
Making Large Hash Functions From Small

Compression Functions

William R. Speirs and Ian Molloy

Center for Education and Research in Information Assurance and Security (CERIAS)
Department of Computer Sciences, Purdue University

Abstract. We explore the idea of creating a hash function that produces
an s-bit digest from a compression function with an n-bit output, where
s > n. This is accomplished by truncating a hash function with a digest
size of ℓn-bits. Our work answers the question of how large ℓ can be while
creating a digest of sn-bits securely. We prove that our construction is
secure with respect to preimage resistance and collision resistance for
s ≤ 2n/2n.

Keywords: Hash function, Merkle-Damg̊ard construction, Double-Pipe
construction.

1 Introduction

Current hash functions create a digest of a fixed size and yet are used with
block ciphers and digital signature schemes that allow for different size keys.
In some situations, such as AES and the SHA-2 family [5, 6], hash functions of
specific sizes were created to be used in conjunction with a cipher that allows for
different key sizes. In the case of the SHA-2 family, two different hash functions
were constructed, SHA-256 and SHA-512. These hash functions are truncated1

to provide two additional hash functions, SHA-224 and SHA-384, to match the
key sizes of AES.

While these four functions work well with AES, they are not flexible enough
to work with the protocols that allow for various key sizes. For example, they
are not flexible enough to match the expected security of most digital signature
schemes. Truncation can always be performed, but the problem of creating a
larger digest is not as easy to solve. It is clear that larger digests are needed
when the hash function is the weak link in the protocol. For example, if the
hash-then-sign paradigm is used with RSA as the signing algorithm, then a 512-
bit digest might not be sufficient for a 4096-bit RSA key. Currently there is no
method for securely extending the size of a digest, assuming the hash function is
constructed using an underlying compression function. This paper addresses this
problem by providing a construction that securely extends the size of a digest.

1 The initial values are also different.



1.1 Background

In 1989 Ralph Merkle and Ivan Damg̊ard presented two independently written
papers [4, 1] on a method for creating a hash function from a fixed domain func-
tion. This construction has been since appropriately named the Merkle-Damg̊ard
construction and is used by most hash functions. The construction works by ex-
tending the domain of the compression function from some binary strings of some
fixed bit length to binary strings of arbitrary length. The construction works by
dividing the input into blocks and iteratively applying the compression function
to each input block. If f is a compression function, IV is some fixed known ini-
tial value, and M = m1 ‖ m2 ‖ · · · ‖ ml is a message, then the Merkle-Damg̊ard
construction creates a digest H(M) as follows:

H(M) = f(· · · f(f(IV ‖ m1) ‖ m2) · · · ‖ ml).

To accommodate messages of any size, the message is padded to a multiple of
the input size of the compression function. To strengthen the construction the
length of the message, as a 64-bit integer, is always the final 64 bits of the padded
message. The output size of the compression function is the same as the output
size of the hash function created using the Merkle-Damg̊ard construction.

1.2 Related Work

The most obvious method for creating a larger digest from smaller compres-
sion functions is to simply create two different hash functions using the Merkle-
Damg̊ard construction and concatenate their output. In [2] Joux demonstrated
that such an approach does not achieve the desired security. His attack works
by finding 2k messages that all collide to the same digest by testing only an
expected k · 2n/2 message blocks. When k ≥ n/2 it is expected that one of
the pairs of messages that collides one of the hash functions also collides the
other. Therefore, a collision for a 2n-bit hash function, built by concatenating
the output of two n-bit hash functions, can be found by searching an expected
n/2 ·2n/2 message blocks instead of the expected 2n messages for an ideal 2n-bit
hash function.

In [3] Lucks described a construction that creates an n-bit hash function from
an n bit compression function such that Joux’s attack does not work. The con-
struction, called a double-pipe construction, works by creating two interleaved
lines, or pipes, of the Merkle-Damg̊ard construction and compressing the lines
together to create an n-bit digest. Joux’s attack is not successful against this
construction because the output of one line is concatenated with the message
block being fed into the compression function of the other line. This mixing of
outputs simulates a compression function that creates a 2n-bit output. There-
fore, when Joux’s attack is applied to the construction k · 2n work is required to
find a collision.

While Lucks’s construction was designed to thwart Joux’s multi-collision at-
tack, it also has the ability to create a hash function with a 2n-bit output using



a compression function with an n-bit output. Instead of applying a compression
function to the two lines of Lucks’s construction, the two lines can be concate-
nated together to form a 2n-bit output. Because it requires 2n work to find
a collision for a single message block, this construction creates a secure hash
function.

1.3 Contributions of This Paper

This paper investigates the problem of creating a hash function with a larger
output than the underlying compression function securely. An ideal n-bit hash
function requires an expected 2n/2 messages to be tested before a collision is
found, and an expected 2n messages to be tested before a preimage is found. The
question this paper answers is if an s-bit hash function can be constructed using
an n-bit compression function where s > n, such that an expected 2s/2 messages
must be tested before finding a collision and 2s messages for a preimage. We
prove that our technique can securely create digests that are 2n/2 times larger
than the output of an n-bit compression function.

2 The ℓ-Pipe Construction

The s-bit digest is the truncation of an ℓn-bit digest for ℓ =
⌈

s
n

⌉

. We denote the
s-bit digest as Hs(·) : Σ∗ → Σs since the number of lines, ℓ, is implicit. The
rest of this paper will examine a hash function with an ℓn-bit digest and only
comment on the s-bit truncation when necessary.

2.1 Notation

The notation used in this paper closely matches that which is most commonly
seen. Let Σ denote the binary alphabet and Σn be the set of all binary strings
of length n. Let Σ∗ be the set of all binary strings. Let g be a compression
function of the form Σb × Σn → Σn where b > n. The function f is of the
form Σb+n → Σn and is defined as f(x ‖ y) = g(x, y). The Big-Oh notation
is slightly abused to denote the expected number of something. For example,
O(2n/2) means an expected 2n/2. Let the term line denote the Merkle-Damg̊ard
construction or a slight variation of it. Intermediate values are denoted by h and
indexed via subscript by both iteration number and line number. For example,
h3,5 denotes the third iteration of line number five. Initial values are indexed
by the line number with which they are used. The notation { x

x′} denotes one of
two colliding message blocks, or different intermediate values. The function π∗

is used to represent either π1 or π2.

2.2 General Construction

Expanding upon the idea of Lucks, one can generalize his construction to ℓ lines
which, when omitting the final compression, produces an ℓn-bit digest from an
n-bit compression function.



Each application of the compression function processes (b − n) message-bits
per iteration, and takes as input two chaining values from different lines. We
first abstractly define the construction and then provide a concrete example. In
Section 3.1 we show that our concrete construction is secure.

Let M = m0 ‖ m1 ‖ · · · ‖ mk be a message broken into k blocks each of
(b − n)-bits in length. Each block of the message is concatenated with the in-
termediate (or initial) value of line π2(j) and fed into the compression function
where j is the current line. The function π1 selects the line that will act as
the “standard” chaining variable in a normal Merkle-Damg̊ard construction and
used as the first input to g. When each of the ℓ intermediate values are dif-
ferent, the construction behaves as though each line is governed by a different,
unique compression function gj. Equations (1) and (2) symbolically represent
the construction.

hi,j = g(hi−1,π1(j), hi−1,π2(j) ‖ mi) (1)

H(M) = (hk,0 ‖ hk,1 ‖ · · · ‖ hk,ℓ−1). (2)

Figure 1 is a diagram of the ℓ-pipe construction where π1(j) = j and π2(j) =
(j + 1) mod ℓ, without the final concatenation of the intermediate values, hk,i.
We will use these functions for π1 and π2 in future examples. Further comments
on the selection of these particular functions for π1 and π2 are given in Section
3.1.

2.3 Initial Value Creation

The ℓ-pipe construction requires ℓ initial values, one for each line. Similar to [3],
the ℓ initial values are required to be unique to prevent reduced-line attacks.
For some security applications it may be desirable to ensure an attacker cannot

learn Hs′(x) from Hs(x) where s′ < s and
⌈

s′

n

⌉

=
⌈

s
n

⌉

. To prevent Hs′(x) from

being the truncation of Hs(x), we use different initial values for each digest size s,
similar to [6]. Due to the possibly large number of IV s required, it is desirable to
define a single initial value IV and derive the line and digest size dependent initial
values. The following equation provides a method for generating the required
initial values.

h0,i = g(IV, i ‖ s) for i = 0, 1, . . . , ℓ − 1. (3)

Assuming g is collision resistant, each of the initial values is unique.

2.4 Message Padding

Because hash functions can take messages of arbitrary length as input, they
must be padded to an appropriate length. The padding scheme used is exactly



g g g g

g g g g

g g g g

g g g g

IV0

IV1

IV2

IVℓ−1
✲

✲

✲

✲ ✲ ✲

✲ ✲

✲ ✲

✲ ✲ ✲

✲

✲

✲

❄ ❄ ❄ ❄

❄ ❄ ❄ ❄

❄ ❄ ❄ ❄

❄ ❄ ❄ ❄

IVℓ−1 ‖ m1

IV0 ‖ m1

IV1 ‖ m1

IVℓ−2 ‖ m1

h1,ℓ−1 ‖ m2

h1,0 ‖ m2

h1,1 ‖ m2

h1,ℓ−2 ‖ m2

h2,ℓ−1 ‖ m3

h2,0 ‖ m3

h2,1 ‖ m3

h2,ℓ−2 ‖ m3

hk,ℓ−1 ‖ mk

hk,0 ‖ mk

hk,1 ‖ mk

hk,ℓ−2 ‖ mk

h1,0

h1,1

h1,2

h1,ℓ−1

h2,0

h2,1

h2,2

h2,ℓ−1

hk,0

hk,1

hk,2

hk,ℓ−1

✲

✲

✲

✲

...
...

...
...

Fig. 1. The ℓ-pipe construction without the concatenation of the final values.



the same as with the strengthened Merkle-Damg̊ard construction with a minor
difference. Let l denote the length of the message. The suffix for all messages
will be

10 · · · 0 ‖ l ‖ i

where i is the line number. For all ℓ lines, every message block i is the same
with the exception of the final message block, mk. This padding method aids in
proving the construction is secure with respect to preimage resistance, as shown
in Theorem 2.

3 Security of the ℓ-Pipe Construction

The properties of preimage resistance and collision resistance are considered with
respect to the security of the construction. In the rest of this section it is assumed
that g is a random oracle of the form

Σn × Σb → Σn.

Definition 1. An r-way cross collision occurs when a single message block causes
a set {a1, a2, · · · , ar} of r lines, where 2 ≤ r ≤ ℓ, to result in the same output:

g
(

hi,π1(a1), mi ‖ hi,π2(a1)

)

= g
(

hi,π1(a2), mi ‖ hi,π2(a2)

)

=
...

= g
(

hi,π1(ar), mi ‖ hi,π2(ar)

)

Definition 2. An r-way strict collision is caused when two different message
blocks, {mi, m

′

i}, cause a set {a1, a2, · · · , ar} of r lines, for r ≤ ℓ, to be same:

g
(

hi,π1(a1), mi ‖ hi,π2(a1)

)

= g
(

hi,π1(a1), m
′

i ‖ hi,π2(a1)

)

... =
...

g
(

hi,π1(ar), mi ‖ hi,π2(ar)

)

= g
(

hi,π1(ar), m
′

i ‖ hi,π2(ar)

)

Because the compression function g is assumed to be a random oracle with an
output size of n bits, an expected 2n messages must be tested to find a preimage
and an expected 2n/2 messages must be tested to find a collision. These expected
values are generalized and applied to cross collisions and strict collisions in the
following Lemma.

Lemma 1. If g is an n-bit random oracle, then the expected number of messages
that must be tested before finding a message block that causes an r-way cross
collision is 2(r−1)n. The expected number of messages that must be tested before
finding two message blocks that cause an r-way strict collision is 2rn/2.

Proof. The expected number of messages for a cross collision is derived from
the properties of a random oracle. The expected number of messages for a strict
collision is a direct application of the birthday attack.



One should note that cross collisions can be built up through multiple itera-
tions. In one iteration a cross collision is found for a subset of the lines. In the
next iteration other lines are cross collided with the subset of lines that have al-
ready been collided. Figure 2 shows how cross collisions can be built up through
multiple iterations, where capital letters are used to exemplify lines that mimic
each other. In the first iteration, a cross collision is found for the first three lines.
In the second iteration a cross collision is found for the top, bottom and one of
the two middle lines. The other middle line will also collide because the input
to the compression function for the two middle lines mimic each other. Building
up a cross collision in this manner is advantageous because it reduces the overall
amount of work required significantly.

3.1 Properties of π∗

There are two ways in which an attacker can cause a cross-collision. The first is
by choice of message blocks mi as discussed in Lemma 1. The second is to cause
the compression functions gj and gj′ , defined in Section 2.2, to be identical. This
is done by causing hi−1,π1(j) = hi−1,π1(j′) and hi−1,π2(j) = hi−1,π2(j′), for j 6= j′.
It should be noted that an attacker gains one or both of these collisions “for free”
if π1(j) = π1(j

′) or π2(j) = π2(j
′). To prevent this form of simplified attack, we

restrict π∗ to be permutations over Zℓ.
We following definitions for π1 and π2 can be used when ℓ is odd and provides

the expected level of security for the construction.

π1(j) = 2j mod ℓ (4)

π2(j) = 2j + 1 mod ℓ (5)

Theorem 1. Given the above permutations, an r-way cross collision at one
iteration with r < ℓ will produce at most an (r − 1)-way cross collision at the
next iteration if no additional work is performed.

Proof. For any set A = {a1, · · · , ar} of r cross colliding lines to cause an r-
way cross collision given the next message block, there must exist a set B =
{b1, · · · , br} of r lines such that

∀i, π1(bi) ∈ {a1, · · · , ar} ∧ π2(bi) ∈ {a1, · · · , ar} .

We first note the inverse of the permutation of π1, π−1
1 (j) = j ∗ (

⌊

ℓ
2

⌋

+ 1) and

use π−1
1 along with π1 and π2 to derive the sets A,B.

If we start with a1 and define b1 = π−1
1 (a1), a2 = π2(b1), bi = π−1

1 (ai),
ai = π2(bi−1), etc; we can define the entire chain of dependencies. In order for B
to be an r-way cross collisions the chain must be cyclic. If not, then the r lines
in B use chaining variables not in A, and at least one cross collision is lost.

Next observe that π2(π
−1
1 (j)) = j + 1 ai+1 = ai + 1. By induction, ar =

a1 + r − 1, which is the fist input into br. The second input, π2(br) = ar + 1.
Finally, ar + 1 ≡ a1 only when r ≡ ℓ, otherwise we must loose at least one cross
collision.



Lemma 2. The most optimal way to find a cross collision for r ≥ 3 lines is by
constructing the cross collision iteration-by-iteration, which requires testing an
expected (r − 2)22n messages.

Proof. First it is proved that an expected (r− 2)22n messages must be tested to
find a cross collision for r ≥ 3 lines. By application of Theorem 1, the smallest
r can be so that progress is still made towards combining lines is r = 3. When
r = 3 and the three lines are adjacent to each other, two of the lines will be the
same in the next iteration. A cross collision is then found for one of the two lines
that still collide and two additional lines. This results in four lines that cross
collide, or three lines that still cross collide in the next iteration. Repeating this
process and adding up the number of expected messages until all r lines cross
collide results in the stated (r−2)22n messages by application of Theorem 1 and
Lemma 1.

Any attack that is more efficient than the one described must do less work
per iteration or the same amount of work, but in fewer iterations. If less work
is performed in each iteration, then only two lines can cross collide. This will
result in all lines being different in the next iteration by Theorem 1. Therefore,
no less than 22n work can be done in each iteration. Any attack that works in
fewer steps must cross collide more than one additional line in each iteration.
This cannot be done in the same amount of work as cross colliding three lines
by Lemma 1. Therefore, the attack described is the most optimal way to cross
collide r ≥ 3 lines.

3.2 Restrictions on b

Applying the attack in Lemma 2 and the work required in Lemma 1, it follows
that the ℓ-pipe construction is secure for ℓ ≤ 4. This attack is only successful
for ℓ > 4 when an attacker is able to test enough message blocks mi such that
an r-way cross-collision can be found. From Theorem 1 for an attacker to make
progress, a 3-way cross-collision must be found.

By restricting b < 3n we can reduce number of possible messages an attacker
can try to less than the expected number required for the attack to succeed.
This restriction requires that more than a single message block to be tested for
an r-way cross-collision to be found when r > 2. Combined with Theorem 1,
this prevents the attack described in Lemma 2 from succeeding. The restriction
and its ability to prevent attacks is discussed further in Section 3.4.

3.3 Preimage Resistance

To find the expected number of messages that must be tested to find a preim-
age of any digest is a straightforward calculation. Lemma 3 gives the expected
number of messages that must be tested when all of the outputs are different.
As expected, this scenario is the most costly with respect to testing messages.
To find a conservative estimate in all other cases, it is assumed that whenever
all of the outputs are not different no work is needed.



g g

g g

g g

g g

✲ ✲ ✲

✲ ✲ ✲

✲ ✲ ✲

✲ ✲ ✲
❄ ❄

❄ ❄

❄ ❄

❄ ❄

m1 ‖ h0,3

m1 ‖ h0,0

m1 ‖ h0,1

m1 ‖ h0,2

m2 ‖ B

m2 ‖ A

m2 ‖ A

m2 ‖ A

h0,0

h0,1

h0,2

h0,3

A

A

A

B

C

CC

C

C

Fig. 2. Cross collisions built up through multiple iterations.

Lemma 3. If all ℓ output lines of the ℓ-pipe construction are different and the
compression function g is a random oracle, then an expected 2ℓn messages must
be tested before finding a preimage for the entire hash function.

Proof. By definition of the ℓ-pipe construction, the inputs to the final application
of the compression function are different for each line because the line number is
part of the last input. An expected 2n messages must be tested to find a preimage
for a single line of the construction by the definition of a random oracle. For ℓ
lines, the expected number of messages that must be tested is 2ℓn, because the
inputs to the final compression function are all independent.

Theorem 2. If the compression function g is a random oracle, then an expected
2ℓn messages must be tested before a preimage is found for the ℓ-pipe construction
where ℓ ≤ 2n/2.



Proof. When the ℓ output lines are all different, the expected number of messages
that need to be tested is 2ℓn by Lemma 3. It is possible that some attack exists
where less work is needed when some of the lines have the same output. Certainly
no more work is needed. Assume that no work is needed in this case. It is shown
that this assumption does not affect the expected number of messages that must
be tested to find a preimage.

When ℓ ≤ 22/n, the number of digests in which all ℓ output lines are different
is,

(2n)(2n − 1) · · · (2n − ℓ + 1) = 2ℓn − (ℓ(ℓ − 1)/2)2(ℓ−1)n + O(2(ℓ−2)n).

Therefore, the expected number of messages that must be tested to find a preim-
age for any digest is

(

2ℓn − (ℓ(ℓ − 1)/2)2(ℓ−1)n + O(2(ℓ−2)n)

2ℓn

)

2ℓn +

(

(ℓ(ℓ − 1)/2)2(ℓ−1)n + O(2(ℓ−2)n)

2ℓn

)

0 =

2ℓn − (ℓ(ℓ − 1)/2)2(ℓ−1)n + O(2(ℓ−2)n) ≈ 2ℓn.

3.4 Collision Resistance

All attacks against collision resistance that reduce the amount of work required
to find a collision have one of two forms. The first method for attacking this
construction is to find cross collisions so that multiple lines can be treated as
a single line, and then find a strict collision for the subset of lines. The second
method is the opposite, finding a strict collision for a subset of lines and then
find cross collisions to combine them together. It should be noted that causing a
strict collision in more than one message block does not help to efficiently attack
this construction. Theorem 3 proves this fact.

Theorem 3. The most efficient attack, excluding the birthday attack, that causes
a collision in the ℓ-pipe construction produces two messages that differ in only
one message block, that is there is just one r-way strict collision.

Proof. Without loss of generality, assume that for two messages M 6= M ′ and
H(M, s) = H(M ′, s), that the ith block in each message is the first message
block that is different in the two messages. There are two cases.

Case 1: The ith message blocks in each message cause a strict collision for
the entire construction. In this case searching for another pair of message blocks
that causes a strict collision requires additional, unnecessary, work. Note that
this is the birthday attack.

Case 2: The ith message blocks in each message cause a strict collision in a
subset of the lines. Let hi 6= h′

i denote the two outputs of some g in a line not
part of the strict collision. If a cross collision is not found for the two outputs



hi and h′

i, then those differences will propagate to additional lines with each
iteration that a cross collision is not found. Letting the two different outputs
propagate requires twice as much work to cause a full collision.

If additional strict collisions are used to collide all of the lines, those lines that
were not collided and those that were must be considered. Those lines that were
not collided count twice in the calculation of the expected number of messages
because the inputs for either previous message block must be considered. Let r
be the number of messages that do not collide by the strict collision. Each line
that does not collide results in two different inputs to the compression function
in the next iteration. These two different inputs require additional work to cause
a collision. In this scenario the strict collision causes the first ℓ−r lines to collide.
This results in (2r + 2) + (ℓ − (r + 1)) inputs that must be considered for the
next strict collision. The expected number of messages that must be tested to
find the two strict collisions is:

2(ℓ−r)n/2 + 2((2r+2)+(ℓ−(r+1)))n/2.

For two strict collisions to be more efficient than finding cross collisions first,
((2r + 2) + (ℓ − (r + 1)))n has to be less than log2((ℓ − r) − 2) + 2n. This can
never happen with integer values for ℓ, r and n.

Therefore, any attack that finds more than one strict collision requires more
work than finding a single strict collision.

To find an attack more efficient than the birthday attack, by application
of Theorem 3 only a single strict collision should be found for t of the ℓ lines,
where t < ℓ. To find a strict collision for t lines, 2tn/2 messages must be tested,
by application of Lemma 1. One should note that each line that does not collide
by the strict collision results in 2(ℓ − t) “lines” that must be collided with a
cross collision. This is because there will be two different outputs (one for each
message) for each line not collided during the strict collision which are inputs
to the next iteration. These different inputs require twice as much work to cross
collide the line. Therefore, it is more beneficial to cross collide lines before a
strict collision than after.

Lemma 4. Any efficient attack other than the birthday attack that finds a col-
lision for the entire construction uses cross collisions before the strict collision.

Proof. By application of Theorem 3 any optimal attack other than the birthday
attack against the construction uses one strict collision. Let t be the number of
lines that collide after the strict collision. For the ℓ − t lines that do not collide
after the strict collision, the cross collision(s) must consider 2(ℓ − t) “lines”
by definition of the construction. If the ℓ − t lines were collided via a cross
collision before the strict collision, less work would be required for the overall
attack, by application of Lemma 1. To collide ℓ−t lines before the strict collision,
((ℓ−t)−2)22n messages must be tested. After the strict collision, (2(ℓ−t)−2)22n

messages must be tested. Therefore, finding cross collisions before the strict
collision is always more efficient.



Because of Lemma 4, the only efficient attack against this construction is
performed by finding a cross collision for a subset of the lines, and then a strict
collision for the remaining lines. However the attack in Lemma 2 cannot be used
to construction the cross collisions because of the restriction on the block size.
It is assumed that b < 3n which limits the number of possible message blocks
that can be tested by an attacker to find a cross collision. Instead multiple
message blocks must be used to construct the r-way cross collision. However,
the expected number of messages that must be tested is dictated by Lemma 1
instead of Lemma 2. The following theorem states the overall work required to
find a collision.

Theorem 4. If r is the number of lines collided by the cross collision(s), then
an expected 2(r−1)n + 2(ℓ−r+1)n/2 messages must be tested before a collision is
found for the entire construction.

Proof. First, r cross collisions are found requiring 2(r−1)n messages to be tested
from a direct application of Lemma 1. Then a strict collision for the remaining
lines is found by testing an expected 2(ℓ−r+1)n/2 messages, which is derived from
Lemma 1 and the fact that even if all the lines are the same at the iteration where
the r-way cross collision occurs, a single strict collision must still be found. It
is that fact that accounts for the additional n/2 term in the exponent. There-
fore, these two pieces added together results in the stated expected number of
messages that must be tested to find a collision.

The expected number of messages that must be tested is minimized when
r ≈ ℓ/3. Unfortunately, only three lines can be found in a single strict collision
because of the restriction that b < 3n. Therefore, the total amount of work is
2(ℓ−2)n + 23n/2.

Theorem 5. If the compression function g is a random oracle, then an expected
2ℓn/2 messages must be tested before a collision is found for the ℓ-pipe construc-
tion where ℓ ≤ 2n/2.

Proof. To determine when this attack is successful, each piece can be examined
to ensure that it is less than 2ℓn/2, the amount of work for the birthday attack.
For 2(ℓ−2)n < 2ℓn/2, it is required that ℓ < 4. For 23n/2 < 2ℓn/2 it is required
that ℓ > 3.

These two restrictions upon ℓ are contradictory. Therefore, no attack against
the construction is more efficient than the birthday attack when b < 3n.

4 Conclusion and Future Work

In this paper we present a construction that creates a hash function that pro-
duces an s-bit digest from an n-bit compression function, where n < s < 2n/2.
We provide a abstract description of the construction, and two concrete instan-
tiations of the construction. Both of the concrete instantiations are secure, with
respect to preimage resistance and collision resistance.



References

1. Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, edi-
tor, Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology

Conference, Lecture Notes in Computer Science, pages 416–427, Santa Barbara,
California, USA, August 1989. Springer.

2. Antoine Joux. Multicollisions in iterated hash functions. Application to cascaded
constructions. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO

2004, 24th Annual International CryptologyConference, volume 3152 of Lecture

Notes in Computer Science, pages 306–316, Santa Barbara, California, USA, August
2004. Springer.

3. Stefan Lucks. A failure-friendly design principle for hash functions. In Bimal K. Roy,
editor, Advances in Cryptology - ASIACRYPT 2005, 11th International Conference

on the Theory and Application of Cryptology and Information Security, volume 3788
of Lecture Notes in Computer Science, pages 474–494, Chennai, India, December
2005. Springer.

4. Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Ad-

vances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Confer-

ence, Lecture Notes in Computer Science, pages 428–446, Santa Barbara, California,
USA, August 1989. Springer.

5. NIST. FIPS PUB 197: Advanced encryption standard (AES). Technical report, Na-
tional Institute for Standards and Technology, Gaithersburg, MD, USA, November
2001.

6. NIST. FIPS PUB 180-2: Secure hash standard. Technical report, National Institute
for Standards and Technology, Gaithersburg, MD, USA, May 2002.

7. William Speirs. Dynamic Cryptographic Hash Functions. PhD thesis, Purdue Uni-
versity, May 2007.


