns 1 to I if the same was returned by its own oracle.

We now analyze F . We claim that F is successful whenever I is successful. First of all, it is
straightforward to see that F correctly simulates the encryption oracle for I. Now, if I is successful,
then one of its verification oracle queries C ′ is such that it was not returned by the encryption oracle
(i.e. it’s new), and its decryption does not return ⊥. This means that M ′

e must be new, where
M ′

e(= M ′
el∥σ′∥M ′

er) ← DKe(C
′), because the base encryption scheme SE is deterministic (CBC

with zero IV). If (M ′
el∥σ′∥M ′

er) is new, then either M ′
el∥M ′

er or σ′ must be new, which is equivalent
to saying that either M ′

el∥0n∥M ′
er(= M ′

t) or σ′ must be new. This gives rise to two cases. The
first case is when M ′

t is new (σ′ may or may not be new in this case). It is clear that in this case
(M ′

t , σ
′) is a valid new message-tag pair. Hence F ’s verification oracle will return 1.

The second case is when only σ′ is new, and M ′
t is old, i.e. M

′
t is one of the messages that was

queried to the tagging oracle. But then in this case, σ′ is an invalid tag, as the tagging algorithm
is deterministic, and the distinct valid tag was returned as the answer to the corresponding query
to the tagging oracle. Hence decryption of C ′ will return ⊥.

Hence, the uf-cma advantage of F is the same as the int-ctxt advantage of I. The time com-
plexity of F is basically that of I. F makes the same number of oracle queries as that of I. The
total length of all the queries made by F exceeds that of I by only a fixed number of bits, which is
the number of queries times (2n+ l−1), due to the use of encoding (at most n−1 bits for padding,
n bits for confounder, and l bits for tag).

We now claim the IND-CPA security of SE ′. IND-CCA security will then follow from the
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IND-CPA security and INT-CTXT security of the scheme.

IND-CPA security. We show that the composed encryption scheme SE ′ is IND-CPA secure if
the underlying blockcipher is a PRF and the underlying MAC is a PRF.

Lemma 4.1. For any adversary S attacking IND-CPA security of SE ′, that runs in time t, and
makes q queries to the left-right encryption oracle, totaling µ bits, there exist adversaries B and G
attacking PRF security of E andMAC, such that

Advind-cpa
SE ′ (S) ≤ Advprf

E (B) + 2 ·Advprf
MAC(G) +

µ2

n2 · 2n
.

Furthermore, B runs in time t and makes at most ⌊µ+ q · (2n+ l − 1)/n)⌋ oracle queries, totaling
at most µ + q · (2n + l − 1) bits; G runs in time t and makes q oracle queries, totaling at most
µ+ q · (2n+ l − 1) bits.

Proof of Lemma 4.1. We will first show that if the underlying MAC is PRF, then the encryption
in the Modified General Profile is similar in terms of security to CBC encryption with random IV
(Claim 4.2). Next, from the well known result of [14] (Claim 4.3), we know that CBC encryption
with random IV is IND-CPA secure if the underlying block-cipher is a PRF. So, Lemma 4.1 will
follow immediately from Claim 4.2 and Claim 4.3.

Claim 4.2. For any adversary S attacking IND-CPA security of SE ′, that runs in time t, and
makes q queries to the left-right encryption oracle, totaling µ bits, there exists an adversary D
attacking IND-CPA security of CBC encryption scheme with random IV CBC$ = (Ke, E$,D$), and
an adversary G attacking PRF security ofMAC, such that

Advind-cpa
SE ′ (S) ≤ Advind-cpa

CBC$ (D) + 2 ·Advprf
MAC(G) .

Furthermore, D runs in time t and makes q queries to the left-right encryption oracle, totaling
at most (µ + q · (2n + l − 1)) bits; G runs in time t and makes q oracle queries, totaling at most
(µ+ q · (2n+ l − 1)) bits.

We recall a fact from [14].

Claim 4.3. [[14], Theorem 4.19] Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher, and let
CBC$ = (Ke, E$,D$) be the associated CBC encryption scheme with random IV (cf. [9]). Then for
any adversary D attacking IND-CPA security of CBC$, that runs in time t and makes q queries to
the left-right encryption oracle, totaling µ n-bit blocks, there exists an adversary B attacking PRF
security of E, such that

Advind-cpa
CBC$ (D) ≤ Advprf

E (B) +
µ2

2n
.

Furthermore, B runs in time9 t and makes µ oracle queries, totaling µn bits.

Proof of Claim 4.2. At a high level the proof follows from the observation that the encoding
scheme of Modified General Profile prepends a random confounder to the plaintext. So encrypting
this encoded message using CBC with zero IV is equivalent to encrypting any message using CBC
with “pseudorandom” IV, because the underlying blockcipher is assumed to be a PRF.

Let S be an adversary attacking IND-CPA security of SE ′. For x ∈ {0, 1, 2, 3, 4, 5}, we define
the following experiments associated with S.

9Due to the difference in convention, this time complexity is different from the one given in [14].
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Experiment ExpHx

Ke
$← Ke, Kt

$← Kt

Run S replying to its oracle query (M,N) as follows:

(Me,Mt)
$← Encode(M); (Ne, Nt)

$← Encode(N); r
$← {0, 1}n

Parse Me and Ne as Mel∥Mer and Nel∥Ner, where |Mel| = |Nel| = n
Switch (x):

Case x = 0: σ ← TKt(Mt); C ← EKe(Mel∥σ∥Mer)
Case x = 1: C ← EKe(Mel∥r∥Mer)

Case x = 2: IV ∥C $← E$Ke
(Mel∥r∥Mer)

Case x = 3: IV ∥C $← E$Ke
(Nel∥r∥Ner)

Case x = 4: C ← EKe(Nel∥r∥Ner)
Case x = 5: σ ← TKt(Nt); C ← EKe(Nel∥σ∥Ner)

Return C to S.
When S halts and outputs a bit, return that bit.

For x ∈ {0, 1, 2, 3, 4, 5}, let Px = Pr [ExpHx = 1 ] denote the probability that ExpHx returns 1.

By the definition of Advind-cpa
SE ′ (S), we have

Advind-cpa
SE ′ (S) = P5 − P0 = (P5 − P4) + (P4 − P3) + (P3 − P2) + (P2 − P1) + (P1 − P0) . (5)

We first show that for S, ExpH1 is indistinguishable from ExpH2. In ExpH1, (Mel∥r∥Mer) is
encrypted using the CBC mode with zero IV, and the whole ciphertext is returned to S, while in
ExpH2, (Mel∥r∥Mer) is encrypted using the CBC mode with random IV, and the whole ciphertext,
except the IV, is returned to S. Note that in the latter case, the ciphertext given to S has the form of
((Mel ⊕ IV )∥r∥Mer) encrypted using the CBC mode with zero IV. However, since Mel and IV are
uniformly random strings, to an adversary that doesn’t know these in advance, Mel and (Mel ⊕ IV )
are indistinguishable. Hence, adversary S cannot distinguish between ExpH1 and ExpH2. The
same argument applies to show that experiments ExpH3 and ExpH4 are indistinguishable in S’s
view. Hence, (P4 − P3) = (P2 − P1) = 0. Thus, we have

Advind-cpa
SE ′ (S) = (P5 − P4) + (P3 − P2) + (P1 − P0) . (6)

Given S, there exist adversaries D and G, such that the following claims hold, and these adversaries
use the resources specified in Claim 4.2.

Claim 4.4. P3 − P2 ≤ Advind-cpa
CBC$ (D) .

Claim 4.5. (P5 − P4) + (P1 − P0) ≤ 2 ·Advprf
MAC(G) .

Equation 6 and the above claims imply Claim 4.2.

Proof of Claim 4.4. We construct an adversary D breaking the IND-CPA security of CBC$
using adversary S as follows. For every message-pair query (M,N) that S makes, D first computes

(Me,Mt)
$← Encode(M), (Ne, Nt)

$← Encode(N), r
$← {0, 1}l. Next, it parses Me and Ne as

Mel∥Mer and Nel∥Ner, and it queries (Mel∥r∥Mer, Nel∥r∥Ner) to its own oracle to get back IV ∥C,
where IV is the first ciphertext block. D forwards C back to S. When S halts and returns a bit,
D halts and outputs that bit.
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We analyze D. The view of S in ExpH2 is indistinguishable from that in Expind-cpa-0
CBC$,D , and the

view of S in ExpH3 is indistinguishable from that in Expind-cpa-1
CBC$,D . Thus, P3−P2 ≤ Advind-cpa

CBC$ (D).
The time complexity of D is basically that of S. D makes the same number of oracle queries as

S. The total length of all the queries made by D exceeds that of S by only a fixed number of bits,
which is the number of queries times (2n+ l− 1), due to the use of encoding (at most (n− 1) bits
for padding, n bits for confounder, and l bits for tag).

Proof of Claim 4.5. We construct adversaries G1 and G2 breaking the PRF security of MAC
using adversary S such that

(P5 − P4) + (P1 − P0) ≤ Advprf
MAC(G2) +Advprf

MAC(G1) .

G1 runs Ke to obtain a key Ke. For every message-pair query (M,N) that S makes, G1 first

computes (Me,Mt)
$← Encode(M). Then it queries Mt to its oracle. Let’s call the oracle’s reply

σ. Next, it parses Me as Mel∥Mer, forms Mel∥σ∥Mer, and computes C ← EKe(Mel∥σ∥Mer). G1

forwards C back to S. When S halts and returns a bit, G1 halts and outputs the complement bit.
We analyze G1. When G1 is in the first experiment of Definition 2.8, then σ = TKt(Mt), so

G1 simulates ExpH0 perfectly, and when G1 is in the second experiment of Definition 2.8, then
σ is a random n-bit string, so G1 simulates experiment ExpH1 perfectly. Hence, (P1 − P0) ≤
Advprf

MAC(G1).
Adversary G2 can be constructed in a similar way, where for every message-pair query (M,N),

it does similar things as G1, but for message N . Thus, we have (P5 − P4) ≤ Advprf
MAC(G2).

The time complexities of G1, G2 are basically that of S. G1, G2 make the same number of oracle
queries as that of S. The total length of all the queries made by G1, G2 exceed that of S by only a
fixed number of bits, which is number of queries times (2n+ l− 1), due to the use of encoding (at
most (n− 1) bits for padding, n bits for confounder, and l bits for tag).

Putting G to be one of the adversaries G1, G2 with the larger prf-advantage we get

Advprf
MAC(G2) +Advprf

MAC(G1) ≤ 2 ·Advprf
MAC(G) .

Thus, Claim 4.5 follows.

IND-CCA security. Equation 1, Lemma 4.1, Theorem 2.4, and Theorem 2.9 imply Equation 2.

4.3 Proof of Theorem 3.8

INT-CTXT security. We will reduce the integrity of ciphertexts of Simplified Profile to the
unforgeability of the underlying MAC scheme. First, we note that an attack similar to that in Proof
2 of Section 4.1 can be mounted on Simplified Profile, too. Hence, as pointed out in Section 4.2,
for the integrity of ciphertexts it is necessary that the encryption scheme satisfies the following
property: for any pair of ciphertexts c, c′, if c ̸= c′ then m ̸= m′, where m,m′ are the corresponding
plaintexts. In addition, we point out again that while CBC with zero IV mode of encryption (or,
any other standard deterministic encryption mode) satisfies this property, it may not necessarily
hold for any general IND-CPA secure encryption scheme.

We justify Equation 3. Let I be an adversary attacking INT-CTXT security of SE ′. We
construct a forger F breaking the UF-CMA security ofMAC. F first runs Ke to obtain a key Ke

for E . It runs I and replies to its queries as follows.
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For every encryption oracle queryM that I makes, F does the following: It computes (Me,Mt)
$←

Encode(M) and then queries Mt to its own tagging oracle. Let us call the oracle’s reply σ. Next,
F computes C ← EKe(Me) and returns C∥σ to I.

For every verification oracle query C∥σ that I makes, F does the following: It computes Me ←
DKe(C) and Mt ← Decode(Me). Next, F queries (Mt, σ) to its own verification oracle and returns
1 to I, if the same was returned by its own oracle.

We now analyze F . We claim that F is successful whenever I is successful. First of all, it is
straightforward to see that F correctly simulates the encryption oracle for I. Now, if I is successful,
then one of its verification oracle queries C ′∥σ′ is such that it was not returned by the encryption
oracle (i.e. it’s new), and its decryption does not return ⊥. This gives rise to two cases. The first
case is when C ′ is new (σ′ may or may not be new in this case). In this case, M ′

e ← DKe(C
′) must

be new, because C ′ is new, and SE is deterministic. M ′
t is new, because it is equal to M ′

e. Thus,
(M ′

t , σ
′) is a valid new message-tag pair. Hence F ’s verification oracle will return 1.

The second case is when only σ′ is new and C ′ is old. However, we show that in this case σ′

is invalid, and therefore decryption of C ′ will return ⊥. For the same reasons as explained above,
old C ′ implies that M ′

t is old, i.e. M ′
t is one of the messages which was queried to the tagging

oracle. But then σ′ is an invalid tag, as the corresponding valid and distinct tag was returned as
the answer to the corresponding query.

Hence, the uf-cma advantage of F is the same as the int-ctxt advantage of I. The time com-
plexity of F is basically that of I. F makes the same number of oracle queries as that of I. The
total length of all the queries made by F exceeds that of I by only a fixed number of bits, which is
the number of queries times (2n− 1), due to the use of encoding (at most (n− 1) bits for padding,
and n bits for confounder).

Before we analyze the IND-CCA security of SE ′, let us claim its IND-CPA security.

IND-CPA security. Theorem 7.1 from [11] states that an encryption scheme composed via the
Encode-then-Encrypt&MAC paradigm is IND-CPA if the base encoding scheme is Coll-CPA, the
base MAC scheme is PRF, and the base encryption scheme is IND-CPA. However, we cannot use
it directly, because the base encryption scheme in Construction 3.7 is CBC with fixed IV, which
is obviously not IND-CPA. We present a modification of Theorem 7.1 from [11] to claim the IND-
CPA security of the encryption scheme in Construction 3.7, but before that we present the following
construction and its security analysis:

Construction 4.6. Let SE = (Ke, E ,D) be the CBC encryption scheme with IV = 0n, and
EC = (Encode,Decode) be the encoding scheme of Construction 3.7. Then, SE ′′ = (Ke, E ′′,D′′) is
defined as follows.

• E ′′ on inputs Ke and M first gets the encodings via (Me,Mt)
$← Encode(M). It then computes

C ← EKe(Me), parses Me as conf ∥M , where |conf | = n, and returns conf ∥C.

• D′′ on inputs Ke and conf ∥C computes Me ← DKe(C), decodes (M,Mt)← Decode(Me), and
returns M .

Claim 4.7. The scheme SE ′′ defined in Construction 4.6 is as secure as the CBC encryption scheme
with random IV, CBC$ = (Ke, E$,D$). More precisely, for any adversary A attacking IND-CPA
security of SE ′′, that runs in time t, and makes q queries to the left-right encryption oracle, totaling
µ bits, there exists an adversary D attacking IND-CPA security of CBC$, such that

Advind-cpa
SE ′′ (A) ≤ Advind-cpa

CBC$ (D) .
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Furthermore, D runs in time t and makes q queries to the left-right encryption oracle, totaling at
most (µ+ q · (2n− 1)) bits.

Proof of Claim 4.7. The proof follows from a similar observation (as in the proof of Claim 4.2)
that the random confounder prepended to the message by the encoding scheme acts as a “pseudo-
random” IV in the encryption, because the underlying blockcipher is assumed to be a PRF.

We construct an adversary D, breaking the IND-CPA security of CBC$, using adversary A.

For every message-pair query (M,N) that A makes, D first computes (Me,Mt)
$← Encode(M),

parses Me as conf ∥M , where |conf | = n, pads N to multiple block lengths, and computes Ne ←
conf ∥N . Then it queries (Me, Ne) to its own oracle and gets back IV ∥C, where IV is the first
ciphertext block. D forwards (conf ⊕ IV )∥C back to A. When A halts and returns a bit, D halts
and outputs that bit.

We analyze D. We claim that if D is in Expind-cpa-b
CBC$ (D) for b ∈ {0, 1}, then A’s view in

the simulated experiment is the same as that in the actual experiment Expind-cpa-b
SE ′′ (A). Hence

Advind-cpa
SE ′′ (A) ≤ Advind-cpa

CBC$ (D).
The time complexity of D is basically that of A. D makes the same number of oracle queries as

that of A. The total length of all the queries made by D exceeds that of A by only a fixed number
of bits, which is the number of queries times (2n− 1), due to the use of encoding (at most (n− 1)
bits for padding, and n bits for confounder)

From Claim 4.7 and Claim 4.3, we conclude the following.

Claim 4.8. The scheme SE ′′ defined in Construction 4.6 is IND-CPA secure if the underlying
blockcipher E is a PRF. More precisely, for any adversary A attacking IND-CPA security of SE ′′,
that runs in time t and makes q queries to the left-right encryption oracle, totaling µ bits, there
exists an adversary B attacking PRF security of E, such that

Advind-cpa
SE ′′ (A) ≤ Advprf

E (B) +
µ2

n2 · 2n
.

Furthermore, B runs in time t and makes at most ⌊(µ+ q · (2n− 1)/n)⌋ oracle queries, totaling at
most µ+ q · (2n− 1) bits.

The following theorem (which is a modification of Theorem 7.1 from [11]) states that the
encryption scheme of Construction 3.7 is IND-CPA, if the underlying encoding scheme is Coll-CPA,
the underlying MAC scheme is PRF, and the encryption scheme of Construction 4.6 is IND-CPA.

Theorem 4.9. Let SE = (Ke, E ,D),MAC = (Kt, T ), and EC = (Encode,Decode) be an encryp-
tion scheme, a MAC, and an encoding scheme, respectively, such that the outputs of the encoding
scheme are compatible with the inputs to E , T . Let SE ′ and SE ′′ be the associated encryption
schemes as per Construction 3.7 and Construction 4.6, respectively. For any adversary S attacking
IND-CPA security of SE ′, that runs in time t and makes q queries to the left-right encryption
oracle, totaling µ bits, there exist adversaries A attacking IND-CPA security of SE ′′, G attacking
PRF security ofMAC, and C attacking Coll-CPA security of EC, such that

Advind-cpa
SE ′ (S) ≤ Advind-cpa

SE ′′ (A) + 2 ·Advprf
MAC(G) + 2 ·Advcoll-cpa

EC (C) (7)

Furthermore, A and C use the same resources as S, while G runs in time t and makes q oracle
queries, totaling at most (µ+ q · (2n− 1)) bits.
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Proof. The proof is very similar to the Proof of Theorem 7.1 of [11]. Let S be an adversary
attacking IND-CPA security of SE ′. For x ∈ {1, 2, 3}, we define the following experiments associated
with S:

Experiment ExpHx

Ke
$← Ke, Kt

$← Kt

Run S, replying to its oracle query (M0,M1) as follows:

(Me,0,Mt,0)
$← Encode(M0), (Me,1,Mt,1)

$← Encode(M1)
Switch(x)

Case x = 1: C ← EKe(Me,1), σ ← TKt(Mt,1)
Case x = 2: C ← EKe(Me,0), σ ← TKt(Mt,1)
Case x = 3: C ← EKe(Me,0), σ ← TKt(Mt,0)

Return C∥σ to S.
Until S halts and returns a bit b.
Return b.

For x ∈ {1, 2, 3}, let Px = Pr [ExpHx = 1 ] denote the probability that experiment ExpHx returns

1. By the definition of Advind-cpa
SE ′ (S), we have

Advind-cpa
SE ′ (S) = P1 − P3 = (P1 − P2) + (P2 − P3) (8)

Given S, there exist adversaries A,G and C, such that the following lemmas hold, and these
adversaries use the resources specified in Theorem 4.9.

Lemma 4.10. P1 − P2 ≤ Advind-cpa
SE ′′ (A) .

Lemma 4.11. P2 − P3 ≤ 2 ·Advprf
MAC(G) + 2 ·Advcoll-cpa

EC (C) .

Equation 8, and the above lemmas imply Theorem 4.9.

Proof of Lemma 4.10. We construct an adversary A attacking IND-CPA security of SE ′′, using
the adversary S. A first runs Kt to obtain a key Kt. For every message-pair query (M0,M1) that
S makes, A uses that message-pair to query to its own oracle and gets back conf ∥C. Now, it pads
M1 to multiple block length and computes Mt,1 ← conf ∥M1, σ ← TKt(Mt,1). It then gives C∥σ to
S. When S halts and returns a bit b′, A halts and returns b′.

If b = 1, the adversary A simulates S in the exact same environment as that of ExpH1.
Similarly, if b = 0, the adversary A simulates S in the exact same environment as that of ExpH2.
Thus,

P1 − P2 = Pr
[
Expind-cpa-1

SE ′′ (A) = 1
]
− Pr

[
Expind-cpa-0

SE ′′ (A) = 1
]

= Advind-cpa
SE ′′ (A).

Adversary A uses the same resources as S.

Proof of Lemma 4.11. The proof follows directly from Lemma 7.7 and Theorem 7.4 of [11].

Below we claim that the encoding scheme EC in the Simplified profile is Coll-CPA.
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Claim 4.12. For any adversary C making q queries to the encoding oracle EC(·),

Advcoll-cpa
EC (C) ≤ q(q − 1)

2n+1
.

proof. To justify the claim, we note that Encode algorithm prepends a random n-bit confounder
to the message, and the only chance that the adversary can make any two encodings Mt,M

′
t collide

is if any two of q confounders happen to be the same. This can happen with probability at most
q(q−1)
2n+1 , by the well-known birthday bound.

Theorem 4.9, Claim 4.8, and Claim 4.12 imply the following.

Claim 4.13. The authenticated encryption scheme SE ′ described by the Simplified profile (Con-
struction 3.7) is IND-CPA secure, if the underlying blockcipher E is a PRF, and the underlying
MAC is a PRF.
Concretely, for any adversary S attacking IND-CPA security of SE ′, that runs in time t, and
makes q queries to the left-right encryption oracle, totaling µ bits, there exist adversaries B and G
attacking PRF security of E andMAC, respectively, such that

Advind-cpa
SE ′ (S) ≤ Advprf

E (B) + 2 ·Advprf
MAC(G) +

q(q − 1)

2n+1
+

µ2

n2 · 2n+1
.

Furthermore, B runs in time t and makes at most ⌊(µ+ q · (2n− 1)/n)⌋ oracle queries, totaling at
most µ+q ·(2n−1) bits; G runs in time t and makes q oracle queries, totaling at most µ+q ·(2n−1)
bits.

IND-CCA security. Equation 3, Claim 4.13, Theorem 2.4, and Theorem 2.9 imply Equation 4.

5 Conclusions

We took a close look at the two designs of authenticated encryption in Kerberos version 5, called
General and Simplified Profiles. We show that the authenticated encryption paradigm used in
General profile does not provide integrity, even if it uses secure building blocks(e.g. a secure
hash function and a secure encryption scheme). While our attacks do not apply for particular
instantiations of the General Profile suggested in the specifications, they do show limitation of the
design. We suggest simple and easy to implement modifications, and we show that the resulting
scheme provably provides privacy and authenticity, under standard assumptions. We prove that
Modified General Profile and Simplified Profile are IND-CCA and INT-CTXT secure, if they utilize
secure building blocks. This justifies the assumption about the security of encryption necessary for
the recent formal-methods-based symbolic analyses. Together, these results provide strong security
guarantees for Kerberos that we believe will help its standardization, and will emphasize importance
of formal security analysis of practical protocols.
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