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Abstract. In real life, one requires signatures to be from people who ful-
fill certain criteria, implying that they should possess specific attributes.
For example, Alice might want a signature from an employee in Bobs
company who is a member in the IT staff, a senior manager within the
biometrics team or at least a junior manager in the cryptography team.
In such a case an Attribute Based Group Signature scheme (ABGS)
could be applied. Group signature schemes are those where each mem-
ber of a group can sign on behalf of the others. An ABGS scheme is a
type of group signature scheme, where the signing member has to have
certain attributes. In [12], the authors introduced the first ABGS but it
lacked the ability to revoke. In this paper, we introduce a new scheme
that will enable us to remove a member from a group or remove some of
his attributes, when needed.

1 Introduction

Attribute Based Group Signatures were first introduced in [12]. It was proposed
to serve the purpose of including attributes in a group signature scheme. Group
Signatures allow a member of a group to sign on behalf of the others while in
ABGS schemes the aim is to allow a member of the group only possessing certain
attributes to sign on behalf of the rest.
Chaum and van Heist [9] proposed the first group signature in order to imple-
ment e-cash systems. The two underlying security notions of group signatures
are anonymity and traceability. An anonymous scheme is a scheme that does not
reveal the signers identity. A traceable scheme is such that a group of colluding
members cannot forge a signature that will not be traced to at least one of them.
Since Group Signatures was introduced, different security notions were defined;
some examples are unlinkability, unforgeablitity, collusion resistance, exculpa-
bility, and framing resistance. In Bellare et al. [4] strong definitions of the core
requirements were formulated and defined. The authors in that paper proposed
two security notions that implies all the rest and they defined them as full trace-
ability and full anonymity. Since the scheme introduced in our paper could be
considered as a type of group signature scheme we adopt the security notions
presented in Bellare et al.s work and modify them as done in [12]( See Section
3.2). The reader is referred to Bellare et al.s work in [4] for further details about



the other security notions mentioned earlier.
On a separate research line, papers such as [8, 16, 1] looked at improving per-
formance. In [10, 3, 13], authors investigated dynamic groups where revocation
of users and admission of new users were considered. Complex group signatures
such as hierarchal groups, multi-groups and sub-groups were proposed in [18, 2,
14, 12]. Hierarchal groups are group signatures that have different levels of group
managers who are capable of tracing, adding and revoking members under their
authority. In multi-group schemes, a member that belongs to an intersection of
two groups could sign on behalf of both. Subgroup schemes are used when a
document needs to be signed by a member of a group that belongs to a cer-
tain subgroup of the group in question. ABGS is a type of group signature that
supports sub-groups. It allows any member of the group, who satisfies certain
properties, to sign on behalf of the others. Our ABGS is very similar to the
one in [12]. The concept of an attribute tree from Goyal et al’s work in [11] is
applied in our scheme as well. An attribute tree is a tree in which interior nodes
are threshold gates and the leaves are linked to attributes. A threshold gate rep-
resents that the number m of n children branching from the current node need
to be satisfied in order to imply that the parent node is satisfied. Satisfaction
of a leaf is achieved by owning an attribute. For further explanation, consider
the example in Figure 1, which demonstrates an attribute tree for the scenario
mentioned in the abstract.
Similar to the scheme in [12], each public key is linked to an attribute tree. So
the verifier chooses a public key that applies to his requirements. The signer
has elements in his private key corresponding to the attributes he owns. When
signing, he uses the needed elements to satisfy the verifiers tree.
Hence, in context of the scenario represented in the abstract, Alice decides on
an attribute tree and sends it to both a key generator and Bob’s company. The
key generator sends Alice a verifying key and a member in Bob’s company sends
her a signature. Alice could now verify Bob’s signature and whether he satisfies
her attribute tree or not.
In this paper we begin by discussing some preliminaries that will be used in the
scheme and its security proofs. Then in section 3 we define an ABGS scheme
and the two security notions required. We then construct a scheme in section 4
and prove it to be secure in section 5. Finally we conclude by discussing some
open problems.
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Fig. 1. Attribute Tree

2 Preliminaries

In this section we will explain some of the preliminaries that are used in con-
structing ABGS scheme and proving it secure.

2.1 Bilinear Maps

Bilinear Maps are used in constructing our ABGS in section 4.

Definition 1. (Bilinear Maps): Let G1,G2 and GT be three groups of order p
for some large prime p. A bilinear map ê : G1 × G2 → GT must satisfy the
following properties:

– Bilinear: We say that a map ê : G1 × G2 → GT is bilinear if ê(ga
1 , g

b
2) =

ê(g1, g2)ab for any generator g1 ∈ G1, g2 ∈ G2 and any a, b ∈ Zp.
– Non-degenerate: The map does not send all pairs in G1 ×G2 to the identity

in GT .
– Computable: There is an efficient algorithm to compute ê(g1, g2) for any
g1 ∈ G1 and g2 ∈ G2.

A bilinear map satisfying the three properties above is said to be an admissible
bilinear map.
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2.2 Complexity Assumptions

This section defines q-Strong Diffie-Hellman and states Boneh-Boyen Lemma
which are two concepts that will be used in section 5.2 to prove traceability of
the constructed scheme. We will also define the Decision Linear Diffie-Hellman
Assumption [6]. This will be used in the construction of our ABGS scheme and
will lead to ensuring anonymity(See Section 5.3) of the scheme.
Let G1, G2 be cyclic groups of prime order p, where possibly G1 = G2. Assuming
the generators g1 ∈ G1, and g2 ∈ G2 consider the following [5]:

Definition 2. (q-Strong Diffie-Hellman Problem) The q-SDH problem in (G1, G2)
is defined as follows: given a (q + 2) tuple (g1, g2, g

γ
2 , g

γ2

2 , ..., gγq

2 ) as an input,
output what is called a SDH pair and that equals (g1/(γ+x)

1 , x) where x ∈ Z∗p . An
algorithm A has an advantage ε in solving q-SDH in (G1, G2) if:

Pr[A(g1, g2, g
γ
2 , g

γ2

2 , ..., gγq

2 ) = (g1/(γ+x)
1 , x)] ≥ ε,

where the probability is over a random choice of a generator g2 (with g1 ←
ψ(g2)), of γ ∈ Z∗p and of random bits of A [5].

This problem is considered hard to solve in polynomial time and ε should be
negligible.

Theorem 1. (Boneh-Boyen SDH Equivalence) Given a q-SDH instance
(g̀1, g̀2, g̀

γ
2 , g̀

γ2

2 , ..., g̀γq

2 ), and then applying the Boneh and Boyen’s Lemma found
in [5] we could obtain g1 ∈ G1, g2 ∈ G2, w = gγ

2 and (q − 1) SDH pairs (Ai, xi)
(such that e(Ai, wg

xi
2 ) = e(g1, g2)) for each i. Any SDH pair besides these (q−1)

ones can be transformed into a solution to the original q-SDH instance [5].

Definition 3. (Decision Linear Problem in G1) Let G1 be a group of prime
order p. Let u0, u1, u2 be generators in that group, and a, b ∈ Zp.
Given 〈u0, u1, u2, u

a
0 , u

b
1, Z〉 ∈ G1 as an input,it is hard to decide whether or not

a+ b = c [6].

2.3 Forking Lemma and Heavy Row Lemma

Pointcheval et al. [17], developed the Forking Lemma as a method to prove cer-
tain security notions of digital signature scheme. We will be using it in proving
our scheme to be traceable(See Section 5.2). Assume any signature scheme pro-
duces the triple 〈σ1, h, σ2〉 where σ1 takes its values randomly from a set. h is the
result of hashing a message M together with σ1. σ2 depends only on (σ1, h,M).
The Forking Lemma is as follows [17]:

Theorem 2. (The Forking Lemma) Let A be a Probabilistic Polynomial Time
Turing machine, given only the public data as input. If A can find, with non-
negligible probability, a valid signature (M,σ1, h, σ2) then, with non-negligible
probability, a replay of this machine, with the same random tape but a different
oracle, outputs new valid signatures (M,σ1, h, σ2) and (M,σ1, h̀, σ̀2) such that
h 6= h̀.
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We now define a Boolean Matrix, and a Heavy Row in that matrix [15]. The
definitions are used in the Heavy Row Lemma [15] which will be used in proving
traceability of our scheme together with the Forking lemma(See Section 5.2).

Definition 4. (Boolean Matrix of Random Tapes) Consider a hypothetical ma-
trix M whose rows consists of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Let each entry
be either ⊥ when adversary fails or > if adversary manages to win the game.

Definition 5. (Heavy Row) A row in M is called heavy if the fraction of >
along the row is less than ε/2 where ε is the advantage of adversary succeeding
in attack.

Lemma 1. (Heavy Row Lemma) Let M be a boolean matrix, given any entry
that equals >, the probability that it lies in a heavy row is at least 1/2.

3 ABGS Scheme

In this section we will first define an ABGS scheme. Then we define two of it’s
security notions.

3.1 General Definition of the ABGS scheme

In an ABGS scheme there are five algorithms: Setup, KeyGen, Sign, Verify, and
Revoke. The following is a general description of each of the algorithms.

– Setup: Setup is a randomized algorithm. It takes a security parameter as an
input. It generates a set of parameters Spara that will be used in the KeyGen
algorithm.

– KeyGen(Spara, n): KeyGen is an algorithm that takes the system parame-
ters, and a number n that defines the number of users. It generates what
is called private key bases gsk[i]base for any user i. It generates public keys
and private keys using two sub-algorithms as follows:
KeyGenpublic(Γ ): This algorithm generates public keys gpk for attribute
trees described in Γ (See Figure 1 as an example).
KeyGenpriv(gsk[i]base, Υi): Creates the private key gsk[i] for user i to enable
him to authenticate himself and his properties which are described in Υi.

– Sign(gpk, gsk[i],M): Given a public key of an attribute tree, a private key
of a user i and a message. Output a signature σ and ζi. ζi is a set that
describes the set of attribute that satisfy the tree. Notice that ζi ⊆ Υi

– V erify(gpk,M, σ, ζi, R): Given a message M , a public key of a certain at-
tribute tree gpk, a signature σ, a revocation table R and a set ζi. Output
either an acceptance or a rejection for the signature.

– Revoke(i, ϕ): Revoke gets an index of a user i and a set of attributes ϕ to be
revoked. If ϕ is an empty set then revoke the user i rather than an attribute
of his. The output of this algorithm is a modified revocation table R
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3.2 General Security Notions of the ABGS scheme

An ABGS scheme should be proved to be correct, anonymous and traceable. In
this section we give a general definition for each property. We start with the
definition of correctness.

Definition 6. (ABGS Scheme is Correct:)We say an ABGS Scheme is correct
if and only if honestly-generated signatures verify correctly.

Defining anonymity and traceability is not as straight forward as with correct-
ness. We need to introduce an adversarial model. We adopt some of our ideas
from [6, 4] models.
For defining anonymity we introduce this game between an adversary Adam and
a Challenger. The game consists of six steps: Init, Setup, Phase1, Challenge,
Phase2, and finally Guess as follows:

– Init: Adam chooses the attribute tree Γ he would like to be challenged upon.
– Setup: Challenger runs the Setup andKeyGen algorithms without running
KeyGenpriv. Challenger produces a public key for the attribute tree Γ and
n private key bases gpkbases.

– Phase 1: Challenger runs a signature oracle, a private key oracle and a
revocation oracle. In the signature oracle, Adam sends a message M , index
of user i and a set of attributes ζi that satisfy the tree. Challenger responds
back with a signature σ. In the private key oracle Adam sends an index i and
a set of attributes Υi. Challenger responds back with a private key gsk[i].
This oracle is equivalent to theKeyGenpriv. Finally, Challenger could query
a revocation oracle, where it submits an index of user i and a set of attributes
ϕ which could be an empty set. He gets back a modified revocation table R.

– Challenge: Adam decides when to request his challenge. He sends the
Challenger the two triples 〈i0,M, ζ〉 and 〈i1,M, ζ〉. Challenger replies back
with a signature σb where b ∈ {0, 1} and σb is user ib’s signature.

– Phase 2: Phase two is exactly the same as phase one.
– Guess: Adam tries to guess b̀ ∈ {0, 1}. If b = b̀, Adam wins otherwise he

fails.

We refer to an adversary like Adam as the selective anonymity attack (SAA)
adversary and we define the advantage of attacking the scheme as AdvSAA =
Pr[b = b̀]− 1/2.

Definition 7. (Selective Anonymity:) We say a scheme is secure under a SAA
attack if for any polynomial time SAA-Adversary advantage in winning the game
is negligible. That is AdvSAA < ε where ε is negligible.

For defining traceability, we need to prove that a group of colluding members
can not generate a valid signature, which does not trace to any of them. In
other words, a forged signature is said to be untraceable, if it is verifiable even
after revoking all users. In [4] they viewed full-traceability as a strong form
of collusion-resistance. In order to prove full-traceability in ABGS schemes, we
define the following game between an adversary Adam and the Challenger:
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– Init: Adam chooses the attribute tree Γ he would like to be challenged upon.
– Setup: Challenger runs the Setup and the KeyGen algorithm except for

the KeyGenpriv. Challenger produces a public key gpk for the attribute
tree and n private key bases gsk[i]base.

– Querying Oracles: Challenger runs three oracles, a signature oracle, a
private key oracle and a revocation oracle. Adam issues a number of queries
to all oracles. He sends in every query to the signature oracle a message M ,
index of user i and a set of attributes ζi that satisfies the tree. Challenger
responds back with a signature σ. When querying the private key oracle
Adam sends an index i and a set of attributes Υi. Challenger responds back
with a valid private key gsk[i]. For the revocation oracle Adam sends an
index i and a set ϕ. He gets back a modified revocation list R.

– Output: IfAdam is successful he outputs a forged signature σ that Challenger
could verify but can not trace it to any user. Otherwise Adam fails.

We call an attack similar to Adam’s an Un-Traceability Attack (UTA). We
represent the advantage of the adversary in winning the attack as AdvUTA.

Definition 8. (ABGS Scheme is Traceable:) We say a scheme is secure under
a UTA attack if for any polynomial time the advantage of an adversary winning
the game is negligible. That is AdvUTA < ε where ε is negligible.

In the following section we will construct an ABGS scheme. We will later on
(See section 5) prove it to be secure under UTA and SAA attacks.

4 Construction of an ABGS Scheme

In this section we construct an ABGS scheme based on Boneh et al.’s [7].

– Setup: Consider a bilinear pair (G1, G2) with a computable isomorphism
ψ. Suppose that SDH assumption holds on (G1, G2) and the decision linear
assumption holds on G2. Define the bilinear map ê : G1 × G2 → GT . All
three groups G1, G2, GT are multiplicative and of a prime order p. Select a
hash function H : {0, 1}∗ → Zp. Select a hash function H0 with respected
range G2

2. Select a generator g2 ∈ G2 at random and then set g1 ← ψ(g2).
Select a random γ from Zp and set w = gγ

2 . Define a universe of attributes
U = {1, 2, ...,m} and for each attribute j ∈ U choose a number tj at random
from Zp. Let Spara = 〈G1, G2, GT , ê, H,H0, g1, g2, γ, w, t1, ..., tm〉.

– KeyGen(Spara, n, Γ ) : This algorithm generates a public key for a specific
access structure Γ and a private key for each user i. Using γ generate
for each user i, 1 ≤ i ≤ n a private key base gsk[i]base = 〈Ai, xi〉. All
gsk[i]base should be an SDH pair, where xi is chosen randomly from Z∗p and

Ai = g
1/(γ+xi)
1 ∈ G1.

KeyGenpublic(Γ ) : To generate a public key for a certain attribute tree
Γ we will need to choose a polynomial qnode of degree dnode = knode − 1

7



for each node in the tree. knode is the threshold gate value of every node.
In other words knode children need to be satisfied in order to consider the
parent satisfied. Choosing the polynomials is done in top-down manner.
Starting from the root qroot(0) = γ and other points in the polynomial
will be random. The other nodes we set qnode(0) = qparent(index(node)) and
choose the rest of the points of the polynomial randomly. Once all poly-
nomials have been decided the public key for a certain structure will be
gpk = 〈g1, g2, w,Dleaf1 , ..., Dleafκ

〉 where Dleafj
=〈D(0,j), D(1,j)〉=

〈g
qleafj

(0)/tleafj

2 , g
qleafj

(0)

2 〉, κ is the number of leafs and 1 ≤ j ≤ κ.

KeyGenpriv(gsk[i]base, Υ ): For every attribute j ∈ Υ calculate Ti,j = A
tj

i .
The private key for a user i will be the tuple gsk[i] = 〈Ai, xi, Ti,1..., Ti,µ〉,
where µ is the size of Υ .

– Sign(gpk, gsk[i],M): For signing the user i takes the public key gpk, user
private key gsk[i] and the message M . User picks randomly an r from Zp

and obtains (û, v̂) from H0(gpk,M, r). Then compute their images u← ψ(û)
and v ← ψ(v̂). Then randomly user i chooses α from Zp. Then computes

C1 = uα, C2 = Aiv
α, CT1 = 〈β(0,i,1), β(1,i,1)〉,...,CTµ = 〈β(0,i,µ), β(1,i,µ)〉,

where β(0,i,j) = Ti,jv
α and β(1,i,j) = ê(Atj

i , D(1,j)).ê(vα, D(0,j)).

Lets δ = xiα. Pick randomly rα, rx, and rδ from Zp.

Let R1 = urα , R2 = ê(C2, g2)rx ê(v, w)−rα ê(v, g2)−rδ and R3 = Crx
1 u−rδ .

Compute c = H(gpk,M, r, C1, C2, R1, R2, R3), sα = rα + cα, sx = rx + cxi

and sδ = rδ + cδ.

Finally, output the signature σ = (r, C1, C2, c, sα, sx, sδ, CT1, ..., CTµ).

– V erify(gpk,M, σ, ζ,R): The verification algorithm takes as input a signa-
ture σ, a public key gpk, a message M , a set of attributes ζ and a revocation
table R. To verify the signature we first define a recursive algorithm V erNode.
If the node we are currently on is a leaf in the tree the algorithm returns the
following:

V erNode(leaf)1 =

{
If (j ∈ ζ); return ê(β(0,i,j),D(0,j)D(1,j))

β(1,i,j)
= ê(Aiv

α, g2)
qleafj

(0)

Otherwise return ⊥

For a node ρ which is not a leaf the algorithm proceeds as follows: For all
children z of the node ρ it calls V erNode and stores output as Fz. Let Ŝρ be
an arbitrary kρ sized set of children nodes z such that Fz 6= ⊥ and if no such

1 Correctness of the equation is proved in Section 5.1
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set exist return ⊥.
Otherwise let ∆Ŝρ,index(z) = Πι∈{index(z):z∈Ŝρ−index(z)}(−ι/(index(z) − ι))
and compute

Fρ = Πz∈Ŝρ
F

∆Ŝρ,index(z)
z

Fρ = Πz∈Ŝρ
ê(Aiv

α, g2)
qz(0).∆Ŝρ,index(z)

Fρ = Πz∈Ŝρ
ê(Aiv

α, g2)
qparent(z)(index(z)).∆Ŝρ,index(z)

Fρ = ê(Aiv
α, g2)qρ(0)

To verify the signature calculate Froot. If the tree is satisfied then Froot =
ê(C2, w)(See Section 5.1 for prove). The verifier could then calculate (û, v̂) =
H0(gpk,M, r) then u← ψ(û), and v ← ψ(v̂). Verifier redrives R1,R2 and R3

by calculating

R̄1 = usα/Cc
1,

R̄3 = Csx
1 u−sδ

R̄2 = ê(C2, g2)sx ê(v, w)−sα ê(v, g2)−sδ .( Froot

ê(g1,g2)
)c.

If c 6= H(gpk,M, r, C1, C2, R̄1, R̄2, R̄3) reject it the signature otherwise check
whether the user is in the revocation table.

The revocation table R has all values of Arevoked that belong to a revoked
user in one column. Then each other column in the table represents an at-
tribute and the list of people who no longer own that attribute. In other
words the rest of the columns contain values of T(user,revoked). If for all re-
voked users ê(C2/Arevoked, û) = ê(C1, v̂) does not hold then user i still is
a valid user and if for attributes user i owns, ê(β(0,i,j)/Tuser,revoked, û) =
ê(C1, v̂) does not hold then user still owns the attribute j. Finally if user has
not been revoked and still own all his attributes then accept signature.

– Revoke(i, ϕ): Revoke is about building a revocation table R. The algorithm
gets an index of a user i and a set of attributes ϕ to be revoked. ∀j ∈ ϕ,
add Ti,j to the colunm j in the revocation table. If ϕ is an empty set then
revoke the user i by adding Ai to the revoked users column.

5 Security Notions of the Scheme

In this section we prove the scheme to be correct, anonymous and traceable,
using the definitions in section[3].
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5.1 Correctness of the ABGS Scheme

Theorem 3. The ABGS scheme is correct.

Proof. To prove the scheme is correct we need to show that R1 = R̄1, R2 = R̄2,
and R3 = R̄3. If all three equalities hold then H(gpk,M, r, C1, C2, R1, R2, R3) =
H(gpk,M, r, C1, C2, R̄1, R̄2, R̄3) and signature should be correctly verified unless
the user is revoked or one of his attributes are. We start our proof with showing
that the three equations hold:

R̄1 = usα/Cc
1 = urα+cα/ucα = urα = R1

R̄3 = Csx
1 .u−sδ = (uα)rx+cxi .u−(rδ+cδ) = uαrx+αcxi−rdelta−cδ = Crx

1 .u−rδ = R3

R̄2 = ê(C2, g2)sx ê(v, w)−sα ê(v, g2)−sδ .( Froot

ê(g1,g2)
)c

= ê(C2, g2)sx ê(v, w)−sα ê(v, g2)−sδ .( ê(C2,w)
ê(g1,g2)

)c

= (ê(C2, g2)rx .ê(v, w)−rα .ê(v, g2)−rδ).(ê(C2, g2)xi .ê(v, w)−α.ê(v, g2)−αxi . ê(C2,w)
ê(g1,g2)

)c

= R2((ê(C2v
−α, wgxi

2 ))/ê(g1, g2))c = R2(ê(Ai, wg
xi
2 )/ê(g1, g2))c = R2

To Prove Froot = ê(C2, w) we need to prove,

ê(β(0,i,j), D(0,j)D(1,j))/β(1,i,j) = ê(Aiv
α, g2)

qleafj
(0)

This should be enough proof because when you calculate Froot, you are ac-
tually calculating the value of qroot(0) using Lagrange interpolation. So if the
tree is satisfied qroot(0) = γ, therefore Froot = ê(Aiv

α, g2)qroot(0) = ê(C2, w). So
we continue the proof as follows:

ê(β(0,i,j), D(0,j)D(1,j))/β(1,i,j) =

ê(Ti,jv
α, g

qleafj
(0)/tj+qleafj(0)

2 )/(ê(Atj

i , D(1,j)).ê(vα, D(0,j))) =

(ê(Atj

i v
α, g2)

qleafj
(0)/tj ê(Ti,jv

α, g2)
qleafj(0))÷ (ê(Atj

i , g
qleafj

(0)

2 )ê(vα, g
qleafj

(0)/tj

2 ))

(ê(Ai, g2)
qleafj

(0)ê(vα, g2)
qleafj

(0)/tj ê(Ti,j , g2)
qleafj(0) ê(vα, g2)

qleafj
(0))÷

(ê(Atj

i , g
qleafj

(0)

2 )ê(vα, g
qleafj

(0)/tj

2 )) =

ê(Ai, g2)
qleafj

(0)ê(vα, g2)
qleafj

(0) = ê(Aiv
α, g2)

qleafj
(0)

In the verifying algorithm we check revoked users and revoked attributes before
accepting a signature. In the signature we have C1 = ψ(û)α and C2 = Aiψ(v̂)α
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for some random α. We reject a signature when either (û, v̂, C1, C2/Arevoked) or
(û, v̂, C1, β(0,user,revoked)/Tuser,revoked) is a co-Diffie Hellman tuple.

5.2 Traceability

Theorem 4. If SDH is hard on groups (G1, G2) then the selective model of the
Attribute Based Group Signature Scheme is said to be traceable under the random
oracle with AdvUTA ≤ (ε− 1/p)2/16qH .

To prove traceability, we construct a security model similar to the one in section
3.2. We use an input of (q−1) SDH pairs as private key bases in the Setup of our
model. We show how with the security model and the forking lemma(Theorem
2) we could find the qth SDH pair. Therefore, we break Lemma 1 and solve the
SDH problem (see Theorem 2). In the security model, in Appendix A, we added
to the oracles queried, a hash oracle that represents H and H0. If the adversary
manages to create a forged signature once, then rewinding the game with chang-
ing the hash oracle responces as shown in Appendix A will imply that Adam
with high probability could forge a new signature again.
A signature will be represented as 〈M,σ0, c, σ1, σ2〉. M is the signed message.
σ0 = 〈r, gpk, C1, C2, R1, R2, R3〉. c is the value derived from hashing σ0. σ1 =
〈sα, sx, sδ〉 which are values used to calculate the missing inputs for the hash
function. Finally σ2 = 〈CT1, ..., CTµ〉 the values that depend on the set of at-
tributes in each signature oracle.
Using the two forged signatures from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉, we could
extract a new SDH tuple. Let ∆c = c− c̀, ∆sα = sα− s̀α, and similarly for ∆sx,
and ∆sδ.
Divide two instances of the equations used previously(See Theorem[5.1] proof)
where one instance is with c̀ and the other is with c to get the following:

– Dividing Cc
1/C

c̀
1 = usα/us̀α we get

uα̃ = C1; where α̃ = ∆sα/∆c

– Dividing Csx
1 /C s̀x

1 = usδ/us̀δwill lead to
∆sδ = α̃∆sx

– Dividing (ê(g1, g2)/Froot)∆c will lead to
ê(C2, g2)∆sx ê(v, w)−∆sα ê(v, g2)−α̃∆sx = (ê(g1, g2)/ê(C2, w))∆c

Letting x̀ = ∆sx/∆c we get ê(g1, g2)/ê(C2, w) = ê(C2, g2)x̀ê(v, w)−ὰê(v, g2)−x̀ὰ

this could be rearranged as ê(g1, g2) = ê(C2v
−ὰ, wgx̀

2 ). Let À = C2v
−ὰ we get

ê(À, wgx̀
2 ) = ê(g1, g2). Hence we obtain a new SDH pair (À, x̀) breaking Boneh

and Boyens Lemma(See Section[1]). For more details of the proof see Appendix
A.
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5.3 ABGS Scheme Anonymity

Theorem 5. If the decision linear assumption holds in group G2 then the At-
tribute Based Group Signature Scheme is said to be anonymous under the random
oracle with AdvSAA ≤ ε.

For proving the previous theorem we construct a model similar to the one in
section 3.2. We show in Appendix B how the existence of an adversary Adam
that attacks the anonymity of our ABGS scheme, implies the existence of an
adversary Eve that interacts with Adam in order to break the decision linear
assumption in Definition 3. When it comes to the Challenge point in our security
model Eve gives Adam a signature created using the inputs of the decision
linear assumption 〈u0, u1, u2, u

a
0 , u

b
1, Z〉. Adam should guess an index of user at

that point. The probability of guessing the user correctly depends on whether
Z = ua+b

2 or Z is random. So depending on Adam’s guess, Eve could solve the
decision linear assumption. Details on how this is done are in the Appendix B.

6 Conclusion

In this paper we proposed an Attribute Based Group Signature Scheme, where
verifying involves authenticating a person that belongs to a certain group and
owns particular attributes. Our work is an extension of the scheme in [12] where
a revocation algorithm has been added to attribute based group signatures.
A revocation table is used to enable the verifiers to identify if a signer has
been revoked or if any of his attributes have been revoked before accepting the
signature as a valid one.
The scheme we propose is said to be anonymous and traceable under complex
assumptions like the SDH and decision linear. One aspect of our proofs which has
been left for future work is the fact that they rely on the random oracle model.
Other modifications could be done to the scheme like increasing the anonymity
level to include attribute anonymity. For example the verifier should be able
to tell whether the signer satisfies the tree or not without knowing any of the
attributes he owns. Efficiency always has scope for improvement and we will
be working towards that in the future. We hope to achieve a scheme that has
constant size keys and signatures, where the current ones have the size dependent
on the number of attributes.
Our ABGS scheme allows us to include an extra feature, which is Revocation.
This makes the scheme more practical because it imitates reality more closely.
Afterall, in no practical scheme will the number of members remain unchanged
in course of time.
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A Traceability

Theorem 6. If SDH is hard on groups (G1, G2) then the selective model of the
Attribute Based Group Signature Scheme is said to be traceable under the random
oracle.

Proof. In order to prove that we need three steps. Defining a security model
for proving traceability, introducing two types of signature forger, and then we
show that the existence of such forgers implies that SDH is easy. Suppose we are
given an adversary Adam that breaks the traceability of the signature scheme.
The security model will be defined as an interacting framework between the
Challenger and Adam as follows:

– Init: The Challenger runs Adam. Adam chooses the attribute tree Γ in
which it would like to be challenged upon.

– Setup: Challenger runs the setup algorithm as in section [4] with a bilinear
pair (G1, G2) with respective generators g1, and g2. It chooses randomly a
value t1, ...., tm and a value γ. It calculates w = gγ

2 . The Challenger has to
come up with the private key bases gsk[i]base = 〈Ai, xi〉 for an 1 ≤ i ≤ n.
Some of those pairs have xi = ? which implies that xi corresponding to Ai

is not known; Other pairs is a valid SDH pair. The Challenger creates a
public key for the same attribute tree.
SoAdam is given gpk = 〈g1, g2, w,Dleaf1 , ..., Dleafκ

〉 whereDleafj
= 〈D0,j , D1,j〉

=〈g
qleafj

(0)/tleafj

2 , g
qleafj

(0)

2 〉, κ is the number of leafs and 1 ≤ j ≤ κ. Along
with the public key it picks random number of revocation tokens
R = 〈Arevoke1 , Arevoke2 ,..., Tuser1,revoke1 , Tuser2,revoke1 ,..., Tuser1,revoke2 , ....〉
where the size of the list should be reasonable enough to run the oracles in
the next steps.

– Hash queries: When the Challenger asks Adam for the hash of
(gpk,M, r, C1, C2, R1, R2, R3), Adam responds with a random element in G1

and saves the answer just incase the same query is requested again. That
represents the hash function H. When the Challenger asks Adam for the
hash of (gpk,M, r), Adam responds with two random elements in G2 and
saves the answer.

– Signature Queries: Adam asks for a signature on a message M by a key in-
dex i and a set of attributes ζ that satisfy the tree. If xi 6= ? the Challenger
follows the same signing procedure done in section[4].

If xi = ? Challenger simulates a signature. It picks a random r from Zp.
It then gets (û, v̂) = H0(gpk,M, r). Sets u ← ψ(û) and v ← ψ(v̂) . Picks a
random α from Zp.

Challenger then calculates C1 = uα and C2 = Aiv
α. It randomly picks
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c, sδ, sx, and sα from Zp. Calculates R1 = usα/Cc
1, R3 = Csx

1 u−sδ and R2 =
ê(C2, g2)sx ê(v, w)−sδ ê(v, g2)−sδ .(ê(C2, w)/ê(g1, g2))c. Challenger adds c to
the list of the hash oracle H incase (gpk,M, r, C1, C2, R1, R2, R3) is queried
later on. Challenger could set the values CTj = 〈β0,i,j , β1,i,j〉 to equal
〈Atj

i v
α, ê(Atj

i , D1,j).ê(vα, D0,j)〉 where j ∈ ζ.

Challenger returns the signature σ = (r, C1, C2, c, sα, sx, sδ, CT1, ..., CTµ)
to Adam.

– Private Key Queries: Adam issues a query for a private key by sending
Challenger the index i, and a set Υ . If xi 6= ?, Challenger responds back
with gsk[i] =< Ai, xi, A

t1
i , ..., A

tµ

i > otherwise Challenger fails and termi-
nates the game.

– Output: If Adam is successful, he will output a forged signature σ =
(r, C1, C2, c, sα, sx, sδ, CT1, ..., CTµ) on a message M . C1 and C2 should not
have any of the revocation list elements Arevoked encoded in them and same
goes for all CTj in the signature. Let A∗ be the value used in signing the
forged signature. For i = 1, ..., n check whether ê(C2/Ai, û) = ê(C1, v̂). If the
equality holds then that implies that Ai = A∗. In that case check if si∗ = ?
to output σ or otherwise declare failure. If the for loop goes through all the
(Ai)s and there was no equality output σ.

From this model of security there are two types of forgery. Type-I outputs a sig-
nature that could be traced to some identity which is not part of {A1, ..., An}.
Type-II has A∗ = Ai where 1 ≤ i ≤ n but Adam did not do a private key query
on i. We should prove that both forgeries are hard.

Type-I: If we consider Lemma 1 for a (n + 1)SDH, we could obtain g1,g2
and w. We could also use the n pairs (Ai, xi) to calculate the private keys
〈Ai, xi, A

t1
i , ..., A

tµ

i 〉. We use these values in interacting with Adam. Adam’s suc-
cess leads to forgery of Type-I and the probability is ε.

Type-II: Using the same Lemma 1 but for a (n)SDH this time, we could ob-
tain g1, g2 and w. Then we could also use the n − 1 pairs (Ai, xi) to calculate
the private keys 〈Ai, xi, A

t1
i , ..., A

tµ

i 〉. In a random index i∗, we could choose the
missing pair randomly where Ai∗ ∈ G1 and set xi∗ = ?. The random private
key 〈Ai∗ , xi∗ , A

t1
i∗ , ..., A

tµ

i∗ 〉. Adam in the security model will fail if he queries the
private key oracle in index i∗. Other private key queries will succeed. In the
signature oracle and because the hashing oracle is used it will be hard to distin-
guish between signatures with a SDH pair and ones without. As for the output
algorithm the probability of tracing to a forged signature that leads to index i∗

is equal to ε/n.

Now we need to prove that the existence of any of the two forgeries contradicts
with SDH assumption. For that we use the Forking Lemma (See Theorem[2]).
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Let Adam be a forger of any type in which the security model succeeds with prob-
ability ὲ. A signature will be represented as 〈M,σ0, c, σ1, σ2〉. M is the signed
message. σ0 = 〈r, gpk, C1, C2, R1, R2, R3〉. c is the value derived from hashing
σ0. σ1 = 〈sα, sx, sδ〉 which are values used to calculate the missing inputs for the
hash function. Finally σ2 = 〈CT1, ..., CTµ〉 the values that depend on the set of
attributes in each signature oracle.
We require Adam to query H0 before H to ensure that by rewinding the game
we could change values of H(M, r, ..), while values of H0(M, r) should remain
the same. Therefore the arguments u, v used in H remain unchanged too.
One simulated run of the adversary is described by the randomness string ω(used
by Adam and Challenger),by the vector `0 of responses made by H0 and by the
vector ` of responses made by H. Let S be the set of tuple (ω, `0, `) where
Adam successfully forges the signature (M,σ0, c, σ1, σ2) and he queried H on
(M,σ0). Let Ind(ω, `0, `) be the index of ` at which Adam queried (M,σ0).
Let ν = Pr[S] = ὲ − 1/p where 1/p term represents the possibility that Adam
guessed the hash of (M,σ0) without quering it. For each χ, 1 ≤ χ ≤ qH , let Sχ

be a set of the tuple (ω, `0, `)where Ind(ω, `0, `) = χ. Let Φ be the set of indices
χ where Pr[Sχ|S] ≥ 1/2qH causing Pr[Ind(ω, `0, `) ∈ Φ|S] ≥ 1/2.
Let `|ba be the restriction of ` to its elements at indices a, a + 1, ..., b. For
each χ ∈ Φ consider the heavy row lemma (See Section[1]) with a matrix
with rows indexed with(ω, `0, `|χ−1

1 ) and columns (`|qH
χ ). If (x, y) is a cell, then

Pr[(x, y) ∈ Sχ] ≥ ν/2qH . Let the heavy rows Ωχ be the rows such that ∀(x, y) ∈
Ωχ : Prỳ[(x, ỳ) ∈ Sχ] ≥ ν/(4qH). By the heavy row lemma Pr[Ωχ|Sχ] ≥ 1/2
which leads to Pr[∃χ ∈ Φ : Ωχ ∩ Sχ|S] ≥ 1/4.
Therefore Adam’s probability in forging a signature is about ν/4. That signa-
ture derives from the heavy row (x, y) ∈ Ωχ for some χ ∈ Φ, hence execution
(ω, `0, `) such that the Pr`̀[(ω, `0, `̀) ∈ Sj |`̀|j−1

1 = `|j−1
1 ] ≥ ν/(4qH). In other

words if we have another simulated run of the adversary with `̀ that differs from
` starting the jth query Adam will forge another signature 〈M,σ0, c̀, σ̀1, σ2〉 with
the probability ν/(4qH).
Now we show how we could extract from 〈σ0, c, σ1, σ2〉 and 〈σ0, c̀, σ̀1, σ2〉 a new
SDH tuple. Let ∆c = c− c̀, ∆sα = sα − s̀α, and similarly for ∆sx, and ∆sδ.
Divide two instances of the equations used previously(See Theorem[5.1] proof)
where one instance is with c̀ and the other is with c to get the following:

– Dividing Cc
1/C

c̀
1 = usα/s̀α we get

uα̃ = C1; where α̃ = ∆sα/∆c
– Dividing Csx

1 /C s̀x
1 = usδ/us̀δwill lead to

∆sδ = α̃∆sx

– Dividing (ê(g1, g2)/Froot)∆c will lead to
ê(C2, g2)∆sx ê(v, w)−∆sα ê(v, g2)−α̃∆sx = (ê(g1, g2)/ê(C2, w))∆c

Letting x̀ = ∆sx/∆c we get ê(g1, g2)/ê(C2, w) = ê(C2, g2)x̀ê(v, w)−ὰê(v, g2)−x̀ὰ

this could be rearranged as ê(g1, g2) = ê(C2v
−ὰ, wgx̀

2 ). Let À = C2v
−ὰ we get

ê(À, wgx̀
2 ) = ê(g1, g2). Hence we obtain a new SDH pair (À, x̀) breaking Boneh

and Boyens Lemma(See Section[1]). Now putting things together we get the
following theorems:
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Theorem 7. We could solve an instance of (n + 1) SDH with a probability
(ε− 1/p)2/16qH using a Type-I forger Adam

Theorem 8. We could solve an instance of n SDH with a probability (ε/n −
1/p)2/16qH using a Type-II forger Adam

B ABGS Scheme Anonymity

Theorem 9. If the decision linear assumption holds in group G2 then the At-
tribute Based Group Signature Scheme is said to be anonymous under the random
oracle.

Assuming Adam is an adversary that breaks the anonymity of the ABGS scheme.
We will prove that there is an adversary Eve that solves the decisional linear
assumption using Adam’s talent. Note that Eve in this game plays a challenger’s
role when it comes to interacting with Adam and an adversary’s role when she
interacts with Challenger. So the game is demonstrated below:

– Init: Adam decides the attribute tree Γ he would like to be challenged upon
and gives it to Eve.

– Setup: Challenger gives Eve the tuple 〈u0, u1, u2, h0 = ua
0 , h1 = ub

1, Z〉
where u0, u1, u2 ∈ G2 and a, b ∈ Zp. Z is either random or Z = ua+b

2 . Eve
should decide which Z it was given. Recall that g1, g2 are in G1 and G2

respectively. Eve chooses a random γ from Zp. Eve also chooses t1, ..., tκ for
attributes of the tree. Eve assigns w = gγ

2 . She creates the n− 2 private key
bases gsk[i]base = 〈Ai, xi〉 as in section[4]. She will then choose a random
W ∈ G2. The missing private key bases of user i0 and i1 will be defined as
Ai0 = ZW/ua

2 and Ai1 = Wub
2 for some xi0 ,xi1 . Notice that Ai0 = Ai1 when

Z = ua+b
2 . Eve does not know the values of either gsk[i0]base or gsk[i1]base.

We will show later in our security model how she could still interact with
Adam pretending she does know them. Eve also create a public key for the
tree structure gpk = 〈g1, g2, w,Dleaf1 , ..., Dleafκ

〉.

– Phase 1: Eve runs four oracles a signature oracle, a private key oracle,
revocation oracle and a hash oracle. If Adam queries the hash oracle Eve
should keep a list of her responces to insure randomness and consistancy for
both hash functions H and H0. In the rest of the oracles Eve’s reaction will
be divided into three depending whether Adam queried i0,i1 or neither.

If Adam queries the signature oracle he should send an index i, a set of
attributes ζ that satisfy the tree and a message M . If (i 6= i0, i1); Eve will
reply with a signature σ = 〈r, C1, C2, c, sα, sx, sδ, CT1, ..., CTµ〉 as done in
section[4]. If (i = i0), Eve picks a random s, t, l ∈ Zp and makes the follow-
ing assignments:
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C1 = h0u
s
0; C2 = ZWus

2h
t
0u

st
0 ; û = ul

0; v̂ = (u2u
t
0)

l.
Let α = (a + s)/l ∈ Zp. Then C1 = ûα and C2 = Ai0 v̂

α. If (i = i1), Eve
picks a random s, t, l ∈ Zp and makes the following assignments:
C1 = h1u

s
1; C2 = Wht

1u
st
1 /u

s
2; û = ul

1; v̂ = (ut
1/u2)l

Let α = (b+ s)/l ∈ Zp. Then C1 = ûα and C2 = Ai1 v̂
α.

So either case the values of C1 = ûα and C2 = Aiv̂
α for some α. Eve

now assigns β(0,i,j) = C
tj

1 , and β(1,i,j) = ê(β(0,i,j), D1,j). She chooses ran-
dom values r, c, sα, sx, sδ from Zp. Eve sets the values R1 = usα/ψC1

c,
R2 = ê(ψC2, g2)sx ê(ψ(v̂), w)−sα ê(ψ(v̂), g2)−sδ(ê(ψC2, w)/ê(g1, g2))c, and fi-
nally R3 = ψ(C1)sxψ(u)−sδ .
The probability that H(gpk,M,ψ(C1), ψ(C2), R1, R2, R3) or H0(gpk,M, r)
have been queried before is at most qH/p where qH is the numbers of queries.
If a collusion happens Eve reports a failure. Otherwise we add both to the
list of the hash oracle such that H(gpk,M,ψ(C1), ψ(C2), R1, R2, R3) = c
and H0(gpk,M, r) = (û, v̂)
Eve sends back the signature σ = 〈r, ψ(C1), ψ(C2), c, sα, sx, sδ〉

When Adam issues a query on the private key oracle he needs to send Eve an
attribute set Υ and an index i. Eve responds back with 〈Ai, xi, A

t1
i , ..., A

tµ

i 〉.
If Adam queries i0, i1, Eve reports failure.

Finally when querying the revocation oracle Adam either sends a users in-
dex i alone or sends it together with the attribute he wants to revoke. Eve
replies with either Ai or Ti,j for the revocation queries with maintaining the
table of revocation R. If Adam queries i0, i1, Eve reports failure.

– Challenge: Adam asks to be challenged on message M , attribute set ζ and
indexes i∗0 and i∗1. If {i∗0, i∗1} 6= {i∗0, i∗1} then Eve reports failure. Otherwise,
Eve picks randomly b ∈ {0, 1} and generates a signature the same way it
would have done in the signature query. So Eve responces back with a sig-
nature σb.

– Phase 2: Is exactly like phase 1.

– Output : Adam outputs a guess b̀ ∈ {0, 1}. If b = b̀ then Z is random,
otherwise Z = ua+b

2 .

There are two ways this game could end. Case one is when Eve does not abort.
If Z is random then Pr[b = b̀] > 1/2 + ε otherwise if Z = ua+b

2 then both
signatures should be identical and therefore challenge is independent of b hence
Pr[b = b̀] = 1/2. So the advantage of Eve solving the linear challenge is at least
ε/2.
The second case is Eve aborts and fails. Eve could abort in the signature queries
with probability qSqH/p where qS is the number of signature queries and qH are
hash queries. The probability that all queries in phase 1 and the challenge do not
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cause Eve to abort is 1/n2. Concatenating both cases together the probability
of Eve solving the linear challenge is (ε/2)((1/n2)− (qSqH)/p) as required.
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