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Abstract

The problem of key management in access hierarchies is how toassign keys to users and classes such
that each user, after receiving her secret key(s), is able toindependentlycompute access keys for (and thus
obtain access to) the resources at her class and all descendant classes in the hierarchy. If user privileges
additionally are time-based (which is likely to be the case for all of the applications listed above), the
key(s) a user receives should permit access to the resourcesonly at the appropriate times. This paper
present a new, provably secure, and efficient solution that can be used to add time-based capabilities to
existing hierarchical schemes. It achieves the following performance bounds: (i) to be able to obtain
access to an arbitrary contiguous set of time intervals, a user is required to store at most 3 keys; (ii) the
keys for a user can be computed by the system in constant time;(iii) key derivation by the user within
the authorized time intervals involves a small constant number of inexpensive cryptographic operations;
and (iv) if the total number of time intervals in the system isn, then the increase of the public storage
space at the server due to our solution is only by a small asymptotic factor, e.g.,O(log∗ n log log n) with
a small constant.

1 Introduction

This work addresses the problem of key management in access control systems, with the emphasis on time-
based access control policies. Consider a system where all users are divided into a set of disjoint classes,
and a user is granted access to a specific access class for a period of time specified by its beginning and
end. In such systems, it is common for the access classes to beorganized in a hierarchy, and a user then
obtains access to the resources at her own class and the resources associated with all descendant classes in
the hierarchy.

When a user joins the system and is granted access to a certainclass for a specific duration of time, she
is given a key (or a set of keys) which allows her toindependentlyderive access keys for all resources she is
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entitled to have access during her time interval. For hierarchically organized user classes this means that the
key allows the user to access objects at her access class and all descendant classes in the hierarchy during
the time interval specified. Note that the time interval is user-specific and might be different for each user in
the system.

There is a wide range of applications that follow this model and which would benefit from automatic
enforcement of access policies through efficient key management. Such applications include:

• Role-Based Access Control (RBAC) models, which are useful for many types of organizations with
various access constraints including temporal constraints. In such systems users are naturally or-
ganized into a hierarchy of classes, and a user higher up in the hierarchy inherits privileges of its
descendant classes. Furthermore, users are normally granted their privileges for a specific period of
time depending on their work schedule, which is well captured by our model.

• Subscription-based services such as digital libraries, music collections, digital subscriptions to news-
papers and magazines, etc. Here a user may be able to join at any time and/or be able to specify
the subscription duration, implying that access only during a specific time interval is allowed. Also
subscription packages may be organized in a hierarchy depending on the resources included in each
package. For instance, a Gold package will include everything available in a Silver package and ad-
ditional premium services; weekends-only newspaper subscription is contained within the full-access
subscription; etc.

• Content distribution where users may join at any time and receive content of varying quality or reso-
lution.

• Cable TV where, similarly, users join at arbitrary times andreceive different programs based on what
is included in their subscription package.

• Project development, where users’ views are organized in a hierarchy and each user obtains access to
the resources determined by her role in the project. For example, the managerial view will include the
views of developers assigned to the project and possibly other data. Also, users can be assigned to a
project only for a specific duration of time.

• Cryptographic directories or file systems, where access is similarly based on a hierarchical relationship
between users.

In all of the above examples we use the current time to enforcetime-based policies. Additionally, instead
of being based on the current time, access control policies can be based on the time in the past and permit
access to historical data. For example, a user might buy access to data such as historical transactions, prices,
legal records, etc. for a specified time interval in the past,e.g., the year of 1920. These different notions of
time can be combined, e.g., a user buys access to 1920 data andis entitled to access it for two weeks starting
from today.

If we let the lifetime of a system be partitioned inton short time intervals, the existence of time-based
access control policies requires the access keys to be changed during each time interval. In this work, we
concentrate on applications where the system is setup to support a large number of such time intervals. For
example, access key to a video stream might change at least once a day (thus, permitting users to subscribe
on any given day). If the system is setup for a few years, this results inn being in thousands. Likewise, if
the application of interest is access to historical data, say, for the last century, the number of time intervals
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will tend to be even higher. Thus, a small number of keys per user and efficient access with largen’s is the
goal of this work.

The notion of security for time-based hierarchical key assignment (KA) schemes was formalized only
recently by Ateniese et al. [4]. Thus, in the current paper weuse their security definitions and provide a new
efficient solution to the problem of key management in systems with time-based access control policies. The
approach we propose is provably secure and relies only on thesecurity of pseudo-random functions (PRFs).
In addition, our solution does not impose any requirements or constraints on the mechanisms used to enforce
policies in systems where access control is not time-based (e.g., for a hierarchy of user classes). This means
that our solution can be built on top of an existing scheme to make it capable of handling time. In the rest of
this paper, we refer to a scheme without the support for temporal access control as atime-invariantscheme,
and we refer to a scheme that supports temporal access control policies astime-based.

Existing efficient time-invariant key management schemes for user hierarchies are based on the notion of
key derivation: a user receives a single key, and all other access keys a user might need to possess according
to her privileges can be derived from that key. In the most general formulation of the problem, inheritance of
privileges is modeled through the use of a directed graph, where a node corresponds to a class and a parent
node can derive the keys of its descendants. In this paper we follow the same model, but, unlike previous
work, apply key derivation techniques to time.

In a setup withn time intervals, the server is likely to maintain information which is linear inn. By
building a novel data structure, we only slightly increase the storage space at the server beyond the necessary
O(n) and at the same time are able to achieve other very attractivecharacteristics. In more detail, our
solution enjoys the following properties:

• To be able to obtain access to an arbitrary contiguous set of time intervals, a user is required to store
at most 3 keys.

• The above-mentioned keys to be given to a user can be computedin constant time from that user’s
authorized set of contiguous time intervals.

• Key derivation within the authorized time intervals involves a small constant number of cryptographic
operations and thus is independent of the number of time intervals in the systems or the number of
time intervals in the user’s access rights.

• If the total number of time intervals in the system isn, then the increase of the public storage space
at the server due to our solution is only by a small asymptoticfactor, e.g.,O(log∗ n log log n) with a
small constant.

• All operations are extremely efficient, and no expensive public-key cryptography is used.

We provide several solutions with slightly different characteristics, where the difference is due to the building
blocks used in our construction. These solutions are summarized in Table 3 (and, in a more general form, in
Table 5). An extension of our techniques also allows to support access rights that can be stated as periodic
expressions.

While the results given above correspond to a time-based keyassignment scheme with a single resource
or user class, we can use them to construct a time-based key assignment scheme for a user hierarchy. We
show that our construction favorably compares to existing schemes and provides an efficient solution to the
problem (the comparison is given at the end of the paper in Section 8). Additionally, our scheme is balanced
in the sense that all resource consumption such as the client’s private storage, computation to derive keys,
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and the server public storage are minimized with tradeoffs being possible. This allows the scheme to work
even with very weak clients and not to burden the server with excessive storage. Furthermore, our scheme
is provably secure under standard complexity assumptions.

In the rest of the paper, we first review related literature inSection 2. In Section 3 we define the model
and give some preliminaries. Section 4 gives a preliminary data structure, which we use in Section 5 to build
our improved scheme. Thus, the core of our solution lies in Section 5 along with its analysis. In Section 6
we show how to use the scheme to build a time-based key assignment scheme for a user hierarchy. Finally,
Section 7 comments on practical considerations and Section8 compares our solution with other existing
schemes and concludes the paper. Several extensions of our scheme and security proofs can be found in the
appendix.

2 Related Work

The literature on time-invariant key assignment (KA) schemes in a user hierarchy is extensive, and its survey
is beyond the scope of this paper. For an overview of such publications, see, e.g., [2] and [10].

While the list of publications on time-invariant KA schemesis very large, the number of publications
that consider time-based policies and provide schemes for them is rather modest. The time-based setting
and the first scheme was introduced by Tzeng [17]. The scheme,however, was later shown to be insecure
against collusion of multiple users [22]. Subsequent work of Huang and Chang [12], Chien [9], and Yeh [20]
was also shown to be insecure against collusion (in [16], [21, 14], and [4], respectively).

Among very recent publications, Wang and Laih [19] present atime-based hierarchical KA scheme.
While their scheme is shown to be collusion-resilient, the notion of security, however, is not formalized and
no clear adversarial model is given in that work. Tzeng [18] also describes a time-based hierarchical key
assignment scheme, which is used as a part of an anonymous subscription system. The scheme is proven to
resist collusion attacks; however, no formal model of adversarial behavior is provided. The work of Ateniese
at el. [4] is the first result that provides a formal frameworkfor time-based hierarchical KA schemes and
gives provably secure solutions, both secure against key recovery and with pseudo-random keys.

Concurrently with and independently from this work, time-based solutions have been developed by De
Santis et al. [15]. We compare performance of all solutions in Section 8.

There is extensive literature on broadcast encryption and multicast security, which might be considered
applicable here. There are, however, crucial differences in the models, which prevent us from using solutions
from those domains. First, broadcast encryption and multicast security schemes permit access to a single
resource instead of a hierarchy and cannot be composed in an obvious way to solve our problem. More
importantly, they assume that each client obtains key updates for each time interval, which is impossible in
our model: no private channels between the server and a client after the initial issuance of the user keys is
assumed, the client is allowed to remain off-line, and can access the resources at her own discretion. The
only exception from the above online requirement that we areaware of is the work of Briscoe on multicast
key management [8]. That solution builds a binary tree from the time intervals, thus achievingO(log n)
secret keys andO(log n) key derivation time. Our solution, on the other hand, provides a constant number
of secret keys and a constant derivation time, thus resulting in a superior performance when the number of
time intervals is significant.

Finally, the access control literature has a large body of work on temporal access control models (see,
e.g., [6, 7]). These models, however, concentrate on policyspecification and not on key assignment and
derivation mechanisms.
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3 Problem Description and Preliminaries

3.1 The model

While the motivation for this work comes from the need to support access control policies with temporal
constraints in user hierarchies, the problem does not need to be limited to this particular setting. That
is, an efficient solution to the key management problem in temporal access control can find use in other
domains. Therefore, we provide a very general formulation of the problem, without any assumptions on the
environment in which it is used. Of course, access control inuser hierarchies remains the most immediate
and important application of our techniques. Thus, in Section 6 we will show how our solution can be used
to realize temporal access control for user hierarchies.

Now let us assume that we are given a resource, and the owner ofthis resource would like to control user
access to that resource using time-based policies. For thatpurpose, the lifetime of the system is partitioned
into short time intervals (normally, of a length of a day or shorter), and the access key for that resource
changes every time interval. Letn denote the number of time intervals in the system,T = {t1, . . ., tn}
denote the intervals, andK = {kt1 , . . ., ktn} denote the corresponding access keys.

Now assume that a userU is authorized to access that resource during a contiguous set of time intervals
TU ⊆ T , whereTU = {tstart, . . ., tend}. Following the notation of [4], we use theinterval-setover T ,
denoted byP, which is the set of all non-empty contiguous subsequences of T , i.e., TU ∈ P for anyTU .
With such access rights,U should receive or should be able to compute the keysKTU

⊆ K, where for
eacht ∈ TU the keykt ∈ KTU

. We denote the private information thatU receives bySTU
. Obviously,

storing|TU | keys at the user end is not always practical (especially if this number is large), and significantly
more efficient solutions are possible. Then atime-based key assignment schemeassigns keys to the time
intervals and users, so that time-based access control is enforced in a correct and efficient manner. Such key
generation is assumed to be performed by a central authorityCA, but once a user is issued the keys, there is
no interaction with other entities. More formally, we definea time-based KA scheme as follows:

Definition 1 Let T be a set of distinct time intervals andP be the interval-set overT . A time-based key
assignment scheme consists of algorithms(Gen,Assign,Derive) such that:

Gen is a probabilistic algorithm, which, on input a security parameter1κ and the set of time intervalsT ,
outputs (i) a keykt for any t ∈ T ; (ii) secret informationSec associated with the system; and (iii)
public informationPub. Let (K,Sec,Pub) denote the output of this algorithm, whereK is the set of
all keys.

Assign is a deterministic algorithm, which, on input a time sequence TU ∈ P and secret informationSec,
outputs private informationSTU

for TU .

Derive is a deterministic algorithm, which, on input a time sequence TU , time intervalt ∈ TU , private
informationSTU

, and public informationPub, outputs the keykt for time intervalt.

The correctness requirement is such that, for each time sequenceTU ∈ P, each time intervalt ∈ TU ,
each private informationSTU

, each keykt ∈ K, and each public informationPub that Gen(1κ, T )
andAssign(TU ,Sec) can output,Pr[Derive(TU , t, STU

,Pub) = kt] = 1.

Note that in many cases theAssign algorithm can be a part of theGen algorithm, i.e., private valuesSTU

for everyTU ∈ P are generated at the system initialization time. We, however, separate these algorithms to
account for cases where retrievingSTU

from Sec is not straightforward (which is the case in our scheme). In
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such cases, merging these two algorithms together will needlessly complicateGen resulting in unnecessary
complexity.

Also note that since a user accesses the server’s public storage for key derivation purposes, there is no
need for additional time synchronization mechanisms between the user and the server: the current time
interval can be stored as a part of the public information theserver maintains.

A time-based KA scheme can be secure against static or adaptive adversaries. In [4], however, it was
shown that the security of a time-based hierarchical KA scheme against a static adversary is polynomial-time
equivalent to the security of that scheme against an adaptive adversary for both security goals (key recov-
ery and key indistinguishability). While in the current discussion we are not concerned with hierarchical
schemes, our setting can be considered to be a special case ofa hierarchy with a single class. Thus, in this
work we only provide definitions of a time-based KA scheme secure against a static adversary; and a proof
of security under such definitions will imply security against an adaptive adversary. Furthermore, we distin-
guish between two different notions of security for a time-based KA scheme: security againstkey recovery
and security with respect tokey indistinguishability(i.e., schemes with pseudo-random keys). In the current
version of this paper we focus on security against key recovery. Our construction, however, can be shown
to be secure against the stronger notion of key indistinguishability by introducing only slight modifications
(basically by using different building blocks). Thus, we provide intuition on how pseudo-random keys can
be achieved, but do not provide formal proofs.

In our definition of a scheme secure against static adversary, let adversaryAst attack the security of the
scheme at timet ∈ T . Ast is then allowed to corrupt all users who are not authorized tohave access to
kt and, when finished, is asked to guesskt. We consider a scheme to be secure only ifAst has at most
negligible probability in outputting the correct key. A formal definition of security is given in Appendix B.

In addition to the security requirements, an efficient KA scheme is evaluated by the following criteria:

• The size of the private data a user must store;
• The amount of computation necessary to generate an access key for the target time interval;
• The amount of information the service provider must maintain for public access.

3.2 Key derivation

Our approach relies heavily on the notion of key derivation.In our solution, we use the same key derivation
techniques that were used in [1]. The crucial difference, however, is that in [1] key derivation was used
between user classes (to provide a time-invariant scheme for a user hierarchy), while in this work we use
key derivation for the data structures that we build. This ispossible because the techniques of [1] work for
an arbitrary directed acyclic graph1 (DAG), and we review them next.

Assume that we are given a DAG denoted byG = (V,E), whereV is the set of nodes andE is the set of
edges. LetAnc(v,G) denote the set of ancestors of nodev in G includingv itself, and letDesc(v,G) denote
the set of descendants ofv in G including v itself. Let F κ : {0, 1}κ × {0, 1}∗ → {0, 1}κ, for a security
parameterκ, be a family of pseudo-random functions (PRFs) that, on input of a κ-bit key and a string,
outputs aκ-bit string that is indistinguishable from a random string (note that a PRF can be implemented
very efficiently as HMAC [5] or CBC MAC). For brevity, insteadof F κ(k, x), we may writeFk(x). Also,
when the graphG is clear from the context, we may omit it in the ancestry functions and useAnc(v) and
Desc(v).

To be able to derive keys, we need two algorithms:

1The technique can be applied to arbitrary graphs, even thosethat may contain cycles. It, however, was formally proven tobe
secure for a graph without cycles. Nevertheless, it still can be adopted to graphs with cycles, if necessary.
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Private Key Public
Scheme

storage derivation storage
2HS [2] 1 2 op. O(n log n)
3HS [1] 1 3 op. O(n log log n)
4HS [2] 1 4 op. O(n log∗ n)

log∗HS [2] 1 O(log∗n) op. O(n)

Table 1: Performance of shortcut schemes for one-dimensional graphs.

• Set is an algorithm for assigning keys to the graph which takes asinput a security parameter1κ and
a DAG G = (V,E) and outputs (i) an access keykv for eachv ∈ V , (ii) a secret informationSv for
each nodev ∈ V , and (iii) public informationPub.

• Derive is an algorithm for deriving keys which takes as input nodesv,w ∈ V , secret informationSv

for v, and public informationPub. It outputs the access keykw for w, if w ∈ Desc(v,G).

The derivation method we use is from [1], and is sufficient to achieve security against key recovery:

• Set(1κ, G): For each nodev ∈ V , select a random secret keykv ∈ {0, 1}κ and setSv = kv. For each
nodev ∈ V , select a unique public labelℓv ∈ {0, 1}κ and store it inPub. For each edge(v,w) ∈ E,
compute public informationyv,w = kw⊕Fkv

(ℓw), where⊕ denotes bitwise XOR, and store it inPub.

• Derive(v,w, Sv ,Pub): Let (v,w) ∈ E. Then givenSv = kv andPub, derivation of the keykw can be
performed askw = Fkv

(ℓw)⊕yv,w, whereℓw andyv,w are publicly available inPub. More generally,
if there is a directed path between nodesv andu in G, thenu’s key can be derived fromv’s key by
considering each edge on the path.

3.3 Shortcut techniques

Our constructions use the so-called shortcut edges: ashortcut edgeis an edge that is not in the original
graphG but is in the transitive closure ofG. Such edges are added toG for performance reasons. Note that
addition of shortcut edges does not affect partial order relationship between the nodes, i.e., we may add a
shortcut edge(v,w) to the graph only if there is already a directed path from nodev to w in the original
graph.

In this work we rely on efficient shortcut techniques from prior literature for a graph of dimension 1 (i.e.,
a total order). For completeness of this work, we review someof these techniques, as well as the notion of
the dimension of a graph, in Appendix A. Here we only summarize the performance of existing schemes,
any of which can be used as a building block in our constructions.

Consider a directed graph of dimension 1 consisting ofn vertices. Then the performance of known
solutions for such graphs is given in Table 1. In the table, wedenote bysHS a solution where the distance
between any two nodes (i.e., the diameter of the graph) is at mosts, i.e., a so-calleds-Hop Scheme.

Throughout this work we may useS1(n) to denote any shortcut scheme for graphs of dimension 1
applied to a total order of sizen. We also usespace(S1(n)) andtime(S1(n)) to denote its public storage
and key derivation complexity, respectively.
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Figure 1: Building a grid for
the basic scheme.
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Figure 2: Adding shortcuts to
the grid.

4 Building Basic Data Structure

As was mentioned above, all of our constructions are based onthe notion of key derivation in a graph.
Throughout the rest of the paper, when we say that there is a directed edge fromv to w in G, it implies that
v is capable of derivingw’s key using its own key. This means that, for the data structures that we build (all
of which are DAGs), there will be a public and secret information associated with each node, and there will
be public information corresponding to each edge.

Our preliminary data structure is rather simple and consists of two main steps: building a grid of size
n × n (wheren is the number of time intervals in the system) and applying one-dimensional shortcut
techniques to parts of the grid. A more detailed descriptionfollows.

1. Build half of a grid of dimensionn × n with the time intervalst1, . . ., tn being on its diagonal (see
Figure 1). In the grid, we denote byv1,1 the root node; nodevi,j is located at the rowi and columnj
(i.e., v2,1 is “below” v1,1 andv1,2 is “on the left” of v1,1). There is a directed edge from eachvi,j to
vi+1,j , and from eachvi,j to vi,j+1. The time intervalti corresponds to the nodevi,n−i.

From this data structure, it should be clear that, given a keyfor vi,j, all keys for time intervals in the
rangeti, . . ., tn−j+1 can be derived from it (in the worst-caseO(n) time).

2. Next, we apply a one-dimensional shortcut schemeS1 to each row and column of the grid (see Fig-
ure 2). More precisely, we add shortcuts to the data structure to be able to derivevi,x’s key fromvi,y ’s
key for anyx > y (and similarlyvx,j ’s key fromvy,j ’s key for anyx > y) in a small number of steps
instead of previousO(n) time. This is done at the expense ofO(space(S1(n))) additional shortcuts
per row or column and thereforeO(n · space(S1(n))) total shortcuts.

Having this, now a user entitled to have access during time intervalsTU = {tx, . . ., ty} ∈ P can
receive a single key corresponding to nodevx,n−y+1. Key derivation of the key corresponding to the
current time intervalti ∈ TU now consists of at most2 · time(S1(n)) steps: at mosttime(S1(n))
steps are needed to derivevi,n−y+1’s key from that ofvx,n−y+1, and then at mosttime(S1(n)) steps
are needed to derivevi,n−i+1’s key (which corresponds toti) from that ofvi,n−y+1.

Table 2 summarizes the performance of the basic scheme, whenused with various one-dimensional schemes.
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Underlying Private Key Public
scheme storage derivation storage

2HS 1 ≤ 4 op. O(n2 log n)
3HS 1 ≤ 6 op. O(n2 log log n)
4HS 1 ≤ 8 op. O(n2 log∗ n)

log∗HS 1 O(log∗n) op. O(n2)

Table 2: Performance of the basic (and preliminary) scheme.

5 An Improved Scheme

This section describes a solution that achieves significantly better performance than the previous scheme.
We first present a new data structure and then fill other parts in to provide a full-fledged time-based KA
scheme.

At a high level, to build a new data structure, we partition all time intervals in the system into coarse
“chunks” (

√
n chunks of

√
n time intervals each) and apply the basic scheme to the chunks. If access is

to be granted to a large time interval that spans across boundaries of these chunks, we can use this level
of granularity to assign keys. If, on the other hand, the interval to which the user should obtain access is
contained within a chunk, we recursively apply this procedure to the time intervals within each chunk to
support time-based access control of finer granularity. If atime interval spans across different chunks, but
contains partial chunks at the beginning and at the end of theuser’s sequence of time intervals, then we
utilize the coarse chunk’s keys along with two new types of keys that are introduced later.

5.1 Reducing storage space

This section describes the tree data structure we build; howit is used is covered in the next sections. For
the purposes of presentation of this work, we letn = 22q

for some integerq. This allows us to avoid using
rounding notation⌊x⌋ and⌈x⌉ throughout the algorithms and results in a cleaner presentation (note that this
assumption is purely to make the presentation cleaner, and the solution will work without this assumption).
Our procedure for building the data structure takes as inputs a nodev and the setT = {t1, . . . , tn}, and
then recursively builds a tree for the set rooted atv. Due to the recursive nature of this function, we useT̂
to denote the working set of the current function invocationand|T̂ | to denote the size of̂T . Then the data
structure is constructed as follows:

Algorithm DataStructBuild(v, T̂ ):

1. If |T̂ | = 2 (i.e.,q = 0), then return. Otherwise, continue with the steps below.

2. PartitionT̂ into
√

|T̂ | sets of
√

|T̂ | contiguous time intervals each, call theseT̂1, . . . , T̂√|T̂ |
. That is,

if T̂ = {t1, . . ., t|T̂ |}, thenT̂i = {t
i
√

|T̂ |+1
, . . . , t

i
√

|T̂ |+
√

|T̂ |
}. Create a nodevi for eachT̂i, and make

vi a child ofv.

3. Generate a problemCoarse(T̂ ), derived fromT̂ by treating eacĥTi as a black box (i.e., “merging”

the constituents of̂Ti into a single item). Note that the size of setCoarse(T̂ ) is
√

|T̂ |.

4. Store at nodev an instance of the basic scheme forCoarse(T̂ ), denotedD(v). D(v) supports perfor-
mance of: 1 key,O(time(S1(|T̂ |))) key derivation, and
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(c) State after Step 3.

vv

v1 v√m

T√m

Coarse(T )
D(v)

R(v)

L(v)

(d) State after Step 5.(b) State after Step 2.(a) Initial state.

t1 tm T1tm

T1 T√m

t1

Figure 3: Construction of the data structure for the improved scheme (first level of recursion).

O(space(S1(|T̂ |))) space; butD(v) can only process an interval if it is the union of a contiguous
subset ofCoarse(T̂ ) (i.e., it cannot handle intervals whose endpoints are inside theT̂i’s, as it cannot
“see” inside aT̂i).

5. Also store at nodev two solutions of one-dimensional problems onT̂ : One is for intervals all of
which start at the right boundary of̂T and end insidêT (we call this theright-anchoredproblem
and denote the one-dimensional structure for it byR(v)); another is for intervals all of which start
at the left boundary of̂T and end insidêT (we call this theleft-anchoredproblem and denote the
one-dimensional structure for it byL(v)). Note that havingR(v) andL(v) enables the handling of an
interval that lies withinT̂ and also has its left or right endpoint at a boundary ofT̂ , with performance
of: 1 key,O(time(S1(|T̂ |))) steps per key derivation, andO(space(S1(|T̂ |))) space.

6. Recursively apply the scheme to each child ofT̂ ; that is, callDataStructBuild(vi, T̂i) in turn for each

i = 1, 2, . . . ,

√

|T̂ |.

Figure 3 gives an illustration of how the data structure is built. The total spaceS(n) of the above data
structure satisfies the recurrenceS(n) ≤ √nS(

√
n) + c1 · space(S1(n)) if n > 2 andS(2) = c2, wherec1

andc2 are constants. Thus,S(n) = O(space(S1(n)) log log n).

5.2 Key assignment

We now turn our attention to which keys are given to a user withaccess to an arbitrary sequence of time
intervalsTU ∈ P. In what follows,v is a node of the above tree data structure,T̂ is the set of time intervals
associated withv, andI is a sequence of time intervals for which the keys must be given. The recursive
procedure below, when invoked on anyTU and our data structure, returns a set of (at most 3) keys associated
with TU .

Algorithm AssignKeys(I, v, T̂ ):

1. If v is a leaf, then return a key for each of the (at most two) time intervals inI. Otherwise, continue
with the next step.

2. Letv1, . . . , v√|T̂ |
be the children ofv, and letT̂1, . . . , T̂√|T̂ |

be the respective sets of times associated

with these children. We distinguish two cases:

(a) I overlaps with only one set̂Ti. Then we return the keys from the recursive callAssignKeys(I, vi, T̂i).
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(b) I overlaps with all ofT̂k, T̂k+1, . . . , T̂k+ℓ, whereℓ ≥ 1. Theseℓ + 1 intervals are handled in
3 different ways: Those completely contained inI are collectively processed using theD(v)
structure, resulting in one key. If̂Tk overlaps withI, but is not contained inI, then it is right-
anchored and is processed usingR(vk), resulting in one key. IfT̂k+ℓ overlaps withI, but is
not contained inI, then it is left-anchored and is processed usingL(vk+ℓ), resulting in one key.
Those (at most) 3 keys are returned.

One can achieve a faster key assignment if we store the recursion tree (call itRT ) for the aboveAssignKeys

algorithm, and use it to speed up the key assignment process.The time-consuming part of the above
AssignKeys algorithm is the step-by-step descent from the root until the nodeu of RT at which the keys are
actually assigned: The keys we seek would be easy to assign inO(time(S1(n))) if we could, in constant
time, go directly to that nodeu. This, however, is easy to do once we observe that (i) the parent of u in RT
is the lowest node whose interval containsI (i.e.,u is the nearest common ancestor inRT of the two leaves
that correspond to the endpoints ofI), and (ii) in any tree it is possible to answernearest common ancestor
(NCA) queries in constant time (see [11] for details).

All keys given to users must be labeled with the level at whichthey were retrieved in the data structure,
i.e., the distance from the root node in the tree forT . This is necessary for achieving constant-time compu-
tation of access keys, which will be explained in the next section. To make key derivation simpler, we also
label user keys with their type; namely:D, R, or L. In addition, if a user receives more than a single key
for her time sequenceTU , each key is labeled with a range of time intervals to which itpermits access.

To summarize, we assume that a key given to a user will be labeled with four values(lev, type, ta, tb),
where0 ≤ lev ≤ log log n, type ∈ {R,L,D}, and ta, tb ∈ T such thatta < tb. For example, if a
user with access rights toTU = {tstart, . . ., tend} is given private information consisting of three keys
STU

= {k1, k2, k3}, thenk1 could be labeled with(l, R, tstart, ta), k2 with (l − 1,D, ta+1, tb), andk3 with
(l, L, tb+1, tend).

5.3 Content distribution

At time t ∈ T , the service provider wants to make certain content (possibly very voluminous) available to
the users with access rights at time intervalt. To do so, the content is encrypted with the access keykt using
a symmetric encryption scheme and is made available to all users in the encrypted form (by placing it in
a public location, broadcasting it to the users, or by other means). In our scheme the server also needs to
ensure that the keys that users derive fort allow them to derivekt. There areO(log log n) such keys fort
in the data structure access to which should allow access tokt. Since the data structure has(log log n + 1)
levels, such keys are:

• Keys from data structureR(v), for somev in the data structure, one from each level.
• Keys from data structureL(v), similarly, for a singlev per level.
• Keys corresponding to data structureD(v), one from each levell, where0 ≤ l ≤ log log n− 1.

We refer to these keys asenabling keys. The server places in the public domain information that permits
derivation ofkt from any of the enabling keys above. Additionally, the server labels the public derivation
information associated with each of the enabling keys with the level and the type (i.e.,R, L, or D) of the
corresponding enabling key. This is needed to permit fast constant-time derivation of the access key.

11
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Figure 4: An example illustration of the data structure.

5.4 Key derivation

A userU with access to the sequence of time intervalsTU = {tstart, . . ., tend} ∈ P receives private infor-
mationSTU

consisting of 1, 2, or 3 keys that permit her to derive enabling keys for eacht ∈ TU . In the
most general (and common) case, such private information consists of 3 keys – denoted byk1, k2, andk3 –
labeled as(l, R, tstart, ta), (l − 1,D, ta+1, tb), and(l, L, tb+1, tend), respectively, for somel, a, andb. Let
us assume, without loss of generality, that if the number of keys is less than 3, then the missing keys are set
to empty strings withk1 remaining of typeR, keyk2 of typeD, and keyk3 of typeL. Then to obtain the
enabling key for a time intervalti ∈ TU , U executes a derivation algorithm which we sketch here:

Algorithm DeriveKey(TU , ti, STU
,Pub):

1. ParseSTU
ask1(l, R, tstart, ta), k2(l − 1, D, ta+1, tb), k3(l, L, tb+1, tend).

2. If ti ∈ {tstart, . . ., ta}, find the nodev at level l such thatR(v) permits access toti (note that such
nodev can be computed in constant time using indexi of the time intervalti). Usek1 and the public
information about the edges inPub to derive the key corresponding toti and return that enabling key.

3. Similarly, if ti ∈ {tb+1, . . ., tend}, locate the nodev at levell such thatL(v) permits access toti. Use
k3 andPub to derive an enabling key forti and return that key.

4. Finally, if ti ∈ {ta+1, tb}, locatev at levell − 1 such thatD(v) permits access toti; usek2 andPub

to derive an enabling key forti and return it.

Key derivation complexity in all of the above cases isO(time(S1(n))).

5.5 Example

To better illustrate how the above algorithms for building the data structure and assigning and deriving keys
work, we give a toy example. Letn = 16. Then the
DataStructBuild(root, T ) procedure will result in a tree of depth three. Let us denote the root of the tree
by v, ith child of the root byvi, andjth child of nodevi by vij . Also, letTi andTij denote the set of time
intervals thatvi andvij cover, respectively. Forn = 16, such a tree is given in Figure 4. In the figure, each
nodew has data structuresD(w), R(w), andL(w) associated with it, which we omit for conciseness.

Now consider usersU1, U2, andU3 with the following access rights:TU1
= {t1, . . ., t6}, TU2

=
{t2, . . ., t4}, andTU3

= {t4, . . ., t14}. According to the key assignment algorithmAssignKeys(·), they
are assigned keys in the following way: SinceU1’s sequence of time intervals starts at the beginning of the
system’s lifetime,U1’s credentials are left-anchored at the level ofv, andU1 obtains a single key fromL(v)
corresponding tot6. Such a key permits derivation of enabling keys for all oft1 throught5. For userU2,
we determine that her access rights are contained within thetime interval covered byv1, so we start at that
node. FromD(v1), U2 obtains a key corresponding toT12 (coverst3 andt4). The remaining part ofTU2

is
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Algorithm Gen(1κ, T ):
1. Create a root noderoot for the data structure and runDataStuctBuild(root, T ). Let G = (V, E)

denote the tree structure returned.
2. For eachv ∈ V , randomly choose a secret keykw ∈ {0, 1}κ and a unique public labelℓw ∈ {0, 1}κ

associated with each nodew in D(v), R(v), andL(v).
3. For eachv ∈ V , construct public information about each edge inD(v), R(v), andL(v) using the key

derivation method. That is, for each edge(w, u), its public value isyw,u ∈ {0, 1}κ.
4. For eacht ∈ T , randomly choose a secret keykt ∈ {0, 1}κ and a unique public labelℓt ∈ {0, 1}κ.
5. For eacht ∈ T , let Vt ⊂ V denote the set of nodes inG access to which implies access tot. Then for

eachVt, for eachv ∈ Vt:
(a) find inD(v) the node corresponding to the time intervalt; call it w.
(b) create an edge fromw to t by computing public information using enabling keykw, t’s secret

key kt, public labelℓt, and the key derivation method. Mark such an edge with the level of v
and typeD.

(c) repeat (a) and (b) forR(v) andL(v), using typesR andL, respectively.
6. LetK consist of the secret keyskt for eacht ∈ T andSec consist of the remaining secret keyskw.

Also let Pub consist ofG, all public labels (of the formℓw andℓt), and public information about all
edges generated above.

Algorithm Assign(TU , Sec):
1. ExecuteAssignKeys(TU , root, T ), whereroot is the root node ofG.
2. SetSTU to the keys computed and returnSTU .

Algorithm Derive(TU , t, STU , Pub):
1. If t 6∈ TU , return a special rejection symbol⊥.
2. ExecuteDeriveKey(TU , t, STU , Pub) to compute an enabling key fort; call it k′

t.
3. Usek′

t along with its (level-type) label andPub to derive keykt.

Figure 5: Proposed time-based key assignment scheme.

obtained fromR(v11) (coverst2). Finally, for userU3, the access rights cross the boundaries of the nodes at
the first level, so we start at nodev. U3 obtains fromD(v) a key that permits generation of keys forT2 and
T3 (their parent) and thus coverst5 throught12. To cover the remaining parts ofTU3

, U3 is given the key
corresponding tot4 from R(v1) and a key fromL(v4) corresponding tot14 (which permits derivation of the
key for t13 as well).

To illustrate content distribution and key derivation, lett4 be the current time interval. Our data structure
contains 8 enabling keys fort4 of level-type(0, R), (1, R), (2, R), (0, L), (1, L), (2, L), (0,D), and(1,D).
The service provider places in the public domain derivationinformation that, given any of the keys above,
permits computation of the access keykt4 . U1 then uses its only key andL(v) to derive the enabling key
for t4 and deriveskt4 by using public information marked with(0, L). U2 uses its key forT12 compute its
enabling key and obtainkt4 using public information marked with(1,D). Finally,U3 uses its key fort4 and
public information with label(1, R) to obtainkt4 .

5.6 Putting everything together

In this section we summarize our construction and show its performance. All proofs corresponding to our
security theorems can be found in Appendix B. Figure 5 gives acomplete description of our time-based KA
scheme. In addition to the algorithms given in previous sections, we specify how they are used. Table 3
summarizes performance of our solution. The security of oursolution comes from the way key derivation is
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Underlying Private Key Public
scheme storage derivation storage

2HS ≤ 3 ≤ 5 op. O(n log n log log n)
3HS ≤ 3 ≤ 7 op. O(n(log log n)2)
4HS ≤ 3 ≤ 9 op. O(n log∗ n log log n)

log∗HS ≤ 3 O(log∗ n) op. O(n log log n)

Table 3: Performance of the improved scheme.

performed in a DAG and is not due to the details of the data structures built.

Theorem 1 Assuming the security of the family of PRFsF κ, the time-based key assignment scheme given
in Figure 5 is both complete and sound with respect to key recovery in the presence of a static adversary.

To achieve a stronger notion of key indistinguishability, our solution will require a slightly different key
derivation method. Intuitively, we decouple the keys used in the public information from the actual access
keys, so that now it is not feasible to test access keys using the public information. The separation is
performed using an additional invocation of a PRF, where thekeys to be used inPub are computed as
F (0||k) and the access keys are computed asF (1||k). This key derivation method is described in [1] (full
version only).

Then in our scheme of Figure 5, we use this enhanced key derivation method in Step 3 of theGen

algorithm (i.e., in data structuresD(v), R(v), andL(v)). This means that now someone with access to
a certain key in, for instance,R(v) and who guesses an unauthorized key correctly, cannot use the public
information for that data structure to test the key. This change implies the corresponding change in the
Derive algorithm.

So far we devised a solution to support access rights that span across a contiguous sequence of intervals.
It is also possible to support periodic access rights that span across a contiguous set of time periods but the
time intervals themselves might be discontinuous within a period. If we treat time as a single dimension
and the solution presented in this work as a solution to one-dimensional problem, it is possible to extend our
approach to higher dimensions. An extension to dimension 2,which is useful in the geo-spatial context, is
presented in [3]. This two-dimensional solution can be usedto conveniently address the problem of periodic
access rights with a small number of keys per user: we use one dimension to specify periods in user access
rights and the other dimension to specify individual time slots within a period. Assuming that the total
number of time intervals within a period is a fixed constant, the user will obtain a constant number of keys
that allow her to access the resources for a predefined sequence of periods with any subset of time intervals
within the period. See [3] for more information on the key assignment and derivation mechanisms.

In Appendix C we show how the lifetime of the system can be extended to new intervals beyond the
original n. Also, in the same appendix we show one can further decrease public storage space at a slight
increase in the number of user keys (i.e., a generalization in terms of keys/space tradeoff).

6 Temporal Access Control for a User Hierarchy

In systems with hierarchically organized access classes, such a hierarchy is normally modeled as a directed
acyclic access graph which we denote byGU . In such a graph, each node corresponds to an access class
and the edges form a partial order relationship between the classes. An edge from nodev to nodew means
that the parent nodev inherits privileges of the nodew (while the converse is not true). This implies that
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a user with access to a specific class obtains access to the resources at that class and the resources at all of
the descendant classes in the hierarchy. With this setup in place, it is possible to assign each class a single
secret key and let users obtain keys of their descendant classes through a key derivation process. Similar to
a general graph, in an access graphGU a directed path from nodev to w means thatw’s keys are derivable
from v’s key.

Now if we equip the model with time-based policies, in addition to computing keys of descendant
classes, a user should be able to compute keys based on time. That is, a userU entitled to access class
v ∈ VU during a sequence of time intervalsTU ∈ P obtains private information that permits her to compute
keys kv,t for her access classv and eacht ∈ TU (time-based key derivation). In addition, the private
information allowsU to compute, for eacht ∈ TU , keyskw,t for each descendant access classw in the user
hierarchy (class-based key derivation). Thus, key derivation now consists of two dimensions, which can
potentially be performed using drastically different techniques.

A definition of a hierarchical time-based KA scheme can be constructed by extending Definition 1 with
user hierarchies. Due to space limitations, we do not provide it in this version of the paper. We only note that
the private information for access classv and time sequenceTU is now denoted bySv,TU

. The definition of
a secure time-based KA scheme must also be slightly modified for this setting to take into account different
access classes. Recall from Section 3.1 that we do need to consider active adversaries, and now have a static
adversaryAst who attacks a classv ∈ VU at time t ∈ T . Ast is allowed to obtain access to the secret
information of all classesw ∈ VU at all timest′ ∈ T , except classesAnc(v) at time t. We say that a
hierarchical key assignment scheme is secure if suchAst has at most negligible probability of guessingkv,t

correctly. The formal definition is given in Appendix B.
We can create a hierarchical time-based KA scheme by applying our solution independently to each

access class in the user hierarchy. Then for eacht ∈ T , the nodes with keyskv,t for eachv ∈ VU are
connected with edges to form the original hierarchy of classes. In more detail, for eachv ∈ VU we use the
improved scheme to build the data structure forT and generate access keyskv,t for everyt ∈ T . This will
result in|VU | instances of the time-based graphG, each of which permits key derivation for a specific access
class. Since the structure of such graphs is the same for all of them, but the keys assigned to nodes and keys
encoded in the public information will differ, we denote thepublic information generated for access classv
according toG asPubG

v . Then for anyt ∈ T , the public information forGU is constructed according to the
current keys for each access class using the key derivation method (which was the original use of it in [1]).
We denote the public information at time intervalt generated according toGU by Pub

GU

t . For a user with
access privileges for time intervalTU ∈ P at access levelv ∈ VU consists of time-based key derivation
(usingPubG

v ) of the keykv,t followed by class-based key derivation of the keykw,t (usingPub
GU

t ); this is
assuming thatt ∈ TU andw ∈ Desc(v,GU ). A more precise description of our scheme is given in Figure 6.

In the figure, we first build the data structureG and generate public labels for the time intervals (Steps
1–3). Then for each classu in the user hierarchy, we pick secret keys for its copy ofG and generate public
information according to those keys (Step 5). Next, we connect the data structures corresponding to different
user classes according to the partial order relationship between those classes (Step 6). That is, for each time
intervalt, if user classu1 is a parent of user classu2, we compute public information that permits derivation
of ku2,t from ku1,t. Finally, Step 7 is similar to Step 5 in Figure 5 and allows computation oft’s access keys
from an enabling key corresponding tot at any level of granularity in the data structureG.

The fact that keys for an access class are assigned independently of the keys for other access classes
allows us to state the following result:

Theorem 2 Assuming the security of the family of PRFsF κ, the time-based key assignment scheme for
hierarchically organized access classes given in Figure 6 is both complete and sound with respect to key
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Algorithm Gen(1κ, T, GU ):
1. Create a root noderoot for the data structure and runDataStuctBuild(root, T ). Let G = (V, E)

denote the tree structure returned.
2. For eachv ∈ V , choose a unique public labelℓw ∈ {0, 1}κ for every nodew in D(v), R(v), andL(v).
3. For eacht ∈ T , choose a unique public labelℓt ∈ {0, 1}κ.
4. For eachu ∈ VU , choose a unique public labelℓu ∈ {0, 1}κ.
5. For each nodeu ∈ VU , perform the following:

(a) For eachv ∈ V , randomly choose a secret keyku,w ∈ {0, 1}κ associated with each nodew in
D(v), R(v), andL(v).

(b) For eachv ∈ V , construct public information about each edge inD(v), R(v), andL(v) using
the key derivation method.

(c) For eacht ∈ T , randomly choose a secret keyku,t ∈ {0, 1}κ.
6. For eacht ∈ T , compute public information to permit key derivation between classes: for each edge

(u1, u2) ∈ EU compute public information by settingSu1
= ku1,t andSu2

= ku2,t and using the key
derivation method and public labelsℓu1

andℓu2
.

7. For eacht ∈ T , let Vt ⊂ V denote the set of nodes inG access to which implies access tot. Then for
eachVt, for eachv ∈ Vt:

(a) Find inD(v) the node corresponding to the time intervalt; call it w.
(b) For eachu ∈ VU , compute public information to permit derivation oft’s access key fromw’s

enabling keyku,w using the key derivation method and public labelℓt. Mark such an edge with
the level ofv and typeD.

(c) repeat (a) and (b) forR(v) andL(v), using typesR andL, respectively.
8. LetK consist of the secret keysku,t for eacht ∈ T andu ∈ VU , and letSec consist of the remaining

secret keysku,w. Let Pub consist ofG, all public labels, and public information about all edges
generated above.

Algorithm Assign(u, TU , Sec):
1. ExecuteAssignKeys(TU , root, T ) using the data structure stored inPubG

u , whereroot is the root node
of G.

2. SetSu,TU to the keys computed and returnSu,TU .

Algorithm Derive(u1, u2, TU , t, Sv,TU , Pub):
1. If t 6∈ TU or u2 6∈ Desc(u1, G), return⊥.
2. ExecuteDeriveKey(TU , t, Su1,TU , PubG

u1
) to compute an enabling key fort; call it k′

u1,t.

3. Usek′
u1,t along with its (level-type) label andPubG

u1
to derive keyku1,t.

4. Useku1,t andPubGU

t to deriveku2,t using the key derivation method.

Figure 6: Proposed time-based hierarchical key assignmentscheme.

recovery in the presence of a static adversary.

To achieve key indistinguishability in this scheme, as before we need to utilize the enhanced key derivation
method that prevents key testing. In this case we need to use this method within the data structureG itself
(in Step 5b ofGen) to prevent a member of classu from testing keys of unauthorized time intervals. We also
need to use this key derivation method between user classes (in Step 6 ofGen) to prevent a member of class
u from testing keys of its ancestor classes.

It is not difficult to show how dynamic changes to the hierarchy can be addressed, but we leave this
discussion to the full version of this paper.
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Public Private Key Operation Complexity
Scheme information information derivation type assumption

Encryption-based [4] O(|VU |2|T |3) 1 1 decryption one-way functions
Pairing-based [4] O(|VU |2) O(|T |) 1 pairing Bilinear Diffie-

evaluation Hellman
Binary tree O(|EU ||T |) O(log |T |) O(log |T |+ PRF one-way function

diam(GU ))
ISPIT+(3,1)-CSBT O(|EU ||T |+ |VU ||T |× ≤ 3 O(diam(GU )) decryption IND-P1-CO

+EBC [15] log |T |(log log |T |)2) encryption [13]
Our 4HS-based O(|EU ||T |+ |VU ||T |× ≤ 3 O(diam(GU )) PRF one-way functions

log∗ n log log |T |)
ISPIT+(3,1)-CSBT O(|EU ||T |+ |VU ||T |× ≤ 3 O(log∗ |T |+ decryption IND-P1-CO

+EBC [15] log |T | log log |T |) diam(GU )) encryption [13]
Our log∗HS-based O(|EU ||T |+ |VU ||T |× ≤ 3 O(log∗ |T |+ PRF one-way functions

log log |T |) diam(GU ))

Table 4: Comparison of time-based hierarchical KA schemes.

7 Practical Considerations

As was mentioned earlier, the goal of this work is efficiency under the assumption that the number of unit
intervalsn in the system is large. In systems when this is not the case, other, simpler solutions will suffice
(e.g., a simple binary tree built on top ofn intervals), and it is common sense to assume that the most suitable
solution for the context will be chosen. We, however, believe that our solution will find its uses in a number
of domains such as, for instance, access to historical data.And even in applications where access is based
on the current time, the service provider will be free to choose the level of granularity for time-based access
rights. For instance, for broadcast-based services, thereis no overhead in changing keys often.

Another consideration is that, in subscription-based services where access is based on current time, dues
might be paid in installments. That is, a user subscribes only to a rather short sequence of intervals and
renews her subscription on a periodic basis. But even such systems might be setup for a long time in the
future, and the service provider will choose a solution thatminimizes system and user resources.

8 Comparison with Existing Solutions

Table 4 compares performance of our scheme with other existing solutions; only security against recovery
was considered. In the table,diam(GU ) denotes the diameter of the graph (i.e., maximum distance between
nodes) that bounds the number of operations which, given a class key, are necessary to derive the key of
the target descendant class within the user hierarchy. Also, |EU | denotes the number of edges in a user
hierarchyGU . The table does not list private storage at the server since it is equivalent for all solutions.
Before proceeding with comparing existing results, we briefly explain what these parameters mean.

In the great majority of cases, the depth of user hierarchiesis a small constant, resulting in small constant
diam(GU ). In cases where the depth of the original graphGU is fairly large and it is unacceptable to have
the user performdiam(GU ) operations, the graph can be modified to significantly reducediam(GU ). This
is done by inserting shortcut edges at random (ifdiam(GU ) = O(VU )) or using the techniques of [1] and [2]
that reducediam(GU ) to a small constant at the expense of small increase in the public storage associated
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with the hierarchy2. Thus, in this casediam(GU ) is also a small constant, and parameter|EU | will need to
be replaced with a slightly larger value.

We also would like to mention that the schemes [19, 18] are notlisted in the table due to the difference
in the expressive power. These solutions allow a user to obtain access to an arbitrary subsequence of time
intervals, but require significantly slower key derivationof O(|VU | · |T |) modular exponentiations.

Considering that small private user storage and fast key derivation, followed by reasonable server storage
are the main evaluation criteria, we can analyze the solutions as follows. The Pairing-based scheme of [4]
will have the slowest key derivation time among all of the schemes listed here, as it uses pairing evaluation
rather than fast encryption or PRF operations. Additionally, the number of secret keys a user has to maintain
is large.

Compared to the Encryption-based scheme of [4], our key derivation time is higher by a constant factor,
private storage is similar (i.e., three keys instead of one), but the amount of public information the server
must maintain is much lower than in that scheme. That is, for modest values of|T | = 1000 and|VU | = 10,
the encryption-based schemes requires storing on the orderof 1011 labels, while in our case it will be bounds
by the order of106 labels.

While the simple binary-tree approach has asymptotically higher performance, for small values of|T |
it will be preferred due to its simplicity. However, for the applications we envision, other solutions exhibit
better performance. Thus, our recommendation is to use the simplest approach suitable for a particular
setup.

The work of De Santis et al. [15] lists solutions with different performance parameters, and we include
only selected two here. That is, we chose two schemes that require a user to store 3 private keys (just like in
our solutions) and where time-based key derivation involves O(1) andO(log∗ n) decryptions, respectively.
This allows us to directly compare the schemes of [15] with our schemes. As can be seen from the table,
the solutions exhibit very similar performance with CSBT-based constructions having an additional factor
of log |T | in the public storage space. Moreover, they do not discuss key assignment but it does not look like
their key assignment can be done in constant time, whereas wecan do it in constant time; recall that this
is the issue of coming up with the keys to be given to a user, given that user’s authorized set of contiguous
time intervals.

To summarize, our solution offers very attractive characteristics and superior performance compared to
other existing solutions: each user in the system receives asmall (≤ 3) number of keys, constant-time key
assignment to a user, (off-line) computation of any access key involves a small number of very efficient
operations, and the public storage required by our solutionis only slightly higher than the number of access
keys that the system must maintain. It is the most balanced solution among all available in the literature and
appears to be close to the optimal bounds.
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A Shortcut Techniques for One-Dimensional Graphs

This section reviews selected techniques from existing literature which are used as a building block in our
construction. The techniques we present here work for one-dimensional directed graphs and significantly
decrease the distance between any two nodes (measured as thenumber of edges on the path from one node
to another) by inserting additional shortcut edges.

Before we proceed with the description, we would like to remind the reader that any DAGG is a partial
order and thus can be represented as the intersection oft total orders. The smallestt for which this is
possible is thedimensionof the partial order. Thus in this section we deal with a graphwhich has a total
order relationship defined over its nodes. Throughout this section we assume that the nodes are sorted
according to the total order, where nodevi+1 is the parent of nodevi. Since there is a directed edge from
eachvi+1 to vi, the graph can be viewed as a linked list. The set of ancestorsof nodevi is then all nodesvj

such thatj ≥ i. Similarly, the set of descendants ofvi is all nodesvj such thatj ≤ i.
Here we concentrate only on a single scheme, to give the reader an understanding of how such schemes

are built. The scheme, an overview of which we provide, is an adoption of the shortcut technique from [1]
to one-dimensional graphs. Others solutions for one-dimensional schemes can be found in [2].

For ann-vertex graph, this scheme results inO(n log log n) additional edges and the distance between
any two nodes being at most 3 edges (which implies that the keyof nodev can be derived from the key of
nodeu in at most 3 steps, ifu is an ancestor ofv). The idea behind the technique is that the graphG is
decomposed into

√
n chunks of

√
n nodes each. The nodes used in the decomposition are called the special

nodes, and the chunks are denoted asC1, . . ., Ck. The special nodes are connected to each other, so that
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shortcut edge

graph node

special node

regular edge

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Figure 7: Addition of shortcut edges for the three-hop one-dimensional solution: (a) the original hierar-
chy, (b) the hierarchy after selection of special nodes and constructing their transitive closure, and (c) the
hierarchy after adding shortcut edges to and from the special nodes.

the distance between any two of them is one edge. All nodes within a specific chunk are connected to the
corresponding special node, so that the distance between any non-special node and a special is also one
edge. Then the special nodes are served as a “beltway” between the chunks, and reaching a node from any
other node involves at most three steps: one is to reach a special node, another is to just to a new chunk, and
the third one is to reach the target node.

The algorithm for adding shortcut edges toG uses a notion of a reduced graph. A reduced graph, denoted
Ĝ, that consists of the special nodes and edges that satisfy the following condition: there is an edge from
nodev to nodew in Ĝ if and only if (i) v is an ancestor ofw in G, and (ii) there is no other node of̂G on
thev-to-w path inG. Then the following procedure adds shortcut edges toG. In what follows,|G| denotes
the number of nodes inG.

AddShortcuts(G):

1. If |G| ≤ 4 then return an empty set of shortcuts. Otherwise continue with the next step.

2. Compute the special nodes ofG. Initialize the set of shortcutsS to be empty.

3. Create, fromG, the reduced grapĥG and add toS a shortcut edge between every ancestor-descendant
pair in Ĝ (unless the ancestor is a parent of the descendant, in which case there is already such an
edge inG).

4. For every chunkCi in turn (i = 1, . . . , k), add toS a shortcut edge from the node with the highest
index inCi, denoted byvCi

, to every node inCi that is not a child of that node.

5. For every chunkCi in turn (i = 1, . . . , k), add toS a shortcut edge from each nodeN in Ci (other
thanvCi

) to all nodes inĜ that are both: (i) descendants ofN and (ii) children of the root ofCi in Ĝ.

6. For every chunkCi in turn (i = 1, . . . , k), recursively callAddShortcuts(Ci) and, if we letSi be the
set of shortcuts returned by that call, then we updateS by doingS = S ∪ Si.
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ExperimentExp
key−rec
KA,Ast

(1κ)

(K,Sec,Pub)← Gen(1κ, T )
corr ← Corruptt(Sec)
k ← Ast(1

κ,Pub, corr)
if k = kt then return 1
else return 0

Figure 8: An experiment in which a static adversary participates.

7. ReturnS.

Figure 7 illustrates the first level of recursion. There is a correspondingFindPath procedure that, given two
nodesv andw, finds a path from nodev to nodew of length at most 3 edges in the graph. We omit its
description here. The number of shortcut edges added by the above algorithm isO(n log log n).

B Security Definitions and Proofs

B.1 Security of a time-based key assignment scheme

In our definition of a scheme secure against a static adversary, let adversaryAst attack the security of the
scheme at timet ∈ T . Ast is then allowed to corrupt all users who are not authorized tohave access tokt.
We capture this notion using algorithmCorruptt(·) that takes the secret informationSec as input and outputs
a sequence of private information denoted bycorr. The adversary then usescorr to try to compute the key
kt.

Definition 2 LetT be a set of distinct time intervals,P be the interval-set overT , andKA = (Gen,Assign,Derive)
be a time-based KA scheme forP and a security parameterκ. ThenKA is secure against key recovery in
the presence of a static adversary if it satisfies the following properties:

• Completeness:A user, who is given private informationSTU
for a sequence of time intervalsTU ∈ P,

is able to compute the access keykt for eacht ∈ TU using only her knowledge ofSTU
and public

informationPub with probability 1.

• Soundness:LetAst be a static adversary who attacks the schemeKA at time intervalt ∈ T . If we let
the experimentExp

key−rec
KA,Ast

be specified as in Figure 8, the advantage ofAst is defined as:

Adv
key−rec
KA,Ast

(1κ) = Pr[Exp
key−rec
KA,Ast

(1κ) = 1]

We say thatKA is sound with respect to key recovery if for eacht ∈ T , for all sufficiently largeκ, and
every positive polynomialp(·), Adv

key−rec
KA,Ast

(1κ) < 1/p(κ) for each polynomial-time adversaryAst.

Proof sketch of Theorem 1Our proof uses a standard hybrid argument. Per Definition 2, we are dealing
with adversaryAst who participates in the experimentExpkey−rec

KA,Ast
for time intervalt ∈ T . We construct a

sequence of experimentsExp0
KA,Ast

, . . ., Expq
KA,Ast

, in which we modify the way the scheme is constructed
while ensuring that the distributions ofAst’ views remain indistinguishable in any two consecutive ex-
periments. Our modification consists of replacing, in the public data structure corresponding toKA, one
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(pseudo-random) output produced by the functionF κ with a random sequence. Formally,Expi
KA,Ast

for
anyi = 0, . . ., q is:

ExperimentExpi
KA,Ast

(1κ)

(K,Sec,Pub′)← Geni(1κ, T )
corr ← Corruptt(Sec)
k ← Ast(1

κ,Pub′, corr)
if k = kt then return 1
else return 0

Here the algorithmGen0 corresponds to the original algorithmGen, while Geni+1 is constructed fromGeni

by replacing one edge in the data structure with a random string. The edges that we replace are those that
were constructed usingkt or any other key material that can lead to derivation ofkt. More precisely, for
each levell in the data structureG, there is a uniquev ∈ G that coverst. For each suchv, we replace the
edges:

1. In D(v), let w denote the leaf node that coverst. Then replace each edge on the path between any
two nodes inAnc(w,G) and replace each outgoing edge from every node inAnc(w,G).

2. In R(v) andL(v), replace each edge on the path from the root to the node corresponding tot (call it
w) and the edge fromw.

The edges are replaced in the top-down fashion to completelyexclude from the data structure information
about each key on the way from the root to the node corresponding to time intervalt.

Additionally, we replace edges from each of theO(log log n) enabling keys, which correspond tot in
G, to kt. Thus,Exp0

KA,Ast
corresponds to the case whereAst operates on the data structure of experiment

Expkey−rec
KA,Ast

, while Expq
KA,Ast

corresponds to the case whereAst operates on the data structure with no in-
formation related tokt. Since all of the keys (includingkt) are chosen at random,Ast has at most negligible
probability in succeeding inExpq

KA,Ast
. The total number of edges replaced isO(space(S1(n) log log n)

(and thus is polynomial in the security parameterκ).
Using a standard reduction argument, we can show that any non-negligible difference in behavior be-

tween experimentsExpi
KA,Ast

andExpi+1
KA,Ast

can be used to construct an algorithm thatBF is able to break
the pseudo-random functionF with non-negligible advantage. Thus, we conclude thatAst has at most
negligible advantage in breaking the security of the scheme. �

B.2 Security of a hierarchical time-based key assignment scheme

Now a static adversaryAst who attacks a classv ∈ VU at timet ∈ T obtains access to the secret infor-
mation of all classesw ∈ VU at all timest′ ∈ T , except classesAnc(v) at timet. This is modeled by an
algorithmCorruptv,t(·), which now is class-based. The rest of the security definitions for key recovery and
key indistinguishability mimic our previous definitions without a hierarchy of classes.

Definition 3 Let GU = (VU , EU ) be a DAG corresponding to a hierarchy,T be a set of distinct time
intervals,P be the interval-set overT , andKA = (Gen,Assign,Derive) be a time-based hierarchical KA
scheme forGU , P, and a security parameterκ. ThenKA is secure against key recovery in the presence of a
static adversary if it satisfies the following properties:
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ExperimentExp
key−rec−h
KA,Ast

(1κ)

(K,Sec,Pub)← Gen(1κ, GU , T )
corr ← Corruptv,t(Sec)
k ← Ast(1

κ,Pub, corr)
if k = kv,t then return 1
else return 0

Figure 9: An experiment in which a static adversary attacking a hierarchical scheme participates.

• Completeness:A user, who is given private informationSv,TU
for a sequence of time intervalsTU ∈ P

and a classv ∈ VU , is able to compute with probability 1 the access keykw,t for eacht ∈ TU and
w ∈ Desc(v,GU ) using only her knowledge ofSv,TU

and public informationPub.

• Soundness:LetAst be a static adversary who attacks the classv at time intervalt ∈ T . If we let the
experimentExp

key−rec−h
KA,Ast

be specified as in Figure 9, the advantage ofAst is defined as:

Adv
key−rec−h
KA,Ast

(1κ) = Pr[Exp
key−rec−h
KA,Ast

(1κ) = 1]

We say thatKA is sound with respect to key recovery if for eacht ∈ T , for eachv ∈ V , for all suffi-
ciently largeκ, and every positive polynomialp(·), Adv

key−rec−h
KA,Ast

(1κ) < 1/p(κ) for each adversary
Ast that runs in polynomial time.

Proof sketch of Theorem 2Similar to the proof above, in this case we also use a hybrid argument and
construct a sequence of experimentsExp0

KA,Ast
, . . ., Expq

KA,Ast
for adversaryAst who attacks the scheme

at classv during time intervalt, defined as follows:

ExperimentExpi
KA,Ast

(1κ)

(K,Sec,Pub′)← Geni(1κ, GU , T )
corr ← Corruptv,t(Sec)
k ← Ast(1

κ,Pub′, corr)
if k = kv,t then return 1
else return 0

In the experiments,Gen0 corresponds to the original algorithmGen, andGeni+1 is constructed fromGeni

by replacing public information about a single edge in the data structure by a random string. The edges
replaced are:

1. For each access classu ∈ Anc(v,GU ), replace inPubG
u all of the edges that were replaced inPub

for a single resource in the proof of Theorem 1 (inD(w), R(w), andL(w) for all w of interest and in
the top-down fashion).

2. Replace inPub
GU

t , starting at the root3, information about edges(u,w) ∈ EU for eachu ∈ Anc(v).

Thus,Exp0
KA,Ast

is the same asExpkey−rec−h
KA,Ast

, while Expq
KA,Ast

has no information related tokv,t at the
level of v or any of its ancestors. This means thatAst has at most negligible probability in succeeding in
Expq

KA,Ast
.

3If several roots exist inGU sort the nodes using any topological ordering.
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Since the number of edges replaced is clearly polynomial in the security parameter, we can use a standard
reduction argument to show that any non-negligible advantage between anyExpi

KA,Ast
andExpi+1

KA,Ast
can

be used to break the security of pseudo-random functions. Since by our assumptions the PRF is secure, thus
the scheme is secure as well. �

C Extensions

C.1 Extending the lifetime of the system

So far in all of our discussion we considered the lifetime of the system to consist of a fixed set of time
intervals{t1, . . . , tn}. In many applications, however, there might eventually be aneed to support time
intervals beyond the originaln intervals. In this section, we briefly describe techniques for extending the
number of time intervals. The full details of these approaches are not given, but will appear in the full
version of the paper.

One simple approach is to apply the techniques of Section 5 toa second set of intervals. The interesting
case is when a user’s access rights straddle the boundary (i.e., tn and tn+1), and this case results in two
sets of keys being issued to that user. This is particular appealing in applications where users purchase
a subscription for a period of time (e.g., they can view a collection of media objects on a specific day or
month), after expiration of which there is no need to maintain keys for that period. However, this approach
is less desirable in applications where objects are assigned a date (e.g., a user requests access to all movies
released in 1977), because previous intervals need to be maintained even after they have elapsed.

Suppose that the keys for previous time intervals need to be maintained. One approach is to extend
the time intervals, rebuild the data structure, and recompute the public information. The downside of this
approach is that all of the public information has to be recomputed (previous shortcuts may no longer
be necessary and other shortcuts may need to be added), but ifextensions to the time intervals are rare
(which we assume is the case almost all of the time), then thismay be acceptable. If recomputing all of
the public information is unacceptable, then in some cases we can reuse the previous information. The
simplest technique to achieve this is to set the new number oftime intervals ton2 (recall that building the
tree data structure involves partitioning the time intervals into chunks of size of square-root of their number).
Unfortunately, squaring the number of intervals is prohibitively expensive, but if we assume thatn is a power
of 2 and is a perfect square, then we can achieve full reuse of the previous information by doubling the length
of a time interval. The basic idea of this approach is that, inthe data structure forn2 intervals, the subset of
the data structure that effects the first2cn (c < log n) intervals has sizeO(space(S1(2cn)) log log (2cn)).
Thus, we can use this subset for the intervals, and when we need to add more intervals we can simply add
the new information from the data structure forn2 intervals. We omit a detailed justification of the claim,
but it will be in the full version of this paper.

C.2 Further decreasing the space or a key-space tradeoff

The purpose of this section is to substantiate Table 5. We do so using the fact that the claims of Table 3 have
already been established. For the sake of definiteness, we explain in detail how the last entry of Table 5 is
obtained from the last entry of Table 3. A similar partitioning scheme works for every pair of corresponding
rows in those two tables.

Let A1 be the scheme (described earlier in the paper) that achieves3 keys,O(log∗ n) derivation time,
andO(n log(2) n) public space, where the notationlog(t) is a shorthand for applying thelog functiont times.
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Underlying Private Key Public
scheme storage derivation storage

2HS ≤ 2k + 1 ≤ 5 op. O(n log n log(2k) n)

3HS ≤ 2k + 1 ≤ 7 op. O(n log log n log(2k) n)

4HS ≤ 2k + 1 ≤ 9 op. O(n log∗ n log(2k) n)

log∗HS ≤ 2k + 1 O(log∗ n) op. O(n log(2k) n)

Table 5: Key/space tradeoff of generalized scheme, wherek is a positive integer.

We now give the construction of a family of schemesA2, A3, . . . such thatAk achieves2k + 1 keys,
O(log∗ n) derivation time, andO(n log(2k) n) public space. We describe the construction inductively, with
k = 1 being the base case.Ai+1 is constructed fromAi as follows:

1. Partition the range of sizen into n′ = n/ log(2i) chunks of sizelog(2i) n each.

2. Considering each chunk as one unit of time, useAi on the resulting (“reduced”) problem of sizen′.
This usesO(n′ log(2i) n′) public space, which isO(n). The number of keys and key derivation times
are those ofAi (2i + 1 andO(log∗ n′), respectively). The resulting structure (call itM ) can handle
time intervals that consist of a whole number of chunks, but it cannot handle intervals that start and/or
end inside of a chunk. These are handled as explained in the next steps.

3. The structure built in this step is for handling intervalsthat start and end inside different chunks (those
that start and end inside the same chunk are handled differently). For each chunkj, we build two
separate 1-dimensional structures: One structureLj for intervals that start at the chunk’s left boundary
(called left-anchoredintervals), and another structureRj for intervals that start at the chunk’s right
boundary (calledright-anchoredintervals). Note thatLj andRj are 1-dimensional structures that are
implemented using thelog∗HS scheme of Table 1 (which includes shortcut edges). Their total public
space isO(n′(log(2i) n) = O(n). These structures, together with theM structure described in the
above, enable the handling of any intervalI that starts and ends inside different chunks as follows:
We breakI into 3 pieces, the leftmost of which overlaps with only 1 chunk (call it v), the right most of
which overlaps with only one chunk (call itw), and the middle one consists of the union of a number
of whose chunks. The middle piece ofI is handled using theM structure. The left (right) piece ofI is
handled usingRv (resp.,Lw). The derivation time and public space areO(log∗ n) and (respectively)
O(n). However, the number of keys now includes 2 more than for schemeAi, because each ofRv and
Lw introduces an extra key, hence the total number of keys is2i + 1 + 2 = 2(i + 1) + 1, as required.

4. We are left with the case where both endpoints of the interval I are in the same chunk. To handle such
cases, we associate a structure for schemeAi with every chunk, thereby enabling a performance of
2i + 1 keys andO(log∗ n) derivation time. The space for each chunk is:

(log(2i) n) log(2i)(log(2i) n) = log(2i) n log(2i+1) n

Since there aren′ = n/ log(2i) chunks, the total space isO(n log(2i+1) n), as required.
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